1
|
Alshanski I, Toraskar S, Mor K, Daligault F, Jain P, Grandjean C, Kikkeri R, Hurevich M, Yitzchaik S. Impedimetric Characterization of NanA Structural Domains Activity on Sialoside-Containing Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22152-22158. [PMID: 39376038 PMCID: PMC11500401 DOI: 10.1021/acs.langmuir.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Streptococcus pneumoniae is a pathogenic bacterium that contains the surface-bound neuraminidase, NanA. NanA has two domains that interact with sialosides. It is hard to determine the contribution of each domain separately on catalysis or binding. In this work, we used biochemical methods to obtain the separated domains, applied electrochemical and surface analysis approaches, and determined the catalytic and binding preferences toward a surface-bound library of sialosides. Impedimetric studies on two different surfaces revealed that protein-surface interactions provide a tool for distinguishing the unique contribution of each domain at the interface affecting the substrate preference of the enzyme in different surroundings. We showed that each domain has a sialoside-specific affinity. Furthermore, while the interaction of the sialoside-covered surface with the carbohydrate-binding domain results in an increase in impedance and binding, the catalytic domain adheres to the surface at high concentrations but retains its catalytic activity at low concentrations.
Collapse
Affiliation(s)
- Israel Alshanski
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Suraj Toraskar
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
| | - Karin Mor
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Prashant Jain
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
| | | | - Raghavendra Kikkeri
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
| | - Mattan Hurevich
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Singapore-HUJ
Alliance for Research and Enterprise (SHARE), The Cellular Agriculture
(CellAg) Programme, Campus for Research Excellence and Technological
Enterprise (CREATE), 138602 Singapore
| | - Shlomo Yitzchaik
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Singapore-HUJ
Alliance for Research and Enterprise (SHARE), The Cellular Agriculture
(CellAg) Programme, Campus for Research Excellence and Technological
Enterprise (CREATE), 138602 Singapore
| |
Collapse
|
2
|
Takeuchi Y, Tohda K, Tanaka H. Syntheses of α(2,8) Sialosides Containing NeuAc and NeuGc by Using Double Carbonyl-Protected N-Acyl Sialyl Donors. Chemistry 2024; 30:e202400883. [PMID: 38556469 DOI: 10.1002/chem.202400883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/02/2024]
Abstract
We report on the syntheses of NeuAc and NeuGc-containing glycosides via the use of double carbonyl-protected N-acetyl sialyl donors. The 7-O,9-O-carbonyl protection of an N-acyl-5-N,4-O-carbonyl-protected sialyl donor markedly increased the α-selectivity during glycosylation, particularly when glycosylating the C-8 hydroxyl group of sialic acids. The N-acyl carbamates were selectively opened with ethanethiol under basic conditions to provide N-acyl amines. It is noteworthy that N-glycolyl carbamate was more reactive to nucleophiles by comparison with the N-acetyl carbamate due to the electron-withdrawing oxygen in the N-acyl group and however, allowed selective opening of the carbamates without the loss of N-glycolyl groups. To demonstrate the utility of the approach, we began by synthesizing α(2,3) and α(2,6) sialyl galactosides. Glycosylation of the hydroxy groups of galactosides at the C-6 position with the NeuAc and NeuGc donors provided the corresponding sialyl galactoses in good yields with excellent α-selectivity. However, glycosylation of the 2,3-diol galactosyl acceptor selectively provided Siaα(2,2)Gal. Next, we prepared a series of α(2,8) disialosides composed of NeuAc and NeuGc. Glycosylation of NeuGc and NeuAc acceptors at the C-8 hydroxyl group with NeuGc and NeuAc sialyl donors provided the corresponding α(2,8) disialosides, and no significant differences were detected in the reactivities of these acceptors.
Collapse
Affiliation(s)
- Yutaka Takeuchi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Kazuki Tohda
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| |
Collapse
|
3
|
Alshanski I, Toraskar S, Gordon-Levitan D, Massetti M, Jain P, Vaccaro L, Kikkeri R, Hurevich M, Yitzchaik S. Surface-Controlled Sialoside-Based Biosensing of Viral and Bacterial Neuraminidases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7471-7478. [PMID: 38554266 PMCID: PMC11008233 DOI: 10.1021/acs.langmuir.3c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Neuraminidases (NA) are sialic acid-cleaving enzymes that are used by both bacteria and viruses. These enzymes have sialoside structure-related binding and cleaving preferences. Differentiating between these enzymes requires using a large array of hard-to-access sialosides. In this work, we used electrochemical impedimetric biosensing to differentiate among several pathogene-related NAs. We used a limited set of sialosides and tailored the surface properties. Various sialosides were grafted on two different surfaces with unique properties. Electrografting on glassy carbon electrodes provided low-density sialoside-functionalized surfaces with a hydrophobic submonolayer. A two-step assembly on gold electrodes provided a denser sialoside layer on a negatively charged submonolayer. The synthesis of each sialoside required dozens of laborious steps. Utilizing the unique protein-electrode interaction modes resulted in richer biodata without increasing the synthetic load. These principles allowed for profiling NAs and determining the efficacy of various antiviral inhibitors.
Collapse
Affiliation(s)
- Israel Alshanski
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Suraj Toraskar
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Daniel Gordon-Levitan
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Marco Massetti
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Laboratory
of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologiae Biotecnologie Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Prashant Jain
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Luigi Vaccaro
- Laboratory
of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologiae Biotecnologie Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Raghavendra Kikkeri
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Mattan Hurevich
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shlomo Yitzchaik
- The
Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Dedola S, Ahmadipour S, de Andrade P, Baker AN, Boshra AN, Chessa S, Gibson MI, Hernando PJ, Ivanova IM, Lloyd JE, Marín MJ, Munro-Clark AJ, Pergolizzi G, Richards SJ, Ttofi I, Wagstaff BA, Field RA. Sialic acids in infection and their potential use in detection and protection against pathogens. RSC Chem Biol 2024; 5:167-188. [PMID: 38456038 PMCID: PMC10915975 DOI: 10.1039/d3cb00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024] Open
Abstract
In structural terms, the sialic acids are a large family of nine carbon sugars based around an alpha-keto acid core. They are widely spread in nature, where they are often found to be involved in molecular recognition processes, including in development, immunology, health and disease. The prominence of sialic acids in infection is a result of their exposure at the non-reducing terminus of glycans in diverse glycolipids and glycoproteins. Herein, we survey representative aspects of sialic acid structure, recognition and exploitation in relation to infectious diseases, their diagnosis and prevention or treatment. Examples covered span influenza virus and Covid-19, Leishmania and Trypanosoma, algal viruses, Campylobacter, Streptococci and Helicobacter, and commensal Ruminococci.
Collapse
Affiliation(s)
- Simone Dedola
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Sanaz Ahmadipour
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alexander N Baker
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Andrew N Boshra
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Simona Chessa
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Matthew I Gibson
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School Coventry CV4 7AL UK
| | - Pedro J Hernando
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Irina M Ivanova
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Jessica E Lloyd
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK
| | - Alexandra J Munro-Clark
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | | - Sarah-Jane Richards
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Iakovia Ttofi
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|