1
|
Das A, Shah M, Saraogi I. Molecular Aspects of Insulin Aggregation and Various Therapeutic Interventions. ACS BIO & MED CHEM AU 2022; 2:205-221. [PMID: 37101572 PMCID: PMC10114644 DOI: 10.1021/acsbiomedchemau.1c00054] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Protein aggregation leading to the formation of amyloid fibrils has various adverse effects on human health ranging from fatigue and numbness to organ failure and death in extreme cases. Insulin, a peptide hormone commonly used to treat diabetes, undergoes aggregation at the site of repeated injections in diabetic patients as well as during its industrial production and transport. The reduced bioavailability of insulin due to aggregation hinders the proper control of glucose levels in diabetic patients. Thus, it is necessary to develop rational approaches for inhibiting insulin aggregation, which in turn requires a detailed understanding of the mechanism of fibrillation. Given the relative simplicity of insulin and ease of access, insulin has also served as a model system for studying amyloids. Approaches to inhibit insulin aggregation have included the use of natural molecules, synthetic peptides or small molecules, and bacterial chaperone machinery. This review focuses on insulin aggregation with an emphasis on its mechanism, the structural features of insulin fibrils, and the reported inhibitors that act at different stages in the aggregation pathway. We discuss molecules that can serve as leads for improved inhibitors for use in commercial insulin formulations. We also discuss the aggregation propensity of fast- and slow-acting insulin biosimilars, commonly administered to diabetic patients. The development of better insulin aggregation inhibitors and insights into their mechanism of action will not only aid diabetic therapies, but also enhance our knowledge of protein amyloidosis.
Collapse
Affiliation(s)
- Anirban Das
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Mosami Shah
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department
of Chemistry and Department of Biological Sciences, Indian
Institute of Science Education and Research
Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
2
|
Domingo-Lopez DA, Lattanzi G, H. J. Schreiber L, Wallace EJ, Wylie R, O'Sullivan J, Dolan EB, Duffy GP. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Adv Drug Deliv Rev 2022; 185:114280. [PMID: 35405298 DOI: 10.1016/j.addr.2022.114280] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus refers to a group of metabolic disorders which affect how the body uses glucose impacting approximately 9% of the population worldwide. This review covers the most recent technological advances envisioned to control and/or reverse Type 1 diabetes mellitus (T1DM), many of which will also prove effective in treating the other forms of diabetes mellitus. Current standard therapy for T1DM involves multiple daily glucose measurements and insulin injections. Advances in glucose monitors, hormone delivery systems, and control algorithms generate more autonomous and personalised treatments through hybrid and fully automated closed-loop systems, which significantly reduce hypo- and hyperglycaemic episodes and their subsequent complications. Bi-hormonal systems that co-deliver glucagon or amylin with insulin aim to reduce hypoglycaemic events or increase time spent in target glycaemic range, respectively. Stimuli responsive materials for the controlled delivery of insulin or glucagon are a promising alternative to glucose monitors and insulin pumps. By their self-regulated mechanism, these "smart" drugs modulate their potency, pharmacokinetics and dosing depending on patients' glucose levels. Islet transplantation is a potential cure for T1DM as it restores endogenous insulin and glucagon production, but its use is not yet widespread due to limited islet sources and risks of chronic immunosuppression. New encapsulation strategies that promote angiogenesis and oxygen delivery while protecting islets from recipients' immune response may overcome current limiting factors.
Collapse
|
3
|
Sen S, Ali R, Onkar A, Ganesh S, Verma S. Strategies for interference of insulin fibrillogenesis: challenges and advances. Chembiochem 2022; 23:e202100678. [PMID: 35025120 DOI: 10.1002/cbic.202100678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The discovery of insulin came up with very high hopes for diabetic patients. In the year 2021, the world celebrated the 100 th anniversary of the discovery of this vital hormone. However, external use of insulin is highly affected by its aggregating tendency that occurs during its manufacturing, transportation, and improper handling which ultimately leads its pharmaceutically and biologically ineffective form. In this review, we aim to discuss the various approaches used for decelerating insulin aggregation which results in the enhancement of its overall structural stability and usage. The approaches that are discussed are broadly classified as either a measure through excipient additions or by intrinsic modifications in the insulin native structure.
Collapse
Affiliation(s)
- Shantanu Sen
- Indian Institute of Technology Kanpur, Chemistry, INDIA
| | - Rafat Ali
- Indian Institute of Technology Kanpur, Chemistry, Room No 131 Lab No2, CESE department IIT Kanpur, 208016, Kanpur, INDIA
| | - Akanksha Onkar
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Subramaniam Ganesh
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Sandeep Verma
- Indian Institute of Technology-Kanpur, Department of Chemistry, IIT-Kanpur, 208016, Kanpur, INDIA
| |
Collapse
|
4
|
Jarosinski MA, Dhayalan B, Rege N, Chatterjee D, Weiss MA. 'Smart' insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia 2021; 64:1016-1029. [PMID: 33710398 PMCID: PMC8158166 DOI: 10.1007/s00125-021-05422-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Insulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such 'smart' systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based 'closed-loop' systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin's conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nischay Rege
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Abstract
BACKGROUND Hypoglycemia, the condition of low blood sugar, is a common occurance in people with diabetes using insulin therapy. Protecting against hypoglycaemia by engineering an insulin preparation that can auto-adjust its biological activity to fluctuating blood glucose levels has been pursued since the 1970s, but despite numerous publications, no system that works well enough for practical use has reached clinical practise. SCOPE OF REVIEW This review will summarise and scrutinise known approaches for producing glucose-sensitive insulin therapies. Notably, systems described in patent applications will be extensively covered, which has not been the case for earlier reviews of this area. MAJOR CONCLUSIONS The vast majority of published systems are not suitable for product development, but a few glucose-sensitive insulin concepts have recently reached clinical trials, and there is hope that glucose-sensitive insulin will become available to people with diabetes in the near future.
Collapse
Affiliation(s)
- Thomas Hoeg-Jensen
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park H5.S.05, DK-2720 Maaloev, Denmark.
| |
Collapse
|
6
|
He R, Pan J, Mayer JP, Liu F. Stepwise Construction of Disulfides in Peptides. Chembiochem 2020; 21:1101-1111. [PMID: 31886929 DOI: 10.1002/cbic.201900717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/12/2022]
Abstract
The disulfide bond plays an important role in biological systems. It defines global conformation, and ultimately the biological activity and stability of the peptide or protein. It is frequently present, singly or multiply, in biologically important peptide hormones and toxins. Numerous disulfide-containing peptides have been approved by the regulatory agencies as marketed drugs. Chemical synthesis is one of the prerequisite tools needed to gain deep insights into the structure-function relationships of these biomolecules. Along with the development of solid-phase peptide synthesis, a number of methods of disulfide construction have been established. This minireview will focus on the regiospecific, stepwise construction of multiple disulfides used in the chemical synthesis of peptides. We intend for this article to serve a reference for peptide chemists conducting complex peptide syntheses and also hope to stimulate the future development of disulfide methodologies.
Collapse
Affiliation(s)
- Rongjun He
- Novo Nordisk Research Center Indianapolis, 5225 Exploration Drive, Indianapolis, IN, 46241, USA
| | - Jia Pan
- Novo Nordisk Research Center China, 20 Life Science Road, Beijing, 102206, P. R. China
| | - John P Mayer
- Department of Molecular, Developmental & Cell Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Fa Liu
- Novo Nordisk Research Center Seattle, 530 Fairview Avenue North, Seattle, WA, 98109, USA
| |
Collapse
|
7
|
|
8
|
Zheng N, Karra P, VandenBerg MA, Kim JH, Webber MJ, Holland WL, Chou DHC. Synthesis and Characterization of an A6-A11 Methylene Thioacetal Human Insulin Analogue with Enhanced Stability. J Med Chem 2019; 62:11437-11443. [PMID: 31804076 PMCID: PMC7217704 DOI: 10.1021/acs.jmedchem.9b01589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin has been a life-saving drug for millions of people with diabetes. However, several challenges exist which limit therapeutic benefits and reduce patient convenience. One key challenge is the fibrillation propensity, which necessitates refrigeration for storage. To address this limitation, we chemically synthesized and evaluated a methylene thioacetal human insulin analogue (SCS-Ins). The synthesized SCS-Ins showed enhanced serum stability and aggregation resistance while retaining bioactivity compared with native insulin.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Michael A. VandenBerg
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jin Hwan Kim
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Matthew J. Webber
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Danny Hung-Chieh Chou
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
9
|
Xiong X, Blakely A, Karra P, VandenBerg MA, Ghabash G, Whitby F, Zhang YW, Webber MJ, Holland WL, Hill CP, Chou DHC. Novel four-disulfide insulin analog with high aggregation stability and potency. Chem Sci 2019; 11:195-200. [PMID: 32110371 PMCID: PMC7012051 DOI: 10.1039/c9sc04555d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
A novel four-disulfide insulin analog was designed with retained bioactivity and increased fibrillation stability.
Although insulin was first purified and used therapeutically almost a century ago, there is still a need to improve therapeutic efficacy and patient convenience. A key challenge is the requirement for refrigeration to avoid inactivation of insulin by aggregation/fibrillation. Here, in an effort to mitigate this problem, we introduced a 4th disulfide bond between a C-terminal extended insulin A chain and residues near the C-terminus of the B chain. Insulin activity was retained by an analog with an additional disulfide bond between residues A22 and B22, while other linkages tested resulted in much reduced potency. Furthermore, the A22-B22 analog maintains the native insulin tertiary structure as demonstrated by X-ray crystal structure determination. We further demonstrate that this four-disulfide analog has similar in vivo potency in mice compared to native insulin and demonstrates higher aggregation stability. In conclusion, we have discovered a novel four-disulfide insulin analog with high aggregation stability and potency.
Collapse
Affiliation(s)
- Xiaochun Xiong
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Alan Blakely
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology , University of Utah , Salt Lake City UT 84112 , USA
| | - Michael A VandenBerg
- Department of Chemical & Biomolecular Engineering , University of Notre Dame , IN 46556 , USA
| | - Gabrielle Ghabash
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Frank Whitby
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Yi Wolf Zhang
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering , University of Notre Dame , IN 46556 , USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology , University of Utah , Salt Lake City UT 84112 , USA
| | - Christopher P Hill
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | | |
Collapse
|