1
|
Shao W, Fan W, Guan H, Zu X, Jiao X. Fundamentals and Perspectives of Positively Charged Single-Metal Site Catalysts for CO 2 Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10276-10291. [PMID: 39921625 DOI: 10.1021/acsami.4c21988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Single-atom catalysts (SACs) show superior efficiency in electrocatalytic carbon dioxide reduction, a key stage in achieving carbon neutrality. Atomically dispersed single-metal sites of SACs are invariably in a positive valence state; namely, they are positively charged single-metal sites (PCSSs). The PCSS catalysts generally possess a distinctive and asymmetric electronic structure, which enables the activation of linear carbon dioxide molecules and stabilizes miscellaneous intermediates during electrocatalysis. Herein, this review summarizes the manner in which the coordination environment, neighboring atoms or groups, and the interaction with the substrate modulate the distinctive electronic properties of PCSSs. Additionally, we overview the recently reported theoretical and experimental advances in terms of structure-performance relationship. Furthermore, we emphasize the previously underappreciated durability of positively charged single-metal sites in CO2 reduction. Finally, we discuss several pending issues and potential breakthroughs of PCSSs for CO2 reduction.
Collapse
Affiliation(s)
- Weiwei Shao
- School of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, P. R. China
| | - Wenya Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hangmin Guan
- School of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, P. R. China
| | - Xiaolong Zu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Xu MY, Tan HY, Ouyang J, Zhang FX, Wang BH, Wang X, Shen S, Yin SF. Electrosynthesis of Organonitrogen Compounds via Hydroxylamine-Mediated Cascade Reactions. Angew Chem Int Ed Engl 2025; 64:e202422637. [PMID: 39788903 DOI: 10.1002/anie.202422637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Hydroxylamine (NH2OH) is a key intermediate in the formation of numerous high value-added organonitrogen compounds. The traditional synthesis of NH2OH requires the use of precious metals under high temperature conditions, which leads to high cost, high energy consumption, and environmental pollution. The NH2OH-mediated cascade reaction integrates the electrochemical synthesis of NH2OH and the chemical synthesis of organonitrogen compounds, offering a facile, green, and efficient alternative. This review presents the recent advances on electrosynthesis of high value-added organonitrogen compounds by NH2OH-mediated cascade reactions. We present key concepts and the transformation process of different N-species to NH2OH, discuss suitable substrates and electrocatalysts, and elucidate the reaction mechanisms involved in generating compounds such as amino acids, cyclohexanone oxime, urea, amine, etc.. Finally, we address current challenges and future directions in this emerging field to encourage further research effort and the development of NH2OH-mediated cascade reaction.
Collapse
Affiliation(s)
- Meng-Yi Xu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hong-Yi Tan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jie Ouyang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Feng-Xuan Zhang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Bing-Hao Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiong Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Sheng Shen
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
3
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Li Q, Ma Y, Zeng Q, Liu W, Wang C, Han S, Cao P, Zhu D, Fang M. Coupling ZnN 4 Atomic Sites with Graphitic Nitrogen for Enhanced Ammonium Production via Electrocatalytic Nitrate Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409925. [PMID: 39937526 DOI: 10.1002/smll.202409925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Indexed: 02/13/2025]
Abstract
The electrocatalytic nitrate reduction reaction (NO3RR) presents a promising alternative to the traditional Haber-Bosch process for synthesizing ammonium (NH3) under mild conditions. Supported single atoms have emerged as active catalysts for this conversion; however, the efficiency of NH3 production are limited by the modest activity and selectivity of these catalysts. In this study, it is demonstrated that zinc single atoms supported on nitrogen-doped carbon (ZnNCs), derived from zeolitic imidazolate framework-8 (ZIF-8), possess remarkable catalytic performance for this conversion, achieving an unprecedented selectivity (exceeding 90%) for NH3 formation across a broad potential range (-0.4--0.8 V vs. RHE). Comprehensive analyses reveal that the incorporation of a graphitic nitrogen atom adjacent to the Zn-N4 site precisely modulates the reaction pathway, enabling a unique dual-site adsorption and cascading reaction route for NH3 formation. These findings not only uncover a novel reaction mechanism for the NO3RR but also have the potential to inspire the development of more efficient NO3RR catalysts.
Collapse
Affiliation(s)
- Qianghua Li
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yixuan Ma
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qingling Zeng
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenjun Liu
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunfeng Wang
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shun Han
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peijiang Cao
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Deliang Zhu
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ming Fang
- Guangdong Research Centre for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
5
|
Wu SM, Schmuki P. Single Atom Cocatalysts in Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414889. [PMID: 39969405 DOI: 10.1002/adma.202414889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Indexed: 02/20/2025]
Abstract
Single-atom (SA) cocatalysts (SACs) have garnered significant attention in photocatalysis due to their unique electronic properties and high atom utilization efficiency. This review provides an overview of the concept and principles of SA cocatalyst in photocatalysis, emphasizing the intrinsic differences to SAs used in classic chemical catalysis. Key factors that influence the efficiency of SAs in photocatalytic reactions, particularly in photocatalytic hydrogen (H2) production, are highlighted. This review further covers synthesis methods, stabilization strategies, and characterization techniques for common SAs used in photocatalysis. Notably, "reactive deposition" method, which often shows a self-homing effect and thus achieves a maximum utilization efficiency of SA cocatalysts, is emphasized. Furthermore, the applications of SA cocatalysts in various photocatalytic processes, including H2 evolution, carbon dioxide reduction, nitrogen fixation, and organic synthesis, are comprehensively reviewed, along with insights into common artifacts in these applications. This review concludes by addressing the challenges faced by SACs in photocatalysis and offering perspectives on future developments, with the aim of informing and advancing research on SAs for photocatalytic energy conversion.
Collapse
Affiliation(s)
- Si-Ming Wu
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, University of Erlangen-Nuremberg, Martensstraße 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| |
Collapse
|
6
|
Amanullah S, Cao W, Brack E, Plodinec M, Copéret C. Surface Coordination Chemistry of Graphitic Carbon Nitride from Ag Molecular Probes. Angew Chem Int Ed Engl 2025; 64:e202417428. [PMID: 39502040 PMCID: PMC11773128 DOI: 10.1002/anie.202417428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 12/06/2024]
Abstract
Graphitic carbon nitride (g-C3N4) has gained significant attention for its catalytic properties, especially in the development of Single Atom Catalysts (SACs). However, the surface chemistry underlying the formation of these isolated metal sites remains poorly understood. In this study we employ Surface OrganoMetallic Chemistry (SOMC) together with advanced microscopic and spectroscopic techniques for an in-depth analysis of functionalized g-C3N4 materials, where tailored organosilver probe molecules are used to monitor surface processes and characterize resulting surface species. A multi-technique approach - including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray absorption spectroscopy (XAS), and multinuclear solid-state Nuclear Magnetic Resonance spectroscopy (ssNMR), coupled with density functional theory (DFT) calculations - identifies three primary surface species in Ag-functionalized g-C3N4: bis-NHC-Ag+, dispersed Ag+ sites, and physisorbed molecular precursor. These findings highlight a dynamic grafting process and provide insights into the surface coordination chemistry of functionalized g-C3N4 materials.
Collapse
Affiliation(s)
- Sk Amanullah
- Department of Chemistry and Applied BiosciencesETH ZürichCH-8093ZürichSwitzerland
| | - Weicheng Cao
- Department of Chemistry and Applied BiosciencesETH ZürichCH-8093ZürichSwitzerland
| | - Enzo Brack
- Department of Chemistry and Applied BiosciencesETH ZürichCH-8093ZürichSwitzerland
| | - Milivoj Plodinec
- Department of Chemistry and Applied BiosciencesETH ZürichCH-8093ZürichSwitzerland
- Scientific Center for Optical and Electron Microscopy (ScopeM)ETH ZürichCH-8093ZürichSwitzerland
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH ZürichCH-8093ZürichSwitzerland
| |
Collapse
|
7
|
Han Z, Shi Y, Zhang B, Kong L. Dynamic evolution of metal-nitrogen-codoped carbon catalysts in electrocatalytic reactions. Chem Commun (Camb) 2025; 61:1485-1495. [PMID: 39691082 DOI: 10.1039/d4cc04664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Atomic metal-nitrogen-codoped carbon (M-N-C) catalysts are highly efficient for various electrocatalytic reactions because of their high atomic utilization efficiency. However, the high surface energy of M-N-C catalysts often results in stability issues in electrochemical reactions. Therefore, understanding the stability and dynamic evolution of M-N-C catalysts is crucial for elucidating the active centers and the composition/structure-activity relationship. This review summarizes the factors affecting the durability of atomic catalysts in electrochemical reactions and discusses possible changes in catalysts during these electrochemical processes. Finally, advanced characterization techniques are described, with a focus on tracking the dynamic evolution of M-N-C catalysts during electrocatalysis. This review offers insights into the rational optimization of M-N-C electrocatalysts and provides a framework for linking their composition and structure with their catalytic activity in future research.
Collapse
Affiliation(s)
- Zixuan Han
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yanmei Shi
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Lingjun Kong
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Lang Z, Wang X, Jabeen S, Cheng Y, Liu N, Liu Z, Gan T, Zhuang Z, Li H, Wang D. Destabilization of Single-Atom Catalysts: Characterization, Mechanisms, and Regeneration Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418942. [PMID: 39828525 DOI: 10.1002/adma.202418942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Numerous in situ characterization studies have focused on revealing the catalytic mechanisms of single-atom catalysts (SACs), providing a theoretical basis for their rational design. Although research is relatively limited, the stability of SACs under long-term operating conditions is equally important and a prerequisite for their real-world energy applications, such as fuel cells and water electrolyzers. Recently, there has been a rise in in situ characterization studies on the destabilization and regeneration of SACs; however, timely and comprehensive summaries that provide the catalysis community with valuable insights and research directions are still lacking. This review summarizes recent advances in the destabilization mechanisms and regeneration strategies of SACs, specifically highlighting various state-of-the-art characterization techniques employed in the studies. The factors that induce destabilization in SACs are identified by discussing the failure of active sites, coordination environments, supports, and reaction conditions under long-term operating scenarios. Next, the primary regeneration strategies for SACs are introduced, including redispersion, surface poison desorption, and exposure of subsurface active sites. Additionally, the advantages and limitations of both in situ and ex situ characterization techniques are discussed. Finally, future research directions are proposed, aimed at constructing structure-stability relationships and guiding the design of more stable SACs.
Collapse
Affiliation(s)
- Zhiquan Lang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Xixi Wang
- Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Sobia Jabeen
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Yuanyuan Cheng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Naiyun Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Zhenhui Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemical Engineering, Columbia University, New York, 10027-6902, USA
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212003, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Yan L, Mao Y, Li Y, Sha Q, Sun K, Li P, Waterhouse GIN, Wang Z, Tian S, Sun X. Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202413179. [PMID: 39225757 DOI: 10.1002/anie.202413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe-Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe-Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe-Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yu Mao
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Yingxin Li
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Qihao Sha
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kai Sun
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Panpan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | | | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
10
|
Zhu Y, Li L, Cheng H, Ma J. Alkaline Hydrogen Evolution Reaction Electrocatalysts for Anion Exchange Membrane Water Electrolyzers: Progress and Perspective. JACS AU 2024; 4:4639-4654. [PMID: 39735935 PMCID: PMC11672133 DOI: 10.1021/jacsau.4c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/31/2024]
Abstract
For the aim of achieving the carbon-free energy scenario, green hydrogen (H2) with non-CO2 emission and high energy density is regarded as a potential alternative to traditional fossil fuels. Over the last decades, significant breakthroughs have been realized on the alkaline hydrogen evolution reaction (HER), which is a fundamental advancement and efficient process to generate high-purity H2 in the laboratory. Based on this, the development of the practical industry-oriented anion exchange membrane water electrolyzer (AEMWE) is on the rise, showing competitiveness with the incumbent megawatt-scale H2 production technologies. Still, great challenges lie in exploring the electrocatalysts with remarkable activity and stability for alkaline HER, as well as bridging the gap of performance difference between the three-electrode cell and AEMWE devices. In this perspective, we systematically discuss the in-depth mechanisms for activating alkaline HER electrocatalysts, including electronic modification, defect construction, morphology control, synergistic function, field effect, etc. In addition, the current status of AEMWE is reviewed, and the underlying bottlenecks that impede the application of HER electrocatalysts in AEMWE are summarized. Finally, we share our thoughts regarding the future development directions of electrocatalysts toward both alkaline HER and AEMWE, in the hope of advancing the commercialization of water electrolysis technology for green H2 production.
Collapse
Affiliation(s)
- Yiming Zhu
- Shanghai
Key Laboratory for R&D and Application of Metallic Functional
Materials, Institute of New Energy for Vehicles, School of Materials
Science and Engineering, Tongji University, 201804, Shanghai, China
| | - Ling Li
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, 310024, Zhejiang, China
| | - Hongfei Cheng
- Shanghai
Key Laboratory for R&D and Application of Metallic Functional
Materials, Institute of New Energy for Vehicles, School of Materials
Science and Engineering, Tongji University, 201804, Shanghai, China
| | - Jiwei Ma
- Shanghai
Key Laboratory for R&D and Application of Metallic Functional
Materials, Institute of New Energy for Vehicles, School of Materials
Science and Engineering, Tongji University, 201804, Shanghai, China
| |
Collapse
|
11
|
Sun Z, Luo X, Shang H, Wang Z, Zhang L, Chen W. Atomic Printing Strategy Achieves Precise Anchoring of Dual-Copper Atoms on C 2N Structure for Efficient CO 2 Reduction to Ethylene. Angew Chem Int Ed Engl 2024; 63:e202405778. [PMID: 39250557 DOI: 10.1002/anie.202405778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Isolated metal sites catalysts (IMSCs) play crucial role in electrochemical CO2 reduction, with potential industrial applications. However, tunable synthesis strategies for IMSCs are limited. Herein, we present an atomic printing strategy that draws inspiration from the ancient Chinese "movable-type printing technology". Selecting customizable combinations of metal atoms as metal precursors from an extensive binuclear metal library. A series of dual-atom catalysts were prepared by utilizing the edge nitrogen atoms in the C2N cavity as anchoring "pincers" to capture metal atoms. To prove utility, the dual atom catalyst Cu2-C2N is investigated as electrocatalytic CO2RR catalyst. The synergistic interaction of dual Cu atoms promotes C-C coupling and guarantees FEC2+ (90.8 %) and FEC2H4. (71.7 %) at -1.10 V vs RHE. DFT calculations revealed the Cu2 site would be subtly flipped during CO2RR for enhancing *CO adsorption and dimerization. We validate that atomic printing strategies are applicable to wide range of metal combinations, representing a significant advancement in the development of IMSCs.
Collapse
Affiliation(s)
- Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuan Luo
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziding Wang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
12
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
13
|
Wang Q, Cheng Y, Yang HB, Su C, Liu B. Integrative catalytic pairs for efficient multi-intermediate catalysis. NATURE NANOTECHNOLOGY 2024; 19:1442-1451. [PMID: 39103451 DOI: 10.1038/s41565-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.
Collapse
Affiliation(s)
- Qilun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yaqi Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Xu L, Yang Z, Zhang C, Chen C. Recent progress in electrochemical C-N coupling: metal catalyst strategies and applications. Chem Commun (Camb) 2024; 60:10822-10837. [PMID: 39233628 DOI: 10.1039/d4cc03256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative. The notable advantages of electrochemical C-N coupling include high efficiency, good selectivity, and mild reaction conditions. Through rational design of corresponding electrocatalysts, it is possible to achieve efficient C-N bond coupling at low potentials. Moreover, the electrochemical methods allow for precise control over reaction conditions, thereby avoiding side reactions and by-products that are common for conventional methods, improving both selectivity and product purity. Despite the extensive research efforts devoted to exploring the potential of electrochemical C-N coupling, the design of efficient and stable metal catalysts remains a significant challenge. In this review, we summarize and evaluate the latest strategies developed for designing metal catalysts, and their application prospects for different nitrogen sources such as N2 and NOx. We delineate how the control over nanoscale structures, morphologies, and electronic properties of metal catalysts can optimize their performance in C-N coupling reactions, and discuss the performances and advantages of single-metal catalysts, bimetallic catalysts, and single-atom catalysts under various reaction conditions. By summarizing the latest research achievements, particularly in the development of high-efficiency catalysts, the application of novel catalyst materials, and the in-depth study of reaction mechanisms, this review aims to provide insights for future research in the field of electrochemical C-N coupling, and demonstrates that rationally designed metal catalysts could not only enhance the efficiency and selectivity of electrochemical C-N coupling reactions, but also offer conceptual frameworks for other electrochemical reactions.
Collapse
Affiliation(s)
- Lekai Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xin Jiang, 830017, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Xiong Z, Pan Z, Wu Z, Huang B, Lai B, Liu W. Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry. Molecules 2024; 29:3719. [PMID: 39202799 PMCID: PMC11357653 DOI: 10.3390/molecules29163719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Single-atom catalysts (SACs) have attracted extensive attention due to their unique catalytic properties and wide range of applications. Advanced characterization techniques, such as energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and X-ray absorption fine-structure spectroscopy, have been used to investigate the elemental compositions, structural morphologies, and chemical bonding states of SACs in detail, aiming at unraveling the catalytic mechanism. Meanwhile, theoretical calculations, such as quantum chemical calculations and kinetic simulations, were used to predict the catalytic reaction pathways, active sites, and reaction kinetic behaviors of SACs, providing theoretical guidance for the design and optimization of SACs. This review overviews advanced characterization techniques and theoretical calculations for SACs in Fenton-like chemistry. Moreover, this work highlights the importance of advanced characterization techniques and theoretical calculations in the study of SACs and provides perspectives on the potential applications of SACs in the field of environmental remediation and the challenges of practical engineering.
Collapse
Affiliation(s)
- Zhaokun Xiong
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China;
- Sichuan Province Engineering Technology Research Center of Water Safety and Water Pollution Control, Haitian Water Group, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Zhicheng Pan
- Sichuan Province Engineering Technology Research Center of Water Safety and Water Pollution Control, Haitian Water Group, Chengdu 610065, China
| | - Zelin Wu
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Bingkun Huang
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Bo Lai
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China;
| |
Collapse
|
17
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
18
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
19
|
Wang YT, Lin HY, Chen YC, Lin YG, Wu JM. Piezo-Flexocatalysis of Single-Atom Pt-Loaded Graphitic Carbon Nitride. SMALL METHODS 2024; 8:e2301287. [PMID: 38054596 DOI: 10.1002/smtd.202301287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Indexed: 12/07/2023]
Abstract
This study develops a single-atom Pt-loaded graphitic carbon nitride (SA-Pt/CN) and evaluates its piezo-flexocatalytic properties by conducting a hydrogen evolution reaction (HER) and Rhodamine B (RB) dye degradation test under ultrasonic vibration in the dark. SA-Pt/CN has a hydrogen gas yield of 1283.8 µmol g-1 h-1, which is 23.3 times higher than that of pristine g-C3N4. Moreover, SA-Pt/CN enhances the dye degradation reaction rate by ≈2.3 times compared with the pristine sample. SA-Pt/CN exhibits lattice distortion and strain gradient enlargement caused by the single atom Pt at the N sites of g-C3N4, which disrupts the symmetric structure and contributes to the enhancement of piezoelectric and flexoelectric polarization. As far as it is known, this is the first study to investigate the piezo-flexocatalytic reaction of SA-Pt/CN without light irradiation and provides new insights into single-atom piezocatalysts.
Collapse
Affiliation(s)
- Yu Teng Wang
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
| | - Hsun-Yen Lin
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
- Program in Prospective Functional Materials Industry, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
| | - Yu-Ching Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
- Program in Prospective Functional Materials Industry, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Jyh Ming Wu
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
- High Entropy Materials Center, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, 300, Taiwan
| |
Collapse
|
20
|
Yue S, Praveen CS, Klyushin A, Fedorov A, Hashimoto M, Li Q, Jones T, Liu P, Yu W, Willinger MG, Huang X. Redox dynamics and surface structures of an active palladium catalyst during methane oxidation. Nat Commun 2024; 15:4678. [PMID: 38824167 PMCID: PMC11144237 DOI: 10.1038/s41467-024-49134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Catalysts based on palladium are among the most effective in the complete oxidation of methane. Despite extensive studies and notable advances, the nature of their catalytically active species and conceivable structural dynamics remains only partially understood. Here, we combine operando transmission electron microscopy (TEM) with near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and density functional theory (DFT) calculations to investigate the active state and catalytic function of Pd nanoparticles (NPs) under methane oxidation conditions. We show that the particle size, phase composition and dynamics respond appreciably to changes in the gas-phase chemical potential. In combination with mass spectrometry (MS) conducted simultaneously with in situ observations, we uncover that the catalytically active state exhibits phase coexistence and oscillatory phase transitions between Pd and PdO. Aided by DFT calculations, we provide a rationale for the observed redox dynamics and demonstrate that the emergence of catalytic activity is related to the dynamic interplay between coexisting phases, with the resulting strained PdO having more favorable energetics for methane oxidation.
Collapse
Affiliation(s)
- Shengnan Yue
- College of Chemistry, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - C S Praveen
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Qian Li
- College of Chemistry, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Travis Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Panpan Liu
- College of Chemistry, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Wenqian Yu
- College of Chemistry, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Marc-Georg Willinger
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Xing Huang
- College of Chemistry, Fuzhou University, Fuzhou, China.
- Qingyuan Innovation Laboratory, Quanzhou, China.
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Moragues T, Giannakakis G, Ruiz-Ferrando A, Borca CN, Huthwelker T, Bugaev A, de Mello AJ, Pérez-Ramírez J, Mitchell S. Droplet-Based Microfluidics Reveals Insights into Cross-Coupling Mechanisms over Single-Atom Heterogeneous Catalysts. Angew Chem Int Ed Engl 2024; 63:e202401056. [PMID: 38472115 DOI: 10.1002/anie.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy. Our results confirm a surface-catalyzed mechanism, revealing the distinct electronic structure of active Pd centers compared to homogeneous systems, and providing insights into the stabilizing role of ligands and bases. This study establishes a valuable framework for advancing mechanistic understanding of organic syntheses catalyzed by SACs.
Collapse
Affiliation(s)
- Thomas Moragues
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Georgios Giannakakis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrea Ruiz-Ferrando
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, Tarragona, 43007, Spain
- University of Rovira i Virgili, Av. Catalunya 35, Tarragona, 43002, Spain
| | - Camelia N Borca
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Thomas Huthwelker
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Andrew J de Mello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Sharon Mitchell
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
22
|
Liu L, Yung KF, Yang H, Liu B. Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem Sci 2024; 15:6285-6313. [PMID: 38699256 PMCID: PMC11062113 DOI: 10.1039/d4sc01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Ka-Fu Yung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR 999007 China
- Department of Chemistry, Hong Kong Institute of Clean Energy & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
23
|
Luo SH, Zhao XJ, Cao MF, Xu J, Wang WL, Lu XY, Huang QT, Yue XX, Liu GK, Yang L, Ren B, Tian ZQ. Signal2signal: Pushing the Spatiotemporal Resolution to the Limit by Single Chemical Hyperspectral Imaging. Anal Chem 2024; 96:6550-6557. [PMID: 38642045 DOI: 10.1021/acs.analchem.3c04609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.
Collapse
Affiliation(s)
- Si-Heng Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiao-Jiao Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Feng Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Xu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin-Yu Lu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiu-Ting Huang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xia-Xia Yue
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Liu Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Guo Z, Yu Y, Li C, Campos Dos Santos E, Wang T, Li H, Xu J, Liu C, Li H. Deciphering Structure-Activity Relationship Towards CO 2 Electroreduction over SnO 2 by A Standard Research Paradigm. Angew Chem Int Ed Engl 2024; 63:e202319913. [PMID: 38284290 DOI: 10.1002/anie.202319913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Authentic surface structures under reaction conditions determine the activity and selectivity of electrocatalysts, therefore, the knowledge of the structure-activity relationship can facilitate the design of efficient catalyst structures for specific reactivity requirements. However, understanding the relationship between a more realistic active surface and its performance is challenging due to the complicated interface microenvironment in electrocatalysis. Herein, we proposed a standard research paradigm to effectively decipher the structure-activity relationship in electrocatalysis, which is exemplified in the CO2 electroreduction over SnO2 . The proposed practice has aided in discovering authentic/resting surface states (Sn layer) of SnO2 accountable for the electrochemical CO2 reduction reaction (CO2 RR) performance under electrocatalytic conditions, which then is corroborated in the subsequent CO2 RR experiments over SnO2 with different morphologies (nanorods, nanoparticles, and nanosheets) in combination with in situ characterizations. This proposed methodology is further extended to the SnO electrocatalysts, providing helpful insights into catalytic structures. It is believed that our proposed standard research paradigm is also applicable to other electrocatalytic systems, in the meantime, decreases the discrepancy between theory and experiments, and accelerates the design of catalyst structures that achieve sustainable performance for energy conversion.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yihong Yu
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Congcong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Egon Campos Dos Santos
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Huihui Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuangwei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
25
|
Alam N, Noor T, Iqbal N. Catalyzing Sustainable Water Splitting with Single Atom Catalysts: Recent Advances. CHEM REC 2024; 24:e202300330. [PMID: 38372409 DOI: 10.1002/tcr.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Electrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low-cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long-term stability, outperforming their nano-counterparts. This review's first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non-noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon-based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste-derived supports for single atom catalysts used in electrochemical reactions, providing a cost-effective dimension to this vibrant research field. The well-known design techniques discussed here may help in development of electrocatalysts for effective water splitting.
Collapse
Affiliation(s)
- Nasar Alam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| |
Collapse
|
26
|
Lopez-Astacio H, Vargas-Perez BL, Del Valle-Perez A, Pollock CJ, Cunci L. Open-source electrochemical cell for in situ X-ray absorption spectroscopy in transmission and fluorescence modes. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:322-327. [PMID: 38306299 PMCID: PMC10914171 DOI: 10.1107/s1600577524000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.
Collapse
Affiliation(s)
- Hiram Lopez-Astacio
- Department of Chemistry and Physics, Universidad Ana G. Mendez at Gurabo, Gurabo, Puerto Rico, USA
| | - Brenda Lee Vargas-Perez
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - Angelica Del Valle-Perez
- Department of Chemistry and Physics, Universidad Ana G. Mendez at Gurabo, Gurabo, Puerto Rico, USA
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - Christopher J. Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| |
Collapse
|
27
|
Xu W, Zeng R, Rebarchik M, Posada-Borbón A, Li H, Pollock CJ, Mavrikakis M, Abruña HD. Atomically Dispersed Zn/Co-N-C as ORR Electrocatalysts for Alkaline Fuel Cells. J Am Chem Soc 2024; 146:2593-2603. [PMID: 38235653 DOI: 10.1021/jacs.3c11355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal-organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co-N-C), consisting of Co-N4 and Zn-N4 local structures. These catalysts exhibited superior ORR activity with a half-wave potential (E1/2) of 0.938 V versus RHE (reversible hydrogen electrode) and robust stability (ΔE1/2 = -8.5 mV) after 50k electrochemical cycles. Moreover, this remarkable performance was validated under realistic fuel cell working conditions, achieving a record-high peak power density of ∼1 W cm-2 among the reported SACs for alkaline fuel cells. Operando X-ray absorption spectroscopy was conducted to identify the active sites and reveal catalytic mechanistic insights. The results indicated that the Co atom in the Co-N4 structure was the main catalytically active center, where one axial oxygenated species binds to form an Oads-Co-N4 moiety during the ORR. In addition, theoretical studies, based on a potential-dependent microkinetic model and core-level shift calculations, showed good agreement with the experimental results and provided insights into the bonding of oxygen species on Co-N4 centers during the ORR. This work provides a comprehensive mechanistic understanding of the active sites in the Zn/Co-N-C catalysts and will pave the way for the future design and advancement of high-performance single-site electrocatalysts for fuel cells and other energy applications.
Collapse
Affiliation(s)
- Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael Rebarchik
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alvaro Posada-Borbón
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
29
|
Li R, Zhao J, Liu B, Wang D. Atomic Distance Engineering in Metal Catalysts to Regulate Catalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308653. [PMID: 37779465 DOI: 10.1002/adma.202308653] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
It is very important to understand the structure-performance relationship of metal catalysts by adjusting the microstructure of catalysts at the atomic scale. The atomic distance has an essential influence on the composition of the environment of active metal atom, which is a key factor for the design of targeted catalysts with desired function. In this review, we discuss and summarize strategies for changing the atomic distance from three aspects and relate their effects on the reactivity of catalysts. First, the effects of regulating bond length between metal and coordination atom at one single-atom site on the catalytic performance are introduced. The bond lengths are affected by the strain effect of the support and high-shell doping and can evolve during the reaction. Next, the influence of the distance between single-atom sites on the catalytic performance is discussed. Due to the space matching of adsorption and electron transport, the catalytic performance can be adjusted with the shortening of site distance. In addition, the effect of the arrangement spacing of the surface metal active atoms on the catalytic performance of metal nanocatalysts is studied. Finally, a comprehensive summary and outlook of the relationship between atomic distance and catalytic performance is given.
Collapse
Affiliation(s)
- Runze Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry Tsinghua University, Beijing, 100084, China
| | - Jie Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Baozhong Liu
- Henan Polytechnic University, College of Chemistry and Chemical Engineering, 2001 Century Ave, Jiaozuo, Henan, 454000, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
Tong M, Sun F, Xing G, Tian C, Wang L, Fu H. Potential Dominates Structural Recombination of Single Atom Mn Sites for Promoting Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202314933. [PMID: 37955333 DOI: 10.1002/anie.202314933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Single atom sites (SAS) often undergo structural recombination in oxygen reduction reaction (ORR), while the effect of valence state and reconstruction on active centers needs to be investigated thoroughly. Herein, the Mn-SAS catalyst with uniform and precise Mn-N4 configuration is rationally designed. We utilize operando synchrotron radiation to track the dynamic evolution of active centers during ORR. Under the applied potential, the structural evolution of Mn-N4 into Mn-N3 C and further into Mn-N2 C2 configurations is clarified. Simultaneously, the valence states of Mn are increased from +3.0 to +3.8 and then decreased to +3.2. When the potential is removed, the catalyst returned to its initial Mn+3.0 -N4 configuration. Such successive evolutions optimize the electronic and geometric structures of active centers as evidenced by theory calculations. The evolved Mn+3.8 -N3 C and Mn+3.2 -N2 C2 configurations respectively adjust the O2 adsorption and reduce the energy barrier of rate-determining step. Thus, it can achieve an onset potential of 0.99 V, superior stability over 10,000 cycles, and a high turnover frequency of 1.59 s-1 at 0.85 VRHE. Our present work provides new insights into the construction of well-defined SAS catalysts by regulating the valence states and configurations of active centers.
Collapse
Affiliation(s)
- Miaomiao Tong
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Gengyu Xing
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
31
|
Wang Y, Wang Y, Lee LYS, Wong KY. An emerging direction for nanozyme design: from single-atom to dual-atomic-site catalysts. NANOSCALE 2023; 15:18173-18183. [PMID: 37921779 DOI: 10.1039/d3nr04853e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Nanozymes, a new class of functional nanomaterials with enzyme-like characteristics, have recently made great achievements and have become potential substitutes for natural enzymes. In particular, single-atomic nanozymes (Sazymes) have received intense research focus on account of their versatile enzyme-like performances and well-defined spatial configurations of single-atomic sites. More recently, dual-atomic-site catalysts (DACs) containing two neighboring single-atomic sites have been explored as next-generation nanozymes, thanks to the flexibility in tuning active sites by various combinations of two single-atomic sites. This minireview outlines the research progress of DACs in their synthetic approaches and the latest characterization techniques highlighting a series of representative examples of DAC-based nanozymes. In the final remarks, we provide current challenges and perspectives for developing DAC-based nanozymes as a guide for researchers who would be interested in this exciting field.
Collapse
Affiliation(s)
- Ying Wang
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Yong Wang
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
32
|
Zhang C, Eraky H, Tan S, Hitchcock A, Higgins D. In Situ Studies of Copper-Based CO 2 Reduction Electrocatalysts by Scanning Transmission Soft X-ray Microscopy. ACS NANO 2023; 17:21337-21348. [PMID: 37906612 DOI: 10.1021/acsnano.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A microfluidic-enabled electrochemical device has been developed to investigate electrochemically active nanomaterials under reaction conditions using in situ scanning transmission soft X-ray microscopy (STXM). In situ STXM measurements were conducted on electrodeposited Cu catalysts under electrochemical CO2 reduction (CO2R) conditions. The study provides detailed, quantitative results about the changes in the morphology and chemical structure of the catalytic nanoparticles as a function of applied potentials. The deposited Cu nanoparticles initially contain both Cu(0) and Cu(I). As an increasingly cathodic potential is applied, the Cu(I) species gradually convert to Cu(0) over the potential range of +0.4 to 0 V versus the reversible hydrogen electrode (VRHE). During this process, Cu(I) particles of various sizes are converted to metallic Cu at different reaction rates and at slightly different potentials, indicating a degree of heterogeneity in the electrochemical response of discrete particles. At CO2R relevant potentials, only metallic Cu is observed, and the morphology of the particles is fairly stable within the spatial resolution limits of STXM (∼40 nm). We also report in situ STXM studies of a working electrode with relatively thick Cu-based electrodeposits. The spatially resolved chemical analysis identifies that Cu-oxide species can persist under CO2R conditions, but only when the catalytic nanoparticles are electronically isolated from the working electrode and therefore are catalytically irrelevant. In summary, in situ STXM is presented as a technique to gain advanced morphological and spatially resolved chemical structure insights into electrochemically active nanomaterials, which was used to provide improved understanding regarding Cu nanomaterial catalysts under CO2 reduction conditions.
Collapse
Affiliation(s)
- Chunyang Zhang
- Chemical Engineering, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
- Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| | - Haytham Eraky
- Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| | - Shunquan Tan
- Chemical Engineering, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| | - Adam Hitchcock
- Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| | - Drew Higgins
- Chemical Engineering, McMaster University, Hamilton, Ontario, Canada, L8S 4M1
| |
Collapse
|
33
|
Gu H, Li J, Niu X, Lin J, Chen LW, Zhang Z, Shi Z, Sun Z, Liu Q, Zhang P, Yan W, Wang Y, Zhang L, Li P, Li X, Wang D, Yin P, Chen W. Symmetry-Breaking p-Block Antimony Single Atoms Trigger N-Bridged Titanium Sites for Electrocatalytic Nitrogen Reduction with High Efficiency. ACS NANO 2023; 17:21838-21849. [PMID: 37909679 DOI: 10.1021/acsnano.3c07857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The electrochemical nitrogen reduction reaction (eNRR) under mild conditions emerges as a promising approach to produce ammonia (NH3) compared to the typical Haber-Bosch process. Herein, we design an asymmetrically coordinated p-block antimony single-atom catalyst immobilized on nitrogen-doped Ti3C2Tx (Sb SA/N-Ti3C2Tx) for eNRR, which exhibits ultrahigh NH3 yield (108.3 μg h-1 mgcat-1) and excellent Faradaic efficiency (41.2%) at -0.3 V vs RHE. Complementary in situ spectroscopies with theoretical calculations reveal that the nitrogen-bridged two titanium atoms triggered by an adjacent asymmetrical Sb-N1C2 moiety act as the active sites for facilitating the protonation of the rate-determining step from *N2 to *N2H and the kinetic conversion of key intermediates during eNRR. Moreover, the introduction of Sb-N1C2 promotes the formation of oxygen vacancies to expose more titanium sites. This work presents a strategy for single-atom-decorated ultrathin two-dimensional materials with the aim of simultaneously enhancing NH3 yield and Faradaic efficiency for electrocatalytic nitrogen reduction.
Collapse
Affiliation(s)
- Hongfei Gu
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiani Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangfu Niu
- School of Vehicle and Mobility, Center for Combustion Energy, Tsinghua University, Beijing 100084, China
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 1219 Zhongguan West Road, Ningbo 315201, P. R. China
| | - Li-Wei Chen
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ziqian Shi
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qingqing Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204, China
| | - Liang Zhang
- School of Vehicle and Mobility, Center for Combustion Energy, Tsinghua University, Beijing 100084, China
| | - Pengfei Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyuan Li
- MOE Key Laboratory of Cluster Science, School of chemistry and chemical engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
34
|
Di Liberto G, Pacchioni G. Modeling Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307150. [PMID: 37749881 DOI: 10.1002/adma.202307150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Electronic structure calculations represent an essential complement of experiments to characterize single-atom catalysts (SACs), consisting of isolated metal atoms stabilized on a support, but also to predict new catalysts. However, simulating SACs with quantum chemistry approaches is not as simple as often assumed. In this work, the essential factors that characterize a reliable simulation of SACs activity are examined. The Perspective focuses on the importance of precise atomistic characterization of the active site, since even small changes in the metal atom's surroundings can result in large changes in reactivity. The dynamical behavior and stability of SACs under working conditions, as well as the importance of adopting appropriate methods to solve the Schrödinger equation for a quantitative evaluation of reaction energies are addressed. The Perspective also focuses on the relevance of the model adopted. For electrocatalysis this must include the effects of the solvent, the presence of electrolytes, the pH, and the external potential. Finally, it is discussed how the similarities between SACs and coordination compounds may result in reaction intermediates that usually are not observed on metal electrodes. When these aspects are not adequately considered, the predictive power of electronic structure calculations is quite limited.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
35
|
Liu L, Wu X, Wang F, Zhang L, Wang X, Song S, Zhang H. Dual-Site Metal Catalysts for Electrocatalytic CO 2 Reduction Reaction. Chemistry 2023; 29:e202300583. [PMID: 37367498 DOI: 10.1002/chem.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR) is a promising and green approach for reducing atmospheric CO2 concentration and achieving high-valued conversion of CO2 under the carbon-neutral policy. In CO2 RR, the dual-site metal catalysts (DSMCs) have received wide attention for their ingenious design strategies, abundant active sites, and excellent catalytic performance attributed to the synergistic effect between dual-site in terms of activity, selectivity and stability, which plays a key role in catalytic reactions. This review provides a systematic summary and detailed classification of DSMCs for CO2 RR, describes the mechanism of synergistic effects in catalytic reactions, and also introduces in situ characterization techniques commonly used in CO2 RR. Finally, the main challenges and prospects of dual-site metal catalysts and even multi-site catalysts for CO2 recycling are analyzed. It is believed that based on the understanding of bimetallic site catalysts and synergistic effects in CO2 RR, well-designed high-performance, low-cost electrocatalysts are promising for achieving CO2 conversion, electrochemical energy conversion and storage in the future.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Xueting Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Tsinghua University, 30, Shuangqing Road, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|
36
|
Poppe A, Griffiths J, Hu S, Baumberg JJ, Osadchy M, Gibson S, de Nijs B. Mapping Atomic-Scale Metal-Molecule Interactions: Salient Feature Extraction through Autoencoding of Vibrational Spectroscopy Data. J Phys Chem Lett 2023; 14:7603-7610. [PMID: 37594383 PMCID: PMC10476190 DOI: 10.1021/acs.jpclett.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Atomic-scale features, such as step edges and adatoms, play key roles in metal-molecule interactions and are critically important in heterogeneous catalysis, molecular electronics, and sensing applications. However, the small size and often transient nature of atomic-scale structures make studying such interactions challenging. Here, by combining single-molecule surface-enhanced Raman spectroscopy with machine learning, spectra are extracted of perturbed molecules, revealing the formation dynamics of adatoms in gold and palladium metal surfaces. This provides unique insight into atomic-scale processes, allowing us to resolve where such metallic protrusions form and how they interact with nearby molecules. Our technique paves the way to tailor metal-molecule interactions on an atomic level and assists in rational heterogeneous catalyst design.
Collapse
Affiliation(s)
- Alex Poppe
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, U.K.
| | - Jack Griffiths
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Margarita Osadchy
- Computer
Science Department, University of Haifa, Haifa 3498838, Israel
| | - Stuart Gibson
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Bart de Nijs
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, U.K.
| |
Collapse
|
37
|
Tang P, Huang PY, Swallow JEN, Wang C, Gianolio D, Guo H, Warner JH, Weatherup RS, Pasta M. Structure-Property Relationship of Defect-Trapped Pt Single-Site Electrocatalysts for the Hydrogen Evolution Reaction. ACS Catal 2023; 13:9558-9566. [PMID: 37497376 PMCID: PMC10367054 DOI: 10.1021/acscatal.3c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Single-site catalysts (SSCs) have attracted significant research interest due to their high metal atom utilization. Platinum single sites trapped in the defects of carbon substrates (trapped Pt-SSCs) have been proposed as efficient and stable electrocatalysts for the hydrogen evolution reaction (HER). However, the correlation between Pt bonding environment, its evolution during operation, and catalytic activity is still unclear. Here, a trapped Pt-SSC is synthesized by pyrolysis of H2PtCl6 chemisorbed on a polyaniline substrate. In situ heated scanning transmission electron microscopy and temperature-dependent X-ray photoelectron spectroscopy clarify the thermally induced structural evolution of Pt during pyrolysis. The results show that the nitrogen in polyaniline coordinates with Pt ions and atomically disperses them before pyrolysis and traps Pt sites at pyridinic N defects generated during the substrate graphitization. Operando X-ray absorption spectroscopy confirms that the trapped Pt-SSC is stable at the HER working potentials but with inferior electrocatalytic activity compared with metallic Pt nanoparticles. First principle calculations suggest that the inferior activity of trapped Pt-SSCs is due to their unfavorable hydrogen chemisorption energy relative to metallic Pt(111) surfaces. These results further the understanding of the structure-property relationship in trapped Pt-SSCs and motivate a detailed techno-economic analysis to evaluate their commercial applicability.
Collapse
Affiliation(s)
- Peng Tang
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Po-Yuan Huang
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jack E. N. Swallow
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Chenbo Wang
- Oxford
Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| | - Diego Gianolio
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Chilton, Didcot, OX11 0DE, U.K.
| | - Hua Guo
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jamie H. Warner
- Materials
Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas, 78712, United States
- Walker
Department of Mechanical Engineering, The
University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas, 78712, United States
| | - Robert S. Weatherup
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Mauro Pasta
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Oxford
Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| |
Collapse
|
38
|
Kraka E, Antonio JJ, Freindorf M. Reaction mechanism - explored with the unified reaction valley approach. Chem Commun (Camb) 2023; 59:7151-7165. [PMID: 37233449 DOI: 10.1039/d3cc01576a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
One of the ultimate goals of chemistry is to understand and manipulate chemical reactions, which implies the ability to monitor the reaction and its underlying mechanism at an atomic scale. In this article, we introduce the Unified Reaction Valley Approach (URVA) as a tool for elucidating reaction mechanisms, complementing existing computational procedures. URVA combines the concept of the potential energy surface with vibrational spectroscopy and describes a chemical reaction via the reaction path and the surrounding reaction valley traced out by the reacting species on the potential energy surface on their way from the entrance to the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting species is registered by a change in the normal vibrational modes spanning the reaction valley and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction, with curvature minima reflecting minimal change and curvature maxima indicating the location of important chemical events such as bond breaking/formation, charge polarization and transfer, rehybridization, etc. A decomposition of the path curvature into internal coordinate components or other coordinates of relevance for the reaction under consideration, provides comprehensive insight into the origin of the chemical changes taking place. After giving an overview of current experimental and computational efforts to gain insight into the mechanism of a chemical reaction and presenting the theoretical background of URVA, we illustrate how URVA works for three diverse processes, (i) [1,3] hydrogen transfer reactions; (ii) α-keto-amino inhibitor for SARS-CoV-2 Mpro; (iii) Rh-catalyzed cyanation. We hope that this article will inspire our computational colleagues to add URVA to their repertoire and will serve as an incubator for new reaction mechanisms to be studied in collaboration with our experimental experts in the field.
Collapse
Affiliation(s)
- Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
| | - Juliana J Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
| |
Collapse
|
39
|
Li CF, Pan WG, Zhang ZR, Wu T, Guo RT. Recent Progress of Single-Atom Photocatalysts Applied in Energy Conversion and Environmental Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300460. [PMID: 36855324 DOI: 10.1002/smll.202300460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Photocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar-to-chemical energy conversion. Single-atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single-atom photocatalysts in detail. Subsequently, the fascinating effects of single-atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron-hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single-atom photocatalysts in energy conversion and environmental protection (CO2 reduction, water splitting, N2 fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single-atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single-atom photocatalysts and promote the development of high-performance photocatalytic systems.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| |
Collapse
|
40
|
Chen L, Allec SI, Nguyen MT, Kovarik L, Hoffman AS, Hong J, Meira D, Shi H, Bare SR, Glezakou VA, Rousseau R, Szanyi J. Dynamic Evolution of Palladium Single Atoms on Anatase Titania Support Determines the Reverse Water-Gas Shift Activity. J Am Chem Soc 2023; 145:10847-10860. [PMID: 37145876 DOI: 10.1021/jacs.3c02326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, ∼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, ∼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.
Collapse
Affiliation(s)
- Linxiao Chen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah I Allec
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Debora Meira
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Honghong Shi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Roger Rousseau
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - János Szanyi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
41
|
Dery S, Friedman B, Shema H, Gross E. Mechanistic Insights Gained by High Spatial Resolution Reactivity Mapping of Homogeneous and Heterogeneous (Electro)Catalysts. Chem Rev 2023; 123:6003-6038. [PMID: 37037476 PMCID: PMC10176474 DOI: 10.1021/acs.chemrev.2c00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The recent development of high spatial resolution microscopy and spectroscopy tools enabled reactivity analysis of homogeneous and heterogeneous (electro)catalysts at previously unattainable resolution and sensitivity. These techniques revealed that catalytic entities are more heterogeneous than expected and local variations in reaction mechanism due to divergences in the nature of active sites, such as their atomic properties, distribution, and accessibility, occur both in homogeneous and heterogeneous (electro)catalysts. In this review, we highlight recent insights in catalysis research that were attained by conducting high spatial resolution studies. The discussed case studies range from reactivity detection of single particles or single molecular catalysts, inter- and intraparticle communication analysis, and probing the influence of catalysts distribution and accessibility on the resulting reactivity. It is demonstrated that multiparticle and multisite reactivity analyses provide unique knowledge about reaction mechanism that could not have been attained by conducting ensemble-based, averaging, spectroscopy measurements. It is highlighted that the integration of spectroscopy and microscopy measurements under realistic reaction conditions will be essential to bridge the gap between model-system studies and real-world high spatial resolution reactivity analysis.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Barak Friedman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
42
|
Liu L, Mao C, Fu H, Qu X, Zheng S. ZnO Nanorod-Immobilized Pt Single-Atoms as an Ultrasensitive Sensor for Triethylamine Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16654-16663. [PMID: 36825856 DOI: 10.1021/acsami.2c21410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Triethylamine (TEA) is a flammable and highly toxic gas, and the fast, accurate, and sensitive detection of gas TEA remains greatly challenging. Herein, we report a ZnO nanorod anchored with a single-atom Pt catalyst (Pt1/ZnO) as a gas sensor for TEA detection. The sensor shows high selectivity and high response to gas TEA with a response value of 4170 at 200 °C, which is 92 times higher than that of pure ZnO. Moreover, the Pt1/ZnO sensor has very short response and recovery times of only 34 and 76 s, respectively, and also has a high response to ppb-level TEA gas (100 ppb-21.6). The gas-sensing enhancement mechanism of the Pt1/ZnO sensor to gas TEA was systematically investigated using band structure analysis, in situ diffuse reflectance infrared Fourier transformation spectroscopy, and density functional theory calculations. The results show that the oxygen vacancies on Pt1/ZnO can effectively activate the adsorbed oxygen. Moreover, chemical bonds can be formed between Pt single atoms and N atoms in TEA to achieve effective adsorption and activation of TEA molecules, facilitating the reaction between TEA and the adsorbed oxygen on Pt1/ZnO, and thereby obtaining high gas-sensing performance. This work highlights the crucial role of Pt single-atom in improving the sensing performance for gas TEA detection, paving the way for developing more advanced gas sensors.
Collapse
Affiliation(s)
- Lingyue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Chengliang Mao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S3H6, Ontario, Canada
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
43
|
Markov PV, Bragina GO, Smirnova NS, Baeva GN, Mashkovsky IS, Gerasimov EY, Bukhtiyarov AV, Zubavichus YV, Stakheev AY. Single-Atom Alloy Pd1Ag10/CeO2–ZrO2 as a Promising Catalyst for Selective Alkyne Hydrogenation. INORGANICS 2023. [DOI: 10.3390/inorganics11040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The effect of support on the performance of Pd1Ag10/Al2O3 and Pd1Ag10/CeO2–ZrO2 catalysts in the selective hydrogenation of diphenylacetylene (DPA) was studied. Characterization of the catalyst by DRIFTS-CO and HRTEM revealed the formation of a PdAg single-atom alloy (SAA) structure on the surface of PdAg nanoparticles, with Pd1 sites isolated by Ag atoms. It was found that the use of CeO2–ZrO2 as a carrier makes it possible to increase the activity of the Pd1Ag10 catalyst by a factor of three without loss of selectivity compared to the reference Pd1Ag10/Al2O3. According to the HRTEM data, this catalytic behavior can be explained by an increase in the dispersion of Pd1Ag10/CeO2–ZrO2 compared to its Pd1Ag10/Al2O3 counterpart. As evidenced by DRIFTS-CO data, the high selectivity of the Pd1Ag10/CeO2–ZrO2 sample presumably stems from the stability of the structure of isolated Pd1 sites on the surface of SAA Pd1Ag10/CeO2–ZrO2.
Collapse
Affiliation(s)
- Pavel V. Markov
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Galina O. Bragina
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nadezhda S. Smirnova
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Galina N. Baeva
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Igor S. Mashkovsky
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Evgeny Y. Gerasimov
- G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Prospect 5, 630090 Novosibirsk, Russia
| | - Andrey V. Bukhtiyarov
- G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Prospect 5, 630090 Novosibirsk, Russia
| | - Yan. V. Zubavichus
- G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Prospect 5, 630090 Novosibirsk, Russia
| | - Alexander Y. Stakheev
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
44
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
45
|
Giulimondi V, Mitchell S, Pérez-Ramírez J. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catal 2023; 13:2981-2997. [PMID: 36910873 PMCID: PMC9990067 DOI: 10.1021/acscatal.2c05992] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/16/2023]
Abstract
Controlling the electronic structure of transition-metal single-atom heterogeneous catalysts (SACs) is crucial to unlocking their full potential. The ability to do this with increasing precision offers a rational strategy to optimize processes associated with the adsorption and activation of reactive intermediates, charge transfer dynamics, and light absorption. While several methods have been proposed to alter the electronic characteristics of SACs, such as the oxidation state, band structure, orbital occupancy, and associated spin, the lack of a systematic approach to their application makes it difficult to control their effects. In this Perspective, we examine how the electronic configuration of SACs can be engineered for thermochemical, electrochemical, and photochemical applications, exploring the relationship with their activity, selectivity, and stability. We discuss synthetic and analytical challenges in controlling and discriminating the electronic structure of SACs and possible directions toward closing the gap between computational and experimental efforts. By bringing this topic to the center, we hope to stimulate research to understand, control, and exploit electronic effects in SACs and ultimately spur technological developments.
Collapse
Affiliation(s)
- Vera Giulimondi
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
46
|
Liu H, Liu C, Zong X, Wang Y, Hu Z, Zhang Z. Role of the Support Effects in Single-Atom Catalysts. Chem Asian J 2023; 18:e202201161. [PMID: 36635222 DOI: 10.1002/asia.202201161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
In recent years, single-atom catalysts (SACs) have received a significant amount of attention due to their high atomic utilization, low cost, high reaction activity, and selectivity for multiple catalytic reactions. Unfortunately, the high surface free energy of single atoms leads them easily migrated and aggregated. Therefore, support materials play an important role in the preparation and catalytic performance of SACs. Aiming at understanding the relationship between support materials and the catalytic performance of SACs, the support effects in SACs are introduced and reviewed herein. Moreover, special emphasis is placed on exploring the influence of the type and structure of supports on SAC catalytic performance through advanced characterization and theoretical research. Future research directions for support materials are also proposed, providing some insight into the design of SACs with high efficiency and high loading.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Chang Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Xing Zong
- School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Yongfei Wang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China.,School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
47
|
Xue W, Zhu Z, Chen S, You B, Tang C. Atomically Dispersed Co-N/C Catalyst for Divergent Synthesis of Nitrogen-Containing Compounds from Alkenes. J Am Chem Soc 2023; 145:4142-4149. [PMID: 36753512 DOI: 10.1021/jacs.2c12344] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Alkene functionalization with a single-atom catalyst (SAC) which merges homogeneous and heterogeneous catalysis is a fascinating route to obtain high-value-added molecules. However, C-N bond formation of alkene with SAC is still unexplored. Herein, a bimetal-organic framework-derived Co-N/C catalyst with an atomically dispersed cobalt center is reported to show good activity of chemoselective aziridination/oxyamination reactions from alkene and hydroxylamine, and late-stage functionalization of complex alkenes and diversified synthetic transformations of the aziridine product further expand the utility of this method. Moreover, this system proceeds without external oxidants and exhibits mild, atom-economic, and recyclable characters. Detailed spectroscopic characterizations and mechanistic studies revealed the structure of the catalytic center and possible intermediates involved in the mechanism cycle.
Collapse
Affiliation(s)
- Wenxuan Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zhiwei Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
48
|
Bai H, Feng J, Liu D, Zhou P, Wu R, Kwok CT, Ip WF, Feng W, Sui X, Liu H, Pan H. Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205638. [PMID: 36417556 DOI: 10.1002/smll.202205638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Rucheng Wu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing, 400054, China
| | - Xulei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hongchao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
49
|
Liang Y, Zhao J, Yang Y, Hung SF, Li J, Zhang S, Zhao Y, Zhang A, Wang C, Appadoo D, Zhang L, Geng Z, Li F, Zeng J. Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling. Nat Commun 2023; 14:474. [PMID: 36710270 PMCID: PMC9884666 DOI: 10.1038/s41467-023-35993-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Electroreduction of carbon dioxide with renewable electricity holds promise for achieving net-zero carbon emissions. Single-site catalysts have been reported to catalyze carbon-carbon (C-C) coupling-the indispensable step for more valuable multi-carbon (C2+) products-but were proven to be transformed in situ to metallic agglomerations under working conditions. Here, we report a stable single-site copper coordination polymer (Cu(OH)BTA) with periodic neighboring coppers and it exhibits 1.5 times increase of C2H4 selectivity compared to its metallic counterpart at 500 mA cm-2. In-situ/operando X-ray absorption, Raman, and infrared spectroscopies reveal that the catalyst remains structurally stable and does not undergo a dynamic transformation during reaction. Electrochemical and kinetic isotope effect analyses together with computational calculations show that neighboring Cu in the polymer provides suitably-distanced dual sites that enable the energetically favorable formation of an *OCCHO intermediate post a rate-determining step of CO hydrogenation. Accommodation of this intermediate imposes little changes of conformational energy to the catalyst structure during the C-C coupling. We stably operate full-device CO2 electrolysis at an industry-relevant current of one ampere for 67 h in a membrane electrode assembly. The coordination polymers provide a perspective on designing molecularly stable, single-site catalysts for electrochemical CO2 conversion.
Collapse
Affiliation(s)
- Yongxiang Liang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Jiankang Zhao
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Yu Yang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Sung-Fu Hung
- grid.260539.b0000 0001 2059 7017Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300 Taiwan
| | - Jun Li
- grid.16821.3c0000 0004 0368 8293Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shuzhen Zhang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Yong Zhao
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - An Zhang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Cheng Wang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Dominique Appadoo
- grid.248753.f0000 0004 0562 0567Australian Synchrotron, Clayton, VIC 3168 Australia
| | - Lei Zhang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Zhigang Geng
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| | - Fengwang Li
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Jie Zeng
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China
| |
Collapse
|
50
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|