1
|
Niu W, Liu J, Duan Y, Zhong L, Pang L, Zhong G, Zhang Y, Bian X. Biosynthesis of Nonribosomal Peptides Chitinimides Reveal a Special Type of Thioesterase Domains. Chemistry 2024; 30:e202402763. [PMID: 39298149 DOI: 10.1002/chem.202402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 11/01/2024]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and their tailored enzymes have diverse biological functions. In this study, we investigated the biosynthesis and function of chitinimides, which belong to the non-ribosomal peptide (NRP) subfamily featuring a pyrrolidine-containing part (X part) connected to the polypeptide chain via an ester bond. A conserved gene cassette, chmHIJK, is responsible for oxyacylation of the pyrrolidine moiety in the X part. The thioesterase (TE) domain of ChmC (ChmC-TE) catalyzes transesterification reactions with a free X part or methanol as a nucleophilic reagent to form different chitinimides. The crucial amino acid residues in the ChmC-TE domains responsible for the specific recognition of the X part were identified, and they were conserved in all the biosynthetic pathways of this NRP subfamily to form a signature motif, YNHNR, suggesting a special type of TE domain in NRPSs. Chitinimides demonstrate the biological function of promoting the swarming ability of the native producer. This study provides deep insights into the biosynthesis of this special NRP subfamily, and shows that the special TE domain could be used to generate diverse NRPs by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Weijing Niu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuwei Duan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Linlin Pang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
2
|
Zeng X, Wang Y, Shen X, Wang H, Xu ZL. Application of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry for Identification of Foodborne Pathogens: Current Developments and Future Trends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22001-22014. [PMID: 39344132 DOI: 10.1021/acs.jafc.4c06552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Foodborne pathogens have gained sustained public attention, exerted significant pressure on food manufacturers, and posed serious health risks to human. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been employed for quick and accurate identification of microorganisms in the prevention of foodborne epidemics in recent years. Herein, we first summarize the principle of MALDI and its workflow for foodborne pathogens. Subsequently, we review the recent progress and applications of MALDI-TOF MS in foodborne pathogen determination. Additionally, we outline the expanded utilization of MALDI-based techniques for the identification of closely related species. We also assess the current gaps and propose possible solutions to address the existing challenges. MALDI-TOF MS is a promising biotool for rapid and accurate identification of foodborne microbes at the species and genus level in food samples. Database expansion and direct quantification of spoilage microbes are two promising areas for future progress in MALDI-TOF MS applications.
Collapse
Affiliation(s)
- Xi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 511400, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 511400, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Chen H, Zhong L, Zhou H, Bai X, Sun T, Wang X, Zhao Y, Ji X, Tu Q, Zhang Y, Bian X. Biosynthesis and engineering of the nonribosomal peptides with a C-terminal putrescine. Nat Commun 2023; 14:6619. [PMID: 37857663 PMCID: PMC10587159 DOI: 10.1038/s41467-023-42387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The broad bioactivities of nonribosomal peptides rely on increasing structural diversity. Genome mining of the Burkholderiales strain Schlegelella brevitalea DSM 7029 leads to the identification of a class of dodecapeptides, glidonins, that feature diverse N-terminal modifications and a uniform putrescine moiety at the C-terminus. The N-terminal diversity originates from the wide substrate selectivity of the initiation module. The C-terminal putrescine moiety is introduced by the unusual termination module 13, the condensation domain directly catalyzes the assembly of putrescine into the peptidyl backbone, and other domains are essential for stabilizing the protein structure. Swapping of this module to another two nonribosomal peptide synthetases leads to the addition of a putrescine to the C-terminus of related nonribosomal peptides, improving their hydrophilicity and bioactivity. This study elucidates the mechanism for putrescine addition and provides further insights to generate diverse and improved nonribosomal peptides by introducing a C-terminal putrescine.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- School of Medicine, Linyi University, Shuangling Road, 276000, Linyi, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Wang X, Zhou H, Ren X, Chen H, Zhong L, Bai X, Bian X. Recombineering enables genome mining of novel siderophores in a non-model Burkholderiales strain. ENGINEERING MICROBIOLOGY 2023; 3:100106. [PMID: 39628930 PMCID: PMC11611033 DOI: 10.1016/j.engmic.2023.100106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 12/06/2024]
Abstract
Iron is essential for bacterial survival, and most bacteria capture iron by producing siderophores. Burkholderiales bacteria produce various types of bioactive secondary metabolites, such as ornibactin and malleobactin siderophores. In this study, the genome analysis of Burkholderiales genomes showed a putative novel siderophore gene cluster crb, which is highly similar to the ornibactin and malleobactin gene clusters but does not have pvdF, a gene encoding a formyltransferase for N-δ‑hydroxy-ornithine formylation. Establishing the bacteriophage recombinase Redγ-Redαβ7029 mediated genome editing system in a non-model Burkholderiales strain Paraburkholderia caribensis CICC 10960 allowed the rapid identification of the products of crb gene cluster, caribactins A-F (1-6). Caribactins contain a special amino acid residue N-δ‑hydroxy-N-δ-acetylornithine (haOrn), which differs from the counterpart N-δ‑hydroxy-N-δ-formylornithine (hfOrn) in ornibactin and malleobactin, owing to the absence of pvdF. Gene inactivation showed that the acetylation of hOrn is catalyzed by CrbK, whose homologs probably not be involved in the biosynthesis of ornibactin and malleobactin, showing possible evolutionary clues of these siderophore biosynthetic pathways from different genera. Caribactins promote biofilm production and enhance swarming and swimming abilities, suggesting that they may play crucial roles in biofilm formation. This study also revealed that recombineering has the capability to mine novel secondary metabolites from non-model Burkholderiales species.
Collapse
Affiliation(s)
- Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xiangmei Ren
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Hanna Chen
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Büttner H, Hörl J, Krabbe J, Hertweck C. Discovery and Biosynthesis of Anthrochelin, a Growth-Promoting Metallophore of the Human Pathogen Luteibacter anthropi. Chembiochem 2023; 24:e202300322. [PMID: 37191164 DOI: 10.1002/cbic.202300322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
Various human pathogens have emerged from environmental strains by adapting to higher growth temperatures and the ability to produce virulence factors. A remarkable example of a pathoadapted bacterium is found in the genus Luteibacter, which typically comprises harmless soil microbes, yet Luteibacter anthropi was isolated from the blood of a diseased child. Up until now, nothing has been known about the specialized metabolism of this pathogen. By comparative genome analyses we found that L. anthropi has a markedly higher biosynthetic potential than other bacteria of this genus and uniquely bears an NRPS gene locus tentatively coding for the biosynthesis of a metallophore. By metabolic profiling, stable isotope labeling, and NMR investigation of a gallium complex, we identified a new family of salicylate-derived nonribosomal peptides named anthrochelins A-D. Surprisingly, anthrochelins feature a C-terminal homocysteine tag, which might be introduced during peptide termination. Mutational analyses provided insight into the anthrochelin assembly and revealed the unexpected involvement of a cytochrome P450 monooxygenase in oxazole formation. Notably, this heterocycle plays a key role in the binding of metals, especially copper(II). Bioassays showed that anthrochelin significantly promotes the growth of L. anthropi in the presence of low and high copper concentrations, which occur during infections.
Collapse
Affiliation(s)
- Hannah Büttner
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Johannes Hörl
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jana Krabbe
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
6
|
Wein P, Dornblut K, Herkersdorf S, Krüger T, Molloy EM, Brakhage AA, Hoffmeister D, Hertweck C. Bacterial secretion systems contribute to rapid tissue decay in button mushroom soft rot disease. mBio 2023; 14:e0078723. [PMID: 37486262 PMCID: PMC10470514 DOI: 10.1128/mbio.00787-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The soft rot pathogen Janthinobacterium agaricidamnosum causes devastating damage to button mushrooms (Agaricus bisporus), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that J. agaricidamnosum implements a more sophisticated infection strategy. In this study, we show that secretion systems play a crucial role in soft rot disease. By mining the genome of J. agaricidamnosum, we identified gene clusters encoding a type I (T1SS), a type II (T2SS), a type III (T3SS), and two type VI secretion systems (T6SSs). We targeted the T2SS and T3SS for gene inactivation studies, and subsequent bioassays implicated both in soft rot disease. Furthermore, through a combination of comparative secretome analysis and activity-guided fractionation, we identified a number of secreted lytic enzymes responsible for mushroom damage. Our findings regarding the contribution of secretion systems to the disease process expand the current knowledge of bacterial soft rot pathogens and represent a significant stride toward identifying targets for their disarmament with secretion system inhibitors. IMPORTANCE The button mushroom (Agaricus bisporus) is the most popular edible mushroom in the Western world. However, mushroom crops can fall victim to serious bacterial diseases that are a major threat to the mushroom industry, among them being soft rot disease caused by Janthinobacterium agaricidamnosum. Here, we show that the rapid dissolution of mushroom fruiting bodies after bacterial invasion is due to degradative enzymes and putative effector proteins secreted via the type II secretion system (T2SS) and the type III secretion system (T3SS), respectively. The ability to degrade mushroom tissue is significantly attenuated in secretion-deficient mutants, which establishes that secretion systems are key factors in mushroom soft rot disease. This insight is of both ecological and agricultural relevance by shedding light on the disease processes behind a pathogenic bacterial-fungal interaction which, in turn, serves as a starting point for the development of secretion system inhibitors to control disease progression.
Collapse
Affiliation(s)
- Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sebastian Herkersdorf
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A. Brakhage
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
7
|
Clements-Decker T, Kode M, Khan S, Khan W. Underexplored bacteria as reservoirs of novel antimicrobial lipopeptides. Front Chem 2022; 10:1025979. [PMID: 36277345 PMCID: PMC9581180 DOI: 10.3389/fchem.2022.1025979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms play a prominent role in drug discovery as potential anti-infective agents. Over the past few decades, lipopeptides produced by particularly Bacillus, Pseudomonas, Streptomyces, Paenibacillus, and cyanobacteria species, have been extensively studied for their antimicrobial potential. Subsequently, daptomycin and polymyxin B were approved by the Food and Drug Administration as lipopeptide antibiotics. Recent studies have however, indicated that Serratia, Brevibacillus, and Burkholderia, as well as predatory bacteria such as Myxococcus, Lysobacter, and Cystobacter, hold promise as relatively underexplored sources of novel classes of lipopeptides. This review will thus highlight the structures and the newly discovered scaffolds of lipopeptide families produced by these bacterial genera, with potential antimicrobial activities. Additionally, insight into the mode of action and biosynthesis of these lipopeptides will be provided and the application of a genome mining approach, to ascertain the biosynthetic gene cluster potential of these bacterial genera (genomes available on the National Center for Biotechnology Information) for their future pharmaceutical exploitation, will be discussed.
Collapse
Affiliation(s)
| | - Megan Kode
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Wesaal Khan,
| |
Collapse
|
8
|
Adaikpoh BI, Fernandez HN, Eustáquio AS. Biotechnology approaches for natural product discovery, engineering, and production based on Burkholderia bacteria. Curr Opin Biotechnol 2022; 77:102782. [PMID: 36049254 DOI: 10.1016/j.copbio.2022.102782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Bacterial natural products (NPs) retain high value in discovery efforts for applications in medicine and agriculture. Burkholderia β-Proteobacteria are a promising source of NPs. In this review, we summarize the recently developed genetic manipulation techniques used to access silent/cryptic biosynthetic gene clusters from Burkholderia native producers. We also discuss the development of Burkholderia bacteria as heterologous hosts and the application of Burkholderia in industrial-scale production of NPs. Genetic engineering and fermentation media optimization have enabled the industrial-scale production of at least two Burkholderia NPs. The biotechnology approaches discussed here will continue to facilitate the discovery and development of NPs from Burkholderia.
Collapse
Affiliation(s)
- Barbara I Adaikpoh
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hannah N Fernandez
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
9
|
Petrova YD, Zhao J, Webster G, Mullins AJ, Williams K, Alswat AS, Challis GL, Bailey AM, Mahenthiralingam E. Cloning and expression of Burkholderia polyyne biosynthetic gene clusters in Paraburkholderia hosts provides a strategy for biopesticide development. Microb Biotechnol 2022; 15:2547-2561. [PMID: 35829647 PMCID: PMC9518984 DOI: 10.1111/1751-7915.14106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Burkholderia have potential as biocontrol agents because they encode diverse biosynthetic gene clusters (BGCs) for a range of antimicrobial metabolites. Given the opportunistic pathogenicity associated with Burkholderia species, heterologous BGC expression within non-pathogenic hosts is a strategy to construct safe biocontrol strains. We constructed a yeast-adapted Burkholderia-Escherichia shuttle vector (pMLBAD_yeast) with a yeast replication origin 2 μ and URA3 selection marker and optimised it for cloning BGCs using the in vivo recombination ability of Saccharomyces cerevisiae. Two Burkholderia polyyne BGCs, cepacin (13 kb) and caryoynencin (11 kb), were PCR-amplified as three overlapping fragments, cloned downstream of the pBAD arabinose promoter in pMLBAD_yeast and mobilised into Burkholderia and Paraburkholderia heterologous hosts. Paraburkholderia phytofirmans carrying the heterologous polyyne constructs displayed in vitro bioactivity against a variety of fungal and bacterial plant pathogens similar to the native polyyne producers. Thirteen Paraburkholderia strains with preferential growth at 30°C compared with 37°C were also identified, and four of these were amenable to genetic manipulation and heterologous expression of the caryoynencin construct. The cloning and successful heterologous expression of Burkholderia biosynthetic gene clusters within Paraburkholderia with restricted growth at 37°C opens avenues for engineering non-pathogenic biocontrol strains.
Collapse
Affiliation(s)
| | - Jinlian Zhao
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | | | | | - Amal S Alswat
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
10
|
Wang Y, Chen S, Zhou J, Fan X, He L, Fan G. Enhanced degradation capability of white-rot fungi after short-term pre-exposure to silver ion: Performance and selectively antimicrobial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151672. [PMID: 34793791 DOI: 10.1016/j.scitotenv.2021.151672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Azo dyes in wastewater have great threats to environment and human health. White-rot fungi (WRF) have broad-spectrum potential for such refractory organics bioremediation; however, their applications are largely restrained by the poor viability owning to microbial invasion under non-sterile conditions. In this study, short-term pre-exposure to silver ion (Ag+) was demonstrated to be a practical, economic, and green method to enhance the perdurability of azo dyes decoloration by WRF Phanerochaete chrysosporium under non-sterile conditions. In control (without Ag+ pre-exposure), decoloration deactivated since cycle 7 (<10%), whereas in Ag+ pre-exposure groups, the decoloration ratios remained 91.5%-94.7% after 7 cycles. Variations in decoloration-related extracellular lignin enzyme activities were consistent with the decoloration effectiveness. The enhanced decoloration capability in Ag+ pre-exposure groups under non-sterile conditions could be ascribed to the selectively antimicrobial action by Ag+. The released Ag+ from the self-assembled silver nanoparticles (AgNPs) could selectively "stimulate" the proliferation and viability of P. chrysosporium, and simultaneously inhibit the growths of invasive microorganisms. The pyrosequencing results indicated that genus Sphingomonas (24.1%-31.3%) was the main invasive bacteria in Ag+ pre-exposure groups after long-term operation owing to the AgNPs passivation. As control, the invasive fungi (Asterotremella humicola) and bacteria (Burkholderia spp.) occurred in control after short-term operation, and genus Burkholderia (74.9%) dominated after long-term operation, leading to decoloration deactivation. Overall, these findings offer a new insight into the bio-nano interactions between WRF and invasive microorganisms in response to Ag+ or biogenic AgNPs, and could extend WRF application perspective under non-sterile conditions in future.
Collapse
Affiliation(s)
- Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Shi Chen
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
11
|
Shen Q, Zhou H, Dai G, Zhong G, Huo L, Li A, Liu Y, Yang M, Ravichandran V, Zheng Z, Tang YJ, Jiao N, Zhang Y, Bian X. Characterization of a Cryptic NRPS Gene Cluster in Bacillus velezensis FZB42 Reveals a Discrete Oxidase Involved in Multithiazole Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qiyao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Liujie Huo
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yang Liu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ming Yang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Vinothkannan Ravichandran
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhihui Zheng
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, Shijiazhuang 050015, China
| | - Ya-Jie Tang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nianzhi Jiao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Covington BC, Seyedsayamdost MR. MetEx, a Metabolomics Explorer Application for Natural Product Discovery. ACS Chem Biol 2021; 16:2825-2833. [PMID: 34859662 DOI: 10.1021/acschembio.1c00737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in next-generation DNA sequencing technologies, bioinformatics, and mass spectrometry-based metabolite detection have ushered in a new era of natural product discovery. Microbial secondary metabolomes are complex, especially when otherwise silent biosynthetic genes are activated, and there is therefore a need for data analysis software to explore and map the resulting multidimensional datasets. To that end, we herein report the Metabolomics Explorer (MetEx), a publicly available web application for the analysis of parallel liquid chromatography-coupled mass spectrometry (LC-MS)-based metabolomics data. MetEx is a highly interactive application that facilitates visualization and analysis of complex metabolomics datasets, consisting of retention time, m/z, and MS intensity features, as a function of hundreds of conditions or elicitors. The software enables prioritization of leads from three-dimensional maps, extraction of two-dimensional slices from various higher order plots, organization of datasets by elicitor chemotypes, customizable library-based dereplication, and automatically scored lead selection. We describe the application of MetEx to the first UPLC-MS-guided high-throughput elicitor screen in which Burkholderia gladioli was challenged with 750 elicitors, and the resulting profiles were interrogated by UPLC-Qtof-MS and subsequently analyzed with the app. We demonstrate the utility of MetEx by reporting elicitors for several cryptic metabolite groups and by uncovering new natural products that remain to be characterized. MetEx is available at https://mo.princeton.edu/MetEx/.
Collapse
Affiliation(s)
- Brett C. Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Dose B, Thongkongkaew T, Zopf D, Kim HJ, Bratovanov EV, García‐Altares M, Scherlach K, Kumpfmüller J, Ross C, Hermenau R, Niehs S, Silge A, Hniopek J, Schmitt M, Popp J, Hertweck C. Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease. Chembiochem 2021; 22:2901-2907. [PMID: 34232540 PMCID: PMC8518961 DOI: 10.1002/cbic.202100330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - David Zopf
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Hak Joong Kim
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Evgeni V. Bratovanov
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - María García‐Altares
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Ron Hermenau
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah Niehs
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Anja Silge
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
14
|
Mullins AJ, Mahenthiralingam E. The Hidden Genomic Diversity, Specialized Metabolite Capacity, and Revised Taxonomy of Burkholderia Sensu Lato. Front Microbiol 2021; 12:726847. [PMID: 34650530 PMCID: PMC8506256 DOI: 10.3389/fmicb.2021.726847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Burkholderia sensu lato is a collection of closely related genera within the family Burkholderiaceae that includes species of environmental, industrial, biotechnological, and clinical importance. Multiple species within the complex are the source of diverse specialized metabolites, many of which have been identified through genome mining of their biosynthetic gene clusters (BGCs). However, the full, true genomic diversity of these species and genera, and their biosynthetic capacity have not been investigated. This study sought to cluster and classify over 4000 Burkholderia sensu lato genome assemblies into distinct genomic taxa representing named and uncharacterized species. We delineated 235 species groups by average nucleotide identity analyses that formed seven distinct phylogenomic clades, representing the genera of Burkholderia sensu lato: Burkholderia, Paraburkholderia, Trinickia, Caballeronia, Mycetohabitans, Robbsia, and Pararobbisa. A total of 137 genomic taxa aligned with named species possessing a sequenced type strain, while 93 uncharacterized species groups were demarcated. The 95% ANI threshold proved capable of delineating most genomic species and was only increased to resolve several closely related species. These analyses enabled the assessment of species classifications of over 4000 genomes, and the correction of over 400 genome taxonomic assignments in public databases into existing and uncharacterized genomic species groups. These species groups were genome mined for BGCs, their specialized metabolite capacity calculated per species and genus, and the number of distinct BGCs per species estimated through kmer-based de-replication. Mycetohabitans species dedicated a larger proportion of their relatively small genomes to specialized metabolite biosynthesis, while Burkholderia species harbored more BGCs on average per genome and possessed the most distinct BGCs per species compared to the remaining genera. Exploring the hidden genomic diversity of this important multi-genus complex contributes to our understanding of their taxonomy and evolutionary relationships, and supports future efforts toward natural product discovery.
Collapse
|
15
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
16
|
Li R, Shi H, Zhao X, Liu X, Duan Q, Song C, Chen H, Zheng W, Shen Q, Wang M, Wang X, Gong K, Yin J, Zhang Y, Li A, Fu J. Development and application of an efficient recombineering system for Burkholderia glumae and Burkholderia plantarii. Microb Biotechnol 2021; 14:1809-1826. [PMID: 34191386 PMCID: PMC8313284 DOI: 10.1111/1751-7915.13840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
The lambda phage Red proteins Redα/Redβ/Redγ and Rac prophage RecE/RecT proteins are powerful tools for precise and efficient genetic manipulation but have been limited to only a few prokaryotes. Here, we report the development and application of a new recombineering system for Burkholderia glumae and Burkholderia plantarii based on three Rac bacteriophage RecET-like operons, RecETheBDU8 , RecEThTJI49 and RecETh1h2eYI23 , which were obtained from three different Burkholderia species. Recombineering experiments indicated that RecEThTJI49 and RecETh1h2eYI23 showed higher recombination efficiency compared to RecETheBDU8 in Burkholderia glumae PG1. Furthermore, all of the proteins currently categorized as hypothetical proteins in RecETh1h2eYI23, RecEThTJI49 and RecETheBDU8 may have a positive effect on recombination in B. glumae PG1 except for the h2 protein in RecETh1h2eYI23 . Additionally, RecETYI23 combined with exonuclease inhibitors Pluγ or Redγ exhibited equivalent recombination efficiency compared to Redγβα in Escherichia coli, providing potential opportunity of recombineering in other Gram-negative bacteria for its loose host specificity. Using recombinase-assisted in situ insertion of promoters, we successfully activated three cryptic non-ribosomal peptide synthetase biosynthetic gene clusters in Burkholderia strains, resulting in the generation of a series of lipopeptides that were further purified and characterized. Compound 7 exhibited significant potential anti-inflammatory activity by inhibiting lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages. This recombineering system may greatly enhance functional genome research and the mining of novel natural products in the other species of the genus Burkholderia after optimization of a protocol.
Collapse
Affiliation(s)
- Ruijuan Li
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Hongbo Shi
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Xiaoyu Zhao
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Xianqi Liu
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Qiong Duan
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Chaoyi Song
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Hanna Chen
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Wentao Zheng
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Qiyao Shen
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Maoqin Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Xue Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Kai Gong
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Aiying Li
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Jun Fu
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| |
Collapse
|
17
|
Zheng W, Wang X, Chen Y, Dong Y, Zhou D, Liu R, Zhou H, Bian X, Wang H, Tu Q, Ravichandran V, Zhang Y, Li A, Fu J, Yin J. Recombineering facilitates the discovery of natural product biosynthetic pathways in Pseudomonas parafulva. Biotechnol J 2021; 16:e2000575. [PMID: 33484238 DOI: 10.1002/biot.202000575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
Microbial natural products among other functions they play a vital role in the disease prevention in humans, animals and plants. Pseudomonas parafulva CRS01-1 is a broad-spectrum antagonistic bacterium present in plants. However, no natural products have been isolated from this strain till date. Corresponding biosynthetic gene clusters to natural products is an effective method for bioprospecting, for which, genome manipulation tools are essential. We previously developed Pseudomonas-specific phage-derived homologous recombination systems for genetic engineering in four Pseudomonas species. Herein, we report the application of these recombineering systems in Pseudomonas parafulva CRS01-1, along with structural elucidation and bioactivity evaluation of natural products. The Pseudomonas recombineering toolbox established before in different four species is efficient for genome mining and bioactive metabolite discovery from more distant species.
Collapse
Affiliation(s)
- Wentao Zheng
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xue Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yuwei Chen
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Yachao Dong
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Diao Zhou
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Ruxin Liu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Haibo Zhou
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xiaoying Bian
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Hailong Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Qiang Tu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Vinothkannan Ravichandran
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Aiying Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
18
|
Zheng W, Wang X, Zhou H, Zhang Y, Li A, Bian X. Establishment of recombineering genome editing system in Paraburkholderia megapolitana empowers activation of silent biosynthetic gene clusters. Microb Biotechnol 2021; 13:397-405. [PMID: 32053291 PMCID: PMC7017819 DOI: 10.1111/1751-7915.13535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
The Burkholderiales are an emerging source of bioactive natural products. Their genomes contain a large number of cryptic biosynthetic gene clusters (BGCs), indicating great potential for novel structures. However, the lack of genetic tools for the most of Burkholderiales strains restricts the mining of these cryptic BGCs. We previously discovered novel phage recombinases Redαβ7029 from Burkholderiales strain DSM 7029 that could help in efficiently editing several Burkholderiales genomes and established the recombineering genome editing system in Burkholderialse species. Herein, we report the application of this phage recombinase system in another species Paraburkholderia megapolitana DSM 23488, resulting in activation of two silent non‐ribosomal peptide synthetase/polyketide synthase BGCs. A novel class of lipopeptide, haereomegapolitanin, was identified through spectroscopic characterization. Haereomegapolitanin A represents an unusual threonine‐tagged lipopeptide which is longer than the predicted NRPS assembly line. This recombineering‐mediated genome editing system shows great potential for genetic manipulation of more Burkholderiales species to activate silent BGCs for bioactive metabolites discovery.
Collapse
Affiliation(s)
- Wentao Zheng
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
19
|
Genomics-Driven Activation of Silent Biosynthetic Gene Clusters in Burkholderia gladioli by Screening Recombineering System. Molecules 2021; 26:molecules26030700. [PMID: 33572733 PMCID: PMC7866175 DOI: 10.3390/molecules26030700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
The Burkholderia genus possesses ecological and metabolic diversities. A large number of silent biosynthetic gene clusters (BGCs) in the Burkholderia genome remain uncharacterized and represent a promising resource for new natural product discovery. However, exploitation of the metabolomic potential of Burkholderia is limited by the absence of efficient genetic manipulation tools. Here, we screened a bacteriophage recombinase system Redγ-BAS, which was functional for genome modification in the plant pathogen Burkholderia gladioli ATCC 10248. By using this recombineering tool, the constitutive promoters were precisely inserted in the genome, leading to activation of two silent nonribosomal peptide synthetase gene clusters (bgdd and hgdd) and production of corresponding new classes of lipopeptides, burriogladiodins A–H (1–8) and haereogladiodins A–B (9–10). Structure elucidation revealed an unnatural amino acid Z- dehydrobutyrine (Dhb) in 1–8 and an E-Dhb in 9–10. Notably, compounds 2–4 and 9 feature an unusual threonine tag that is longer than the predicted collinearity assembly lines. The structural diversity of burriogladiodins was derived from the relaxed substrate specificity of the fifth adenylation domain as well as chain termination conducted by water or threonine. The recombinase-mediating genome editing system is not only applicable in B. gladioli, but also possesses great potential for mining meaningful silent gene clusters from other Burkholderia species.
Collapse
|
20
|
Dose B, Ross C, Niehs SP, Scherlach K, Bauer JP, Hertweck C. Food‐Poisoning Bacteria Employ a Citrate Synthase and a Type II NRPS To Synthesize Bolaamphiphilic Lipopeptide Antibiotics**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Sarah P. Niehs
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Johanna P. Bauer
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
21
|
Dose B, Ross C, Niehs SP, Scherlach K, Bauer JP, Hertweck C. Food-Poisoning Bacteria Employ a Citrate Synthase and a Type II NRPS To Synthesize Bolaamphiphilic Lipopeptide Antibiotics*. Angew Chem Int Ed Engl 2020; 59:21535-21540. [PMID: 32780428 PMCID: PMC7756705 DOI: 10.1002/anie.202009107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/21/2022]
Abstract
Mining the genome of the food-spoiling bacterium Burkholderia gladioli pv. cocovenenans revealed five nonribosomal peptide synthetase (NRPS) gene clusters, including an orphan gene locus (bol). Gene inactivation and metabolic profiling linked the bol gene cluster to novel bolaamphiphilic lipopeptides with antimycobacterial activity. A combination of chemical analysis and bioinformatics elucidated the structures of bolagladin A and B, lipocyclopeptides featuring an unusual dehydro-β-alanine enamide linker fused to an unprecedented tricarboxylic fatty acid tail. Through a series of targeted gene deletions, we proved the involvement of a designated citrate synthase (CS), priming ketosynthases III (KS III), a type II NRPS, including a novel desaturase for enamide formation, and a multimodular NRPS in generating the cyclopeptide. Network analyses revealed the evolutionary origin of the CS and identified cryptic CS/NRPS gene loci in various bacterial genomes.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Sarah P. Niehs
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Johanna P. Bauer
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
22
|
Yoshimura A, Covington BC, Gallant É, Zhang C, Li A, Seyedsayamdost MR. Unlocking Cryptic Metabolites with Mass Spectrometry-Guided Transposon Mutant Selection. ACS Chem Biol 2020; 15:2766-2774. [PMID: 32808751 DOI: 10.1021/acschembio.0c00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The products of most secondary metabolite biosynthetic gene clusters (BGCs) have yet to be discovered, in part due to low expression levels in laboratory cultures. Reporter-guided mutant selection (RGMS) has recently been developed for this purpose: a mutant library is generated and screened, using genetic reporters to a chosen BGC, to select transcriptionally active mutants that then enable the characterization of the "cryptic" metabolite. The requirement for genetic reporters limits the approach to a single pathway within genetically tractable microorganisms. Herein, we utilize untargeted metabolomics in conjunction with transposon mutagenesis to provide a global read-out of secondary metabolism across large numbers of mutants. We employ self-organizing map analytics and imaging mass spectrometry to identify and characterize seven cryptic metabolites from mutant libraries of two different Burkholderia species. Applications of the methodologies reported can expand our understanding of the products and regulation of cryptic BGCs across phylogenetically diverse bacteria.
Collapse
Affiliation(s)
- Aya Yoshimura
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Brett C. Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chen Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Anran Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
Abstract
Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
24
|
Helper bacteria halt and disarm mushroom pathogens by linearizing structurally diverse cyclolipopeptides. Proc Natl Acad Sci U S A 2020; 117:23802-23806. [PMID: 32868430 PMCID: PMC7519232 DOI: 10.1073/pnas.2006109117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The bacterial pathogen Pseudomonas tolaasii severely damages white button mushrooms by secretion of the pore-forming toxin tolaasin, the main virulence factor of brown blotch disease. Yet, fungus-associated helper bacteria of the genus Mycetocola (Mycetocola tolaasinivorans and Mycetocola lacteus) may protect their host by an unknown detoxification mechanism. By a combination of metabolic profiling, imaging mass spectrometry, structure elucidation, and bioassays, we found that the helper bacteria inactivate tolaasin by linearizing the lipocyclopeptide. Furthermore, we found that Mycetocola spp. impair the dissemination of the pathogen by cleavage of the lactone ring of pseudodesmin. The role of pseudodesmin as a major swarming factor was corroborated by identification and inactivation of the corresponding biosynthetic gene cluster. Activity-guided fractionation of the Mycetocola proteome, matrix-assisted laser desorption/ionization (MALDI) analyses, and heterologous enzyme production identified the lactonase responsible for toxin cleavage. We revealed an antivirulence strategy in the context of a tripartite interaction that has high ecological and agricultural relevance.
Collapse
|
25
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
27
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
28
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
29
|
Niehs SP, Dose B, Scherlach K, Roth M, Hertweck C. Genomics-Driven Discovery of a Symbiont-Specific Cyclopeptide from Bacteria Residing in the Rice Seedling Blight Fungus. Chembiochem 2018; 19:2167-2172. [PMID: 30113119 DOI: 10.1002/cbic.201800400] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 12/24/2022]
Abstract
The rice seedling blight fungus Rhizopus microsporus harbors endosymbiotic bacteria (Burkholderia rhizoxinica) that produce the virulence factor rhizoxin and control host development. Genome mining indicated a massive inventory of cryptic nonribosomal peptide synthetase (NRPS) genes, which have not yet been linked to any natural products. The discovery and full characterization of a novel cyclopeptide from endofungal bacteria is reported. In silico analysis of an orphan, symbiont-specific NRPS predicted the structure of a nonribosomal peptide, which was targeted by LC-MS/MS profiling of wild-type and engineered null mutants. NMR spectroscopy and chemical derivatization elucidated the structure of the bacterial cyclopeptide. Phylogenetic analyses revealed the relationship of starter C domains for rare N-acetyl-capped peptides. Heptarhizin is produced under symbiotic conditions in geographically constrained strains from the Pacific clade; this indicates a potential ecological role of the peptide.
Collapse
Affiliation(s)
- Sarah P Niehs
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Martin Roth
- BioPilotPlant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany.,Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
30
|
Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. Unexpected Bacterial Origin of the Antibiotic Icosalide: Two-Tailed Depsipeptide Assembly in Multifarious Burkholderia Symbionts. ACS Chem Biol 2018; 13:2414-2420. [PMID: 30160099 DOI: 10.1021/acschembio.8b00600] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Icosalide is an unusual two-tailed lipocyclopeptide antibiotic that was originally isolated from a fungal culture. Yet, its biosynthesis and ecological function have remained enigmatic. By genome mining and metabolic profiling of a bacterial endosymbiont ( Burkholderia gladioli) of the pest beetle Lagria villosa, we unveiled a bacterial origin of icosalide. Functional analysis of the biosynthetic gene locus revealed an unprecedented nonribosomal peptide synthetase (NRPS) that incorporates two β-hydroxy acids by means of two starter condensation domains in different modules. This unusual assembly line, which may inspire new synthetic biology approaches, is widespread among many symbiotic Burkholderia species from diverse habitats. Biological assays showed that icosalide is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring. By creating a null mutant, we found that icosalide is a swarming inhibitor, which may play a role in symbiotic interactions and bears the potential for therapeutic applications.
Collapse
Affiliation(s)
- Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Laura V. Flórez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
31
|
Niehs SP, Scherlach K, Hertweck C. Genomics-driven discovery of a linear lipopeptide promoting host colonization by endofungal bacteria. Org Biomol Chem 2018; 16:8345-8352. [DOI: 10.1039/c8ob01515e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The linear lipopeptide holrhizin is an important mediator of the Burkholderia-Rhizopus interaction that promotes bacterial colonization of the fungal host.
Collapse
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular Chemistry
- Leibniz Institute for Natural Product Research and Infection Biology (HKI)
- 07745 Jena
- Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry
- Leibniz Institute for Natural Product Research and Infection Biology (HKI)
- 07745 Jena
- Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry
- Leibniz Institute for Natural Product Research and Infection Biology (HKI)
- 07745 Jena
- Germany
- Friedrich Schiller University Jena
| |
Collapse
|