1
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
2
|
Teng J, Li W, Wei Z, Hao D, Jing L, Liu Y, Dai H, Zhu Y, Ma T, Deng J. Coupling Photocatalytic Hydrogen Production with Key Oxidation Reactions. Angew Chem Int Ed Engl 2024:e202416039. [PMID: 39301679 DOI: 10.1002/anie.202416039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Hydrogen represents a clean and sustainable energy source with wide applications in fuel cells and hydrogen energy storage systems. Photocatalytic strategies emerge as a green and promising solution for hydrogen production, which still reveals several critical challenges in enhancing the efficiency and stability and improving the whole value. This review systematically elaborates on various coupling approaches for photocatalytic hydrogen production, aiming to improve both efficiency and value through different oxidation half-reactions. Firstly, the fundamental mechanism is discussed for photocatalytic hydrogen production. Then, the advances, challenges, and opportunities are expanded for the coupling of photocatalytic hydrogen production, which focuses on the integration of value-added reactions including O2 production, H2O2 production, biomass conversion, alcohol oxidation, and pollutants treatment. Finally, the challenges and outlook of photocatalytic H2 production technology are analyzed from the aspects of coupling hydrogen production value, photocatalyst design and reaction system construction. This work presents a holistic view of the field, emphasizing the synergistic benefits of coupled reactions and their practical application potential, rather than focusing on catalysts or single reaction systems. This review provides valuable references for the development and application of photocatalytic hydrogen production in energy conversion and environmental conservation through sustainable, eco-friendly and economic pathways.
Collapse
Affiliation(s)
- Jiayan Teng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Wenlu Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhen Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Derek Hao
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, 3000, Australia
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, 3000, Australia
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
3
|
Yue Z, Lu G, Wei W, Huang Y, Chen Z, Dingwall F, Shao S, Fan X. Engineered Half-Unit-Cell MoS 2/ZnIn 2S 4 Monolayer Photocatalysts and Adsorbed Hydroxyl Radicals-Assisted Activation of C α-H Bond for Efficient C β-O Bond Cleavage in Lignin to Aromatic Monomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47724-47740. [PMID: 39215384 PMCID: PMC11403551 DOI: 10.1021/acsami.4c10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalysis has high potential in the cleavage of Cβ-O bond in lignin into high-value aromatic monomers; however, the inefficient Cα-H bond activation in lignin and a low hydrogen transfer efficiency on the photocatalyst's surfaces have limited its application in photocatalytic lignin conversion. This study indicates that the cleavage of the Cβ-O bond can be improved by the generation of the Cα radical intermediate through Cα-H bond activation, and the formation of desirable aromatic products can be significantly improved by the enhanced hydrogen transfer efficiency from photocatalyst surfaces to aromatic monomeric radicals. We elaborately designed the half-unit-cell MoS2/ZnIn2S4 monolayer with a thickness of ∼1.7 nm to promote the hydrogen transfer efficiency on the photocatalyst surfaces. The ultrathin structure can shorten the diffusion distance of charge carriers from the interior to the surfaces and tight interface between MoS2 and ZnIn2S4 to facilitate the migration of photogenerated electrons from ZnIn2S4 to MoS2, therefore improving the selectivity of desirable products. The adsorbed hydroxyl radical (*OH) on the surfaces of MoS2/ZnIn2S4 from water oxidation can significantly reduce the bond dissociation energy (BDE) of Cα-H bond in PP-ol from 2.38 to 1.87 eV, therefore improving the Cα-H bond activation. The isotopic experiments of H2O/D2O indicate that the efficiency of *OH generation is an important step in Cα-H bond activation for PP-ol conversion to aromatic monomers. In summary, PP-ol can completely convert to 86.6% phenol and 82.3% acetophenone after 1 h of visible light irradiation by using 3% MoS2/ZnIn2S4 and the assistance of *OH, which shows the highest conversion rate compared to previous works.
Collapse
Affiliation(s)
- Zongyang Yue
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Guanchu Lu
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Wenjing Wei
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Yi Huang
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Zheng Chen
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Fergus Dingwall
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Shibo Shao
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Xianfeng Fan
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| |
Collapse
|
4
|
Liu D, Hazra A, Liu X, Maity R, Tan T, Luo L. CdS Quantum Dot Gels as a Direct Hydrogen Atom Transfer Photocatalyst for C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202403186. [PMID: 38900647 DOI: 10.1002/anie.202403186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024]
Abstract
Here, we report CdS quantum dot (QD) gels, a three-dimensional network of interconnected CdS QDs, as a new type of direct hydrogen atom transfer (d-HAT) photocatalyst for C-H activation. We discovered that the photoexcited CdS QD gel could generate various neutral radicals, including α-amido, heterocyclic, acyl, and benzylic radicals, from their corresponding stable molecular substrates, including amides, thio/ethers, aldehydes, and benzylic compounds. Its C-H activation ability imparts a broad substrate and reaction scope. The mechanistic study reveals that this reactivity is intrinsic to CdS materials, and the neutral radical generation did not proceed via the conventional sequential electron transfer and proton transfer pathway. Instead, the C-H bonds are activated by the photoexcited CdS QD gel via a d-HAT mechanism. This d-HAT mechanism is supported by the linear correlation between the logarithm of the C-H bond activation rate constant and the C-H bond dissociation energy (BDE) with a Brønsted slope α=0.5. Our findings expand the currently limited direct hydrogen atom transfer photocatalysis toolbox and provide new possibilities for photocatalytic C-H activation.
Collapse
Affiliation(s)
- Daohua Liu
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rajendra Maity
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Long Luo
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| |
Collapse
|
5
|
Feng S, Nguyen PTT, Ma X, Yan N. Photorefinery of Biomass and Plastics to Renewable Chemicals using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2024; 63:e202408504. [PMID: 38884612 DOI: 10.1002/anie.202408504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The photocatalytic conversion of biomass and plastic waste provides opportunities for sustainable fuel and chemical production. Heterogeneous photocatalysts, typically composed of semiconductors with distinctive redox properties in their conduction band (CB) and valence band (VB), facilitate both the oxidative and reductive valorization of organic feedstocks. This article provides a comprehensive overview of recent advancements in the photorefinery of biomass and plastics from the perspective of the redox properties of photocatalysts. We explore the roles of the VB and CB in enhancing the value-added conversion of biomass and plastics via various pathways. Our aim is to bridge the gap between photocatalytic mechanisms and renewable carbon feedstock valorization, inspiring further development in photocatalytic refinery of biomass and plastics.
Collapse
Affiliation(s)
- Shixiang Feng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Phuc T T Nguyen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Singapore
| |
Collapse
|
6
|
Wang J, Li Y, Liu H, Ding Z, Yuan R, Li Z. Depolymerization of Native Lignin over Thiol Capped Ultrathin ZnIn 2S 4 Microbelts Mediated by Photogenerated Thiyl Radical. Angew Chem Int Ed Engl 2024; 63:e202410397. [PMID: 38896110 DOI: 10.1002/anie.202410397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
The valorization of native lignin to functionalized aromatic compounds under visible light is appealing yet challenging. In this communication, colloidal mercaptoalkanoic acid capped ultrathin ZnIn2S4 (ZIS) microbelts was successfully fabricated, which was used as a superior catalyst for depolymerization of native lignin in birch woodmeal under visible light, with an optimum yield of 28.8 wt % to functionalized aromatic monomers achieved in 8 h. The capped mercaptoalkanoic acid not only enables a solvent modulated reversible interchange of ZIS between the colloidal state for efficient reaction and the aggregated state for facile separation, but also serves as a precursor for light initiated generation of reactive thiyl radical for highly selective cleavage of β-O-4 bond in native lignin. This work provides a green and efficient strategy for the depolymerization of native lignin to functionalized aromatic monomers under mild conditions, which involves a new mechanism for the cleavage of β-O-4 bonds in native lignin. The capability of cleavage of β-O-4 bonds in native lignin by photogenerated thiyl radicals also demonstrates the great potential of using photogenerated thiyl radicals in organics transformations.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yaxin Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hurunqing Liu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhengxin Ding
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rusheng Yuan
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
7
|
Petit G, Malherbe C, Bianchi P, Monbaliu JCM. An innovative chalcogenide transfer agent for improved aqueous quantum dot synthesis. Chem Sci 2024:d4sc01135j. [PMID: 39129774 PMCID: PMC11309086 DOI: 10.1039/d4sc01135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
An innovative approach to chalcogenide precursor synthesis and their subsequent use for the production of CdX (X = S, Se, Te) quantum dots (QDs) in water under scalable and intensified continuous flow conditions is introduced. Herein, tris(2-carboxyethyl)phosphine (TCEP) is identified as a novel, efficient and water-soluble vehicle for chalcogenide transfer to form CdX QDs under aqueous conditions. A comprehensive exploration of critical process parameters, including pH, chalcogen excess, and residence time, utilizing a Design of Experiments (DoE) approach is reported. Reaction kinetics are investigated in real-time using a combination of in situ Raman spectroscopy and in-line 31P NMR spectroscopy. The conversion of TCEP into TCEP[double bond, length as m-dash]X (X = S, Se, Te) species is seamlessly adapted to continuous flow conditions. TCEP[double bond, length as m-dash]X precursors are subsequently employed in the synthesis of CdX QDs. Scalability trials are successfully demonstrated, with experiments conducted at flow rates of up to 80 mL min-1 using a commercially available mesofluidic flow reactor with favorable metrics. Furthermore, biocompatible and aqueous CdSe/ZnS core-shell QDs are for the first time prepared in flow within a fully concatenated process. These results emphasize the potential for widespread biological or industrial applications of this novel protocol.
Collapse
Affiliation(s)
- Guillaume Petit
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
- WEL Research Institute Avenue Pasteur 6 B-1300 Wavre Belgium
| |
Collapse
|
8
|
Rana G, Das S, Singha PK, Ali F, Maji R, Datta A. The effect of Cu(I)-doping on the photoinduced electron transfer from aqueous CdS quantum dots. J Chem Phys 2024; 161:024705. [PMID: 38990118 DOI: 10.1063/5.0218548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The doping of CdS quantum dots (QDs) with Cu(I) disrupts electron-hole correlation due to hole trapping by the dopant ion, post-photoexcitation. The present paper examines the effect of such disruption on the rate of photoinduced electron transfer (PET) from the QDs to methyl viologen (MV2+), with implications in their photocatalytic activity. A significantly greater efficiency of PL quenching by MV2+ is observed for the doped QDs than for the undoped ones. Interestingly, the Stern-Volmer plots constructed using PL intensities exhibit an upward curvature for both the cases, while the PL lifetimes remain unaffected. This observation is rationalized by considering the adsorption of the quencher on the surface of the QDs and ultrafast PET post-photoexcitation. Ultrafast transient absorption experiments confirm a faster electron transfer for the doped QDs. It is also realized that the transient absorption experiment yields a more accurate estimate of the binding constant of the quencher with the QDs, than the PL experiment.
Collapse
Affiliation(s)
- Gourab Rana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Fariyad Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohan Maji
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Yue Z, Shao S, Yu J, Lu G, Wei W, Huang Y, Zhang K, Wang K, Fan X. Improved Lignin Conversion to High-Value Aromatic Monomers through Phase Junction CdS with Coexposed Hexagonal (100) and Cubic (220) Facets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29991-30009. [PMID: 38831531 PMCID: PMC11181269 DOI: 10.1021/acsami.4c02315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Photocatalysis has the potential for lignin valorization to generate functionalized aromatic monomers, but its application has been limited by the slow conversion rate and the low selectivity to desirable aromatic products. In this work, we designed the phase junction CdS with coexposed hexagonal (100) and cubic (220) facets to improve the photogenerated charge carriers' transfer efficiency from (100) facet to (220) facet and the hydrogen transfer efficiency for an enhanced conversion rate of lignin to aromatic monomers. Water is found as a sufficient external hydrogen supplier to increase the yields of aromatic monomers. These innovative designs in the reaction system promoted complete conversion of PP-ol to around 94% of aromatic monomers after 1 h of visible light irradiation, which shows the highest reaction rate and selectivity of target products in comparison with previous works. PP-one is a byproduct from the overoxidation of PP-ol and is usually difficult to be further cleaved to acetophenone and phenol as the desirable aromatic monomers. TEA was first identified in this study as a sacrificial electron donor, a hydrogen source, and a mediator to enhance the cleavage of the Cβ-O bonds in PP-one. With the assistance of TEA, PP-one can be completely cleaved to desirable aromatic monomer products, and the reaction time is reduced from several hours to 10 min of visible light irradiation.
Collapse
Affiliation(s)
- Zongyang Yue
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Shibo Shao
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
- Petrochemical
Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Jialin Yu
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Guanchu Lu
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Wenjing Wei
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Yi Huang
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Kai Zhang
- Beijing
Key Laboratory of Emission Surveillance and Control for Thermal Power
Generation, North China Electric Power University, Beijing 102206, China
| | - Ke Wang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Mesoscience
and Engineering, Innovation Academy for Green Manufacture, Institute
of Process Engineering, Chinese Academy
of Sciences, Beijing 100190, China
- Longzihu
New Energy Laboratory, Zhengzhou Institute of Emerging Industrial
Technology, Henan University, Zhengzhou 450000, China
| | - Xianfeng Fan
- Institute
for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, U.K.
| |
Collapse
|
10
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
11
|
Guo Y, Chen X, Liu Y, Chen Z, Guo P, Luo D, Zhang M, Liu X. Inorganic-Organic Dual-Ligand-Regulated Photocatalysis of CdS@Zn xCd 1-xS@ZnS Quantum Dots for Lignin Valorization. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38419339 DOI: 10.1021/acsami.3c18957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In a dual-functional lignin valorization system, a harmonious oxidation and reduction rate is a prerequisite for high photocatalytic performance. Herein, an efficient and facile ligand manipulating strategy to balance the redox reaction process is exploited via decorating the surface of the CdS@ZnxCd1-xS@ZnS gradient-alloyed quantum dots with both inorganic ligands of hexafluorophosphate (PF6-) and organic ligands of mercaptopropionic acid (MPA). Inorganic ion ligands in this system provide a promotion for intermediator reduction reactions. By optimizing the ligand composition on the quantum dot surface, we achieve precise control over the extent of oxidation and reduction, enabling selective modification of reaction products; that is, the conversion rate of 2-phenoxy-1-phenylethanol reached 99%. Surface engineering by regulating the ligand type demonstrates that PF6- and thiocyanate (SCN-) inorganic ion ligands contribute significantly toward electron transfer, while MPA ligands have beneficial effects on the hole-transfer procedure, which is predominantly dependent on their steric hindrance, electrostatic action, and passivation effect. The present study offers insights into the development of efficient quantum dot photocatalysts for dual-functional biomass valorization through ligand design.
Collapse
Affiliation(s)
- Yudong Guo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Xiya Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Yuxin Liu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Zhenjun Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Peiyuan Guo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Dongxiang Luo
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Menglong Zhang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiao Liu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| |
Collapse
|
12
|
Cao W, Zhang W, Dong L, Ma Z, Xu J, Gu X, Chen Z. Progress on quantum dot photocatalysts for biomass valorization. EXPLORATION (BEIJING, CHINA) 2023; 3:20220169. [PMID: 38264688 PMCID: PMC10742202 DOI: 10.1002/exp.20220169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 01/25/2024]
Abstract
Biomass with abundant reproducible carbon resource holds great promise as an intriguing substitute for fossil fuels in the manufacture of high-value-added chemicals and fuels. Photocatalytic biomass valorization using inexhaustible solar energy enables to accurately break desired chemical bonds or selectively functionalize particular groups, thus emerging as an extremely creative and low carbon cost strategy for relieving the dilemma of the global energy. Quantum dots (QDs) are an outstandingly dynamic class of semiconductor photocatalysts because of their unique properties, which have achieved significant successes in various photocatalytic applications including biomass valorization. In this review, the current development rational design for QDs photocatalytic biomass valorization effectively is highlighted, focusing on the principles of tuning their particle size, structure, and surface properties, with special emphasis on the effect of the ligands for selectively broken chemical bonds (C─O, C─C) of biomass. Finally, the present issues and possibilities within that exciting field are described.
Collapse
Affiliation(s)
- Weijing Cao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Wenjun Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Lin Dong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Zhuang Ma
- Leibniz‐Institut für Katalyse e.V.RostockGermany
| | - Jingsan Xu
- School of Chemistry and Physics and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Xiaoli Gu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Zupeng Chen
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| |
Collapse
|
13
|
Chen G, Li J, Gui S, Wang Y, Zhang S, Wang Z, Zheng X, Meng S, Ruan C, Chen S. The Mars-Van Krevelen cycle and non-noble metal Ni jointly promoting Z-scheme charge transfer: a study on the photothermal synergy effect applied in selectively oxidizing aromatic alcohols. NANOSCALE 2023; 15:16209-16218. [PMID: 37779471 DOI: 10.1039/d3nr03540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Photothermal catalysis is a promising method for selectively oxidizing organic compounds, effectively addressing the energy-intensive and low-selective processes of thermal catalysis, as well as the slow reaction rates of photocatalysis. In this study, a ternary photothermal catalyst, Ni/CeO2/CdS, was synthesized using a simple calcination and solvothermal method. The catalyst demonstrated remarkable improvement in reaction rates and achieved nearly 100% selectivity in converting benzyl alcohol to benzaldehyde through photothermal catalysis at normal pressure. The reaction rates were 5.9 times and 63 times higher than those of CdS and Ni/CeO2 individually. XPS analysis confirmed that the thermal catalysis followed the Mars-Van Krevelen (MVK) mechanism and also proved that photocatalysis facilitated the MVK cycle. Additionally, DFT calculations showed that Ni acted as an electron transfer channel, facilitating efficient Z-scheme charge transfer. The in situ infrared technique was used to dynamically monitor the reaction process and explain the high selectivity of the product. Furthermore, detailed explanations of photocatalysis, thermocatalysis, and photothermal synergistic catalysis were proposed based on the aforementioned characterization and theoretical calculations. This approach establishes a theoretical foundation for the development of efficient photothermal catalysts.
Collapse
Affiliation(s)
- Gaoli Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Jing Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Shu Gui
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Ya Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Sujuan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Zhongliao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Xiuzhen Zheng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Sugang Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Chaohui Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, People's Republic of China.
| |
Collapse
|
14
|
Xu J, Zhou Z, Liu M, Wang J, Zhang L. Photocatalytic depolymerization of lignin via oxidizing cleavage of C α-C β bonds in micellar aqueous media. Int J Biol Macromol 2023; 245:125476. [PMID: 37353112 DOI: 10.1016/j.ijbiomac.2023.125476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Photocatalytic depolymerization of lignin to prepare high-value chemicals is a promising way to promote the valuable utilization of lignin. However, the complexity and stubbornness of lignin structure seriously decrease the photocatalytic efficiency and selectivity. Herein, the micellar aqueous media (SDS-8/HCl) consisting of sodium lauryl sulfonate and hydrochloric acid was successfully prepared. Photocatalyst TiO2 and SDS-8/HCl system can effectively depolymerize the typical β-1 lignin models and ethanol organosolv lignin to value-added chemicals by oxidizing cleavage of lignin Cα-Cβ bonds. The addition of hydrochloric acid solution (1 mol/L) improves the selectivity of photocatalytic breaking of lignin Cα-Cβ bonds. Chlorine ions are oxidized to chlorine radicals by photogenerated holes and hydroxyl radicals, dramatically increasing the photocatalytic efficiency. Electron paramagnetic resonance technique and Gas chromatography-mass spectrometry were used to demonstrate the presence of chlorine radicals. Under optimal conditions, the conversion of substrate Dpol is 98.4 %, and the obtained products are mainly benzaldehyde and benzoic acid. Isotope labeling experiments show that water is also involved in photocatalytic reactions and the oxygen needed to form the product benzaldehyde comes from water. Single-electron transfer processes are possible photocatalytic mechanisms that differ from the previous reports. Importantly, water and chlorine ions were found to be involved in photocatalytic reactions for the first time and promote the cleavage of lignin Cα-Cβ bonds. This work provides new ideas for photocatalytic cleavage of lignin Cα-Cβ bonds in heterogeneous photocatalytic systems using micellar aqueous media.
Collapse
Affiliation(s)
- Jie Xu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China.
| | - Zijie Zhou
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Meng Liu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Jinyu Wang
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Lihui Zhang
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| |
Collapse
|
15
|
Zhu LB, Bao N, Zhang Q, Ding SN. Synergistically Enhanced Photocatalytic Degradation by Coupling Slow-Photon Effect with Z-Scheme Charge Transfer in CdS QDs/IO-TiO 2 Heterojunction. Molecules 2023; 28:5437. [PMID: 37513309 PMCID: PMC10385498 DOI: 10.3390/molecules28145437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Lower light absorption and faster carrier recombination are significant challenges in photocatalysis. This study introduces a novel approach to address these challenges by anchoring cadmium sulfide quantum dots (CdS QDs) on inverse opal (IO)-TiO2, which increases light absorption and promotes carriers' separation by coupling slow-photon effect with Z-scheme charge transfer. Specifically, the IO-TiO2 was created by etching a polystyrene opal template, which resulted in a periodic structure that enhances light absorption by reflecting light in the stop band. The size of CdS quantum dots (QDs) was regulated to achieve appropriate alignment of energy bands between CdS QDs and IO-TiO2, promoting carrier transfer through alterations in charge transfer modes and resulting in synergistic-amplified photocatalysis. Theoretical simulations and electrochemical investigations demonstrated the coexistence of slow-photon effects and Z-scheme transfer. The system's photodegradation performance was tested using rhodamine B as a model. This novel hierarchical structure of the Z-scheme heterojunction exhibits degradability 7.82 and 4.34 times greater than pristine CdS QDs and IO-TiO2, respectively. This study serves as a source of inspiration for enhancing the photocatalytic capabilities of IO-TiO2 and broadening its scope of potential applications.
Collapse
Affiliation(s)
- Li-Bang Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong 226019, China
| | - Qing Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Shou-Nian Ding
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
16
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Dou FY, Harvey SM, Mason KG, Homer MK, Gamelin DR, Cossairt BM. Effect of a redox-mediating ligand shell on photocatalysis by CdS quantum dots. J Chem Phys 2023; 158:2889496. [PMID: 37158330 DOI: 10.1063/5.0144896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Semiconductor quantum dots (QDs) are efficient organic photoredox catalysts due to their high extinction coefficients and easily tunable band edge potentials. Despite the majority of the surface being covered by ligands, our understanding of the effect of the ligand shell on organic photocatalysis is limited to steric effects. We hypothesize that we can increase the activity of QD photocatalysts by designing a ligand shell with targeted electronic properties, namely, redox-mediating ligands. Herein, we functionalize our QDs with hole-mediating ferrocene (Fc) derivative ligands and perform a reaction where the slow step is hole transfer from QD to substrate. Surprisingly, we find that a hole-shuttling Fc inhibits catalysis, but confers much greater stability to the catalyst by preventing a build-up of destructive holes. We also find that dynamically bound Fc ligands can promote catalysis by surface exchange and creation of a more permeable ligand shell. Finally, we find that trapping the electron on a ligand dramatically increases the rate of reaction. These results have major implications for understanding the rate-limiting processes for charge transfer from QDs and the role of the ligand shell in modulating it.
Collapse
Affiliation(s)
- Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Samantha M Harvey
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Konstantina G Mason
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Li L, Cui M, Wang X, Long J. Critical Techniques for Overcoming the Diffusion Limitations in Heterogeneously Catalytic Depolymerization of Lignin. CHEMSUSCHEM 2023; 16:e202202325. [PMID: 36651109 DOI: 10.1002/cssc.202202325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 05/06/2023]
Abstract
Heterogeneously catalyzed depolymerization of lignin to value-added chemicals is increasingly attractive but highly challengeable. Particularly, the diffusion limitation of lignin macromolecule to the solid catalyst surface is a big barrier, which significantly decreases the yield of monomer while increasing char formation. Therefore, for the potential industrial utilization of lignin, new knowledge focused on the size of lignin particles is of great importance to offer guidance for promoting lignin depolymerization and suppressing condensation in the heterogeneously catalytic systems. In this Review, the size of lignin particles and macromolecules are summarized. Previous approaches for improving the mass diffusion including enhancing the solubility of lignin and exploitation of hierarchical and "solubilized" materials are also discussed. Based on these, a constructive perspective is proposed. Thus, this work provides a new insight on the rational design of heterogeneous catalytic techniques for efficient utilization of the aromatic polymer of lignin.
Collapse
Affiliation(s)
- Lixia Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Manman Cui
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xiaobing Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jinxing Long
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| |
Collapse
|
19
|
Xu J, Yu T, Zhao G, Wang J. Enhancing oxidation ability of graphitic carbon nitride photocatalysts to promote lignin C α-C β bond cleavage in micellar aqueous media. Int J Biol Macromol 2023; 236:124029. [PMID: 36924872 DOI: 10.1016/j.ijbiomac.2023.124029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
As the most abundant aromatic resource, lignin is an appreciated biomass material to obtain aromatic high-value chemicals. However, the selective cleavage of lignin Cα-Cβ bonds under mild conditions constitutes a challenge. Herein, a photocatalyst having high oxidation capacity was successfully synthesized by codoping S and Cl atoms into graphite carbon nitride (g-C3N4). The resulting S,Cl/CN-1.5 photocatalyst exhibits enhanced photogenerated electron-hole separation ability and higher valence band potential than g-C3N4. S,Cl/CN-1.5 can efficiently break lignin Cα-Cβ bonds in micellar aqueous medium to produce benzaldehyde and benzyl alcohol as the main products. Mechanism studies show that the photocatalytic cleavage of lignin Cα-Cβ bonds proceeds via single-electron transfer and Cβ radical mechanisms in which hydroxyl radicals and photogenerated holes play an important role. Isotopic experiments show that the O atoms required for the photocatalytic cleavage of lignin Cα-Cβ bonds come from water in the micellar aqueous medium based on the full contact between water and substrate. Although O2 atmosphere is beneficial for the photocatalytic efficiency, O2 is not necessary for the photocatalytic cleavage of lignin Cα-Cβ bonds. This research provides a useful guide for designing efficient photocatalysts to depolymerize lignin into high-value chemicals.
Collapse
Affiliation(s)
- Jie Xu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China.
| | - Tao Yu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Ge Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Jinyu Wang
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| |
Collapse
|
20
|
Li P, Liu R, Zhao Z, Niu F, Hu K. Lignin C-C bond cleavage induced by consecutive two-photon excitation of a metal-free photocatalyst. Chem Commun (Camb) 2023; 59:1777-1780. [PMID: 36722412 DOI: 10.1039/d2cc06730g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photocatalytic lignin valorization has caught widespread attention; yet the reaction systems often employ noble metal complexes, hydrogen atom transfer (HAT) agents, and/or sacrificial electron donors/acceptors that do not comply with atom economy or environmental friendliness. Herein, we discovered that N-phenylphenothiazine (PTH) as a metal-free photocatalyst induced the cleavage of the lignin Cα-Cβ bond under ambient conditions free of those additional agents with a high yield and selectivity toward benzoic acid. Transient spectroscopic investigations revealed that the energy-demanding Cα-Cβ bond cleavage was induced by the potent oxidant, 2PTH˙+*, that was derived from consecutive two-photon excitation of PTH.
Collapse
Affiliation(s)
- Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Rong Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Zijian Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Fushuang Niu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| | - Ke Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
| |
Collapse
|
21
|
Chen S, Yin H, Liu P, Wang Y, Zhao H. Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203836. [PMID: 35900361 DOI: 10.1002/adma.202203836] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Solar-energy-powered photocatalytic fuel production and chemical synthesis are widely recognized as viable technological solutions for a sustainable energy future. However, the requirement of high-performance photocatalysts is a major bottleneck. Halide perovskites, a category of diversified semiconductor materials with suitable energy-band-enabled high-light-utilization efficiencies, exceptionally long charge-carrier-diffusion-length-facilitated charge transport, and readily tailorable compositional, structural, and morphological properties, have emerged as a new class of photocatalysts for efficient hydrogen evolution, CO2 reduction, and various organic synthesis reactions. Despite the noticeable progress, the development of high-performance halide perovskite photocatalysts (HPPs) is still hindered by several key challenges: the strong ionic nature and high hydrolysis tendency induce instability and an unsatisfactory activity due to the need for a coactive component to realize redox processes. Herein, the recently developed advanced strategies to enhance the stability and photocatalytic activity of HPPs are comprehensively reviewed. The widely applicable stability enhancement strategies are first articulated, and the activity improvement strategies for fuel production and chemical synthesis are then explored. Finally, the challenges and future perspectives associated with the application of HPPs in efficient production of fuels and value-added chemicals are presented, indicating the irreplaceable role of the HPPs in the field of photocatalysis.
Collapse
Affiliation(s)
- Shan Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, P. R. China
| | - Huajie Yin
- Institute of Solid State Physics, Hefei Institutes of Physical ScienceChinese Academy of Sciences, 230031, Hefei, P. R. China
| | - Porun Liu
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| | - Yun Wang
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Cost Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
22
|
Wang H, Giardino GJ, Chen R, Yang C, Niu J, Wang D. Photocatalytic Depolymerization of Native Lignin toward Chemically Recyclable Polymer Networks. ACS CENTRAL SCIENCE 2023; 9:48-55. [PMID: 36712484 PMCID: PMC9881207 DOI: 10.1021/acscentsci.2c01257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Indexed: 06/14/2023]
Abstract
As an inedible component of biomass, lignin features rich functional groups that are desired for chemical syntheses. How to effectively depolymerize lignin without compromising the more valuable cellulose and hemicellulose has been a significant challenge. Existing biomass processing procedures either induce extensive condensation in lignin that greatly hinders its chemical utilization or focus on fully depolymerizing lignin to produce monomers that are difficult to separate for subsequent chemical synthesis. Here, we report a new approach to selective partial depolymerization, which produces oligomers that can be readily converted to chemically recyclable polymer networks. The process takes advantage of the high selectivity of photocatalytic activation of the β-O-4 bond in lignin by tetrabutylammonium decatungstate (TBADT). The availability of exogenous electron mediators or scavengers promotes cleavage or oxidation of this bond, respectively, enabling high degrees of control over the depolymerization and the density of a key functional group, C=O, in the products. The resulting oligomers can then be readily utilized for the synthesis of polymer networks through reactions between C=O and branched -NH2 as a dynamic covalent cross-linker. Importantly, the resulting polymer network can be recycled to enable a circular economy of materials directly derived from biomass.
Collapse
Affiliation(s)
| | | | - Rong Chen
- Department of Chemistry, Merkert Chemistry
Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Cangjie Yang
- Department of Chemistry, Merkert Chemistry
Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Merkert Chemistry
Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry
Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
23
|
Li Z, Li K, Du P, Mehmandoust M, Karimi F, Erk N. Carbon-based photocatalysts for hydrogen production: A review. CHEMOSPHERE 2022; 308:135998. [PMID: 35973496 DOI: 10.1016/j.chemosphere.2022.135998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Future energy crises and environmental deterioration may only be avoided by converting solar energy into sustainable, safe, cost-effective, and environmentally friendly technologies such as water splitting. Many researchers and governments throughout the globe have stressed the imperative need for affordable, environmental benign, resistive to corrosion, and earth-abundant nanostructured photocatalysts. This has led scientists to look for a green and cost-effective way to generate energy. As a result, the significance of photo catalyst engineering and reactor design difficulties connected to the performance of the photocatalytic reactions, as well as the examination and analysis of photocatalyst behaviors for adaptable and cost effective H2 production, is emphasized and summarized. The carbon-based materials have an appealing band structure, strong chemical stability, is plentiful on Earth, and is relatively easy to produce, making them suitable for hydrogen production. As example, graphene oxide (GO) with the oxygenated functional groups and graphene and its counterparts, including Graphene quantum dots (GQDs), GO, reduce graphene oxide (rGO), have been demonstrated to be ideal nanocomposite materials due to their superior properties and distribution in matrix and CNTs with excellent electronic transmission efficiency, low cost, stability, and environmental friendly are a great alternative of electron mediators for photocatalytic devices to boost light absorptivity for efficient hydrogen generation but some of them have limited photocatalytic activity due to their low sunlight usage efficiency, therefore the numerous methods, such as doping ions, constructing heterostructure, and functionalizing carbon-based materials, have recently been proven to promote the photocatalytic activity of them. The pore structure of carbon material functions as an acceptor of photogenerated electrons, improved the photocatalyst's specific surface area. Generally low-dimensional carbon materials demonstrated immense promise as highly efficient, low-cost, and environmentally friendly catalysts for hydrogen generation as an energy source. This article reviews the recent research progress on carbon-based materials for hydrogen evolution for the first time. It commences with a quick overview of the present state of affairs and fundamental concepts of hydrogen production in carbon-based nanomaterials for use in this field. We anticipate that this study will inspire readers to expand the use of carbon-based materials in H2 generation in a more environmentally friendly way.
Collapse
Affiliation(s)
- Zhigang Li
- Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China; Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Kexin Li
- Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Pinru Du
- Shaanxi Transportation Holding Group Co.,Ltd., Xi'an, Shaanxi, 710048, China
| | - Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
24
|
Chen X, Chen P, Yang S, Gao H. Recent advances in bismuth oxyhalides photocatalysts and their applications. NANOTECHNOLOGY 2022; 34:052001. [PMID: 36332232 DOI: 10.1088/1361-6528/aca02e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Bismuth oxyhalides photocatalysts exhibit great potential to solve the energy and environmental issues under visible light due to their unique physicochemical and optical properties. However, the photocatalytic activity of pristine bismuth oxyhalides remains unsatisfactory because of their inherent drawbacks. Up to now, many strategies have been used to improve the photocatalytic performance. In this review, the basic mechanism, unique properties and structure of bismuth oxyhalides photocatalysts have been introduced, and the common techniques of synthesis, modification, and main applications have been discussed. Finally, new insights are proposed to meet the future challenges and development of the photocatalysts, which can provide better knowledge for the advancement of the related research areas.
Collapse
Affiliation(s)
- Xuemei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, People's Republic of China
| | - Pengyue Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, People's Republic of China
| | - Siming Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, People's Republic of China
| | - Hongwen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
25
|
Dussert F, Sarret G, Wegner KD, Proux O, Landrot G, Jouneau PH, Reiss P, Carrière M. Physico-Chemical Transformation and Toxicity of Multi-Shell InP Quantum Dots under Simulated Sunlight Irradiation, in an Environmentally Realistic Scenario. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3703. [PMID: 36296892 PMCID: PMC9611924 DOI: 10.3390/nano12203703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Quantum dots (QDs) are widely used in optoelectronics, lighting, and photovoltaics leading to their potential release into the environment. The most promising alternative to the highly toxic cadmium selenide (CdSe) QDs are indium phosphide (InP) QDs, which show reduced toxicity and comparable optical and electronic properties. QD degradation leads to the release of toxic metal ions into the environment. Coating the QD core with robust shell(s) composed of another semi-conductor material enhances their properties and protects the QD from degradation. We recently developed double-shelled InP QDs, which proved to be less toxic than single-shell QDs. In the present study, we confirm their reduced cytotoxicity, with an LC50 at 77 nM for pristine gradient shell QDs and >100 nM for pristine thin and thick shell QDs. We also confirm that these three QDs, when exposed to simulated sunlight, show greater cytotoxicity compared to pristine ones, with LC50 ranging from 15 to 23 nM. Using a combination of spectroscopic and microscopic techniques, we characterize the degradation kinetics and transformation products of single- and double-shell QDs, when exposed to solar light at high temperature, simulating environmental conditions. Non-toxic pristine QDs degrade to form toxic In−phosphate, In−carboxylate, Zn−phosphate, and oxidized Se, all of which precipitate as heterogeneous deposits. Comparison of their degradation kinetics highlights that the QDs bearing the thickest ZnS outer shell are, as expected, the most resistant to photodegradation among the three tested QDs, as gradient shell, thin shell, and thick shell QDs lose their optical properties in less than 15 min, 60 min, and more than 90 min, respectively. They exhibit the highest photoluminescence efficiency, i.e., the best functionality, with a photoluminescence quantum yield in aqueous solution of 24%, as compared to 18% for the gradient shell and thin shell QDs. Therefore, they can be considered as safer-by-design QDs.
Collapse
Affiliation(s)
- Fanny Dussert
- University Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000 Grenoble, France
| | - Géraldine Sarret
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Karl David Wegner
- University Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, STEP, 38000 Grenoble, France
| | - Olivier Proux
- University Grenoble Alpes, CNRS, IRD, Météo-France, INRAE, Observatoire des Sciences de l’Univers de Grenoble (OSUG), UAR 832 CNRS, 38400 Saint Martin d’Hères, France
| | - Gautier Landrot
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint Aubin, France
| | | | - Peter Reiss
- University Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, STEP, 38000 Grenoble, France
| | - Marie Carrière
- University Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000 Grenoble, France
| |
Collapse
|
26
|
Photocatalyst CdS for efficient cleavage of lignin C O bonds in micellar aqueous medium. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Synergistic effect of adsorption and photocatalysis of BiOBr/Lignin-Biochar composites with oxygen vacancies under visible light irradiation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Liu D, Nyakuchena J, Maity R, Geng X, Mahajan JP, Hewa-Rahinduwage CC, Peng Y, Huang J, Luo L. Quantum dot gels as efficient and unique photocatalysts for organic synthesis. Chem Commun (Camb) 2022; 58:11260-11263. [PMID: 36112149 DOI: 10.1039/d2cc03872b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report CdS quantum dot (QD) gels as highly efficient and unique photocatalysts for organic synthesis. We found that the photocatalytic activity of CdS QD gel was superior to phosphine oxide- and thiolate-capped CdS QDs for dehalogenation and α-amine arylation reactions because of the high accessibility of its surface sites to the substrates. In addition, we discovered the unique reactivity of CdS QD gel for ring-opening during α-amine arylation of tetrahydroisoquinoline via the reductive cleavage of C-N bonds. QD gels provide new opportunities in photocatalysis due to their unique surface interactions with the substrates or intermediates.
Collapse
Affiliation(s)
- Daohua Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, 53201, USA.
| | - Rajendra Maity
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Xin Geng
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | - Yi Peng
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, 53201, USA.
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
29
|
Palma B, Cheng X, Liu L, Zhong N, Zhao H, Renneckar S, Larter S, Kibria M, Hu J. Visible‐light Driven Lignin Valorization into Value‐added Chemicals and Sustainable Hydrogen Using Zn1‐xCdxS Solid Solutions as Photocatalyst. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bruna Palma
- University of Calgary Schulich School of Engineering Chemical and Petroleum Engineering CANADA
| | - Xi Cheng
- University of Calgary Chemical and Petroleum Engineering CANADA
| | - Liyang Liu
- The University of British Columbia Department of Wood Science CANADA
| | - Na Zhong
- University of Calgary Department of Chemical and Petroleum Engineering CANADA
| | - Heng Zhao
- University of Calgary Chemical and Petroleum Engineering 3535 Research RD NW T2L 2K8 Calgary CANADA
| | - Scott Renneckar
- The University of British Columbia Department of Wood Science CANADA
| | | | - Md Kibria
- University of Calgary Department of Chemical and Petroleum Engineering CANADA
| | - Jinguang Hu
- University of Calgary Chemical and Petroleum Engineering CANADA
| |
Collapse
|
30
|
Xu J, Shi J, Wang J, Zhang L, Wang Y. Photocatalyst g-C3N4 for efficient cleavage of lignin C C bonds in micellar aqueous medium. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
31
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Kim J, Um Y, Han S, Hilberath T, Kim YH, Hollmann F, Park CB. Unbiased Photoelectrode Interfaces for Solar Coupling of Lignin Oxidation with Biocatalytic C═C Bond Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11465-11473. [PMID: 35196006 DOI: 10.1021/acsami.1c24342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pulp and paper manufacturers generate approximately 50 million metric tons of lignin per annum, most of which has been abandoned or incinerated because of lignin's recalcitrant nature. Here, we report bias-free photoelectrochemical (PEC) oxidation of lignin coupled with asymmetric hydrogenation of C═C bonds. The PEC platform consists of a hematite (α-Fe2O3) photoanode and a silicon photovoltaic-wired mesoporous indium tin oxide (Si/mesoITO) photocathode. We substantiate a new function of photoelectroactivated α-Fe2O3 to extract electrons from lignin. The extracted electrons are transferred to the Si/mesoITO photocathode for regenerating synthetic nicotinamide cofactor analogues (mNADHs). We demonstrate that the reduction kinetics of mNAD+s depend on their reduction peak potentials. The regenerated mNADHs activate ene-reductases from the old yellow enzyme (OYE) family, which catalyze enantioselective reduction of α,β-unsaturated hydrocarbons. This lignin-fueled biocatalytic PEC system exhibits an excellent OYE's turnover frequency and total turnover number for photobiocatalytic trans-hydrogenation through cofactor regeneration. This work presents the first example of PEC regeneration of mNADHs and opens up a sustainable route for bias-free chemical synthesis using renewable lignin waste as an electron feedstock.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Yunna Um
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Seunghyun Han
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Thomas Hilberath
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
33
|
Raulerson EK, Cadena DM, Jabed MA, Wight CD, Lee I, Wagner HR, Brewster JT, Iverson BL, Kilina S, Roberts ST. Using Spectator Ligands to Enhance Nanocrystal-to-Molecule Electron Transfer. J Phys Chem Lett 2022; 13:1416-1423. [PMID: 35119280 DOI: 10.1021/acs.jpclett.1c03825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semiconductor nanocrystals (NCs) have emerged as promising photocatalysts. However, NCs are often functionalized with complex ligand shells that contain not only charge acceptors but also other "spectator ligands" that control NC solubility and affinity for target reactants. Here, we show that spectator ligands are not passive observers of photoinduced charge transfer but rather play an active role in this process. We find the rate of electron transfer from quantum-confined PbS NCs to perylenediimide acceptors can be varied by over a factor of 4 simply by coordinating cinnamate ligands with distinct dipole moments to NC surfaces. Theoretical calculations indicate this rate variation stems from both ligand-induced changes in the free energy for charge transfer and electrostatic interactions that alter perylenediimide electron acceptor orientation on NC surfaces. Our work shows NC-to-molecule charge transfer can be fine-tuned through ligand shell design, giving researchers an additional handle for enhancing NC photocatalysis.
Collapse
Affiliation(s)
- Emily K Raulerson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Danielle M Cadena
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mohammed A Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Christopher D Wight
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Inki Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Holden R Wagner
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James T Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brent L Iverson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sean T Roberts
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Dynamics and Control of Materials, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Radical generation and fate control for photocatalytic biomass conversion. Nat Rev Chem 2022; 6:197-214. [PMID: 37117437 DOI: 10.1038/s41570-022-00359-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Photocatalysis is an emerging approach for sustainable chemical production from renewable biomass under mild conditions. Active radicals are always generated as key intermediates, in which their high reactivity renders them versatile for various upgrading processes. However, controlling their reaction is a challenge, especially in highly functionalized biomass frameworks. In this Review, we summarize recent advanced photocatalytic systems for selective biomass valorization, with an emphasis on their distinct radical-mediated reaction patterns. The strategies for generating a specific radical intermediate and controlling its subsequent conversion towards desired chemicals are also highlighted, aiming to provide guidance for future studies. We believe that taking full advantage of the unique reactivity of radical intermediates would provide great opportunities to develop more efficient photocatalytic systems for biomass valorization.
Collapse
|
35
|
Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR, Luscombe CK. Organic building blocks at inorganic nanomaterial interfaces. MATERIALS HORIZONS 2022; 9:61-87. [PMID: 34851347 DOI: 10.1039/d1mh01294k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
Collapse
Affiliation(s)
- Yunping Huang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Theodore A Cohen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Breena M Sperry
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Laura M Jacoby
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Ji W, Xu Z, Zhang S, Li Y, Bao Z, Zhao Z, Xie L, Zhong X, Wei Z, Wang J. High-efficiency visible-light photocatalytic H 2O 2 production using CdSe-based core/shell quantum dots. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00269h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are demonstrated as photocatalysts for high-efficiency photocatalytic production of H2O2 in a designed oil/water two-phase system.
Collapse
Affiliation(s)
- Wenkai Ji
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zaixiang Xu
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shijie Zhang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yang Li
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Zhikang Bao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zijiang Zhao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Liang Xie
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xing Zhong
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianguo Wang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
37
|
Wu X, Xie S, Zhang H, Zhang Q, Sels BF, Wang Y. Metal Sulfide Photocatalysts for Lignocellulose Valorization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007129. [PMID: 34117812 DOI: 10.1002/adma.202007129] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Transition metal sulfides are an extraordinarily vital class of semiconductors with a wide range of applications in the photocatalytic field. A great number of recent advances in photocatalytic transformations of lignocellulosic biomass, the largest renewable carbon resource, into high-quality fuels and value-added chemicals has been achieved over metal sulfide semiconductors. Herein, the progress and breakthroughs in metal-sulfide-based photocatalytic systems for lignocellulose valorization with an emphasis on selective depolymerization of lignin and oxidative coupling of some important bioplatforms are highligted. The key issues that control reaction pathways and mechanisms are carefully examined. The functions of metal sulfides in the elementary reactions, including CO-bond cleavage, selective oxidations, CC coupling, and CH activation, are discussed to offer insights to guide the rational design of active and selective photocatalysts for sustainable chemistry. The prospects of sulfide photocatalysts in biomass valorization are also analyzed and briefly discussed.
Collapse
Affiliation(s)
- Xuejiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Centre for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haikun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bert F Sels
- Centre for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
38
|
Hu Q, Yu X, Gong S, Chen X. Nanomaterial catalysts for organic photoredox catalysis-mechanistic perspective. NANOSCALE 2021; 13:18044-18053. [PMID: 34718365 DOI: 10.1039/d1nr05474k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar energy conversions play a vital role in the renewable energy industry. In recent years, photoredox organic transformations have been explored as an alternative way to use solar energy. Catalysts for such photocatalytic systems have evolved from homogeneous metal complexes to heterogeneous nanomaterials over the past few decades. Herein, three important carrier transfer mechanisms are presented, including charge transfer, energy transfer and hot carrier transfer. Several models established by researchers to understand the catalytic reaction mechanisms are also illustrated, which promote the reaction system design based on theoretical studies. New strategies are introduced in order to enhance catalytic efficiency for future prospects.
Collapse
Affiliation(s)
- Qiushi Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Xuemeng Yu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Shaokuan Gong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Xihan Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
39
|
Li C, Li J, Qin L, Yang P, Vlachos DG. Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02551] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Jiang Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Ling Qin
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware19716, United States
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware19716, United States
| |
Collapse
|
40
|
Zhu Y, Egap E. Light-Mediated Polymerization Induced by Semiconducting Nanomaterials: State-of-the-Art and Future Perspectives. ACS POLYMERS AU 2021; 1:76-99. [PMID: 36855427 PMCID: PMC9954404 DOI: 10.1021/acspolymersau.1c00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Direct capture of solar energy for chemical transformation via photocatalysis proves to be a cost-effective and energy-saving approach to construct organic compounds. With the recent growth in photosynthesis, photopolymerization has been established as a robust strategy for the production of specialty polymers with complex structures, precise molecular weight, and narrow dispersity. A key challenge in photopolymerization is the scarcity of effective photomediators (photoinitiators, photocatalysts, etc.) that can provide polymerization with high yield and well-defined polymer products. Current efforts on developing photomediators have mainly focused on organic dyes and metal complexes. On the other hand, nanomaterials (NMs), particularly semiconducting nanomaterials (SNMs), are suitable candidates for photochemical reactions due to their unique optical and electrical properties, such as high absorption coefficients, large charge diffusion lengths, and broad absorption spectra. This review provides a comprehensive insight into SNMs' photomediated polymerizations and highlights the roles SNMs play in photopolymerizations, types of polymerizations, applications in producing advanced materials, and the future directions.
Collapse
Affiliation(s)
- Yifan Zhu
- †Department
of Materials Science and Nanoengineering and ‡Department of Chemical and Biomolecular
Engineering, Rice University, Houston, Texas 77005, United States
| | - Eilaf Egap
- †Department
of Materials Science and Nanoengineering and ‡Department of Chemical and Biomolecular
Engineering, Rice University, Houston, Texas 77005, United States,
| |
Collapse
|
41
|
Yuan Y, Jin N, Saghy P, Dube L, Zhu H, Chen O. Quantum Dot Photocatalysts for Organic Transformations. J Phys Chem Lett 2021; 12:7180-7193. [PMID: 34309389 DOI: 10.1021/acs.jpclett.1c01717] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quantum dots (QDs) with tunable photo-optical properties and colloidal nature are ideal for a wide range of photocatalytic reactions. In particular, QD photocatalysts for organic transformations can provide new and effective synthetic routes to high value-added molecules under mild conditions. In this Perspective, we discuss the advances of employing QDs for visible-light-driven organic transformations categorized into net reductive reactions, net oxidative reactions, and redox neutral reactions. We then provide our outlook for potential future directions in the field: nanostructure engineering to improve charge separation efficiencies, ligand shell engineering to optimize overall catalyst performance, in situ comprehensive studies to delineate underlying reaction mechanisms, and laboratory automation with the assistance of modern computing techniques to revolutionize the reaction optimization process.
Collapse
Affiliation(s)
- Yucheng Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Peter Saghy
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lacie Dube
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hua Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
42
|
Lu L, Zhang B, Li H, Chao Y, Li Y, Chen L, Li H, Ji H, Wu P, Zhu W. Controllable electronic effect via deep eutectic solvents modification for boosted aerobic oxidative desulfurization. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Xu J, Li M, Qiu J, Zhang XF, Yao J. Fine tuning of Cd xZn 1-xS for photo-depolymerization of alkaline lignin into vanillin. Int J Biol Macromol 2021; 185:297-305. [PMID: 34166691 DOI: 10.1016/j.ijbiomac.2021.06.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Lignin is abundant and contains a large number of aromatic groups. Herein, CdxZn1-xS photocatalyst with tunable band gap energy was successfully synthesized by using 3-mercaptopropionic acid as a structure tuning additive. CdxZn1-xS can depolymerize alkaline lignin to vanillin by the photocatalytic process. Each gram of alkaline lignin can produce 46.5 mg of vanillin. 2-Phenoxy-1-phenylethanol (PP-ol) and other model compounds were used to understand the depolymerizing process of lignin. Fine tuned CdxZn1-xS can effectively cleave the Cβ-O-4 bond existed in PP-ol under simulated sunlight. The highest conversion of PP-ol was 89.5% with phenol and acetophenone yields of 66.2% and 33.5%, respectively. The mechanism studies confirm that the Cα-H in PP-ol and lignin is firstly dehydrogenated to form Cα radical intermediates, and then the photogenerated electrons break the adjacent Cβ-O bond. This research provides a new strategy to prepare valuable chemicals by virtue of renewable biomass and simulated sunlight.
Collapse
Affiliation(s)
- Jie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Ming Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
44
|
Song W, Song M, Jiang X, Yi X, Lai W. Hydrolytic cleavage of lignin derived C-O bonds by acid/base catalysis in water. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01990-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Zhu Y, Jin T, Lian T, Egap E. Enhancing the efficiency of semiconducting quantum dot photocatalyzed atom transfer radical polymerization by ligand shell engineering. J Chem Phys 2021; 154:204903. [PMID: 34241152 DOI: 10.1063/5.0051893] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Manipulating the ligand shell of semiconducting quantum dots (QDs) has proven to be a promising strategy to enhance their photocatalytic performance for small molecule transformations, such as H2 evolution and CO2 reduction. However, ligand-controlled catalysis for macromolecules, which differ from small molecules in penetrability and charge transfer behavior due to their bulky sizes, still remains undiscovered. Here, we systematically investigate the role of surface ligands in the photocatalytic performance of cadmium selenide (CdSe) QDs in light-induced atom transfer radical polymerization (ATRP) by using thiol-based ligands with various polarities and chain lengths. A highly enhanced polymerization efficiency was observed when 3-mercapto propionic acid (MPA), a short-chain and polar ligand, was used to modify the CdSe QDs' surface, achieving high chain-end fidelity, good temporal control, and a dispersity of 1.18, while also tolerating a wide-range of functional monomers ranging from acrylates to methacrylates and fluorinated monomers. Transient absorption spectroscopy and time-resolved photoluminescence studies reveal interesting mechanistic details of electron and hole transfers from the excited QDs to the initiators and 3-MPA capping ligands, respectively, providing key mechanistic insight of these ligand controlled and QD photocatalyzed ATRP processes. The thiolate ligands were found to serve as an efficient hole acceptor for QDs, which facilitates the formation of a charge-separated state, followed by electron transfer from the conduction band edge to initiators and ultimately suppressing charge recombination within the QD.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA
| | - Tao Jin
- Department of Chemistry, Emory University, 1515 Dickey Drive Nebraska, Atlanta, Georgia 30322, USA
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Nebraska, Atlanta, Georgia 30322, USA
| | - Eilaf Egap
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
46
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
47
|
Xu J, Li M, Qiu J, Zhang XF, Yao J. Photocatalytic depolymerization of organosolv lignin into valuable chemicals. Int J Biol Macromol 2021; 180:403-410. [PMID: 33741371 DOI: 10.1016/j.ijbiomac.2021.03.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/25/2022]
Abstract
Catalytic conversion of lignin to certain aromatic compounds has been extensively studied but still has great challenges. Photocatalytic depolymerizing lignin is a very promising method to obtain valuable chemicals. Herein, Zn4In2S7 (ZIS)-based photocatalyst was successfully synthesized by simply combining ZIS and graphene oxide (GO). Photocatalyst ZIS-100 can efficiently depolymerize organosolv lignin into phenols and ketones. The relative content of valuable compounds in the depolymerized product was increased by 2.5 times as compared that without photocatalyst. The photocatalyst can effectively break Cβ-O bonds in 2-phenoxy-1-phenylethanol (PP-ol, a model compound) and the conversion of PP-ol is 93.27%. Mechanism studies show that the thiol groups on the surface of ZIS-100 play an important role in the formation of Cα radical intermediates. Photocatalytic cleavage of Cβ-O bond mainly follows a one-step reaction mechanism through a self‑hydrogen transfer process. This study provides a new strategy for selectively breaking Cβ-O bond in lignin to form valuable chemicals.
Collapse
Affiliation(s)
- Jie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Ming Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
48
|
Abstract
Colloidal semiconductor quantum dots (QDs) have been proven to be excellent photocatalysts due to their high photostability, large extinction coefficients, and tunable optoelectrical properties, and have attracted extensive attention by synthetic chemists. These excellent properties demonstrate its promise in the field of photocatalysis. In this review, we summarize the recent application of QDs as homogeneous catalysts in various photocatalytic organic reactions. These meaningful works in organic transformations show the unique catalytic activity of quantum dots, which are different from other semiconductors.
Collapse
|
49
|
Wan Y, Lee JM. Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05419] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Wan
- School of Chemical and Biomedical Engineering, Nangyang Technological University, Singapore 637459, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nangyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
50
|
Lei L, Huang D, Chen S, Zhang C, Chen Y, Deng R. Metal chalcogenide/oxide-based quantum dots decorated functional materials for energy-related applications: Synthesis and preservation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|