1
|
Han Y, Liu YT, Chen L, Sun HF, Zhu GH, Kang DN, Zhou Q, Tang H, Yin YL, Hou J. Hinokiflavone from Platycladi cacumen as a potent broad-spectrum inhibitor of gut microbial Loop-1 β-glucuronidases: Inhibition kinetics and molecular simulation. Chem Biol Interact 2024; 404:111261. [PMID: 39389440 DOI: 10.1016/j.cbi.2024.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Gut microbial Loop-1 β-glucuronidases (gmGUS) played an important role in irinotecan-induced gastrointestinal toxicity by regulating the level of its active metabolite SN38 through enterohepatic recirculation. gmGUS inhibition has emerged as a promising approach to relieve its dose-limiting intestinal toxicity and improve its medication efficacy. This study aims to investigate the inhibitory effects and mechanisms of Platycladi cacumen and its main constituent hinokiflavone against four different types of Loop-1 gmGUS (EeGUS, SaGUS, CpGUS and EcGUS). Our results showed that the ethanol extract of Platycladi cacumen displayed strong broad-spectrum inhibition against four gmGUS, and hinokiflavone could potently inhibit EeGUS, SaGUS, CpGUS and EcGUS with IC50 values of 0.09 ± 0.01 μM, 0.44 ± 0.01 μM, 0.20 ± 0.01 μM and 0.69 ± 0.10 μM, respectively. Inhibition kinetic analyses demonstrated that hinokiflavone acted as a strong competitive inhibitor of EeGUS with Ki value of 0.13 μM, while it displayed non-competitive inhibition against SaGUS, CpGUS and EcGUS, with the Ki values of 0.43 μM, 0.33 μM and 0.76 μM, respectively. Docking simulations revealed that hinokiflavone could tightly bind with Tyr-485 and Glu-516 in catalytic sites of EeGUS, as well it created strong interactions with amino acids in loop structures of SaGUS (Asn-362), CpGUS (Phe-363, Met-364, Ala-365 and Arg-375) and EcGUS (Leu-361) to interfere the substrate entry into the catalytic pocket. Collectively, these results confirmed that hinokiflavone from Platycladi cacumen is a potent naturally occurring inhibitor of gmGUS with broad efficiency, suggesting hinokiflavone will be helpful for alleviating intestinal toxicity in irinotecan therapy.
Collapse
Affiliation(s)
- Yue Han
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yu-Tong Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lu Chen
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao-Fan Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guang-Hao Zhu
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong-Ning Kang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qi Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang, 832003, China
| | - Yu-Ling Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Hillege LE, Stevens MAM, Kristen PAJ, de Vos-Geelen J, Penders J, Redinbo MR, Smidt ML. The role of gut microbial β-glucuronidases in carcinogenesis and cancer treatment: a scoping review. J Cancer Res Clin Oncol 2024; 150:495. [PMID: 39537966 PMCID: PMC11561038 DOI: 10.1007/s00432-024-06028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The human gut microbiota influence critical functions including the metabolism of nutrients, xenobiotics, and drugs. Gut microbial β-glucuronidases (GUS) enzymes facilitate the removal of glucuronic acid from various compounds, potentially affecting anti-cancer drug efficacy and reactivating carcinogens. This review aims to comprehensively analyze and summarize studies on the role of gut microbial GUS in cancer and its interaction with anti-cancer treatments. Its goal is to collate and present insights that are directly relevant to patient care and treatment strategies in oncology. METHODS This scoping review followed PRISMA-ScR guidelines and focused on primary research exploring the role of GUS within the gut microbiota related to cancer etiology and anti-cancer treatment. Comprehensive literature searches were conducted in PubMed, Embase, and Web of Science. RESULTS GUS activity was only investigated in colorectal cancer (CRC), revealing increased fecal GUS activity, variations in the gut microbial composition, and GUS-contributing bacterial taxa in CRC patients versus controls. Irinotecan affects gastrointestinal (GI) health by increasing GUS expression and shifting gut microbial composition, particularly by enhancing the presence of GUS-producing bacteria, correlating with irinotecan-induced GI toxicities. GUS inhibitors (GUSi) can mitigate irinotecan's adverse effects, protecting the intestinal barrier and reducing diarrhea. CONCLUSION To our knowledge, this is the first review to comprehensively analyze and summarize studies on the critical role of gut microbial GUS in cancer and anti-cancer treatment, particularly irinotecan. It underscores the potential of GUSi to reduce side effects and enhance treatment efficacy, highlighting the urgent need for further research to integrate GUS targeting into future anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Lars E Hillege
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Milou A M Stevens
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Paulien A J Kristen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Judith de Vos-Geelen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - John Penders
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Matthew R Redinbo
- Departments of Chemistry, Biochemistry & Biophysics, and Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Marjolein L Smidt
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
3
|
Artola M, Aerts JMFG, van der Marel GA, Rovira C, Codée JDC, Davies GJ, Overkleeft HS. From Mechanism-Based Retaining Glycosidase Inhibitors to Activity-Based Glycosidase Profiling. J Am Chem Soc 2024; 146:24729-24741. [PMID: 39213505 PMCID: PMC11403624 DOI: 10.1021/jacs.4c08840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Activity-based protein profiling (ABPP) is an effective technology for the identification and functional annotation of enzymes in complex biological samples. ABP designs are normally directed to an enzyme active site nucleophile, and within the field of Carbohydrate-Active Enzymes (CAZymes), ABPP has been most successful for those enzymes that feature such a residue: retaining glycosidases (GHs). Several mechanism-based covalent and irreversible retaining GH inhibitors have emerged over the past sixty years. ABP designs based on these inhibitor chemistries appeared since the turn of the millennium, and we contributed to the field by designing a suite of retaining GH ABPs modeled on the structure and mode of action of the natural product, cyclophellitol. These ABPs enable the study of both exo- and endo-acting retaining GHs in human health and disease, for instance in genetic metabolic disorders in which retaining GHs are deficient. They are also finding increasing use in the study of GHs in gut microbiota and environmental microorganisms, both in the context of drug (de)toxification in the gut and that of biomass polysaccharide processing for future sustainable energy and chemistries. This account comprises the authors' view on the history of mechanism-based retaining GH inhibitor design and discovery, on how these inhibitors served as blueprints for retaining GH ABP design, and on some current and future developments on how cyclophellitol-based ABPs may drive the discovery of retaining GHs and their inhibitors.
Collapse
Affiliation(s)
- Marta Artola
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | | | - Carme Rovira
- Departament de Química Inorgànica I Orgànica & IQTCUB, Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08020, Spain
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Gideon J Davies
- Department of Chemistry, The University York, Heslington, York YO10 5DD, United Kingdom
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
4
|
Graboski AL, Simpson JB, Pellock SJ, Mehta N, Creekmore BC, Ariyarathna Y, Bhatt AP, Jariwala PB, Sekela JJ, Kowalewski ME, Barker NK, Mordant AL, Borlandelli VB, Overkleeft H, Herring LE, Jin J, I James L, Redinbo MR. Advanced piperazine-containing inhibitors target microbial β-glucuronidases linked to gut toxicity. RSC Chem Biol 2024; 5:853-865. [PMID: 39211470 PMCID: PMC11353122 DOI: 10.1039/d4cb00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiome plays critical roles in human homeostasis, disease progression, and pharmacological efficacy through diverse metabolic pathways. Gut bacterial β-glucuronidase (GUS) enzymes reverse host phase 2 metabolism, in turn releasing active hormones and drugs that can be reabsorbed into systemic circulation to affect homeostasis and promote toxic side effects. The FMN-binding and loop 1 gut microbial GUS proteins have been shown to drive drug and toxin reactivation. Here we report the structure-activity relationships of two selective piperazine-containing bacterial GUS inhibitors. We explore the potency and mechanism of action of novel compounds using purified GUS enzymes and co-crystal structures. Our results establish the importance of the piperazine nitrogen placement and nucleophilicity as well as the presence of a cyclohexyl moiety appended to the aromatic core. Using these insights, we synthesized an improved microbial GUS inhibitor, UNC10206581, that potently inhibits both the FMN-binding and loop 1 GUS enzymes in the human gut microbiome, does not inhibit bovine GUS, and is non-toxic within a relevant dosing range. Kinetic analyses demonstrate that UNC10206581 undergoes a slow-binding and substrate-dependent mechanism of inhibition similar to that of the parent scaffolds. Finally, we show that UNC10206581 displays potent activity within the physiologically relevant systems of microbial cultures and human fecal protein lysates examined by metagenomic and metaproteomic methods. Together, these results highlight the discovery of more effective bacterial GUS inhibitors for the alleviation of microbe-mediated homeostatic dysregulation and drug toxicities and potential therapeutic development.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina Chapel Hill North Carolina USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Samuel J Pellock
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Naimee Mehta
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Benjamin C Creekmore
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Yamuna Ariyarathna
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Aadra P Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Parth B Jariwala
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Josh J Sekela
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill North Carolina USA
| | - Natalie K Barker
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Valentina B Borlandelli
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Hermen Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai New York NY USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina Chapel Hill North Carolina USA
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
5
|
Jiang J, Czuchry D, Ru Y, Peng H, Shen J, Wang T, Zhao W, Chen W, Sui SF, Li Y, Li N. Activity-based metaproteomics driven discovery and enzymological characterization of potential α-galactosidases in the mouse gut microbiome. Commun Chem 2024; 7:184. [PMID: 39152233 PMCID: PMC11329505 DOI: 10.1038/s42004-024-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The gut microbiota offers an extensive resource of enzymes, but many remain uncharacterized. To distinguish the activities of similar annotated proteins and mine the potentially applicable ones in the microbiome, we applied an effective Activity-Based Metaproteomics (ABMP) strategy using a specific activity-based probe (ABP) to screen the entire gut microbiome for directly discovering active enzymes and their potential applications, not for exploring host-microbiome interactions. By using an activity-based cyclophellitol aziridine probe specific to α-galactosidases (AGAL), we successfully identified and characterized several gut microbiota enzymes possessing AGAL activities. Cryo-electron microscopy analysis of a newly characterized enzyme (AGLA5) revealed the covalent binding conformations between the AGAL5 active site and the cyclophellitol aziridine ABP, which could provide insights into the enzyme's catalytic mechanism. The four newly characterized AGALs have diverse potential activities, including raffinose family oligosaccharides (RFOs) hydrolysis and enzymatic blood group transformation. Collectively, we present a ABMP platform that facilitates gut microbiota AGALs discovery, biochemical activity annotations and potential industrial or biopharmaceutical applications.
Collapse
Affiliation(s)
- Jianbing Jiang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Diana Czuchry
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanxia Ru
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Huipai Peng
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junfeng Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wenjuan Zhao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weihua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yaowang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Nan Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen, China.
| |
Collapse
|
6
|
Simpson JB, Walker ME, Sekela JJ, Ivey SM, Jariwala PB, Storch CM, Kowalewski ME, Graboski AL, Lietzan AD, Walton WG, Davis KA, Cloer EW, Borlandelli V, Hsiao YC, Roberts LR, Perlman DH, Liang X, Overkleeft HS, Bhatt AP, Lu K, Redinbo MR. Gut microbial β-glucuronidases influence endobiotic homeostasis and are modulated by diverse therapeutics. Cell Host Microbe 2024; 32:925-944.e10. [PMID: 38754417 PMCID: PMC11176022 DOI: 10.1016/j.chom.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial β-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.
Collapse
Affiliation(s)
- Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan E Walker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua J Sekela
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha M Ivey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Parth B Jariwala
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron M Storch
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Adam D Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kacey A Davis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee R Roberts
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - David H Perlman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Aadra P Bhatt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Chen L, Hou XD, Zhu GH, Huang J, Guo ZB, Zhang YN, Sun JM, Ma LJ, Zhang SD, Hou J, Ge GB. Discovery of a botanical compound as a broad-spectrum inhibitor against gut microbial β-glucuronidases from the Tibetan medicine Rhodiola crenulata. Int J Biol Macromol 2024; 267:131150. [PMID: 38556236 DOI: 10.1016/j.ijbiomac.2024.131150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Gut microbial β-glucuronidases (gmβ-GUS) played crucial roles in regulating a variety of endogenous substances and xenobiotics on the circulating level, thus had been recognized as key modulators of drug toxicity and human diseases. Inhibition or inactivation of gmβ-GUS enzymes has become a promising therapeutic strategy to alleviate drug-induced intestinal toxicity. Herein, the Rhodiola crenulata extract (RCE) was found with potent and broad-spectrum inhibition on multiple gmβ-GUS enzymes. Subsequently, the anti-gmβ-GUS activities of the major constituents in RCE were tested and the results showed that 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose (PGG) acted as a strong and broad-spectrum inhibitor on multiple gmβ-GUS (including EcGUS, CpGUS, SaGUS, and EeGUS). Inhibition kinetic assays demonstrated that PGG effectively inhibited four gmβ-GUS in a non-competitive manner, with the Ki values ranging from 0.12 μM to 1.29 μM. Docking simulations showed that PGG could tightly bound to the non-catalytic sites of various gmβ-GUS, mainly via hydrogen bonding and aromatic interactions. It was also found that PGG could strongly inhibit the total gmβ-GUS activity in mice feces, with the IC50 value of 1.24 μM. Collectively, our findings revealed that RCE and its constituent PGG could strongly inhibit multiple gmβ-GUS enzymes, suggesting that RCE and PGG could be used for alleviating gmβ-GUS associated enterotoxicity.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Huang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai 201203, China
| | - Zhao-Bin Guo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Ming Sun
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Li-Juan Ma
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shou-De Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jie Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Verdegaal AA, Goodman AL. Integrating the gut microbiome and pharmacology. Sci Transl Med 2024; 16:eadg8357. [PMID: 38295186 DOI: 10.1126/scitranslmed.adg8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The gut microbiome harbors trillions of organisms that contribute to human health and disease. These bacteria can also affect the properties of medical drugs used to treat these diseases, and drugs, in turn, can reshape the microbiome. Research addressing interdependent microbiome-host-drug interactions thus has broad impact. In this Review, we discuss these interactions from the perspective of drug bioavailability, absorption, metabolism, excretion, toxicity, and drug-mediated microbiome modulation. We survey approaches that aim to uncover the mechanisms underlying these effects and opportunities to translate this knowledge into new strategies to improve the development, administration, and monitoring of medical drugs.
Collapse
Affiliation(s)
- Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
10
|
Bucurica S, Lupanciuc M, Ionita-Radu F, Stefan I, Munteanu AE, Anghel D, Jinga M, Gaman EL. Estrobolome and Hepatocellular Adenomas-Connecting the Dots of the Gut Microbial β-Glucuronidase Pathway as a Metabolic Link. Int J Mol Sci 2023; 24:16034. [PMID: 38003224 PMCID: PMC10671049 DOI: 10.3390/ijms242216034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular adenomas are benign endothelial tumors of the liver, mostly associated with female individual users of estrogen-containing medications. However, the precise factors underlying the selective development of hepatic adenomas in certain females remain elusive. Additionally, the conventional profile of individuals prone to hepatic adenoma is changing. Notably, male patients exhibit a higher risk of malignant progression of hepatocellular adenomas, and there are instances where hepatic adenomas have no identifiable cause. In this paper, we theorize the role of the human gastrointestinal microbiota, specifically, of bacterial species producing β-glucuronidase enzymes, in the development of hepatic adenomas through the estrogen recycling pathway. Furthermore, we aim to address some of the existing gaps in our knowledge of pathophysiological pathways which are not yet subject to research or need to be studied further. As microbial β-glucuronidases proteins recycle estrogen and facilitate the conversion of inactive estrogen into its active form, this process results in elevated levels of unbound plasmatic estrogen, leading to extended exposure to estrogen. We suggest that an imbalance in the estrobolome could contribute to sex hormone disease evolution and, consequently, to the advancement of hepatocellular adenomas, which are estrogen related.
Collapse
Affiliation(s)
- Sandica Bucurica
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Mihaela Lupanciuc
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Florentina Ionita-Radu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Ion Stefan
- Department of Infectious Diseases, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
| | - Alice Elena Munteanu
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
- Department of Cardiology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Daniela Anghel
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
- Department of Internal Medicine, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Mariana Jinga
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Elena Laura Gaman
- Department of Biochemistry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| |
Collapse
|
11
|
Lembke HK, Carlson EE. Activity-based probes in pathogenic bacteria: Investigating drug targets and molecule specificity. Curr Opin Chem Biol 2023; 76:102359. [PMID: 37406424 PMCID: PMC10526982 DOI: 10.1016/j.cbpa.2023.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023]
Abstract
Bacteria comprise complex communities within our bodies and largely have beneficial roles, however a small percentage are pathogenic. While all pathogens are important to public health, immediate action is necessary to combat bacterial strains developing pan- and multi-resistance to antibiotics. As present therapeutics fail to tackle this problem, novel strategies are required to address this threat. Activity-based probes (ABPs) are one method to investigate proteins of interest in pathogens. These probes can serve multiple purposes to better our understanding of bacterial pathogenicity. Herein, we highlight recent studies that used ABPs to identify new drug targets or visualize antibiotic resistance- or bacterial virulence-associated proteins, and introduce strategies to determine the specificity of ABPs within a targeted enzyme class.
Collapse
Affiliation(s)
- Hannah K Lembke
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States; Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States; Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
12
|
Cai J, Auster A, Cho S, Lai Z. Dissecting the human gut microbiome to better decipher drug liability: A once-forgotten organ takes center stage. J Adv Res 2023; 52:171-201. [PMID: 37419381 PMCID: PMC10555929 DOI: 10.1016/j.jare.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND The gut microbiome is a diverse system within the gastrointestinal tract composed of trillions of microorganisms (gut microbiota), along with their genomes. Accumulated evidence has revealed the significance of the gut microbiome in human health and disease. Due to its ability to alter drug/xenobiotic pharmacokinetics and therapeutic outcomes, this once-forgotten "metabolic organ" is receiving increasing attention. In parallel with the growing microbiome-driven studies, traditional analytical techniques and technologies have also evolved, allowing researchers to gain a deeper understanding of the functional and mechanistic effects of gut microbiome. AIM OF REVIEW From a drug development perspective, microbial drug metabolism is becoming increasingly critical as new modalities (e.g., degradation peptides) with potential microbial metabolism implications emerge. The pharmaceutical industry thus has a pressing need to stay up-to-date with, and continue pursuing, research efforts investigating clinical impact of the gut microbiome on drug actions whilst integrating advances in analytical technology and gut microbiome models. Our review aims to practically address this need by comprehensively introducing the latest innovations in microbial drug metabolism research- including strengths and limitations, to aid in mechanistically dissecting the impact of the gut microbiome on drug metabolism and therapeutic impact, and to develop informed strategies to address microbiome-related drug liability and minimize clinical risk. KEY SCIENTIFIC CONCEPTS OF REVIEW We present comprehensive mechanisms and co-contributing factors by which the gut microbiome influences drug therapeutic outcomes. We highlight in vitro, in vivo, and in silico models for elucidating the mechanistic role and clinical impact of the gut microbiome on drugs in combination with high-throughput, functionally oriented, and physiologically relevant techniques. Integrating pharmaceutical knowledge and insight, we provide practical suggestions to pharmaceutical scientists for when, why, how, and what is next in microbial studies for improved drug efficacy and safety, and ultimately, support precision medicine formulation for personalized and efficacious therapies.
Collapse
Affiliation(s)
- Jingwei Cai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Alexis Auster
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sungjoon Cho
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zijuan Lai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
13
|
Han L, Chang PV. Activity-based protein profiling in microbes and the gut microbiome. Curr Opin Chem Biol 2023; 76:102351. [PMID: 37429085 PMCID: PMC10527501 DOI: 10.1016/j.cbpa.2023.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023]
Abstract
Activity-based protein profiling (ABPP) is a powerful chemical approach for probing protein function and enzymatic activity in complex biological systems. This strategy typically utilizes activity-based probes that are designed to bind a specific protein, amino acid residue, or protein family and form a covalent bond through a reactivity-based warhead. Subsequent analysis by mass spectrometry-based proteomic platforms that involve either click chemistry or affinity-based labeling to enrich for the tagged proteins enables identification of protein function and enzymatic activity. ABPP has facilitated elucidation of biological processes in bacteria, discovery of new antibiotics, and characterization of host-microbe interactions within physiological contexts. This review will focus on recent advances and applications of ABPP in bacteria and complex microbial communities.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Fernández-Murga ML, Gil-Ortiz F, Serrano-García L, Llombart-Cussac A. A New Paradigm in the Relationship between Gut Microbiota and Breast Cancer: β-glucuronidase Enzyme Identified as Potential Therapeutic Target. Pathogens 2023; 12:1086. [PMID: 37764894 PMCID: PMC10535898 DOI: 10.3390/pathogens12091086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring malignancy and the second cancer-specific cause of mortality in women in developed countries. Over 70% of the total number of BCs are hormone receptor-positive (HR+), and elevated levels of circulating estrogen (E) in the blood have been shown to be a major risk factor for the development of HR+ BC. This is attributable to estrogen's contribution to increased cancer cell proliferation, stimulation of angiogenesis and metastasis, and resistance to therapy. The E metabolism-gut microbiome axis is functional, with subjacent individual variations in the levels of E. It is conceivable that the estrobolome (bacterial genes whose products metabolize E) may contribute to the risk of malignant neoplasms of hormonal origin, including BC, and may serve as a potential biomarker and target. It has been suggested that β-glucuronidase (GUS) enzymes of the intestinal microbiome participate in the strobolome. In addition, it has been proposed that bacterial GUS enzymes from the gastrointestinal tract participate in hormone BC. In this review, we discuss the latest knowledge about the role of the GUS enzyme in the pathogenesis of BC, focusing on (i) the microbiome and E metabolism; (ii) diet, estrobolome, and BC development; (iii) other activities of the bacterial GUS; and (iv) the new molecular targets for BC therapeutic application.
Collapse
Affiliation(s)
- M. Leonor Fernández-Murga
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| | | | - Lucía Serrano-García
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| | - Antonio Llombart-Cussac
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| |
Collapse
|
15
|
Lietzan AD, Simpson JB, Walton WG, Jariwala PB, Xu Y, Boynton MH, Liu J, Redinbo MR. Microbial β-glucuronidases drive human periodontal disease etiology. SCIENCE ADVANCES 2023; 9:eadg3390. [PMID: 37146137 PMCID: PMC10162664 DOI: 10.1126/sciadv.adg3390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Periodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human β-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood. Here, we define the 53 unique GUSs in the human oral microbiome and examine diverse GUS orthologs from periodontitis-associated pathogens. Oral bacterial GUS enzymes are more efficient polysaccharide degraders and processers of biomarker substrates than the human enzyme, particularly at pHs associated with disease progression. Using a microbial GUS-selective inhibitor, we show that GUS activity is reduced in clinical samples obtained from individuals with untreated periodontitis and that the degree of inhibition correlates with disease severity. Together, these results establish oral GUS activity as a biomarker that captures both host and microbial contributions to periodontitis, facilitating more efficient clinical monitoring and treatment paradigms for this common inflammatory disease.
Collapse
Affiliation(s)
- Adam D. Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G. Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Parth B. Jariwala
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yongmei Xu
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcella H. Boynton
- Division of General Medicine and Clinical Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Woo AYM, Aguilar Ramos MA, Narayan R, Richards-Corke KC, Wang ML, Sandoval-Espinola WJ, Balskus EP. Targeting the human gut microbiome with small-molecule inhibitors. NATURE REVIEWS. CHEMISTRY 2023; 7:319-339. [PMID: 37117817 DOI: 10.1038/s41570-023-00471-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 04/30/2023]
Abstract
The human gut microbiome is a complex microbial community that is strongly linked to both host health and disease. However, the detailed molecular mechanisms underlying the effects of these microorganisms on host biology remain largely uncharacterized. The development of non-lethal, small-molecule inhibitors that target specific gut microbial activities enables a powerful but underutilized approach to studying the gut microbiome and a promising therapeutic strategy. In this Review, we will discuss the challenges of studying this microbial community, the historic use of small-molecule inhibitors in microbial ecology, and recent applications of this strategy. We also discuss the evidence suggesting that host-targeted drugs can affect the growth and metabolism of gut microbes. Finally, we address the issues of developing and implementing microbiome-targeted small-molecule inhibitors and define important future directions for this research.
Collapse
Affiliation(s)
- Amelia Y M Woo
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Rohan Narayan
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Michelle L Wang
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | - Walter J Sandoval-Espinola
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Laboratorio de Biotecnología Microbiana, San Lorenzo, Paraguay
| | - Emily P Balskus
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Beliaeva MA, Wilmanns M, Zimmermann M. Decipher enzymes from human microbiota for drug discovery and development. Curr Opin Struct Biol 2023; 80:102567. [PMID: 36963164 DOI: 10.1016/j.sbi.2023.102567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/26/2023]
Abstract
The human microbiota plays an important role in human health and contributes to the metabolism of therapeutic drugs affecting their potency. However, the current knowledge on human gut bacterial metabolism is limited and lacks an understanding of the underlying mechanisms of observed drug biotransformations. Despite the complexity of the gut microbial community, genomic and metagenomic sequencing provides insights into the diversity of chemical reactions that can be carried out by the microbiota and poses new challenges to functionally annotate thousands of bacterial enzymes. Here, we outline methods to systematically address the structural and functional space of the human microbiome, highlighting a combination of in silico and in vitro approaches. Systematic knowledge about microbial enzymes could eventually be applied for personalized therapy, the development of prodrugs and modulators of unwanted bacterial activity, and the further discovery of new antibiotics.
Collapse
Affiliation(s)
- Mariia A Beliaeva
- European Molecular Biology Laboratory, Heidelberg, Germany; European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany. https://twitter.com/@MariiaABeliaeva
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany. https://twitter.com/@WilmannsGroup
| | | |
Collapse
|
18
|
Malarney KP, Chang PV. Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Isr J Chem 2023; 63:e202200076. [PMID: 37842282 PMCID: PMC10575470 DOI: 10.1002/ijch.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 03/07/2023]
Abstract
Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853 (USA)
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 (USA)
| |
Collapse
|
19
|
van Kasteren S, Rozen DE. Using click chemistry to study microbial ecology and evolution. ISME COMMUNICATIONS 2023; 3:9. [PMID: 36721064 PMCID: PMC9889756 DOI: 10.1038/s43705-022-00205-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 02/01/2023]
Abstract
Technological advances have largely driven the revolution in our understanding of the structure and function of microbial communities. Culturing, long the primary tool to probe microbial life, was supplanted by sequencing and other -omics approaches, which allowed detailed quantitative insights into species composition, metabolic potential, transcriptional activity, secretory responses and more. Although the ability to characterize "who's there" has never been easier or cheaper, it remains technically challenging and expensive to understand what the diverse species and strains that comprise microbial communities are doing in situ, and how these behaviors change through time. Our aim in this brief review is to introduce a developing toolkit based on click chemistry that can accelerate and reduce the expense of functional analyses of the ecology and evolution of microbial communities. After first outlining the history of technological development in this field, we will discuss key applications to date using diverse labels, including BONCAT, and then end with a selective (biased) view of areas where click-chemistry and BONCAT-based approaches stand to have a significant impact on our understanding of microbial communities.
Collapse
Affiliation(s)
- Sander van Kasteren
- Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden, 2300 RA, The Netherlands.
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden, 2300 RA, The Netherlands.
| |
Collapse
|
20
|
Pellegrino GM, Browne TS, Sharath K, Bari KA, Vancuren S, Allen-Vercoe E, Gloor GB, Edgell DR. Metabolically-targeted dCas9 expression in bacteria. Nucleic Acids Res 2023; 51:982-996. [PMID: 36629257 PMCID: PMC9881133 DOI: 10.1093/nar/gkac1248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
The ability to restrict gene expression to a relevant bacterial species in a complex microbiome is an unsolved problem. In the context of the human microbiome, one desirable target metabolic activity are glucuronide-utilization enzymes (GUS) that are implicated in the toxic re-activation of glucuronidated compounds in the human gastrointestinal (GI) tract, including the chemotherapeutic drug irinotecan. Here, we take advantage of the variable distribution of GUS enzymes in bacteria as a means to distinguish between bacteria with GUS activity, and re-purpose the glucuronide-responsive GusR transcription factor as a biosensor to regulate dCas9 expression in response to glucuronide inducers. We fused the Escherichia coli gusA regulatory region to the dCas9 gene to create pGreg-dCas9, and showed that dCas9 expression is induced by glucuronides, but not other carbon sources. When conjugated from E. coli to Gammaproteobacteria derived from human stool, dCas9 expression from pGreg-dCas9 was restricted to GUS-positive bacteria. dCas9-sgRNAs targeted to gusA specifically down-regulated gus operon transcription in Gammaproteobacteria, with a resulting ∼100-fold decrease in GusA activity. Our data outline a general strategy to re-purpose bacterial transcription factors responsive to exogenous metabolites for precise ligand-dependent expression of genetic tools such as dCas9 in diverse bacterial species.
Collapse
Affiliation(s)
- Gregory M Pellegrino
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Tyler S Browne
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Keerthana Sharath
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Khaleda A Bari
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - Sarah J Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Gregory B Gloor
- Schulich School of Medicine and Dentistry, Department of Biochemistry, London, Ontario N6A 5C1, Canada
| | - David R Edgell
- To whom correspondence should be addressed. Tel: +1 519 661 3133; Fax: +1 519 661 3175;
| |
Collapse
|
21
|
Wright AT, Hudson LA, Garcia WL. Activity‐Based Protein Profiling – Enabling Phenotyping of Host‐Associated and Environmental Microbiomes. Isr J Chem 2023. [DOI: 10.1002/ijch.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aaron T. Wright
- Department of Biology Baylor University Waco Texas 76798 USA
- Department of Chemistry and Biochemistry Baylor University Waco Texas 76798 USA
| | - LaRae A. Hudson
- Department of Biology Baylor University Waco Texas 76798 USA
| | | |
Collapse
|
22
|
Simpson JB, Sekela JJ, Carry BS, Beaty V, Patel S, Redinbo MR. Diverse but desolate landscape of gut microbial azoreductases: A rationale for idiopathic IBD drug response. Gut Microbes 2023; 15:2203963. [PMID: 37122075 PMCID: PMC10132220 DOI: 10.1080/19490976.2023.2203963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Prodrugs reliant on microbial activation are widely used but exhibit a range of efficacies that remain poorly understood. The anti-inflammatory compound 5-aminosalicylic acid (5-ASA), which is packaged in a variety of azo-linked prodrugs provided to most Ulcerative Colitis (UC) patients, shows confounding inter-individual variabilities in response. Such prodrugs must be activated by azo-bond reduction to form 5-ASA, a process that has been attributed to both enzymatic and non-enzymatic catalysis. Gut microbial azoreductases (AzoRs) are the first catalysts shown to activate azo-linked drugs and to metabolize toxic azo-chemicals. Here, we chart the scope of the structural and functional diversity of AzoRs in health and in patients with the inflammatory bowel diseases (IBDs) UC and Crohn's Disease (CD). Using structural metagenomics, we define the landscape of gut microbial AzoRs in 413 healthy donor and 1059 IBD patient fecal samples. Firmicutes encode a significantly higher number of unique AzoRs compared to other phyla. However, structural and biochemical analyses of distinct AzoRs from the human microbiome reveal significant differences between prevalent orthologs in the processing of toxic azo-dyes, and their generally poor activation of IBD prodrugs. Furthermore, while individuals with IBD show higher abundances of AzoR-encoding gut microbial taxa than healthy controls, the overall abundance of AzoR-encoding microbes is markedly low in both disease and health. Together, these results establish that gut microbial AzoRs are functionally diverse but sparse in both health and disease, factors that may contribute to non-optimal processing of azo-linked prodrugs and idiopathic IBD drug responses.
Collapse
Affiliation(s)
- Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh J. Sekela
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin S. Carry
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Violet Beaty
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shakshi Patel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew. R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, Department of Microbiology and Immunology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Simpson JB, Redinbo MR. Multi-omic analysis of host-microbial interactions central to the gut-brain axis. Mol Omics 2022; 18:896-907. [PMID: 36169030 DOI: 10.1039/d2mo00205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gut microbiota impact numerous aspects of human physiology, including the central nervous system (CNS). Emerging work is now focusing on the microbial factors underlying the bi-directional communication network linking host and microbial systems within the gastrointestinal tract to the CNS, the "gut-brain axis". Neurotransmitters are key coordinators of this network, and their dysregulation has been linked to numerous neurological disease states. As the bioavailability of neurotransmitters is modified by gut microbes, it is critical to unravel the influence of the microbiota on neurotransmitters in the context of the gut-brain axis. Here we review foundational studies that defined molecular relationships between the microbiota, neurotransmitters, and the gut-brain axis. We examine links between the gut microbiome, behavior, and neurological diseases, as well as microbial influences on neurotransmitter bioavailability and physiology. Finally, we review multi-omics technologies uniquely applicable to this area, including high-throughput genetics, modern metabolomics, structure-guided metagenomics, targeted proteomics, and chemogenetics. Interdisciplinary studies will continue to drive the discovery of molecular mechanisms linking the gut microbiota to clinical manifestations of neurobiology.
Collapse
Affiliation(s)
- Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, USA
- Department of Biochemistry & Biophysics, Department of Microbiology & Immunology, and the Integrated Program in Biological & Genome Sciences, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
24
|
Wang P, Wu R, Jia Y, Tang P, Wei B, Zhang Q, Wang VYF, Yan R. Inhibition and structure-activity relationship of dietary flavones against three Loop 1-type human gut microbial β-glucuronidases. Int J Biol Macromol 2022; 220:1532-1544. [PMID: 36096258 DOI: 10.1016/j.ijbiomac.2022.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023]
Abstract
Gut microbial β-glucuronidases (GUSs) inhibition is a new approach for managing some diseases and medication therapy. However, the structural and functional complexity of GUSs have posed tremendous challenges to discover specific or broad-spectrum GUSs inhibitors using Escherichia coli GUS (EcoGUS) alone. This study first assessed the effects of twenty-one dietary flavones employing three Loop 1-type GUSs of different taxonomic origins, which were considered to be the main GUSs involved in deglucuronidation of small molecules, on p-nitrophenyl-β-D-glucuronide hydrolysis and a structure-activity relationship is preliminarily proposed based on both in vitro assays and a docking study with representative compounds. EcoGUS and Staphylococcus pasteuri GUS showed largely similar inhibition propensities with potencies positively correlating with the total hydroxyl groups and those at ring B of flavones, while docking results revealed strong interactions developed via ring A and/or C. Streptococcus agalactiae GUS (SagaGUS) exhibited distinct inhibition propensities, displaying late-onset inhibition and steep dose-response profiles with most tested compounds. The α-helix in loop 1 region of SagaGUS which causes spatial hindrance but offers a hydrophobic surface for contacting with the carbonyl group on ring C of flavones is believed to be essential for the allosteric inhibition of SagaGUS. Taken together, the study with a series of flavones revealed varied preferences for GUSs belonging to the same Loop 1-type, highlighting the necessity of adopting multi-GUSs instead of EcoGUS alone for screening broad-spectrum GUSs inhibitors or tailoring the inhibition based on specific GUS structure.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| | - Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| | - Yifei Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Puipui Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| | | | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
25
|
Walker ME, Simpson JB, Redinbo MR. A structural metagenomics pipeline for examining the gut microbiome. Curr Opin Struct Biol 2022; 75:102416. [PMID: 35841748 PMCID: PMC10039758 DOI: 10.1016/j.sbi.2022.102416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Metagenomic sequencing data provide a rich resource from which to expand our understanding of differential protein functions involved in human health. Here, we outline a pipeline that combines microbial whole genome sequencing with protein structure data to yield a structural metagenomics-informed atlas of microbial enzyme families of interest. Visualizing metagenomics data through a structural lens facilitates downstream studies including targeted inhibition and probe-based proteomics to define at the molecular level how different enzyme orthologs impact in vivo function. Application of this pipeline to gut microbial enzymes like glucuronidases, TMA lyases, and bile salt hydrolases is expected to pinpoint their involvement in health and disease and may aid in the development of therapeutics that target specific enzymes within the microbiome.
Collapse
Affiliation(s)
- Morgan E Walker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrated Program for Biological and Genome Sciences, And Departments of Biochemistry and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Mueller AL, Brockmueller A, Fahimi N, Ghotbi T, Hashemi S, Sadri S, Khorshidi N, Kunnumakkara AB, Shakibaei M. Bacteria-Mediated Modulatory Strategies for Colorectal Cancer Treatment. Biomedicines 2022; 10:biomedicines10040832. [PMID: 35453581 PMCID: PMC9026499 DOI: 10.3390/biomedicines10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide, with a higher rate of distant metastases than other malignancies and with regular occurrence of drug resistance. Therefore, scientists are forced to further develop novel and innovative therapeutic treatment strategies, whereby it has been discovered microorganisms, albeit linked to CRC pathogenesis, are able to act as highly selective CRC treatment agents. Consequently, researchers are increasingly focusing on bacteriotherapy as a novel therapeutic strategy with less or no side effects compared to standard cancer treatment methods. With multiple successful trials making use of various bacteria-associated mechanisms, bacteriotherapy in cancer treatment is on its way to become a promising tool in CRC targeting therapy. In this study, we describe the anti-cancer effects of bacterial therapy focusing on the treatment of CRC as well as diverse modulatory mechanisms and techniques that bacteriotherapy offers such as bacterial-related biotherapeutics including peptides, toxins, bacteriocins or the use of bacterial carriers and underlying molecular processes to target colorectal tumors.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Niusha Fahimi
- Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| | - Tahere Ghotbi
- Department of Nursing, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Sara Hashemi
- Central Tehran Branch, Islamic Azad University, Tehran 1955847881, Iran;
| | - Sadaf Sadri
- Department of Microbiology, University of Mazandaran, Babolsar 4741613534, Iran;
| | - Negar Khorshidi
- Department of Medicinal Chemistry, Medical Sciences Branch, Islamic Azad University, Tehran 1913674711, Iran;
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, India;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-98-2180-72624
| |
Collapse
|
27
|
Candeliere F, Raimondi S, Ranieri R, Musmeci E, Zambon A, Amaretti A, Rossi M. β-Glucuronidase Pattern Predicted From Gut Metagenomes Indicates Potentially Diversified Pharmacomicrobiomics. Front Microbiol 2022; 13:826994. [PMID: 35308380 PMCID: PMC8928169 DOI: 10.3389/fmicb.2022.826994] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
β-glucuronidases (GUS) of intestinal bacteria remove glucuronic acid from glucoronides, reversing phase II metabolism of the liver and affecting the level of active deconjugated metabolites deriving from drugs or xenobiotics. Two hundred seventy-nine non-redundant GUS sequences are known in the gut microbiota, classified in seven structural categories (NL, L1, L2, mL1, mL2, mL1,2, and NC) with different biocatalytic properties. In the present study, the intestinal metagenome of 60 healthy subjects from five geographically different cohorts was assembled, binned, and mined to determine qualitative and quantitative differences in GUS profile, potentially affecting response to drugs and xenobiotics. Each metagenome harbored 4–70 different GUS, altogether accounting for 218. The amount of intestinal bacteria with at least one GUS gene was highly variable, from 0.7 to 82.2%, 25.7% on average. No significant difference among cohorts could be identified, except for the Ethiopia (ETH) cohort where GUS-encoding bacteria were significantly less abundant. The structural categories were differently distributed among the metagenomes, but without any statistical significance related to the cohorts. GUS profiles were generally dominated by the category NL, followed by mL1, L2, and L1. The GUS categories most involved in the hydrolysis of small molecules, including drugs, are L1 and mL1. Bacteria contributing to these categories belonged to Bacteroides ovatus, Bacteroides dorei, Bacteroides fragilis, Escherichia coli, Eubacterium eligens, Faecalibacterium prausnitzii, Parabacteroides merdae, and Ruminococcus gnavus. Bacteria harboring L1 GUS were generally scarcely abundant (<1.3%), except in three metagenomes, where they reached up to 24.3% for the contribution of E. coli and F. prausnitzii. Bacteria harboring mL1 GUS were significantly more abundant (mean = 4.6%), with Bacteroides representing a major contributor. Albeit mL1 enzymes are less active than L1 ones, Bacteroides likely plays a pivotal role in the deglucuronidation, due to its remarkable abundance in the microbiomes. The observed broad interindividual heterogeneity of GUS profiles, particularly of the L1 and mL1 categories, likely represent a major driver of pharmacomicrobiomics variability, affecting drug response and toxicity. Different geographical origins, genetic, nutritional, and lifestyle features of the hosts seemed not to be relevant in the definition of glucuronidase activity, albeit they influenced the richness of the GUS profile.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Raffaella Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eliana Musmeci
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Maddalena Rossi,
| |
Collapse
|
28
|
McGregor NGS, Kuo CL, Beenakker TJM, Wong CS, Offen WA, Armstrong Z, Florea BI, Codée JDC, Overkleeft HS, Aerts JMFG, Davies GJ. Synthesis of broad-specificity activity-based probes for exo-β-mannosidases. Org Biomol Chem 2022; 20:877-886. [PMID: 35015006 PMCID: PMC8790593 DOI: 10.1039/d1ob02287c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exo-β-mannosidases are a broad class of stereochemically retaining hydrolases that are essential for the breakdown of complex carbohydrate substrates found in all kingdoms of life. Yet the detection of exo-β-mannosidases in complex biological samples remains challenging, necessitating the development of new methodologies. Cyclophellitol and its analogues selectively label the catalytic nucleophiles of retaining glycoside hydrolases, making them valuable tool compounds. Furthermore, cyclophellitol can be readily redesigned to enable the incorporation of a detection tag, generating activity-based probes (ABPs) that can be used to detect and identify specific glycosidases in complex biological samples. Towards the development of ABPs for exo-β-mannosidases, we present a concise synthesis of β-manno-configured cyclophellitol, cyclophellitol aziridine, and N-alkyl cyclophellitol aziridines. We show that these probes covalently label exo-β-mannosidases from GH families 2, 5, and 164. Structural studies of the resulting complexes support a canonical mechanism-based mode of action in which the active site nucleophile attacks the pseudoanomeric centre to form a stable ester linkage, mimicking the glycosyl enzyme intermediate. Furthermore, we demonstrate activity-based protein profiling using an N-alkyl aziridine derivative by specifically labelling MANBA in mouse kidney tissue. Together, these results show that synthetic manno-configured cyclophellitol analogues hold promise for detecting exo-β-mannosidases in biological and biomedical research.
Collapse
Affiliation(s)
- Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Chi-Lin Kuo
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Thomas J M Beenakker
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Chun-Sing Wong
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Wendy A Offen
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Zachary Armstrong
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Bogdan I Florea
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen D C Codée
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| |
Collapse
|
29
|
Thuy-Boun PS, Wang AY, Crissien-Martinez A, Xu JH, Chatterjee S, Stupp GS, Su AI, Coyle WJ, Wolan DW. Quantitative metaproteomics and activity-based protein profiling of patient fecal microbiome identifies host and microbial serine-type endopeptidase activity associated with ulcerative colitis. Mol Cell Proteomics 2022; 21:100197. [PMID: 35033677 PMCID: PMC8941213 DOI: 10.1016/j.mcpro.2022.100197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota plays an important yet incompletely understood role in the induction and propagation of ulcerative colitis (UC). Organism-level efforts to identify UC-associated microbes have revealed the importance of community structure, but less is known about the molecular effectors of disease. We performed 16S rRNA gene sequencing in parallel with label-free data-dependent LC-MS/MS proteomics to characterize the stool microbiomes of healthy (n = 8) and UC (n = 10) patients. Comparisons of taxonomic composition between techniques revealed major differences in community structure partially attributable to the additional detection of host, fungal, viral, and food peptides by metaproteomics. Differential expression analysis of metaproteomic data identified 176 significantly enriched protein groups between healthy and UC patients. Gene ontology analysis revealed several enriched functions with serine-type endopeptidase activity overrepresented in UC patients. Using a biotinylated fluorophosphonate probe and streptavidin-based enrichment, we show that serine endopeptidases are active in patient fecal samples and that additional putative serine hydrolases are detectable by this approach compared with unenriched profiling. Finally, as metaproteomic databases expand, they are expected to asymptotically approach completeness. Using ComPIL and de novo peptide sequencing, we estimate the size of the probable peptide space unidentified (“dark peptidome”) by our large database approach to establish a rough benchmark for database sufficiency. Despite high variability inherent in patient samples, our analysis yielded a catalog of differentially enriched proteins between healthy and UC fecal proteomes. This catalog provides a clinically relevant jumping-off point for further molecular-level studies aimed at identifying the microbial underpinnings of UC. Identified 176 significantly altered protein groups between healthy and UC patients. Serine-type endopeptidase activity is overrepresented in UC patients. Fluorophosphonate ABPP shows that endopeptidases are active in fecal samples. ABPP enrichment helps identify additional putative serine hydrolases in samples. De novo sequencing used to estimate number of MS2 spectra unidentified by ComPIL.
Collapse
Affiliation(s)
- Peter S Thuy-Boun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ana Y Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Janice H Xu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Sandip Chatterjee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Gregory S Stupp
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Andrew I Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Walter J Coyle
- Scripps Clinic Gastroenterology Division, La Jolla, CA 92037
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037.
| |
Collapse
|
30
|
Zhang J, Walker ME, Sanidad KZ, Zhang H, Liang Y, Zhao E, Chacon-Vargas K, Yeliseyev V, Parsonnet J, Haggerty TD, Wang G, Simpson JB, Jariwala PB, Beaty VV, Yang J, Yang H, Panigrahy A, Minter LM, Kim D, Gibbons JG, Liu L, Li Z, Xiao H, Borlandelli V, Overkleeft HS, Cloer EW, Major MB, Goldfarb D, Cai Z, Redinbo MR, Zhang G. Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract. Nat Commun 2022; 13:136. [PMID: 35013263 PMCID: PMC8748916 DOI: 10.1038/s41467-021-27762-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Morgan E Walker
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yanshan Liang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ermin Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | | | - Vladimir Yeliseyev
- Massachusetts Host-Microbiota Center, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julie Parsonnet
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Thomas D Haggerty
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Guangqiang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Joshua B Simpson
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Parth B Jariwala
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Violet V Beaty
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Anand Panigrahy
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lisa M Minter
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - LinShu Liu
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, USA
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Valentina Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, and Department of Otolaryngology, Washington University, St. Louis, MO, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Institute for Informatics, Washington University, St. Louis, MO, USA
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Matthew R Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Li JX, Wang Y, Hao Y, Huo XK, Sun CP, Zhao XX, Wang JC, Zhang JB, Ning J, Tian XG, Wang C, Zhao WY, Lv X, Li YC, Ma XC. Identification of Escherichia coli β-glucuronidase inhibitors from Polygonum cuspidatum Siebold & Zucc. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Yu Wang
- The Second Hospital of Dalian Medical University, China
| | - Ying Hao
- Dalian Medical University, China
| | | | | | | | | | | | | | | | | | | | - Xia Lv
- Dalian Medical University, China
| | | | - Xiao-Chi Ma
- Dalian Medical University, China; The Second Hospital of Dalian Medical University, China
| |
Collapse
|
32
|
Simpson JB, Sekela JJ, Graboski AL, Borlandelli VB, Bivins MM, Barker NK, Sorgen AA, Mordant AL, Johnson RL, Bhatt AP, Fodor AA, Herring LE, Overkleeft H, Lee JR, Redinbo MR. Metagenomics combined with activity-based proteomics point to gut bacterial enzymes that reactivate mycophenolate. Gut Microbes 2022; 14:2107289. [PMID: 35953888 PMCID: PMC9377255 DOI: 10.1080/19490976.2022.2107289] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mycophenolate mofetil (MMF) is an important immunosuppressant prodrug prescribed to prevent organ transplant rejection and to treat autoimmune diseases. MMF usage, however, is limited by severe gastrointestinal toxicity that is observed in approximately 45% of MMF recipients. The active form of the drug, mycophenolic acid (MPA), undergoes extensive enterohepatic recirculation by bacterial β-glucuronidase (GUS) enzymes, which reactivate MPA from mycophenolate glucuronide (MPAG) within the gastrointestinal tract. GUS enzymes demonstrate distinct substrate preferences based on their structural features, and gut microbial GUS enzymes that reactivate MPA have not been identified. Here, we compare the fecal microbiomes of transplant recipients receiving MMF to healthy individuals using shotgun metagenomic sequencing. We find that neither microbial composition nor the presence of specific structural classes of GUS genes are sufficient to explain the differences in MPA reactivation measured between fecal samples from the two cohorts. We next employed a GUS-specific activity-based chemical probe and targeted metaproteomics to identify and quantify the GUS proteins present in the human fecal samples. The identification of specific GUS enzymes was improved by using the metagenomics data collected from the fecal samples. We found that the presence of GUS enzymes that bind the flavin mononucleotide (FMN) is significantly correlated with efficient MPA reactivation. Furthermore, structural analysis identified motifs unique to these FMN-binding GUS enzymes that provide molecular support for their ability to process this drug glucuronide. These results indicate that FMN-binding GUS enzymes may be responsible for reactivation of MPA and could be a driving force behind MPA-induced GI toxicity.
Collapse
Affiliation(s)
- Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh J. Sekela
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda L. Graboski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina B. Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marissa M. Bivins
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K. Barker
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia A. Sorgen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Angie L. Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca L. Johnson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aadra P. Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hermen Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John R. Lee
- Department of Medicine, Division of Nephrology and Hypertension, New York, New York, USA
| | - Matthew. R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, Department of Microbiology and Immunology, and the Institute for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Yue B, Gao R, Wang Z, Dou W. Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy. Front Cell Infect Microbiol 2021; 11:710945. [PMID: 34722328 PMCID: PMC8553258 DOI: 10.3389/fcimb.2021.710945] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Irinotecan (CPT11) and its active metabolite ethyl-10-hydroxy-camptothecin (SN38) are broad-spectrum cytotoxic anticancer agents. Both cause cell death in rapidly dividing cells (e.g., cancer cells, epithelial cells, hematopoietic cells) and commensal bacteria. Therefore, CPT11 can induce a series of toxic side-effects, of which the most conspicuous is gastrointestinal toxicity (nausea, vomiting, diarrhea). Studies have shown that the gut microbiota modulates the host response to chemotherapeutic drugs. Targeting the gut microbiota influences the efficacy and toxicity of CPT11 chemotherapy through three key mechanisms: microbial ecocline, catalysis of microbial enzymes, and immunoregulation. This review summarizes and explores how the gut microbiota participates in CPT11 metabolism and mediates host immune dynamics to affect the toxicity and efficacy of CPT11 chemotherapy, thus introducing a new concept that is called "microbiota-host-irinotecan axis". Also, we emphasize the utilization of bacterial β-glucuronidase-specific inhibitor, dietary interventions, probiotics and strain-engineered interventions as emergent microbiota-targeting strategies for the purpose of improving CPT11 chemotherapy efficiency and alleviating toxicity.
Collapse
Affiliation(s)
- Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
34
|
Silva M, Brunner V, Tschurtschenthaler M. Microbiota and Colorectal Cancer: From Gut to Bedside. Front Pharmacol 2021; 12:760280. [PMID: 34658896 PMCID: PMC8514721 DOI: 10.3389/fphar.2021.760280] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is a complex condition with heterogeneous aetiology, caused by a combination of various environmental, genetic, and epigenetic factors. The presence of a homeostatic gut microbiota is critical to maintaining host homeostasis and determines the delicate boundary between health and disease. The gut microbiota has been identified as a key environmental player in the pathogenesis of CRC. Perturbations of the gut microbiota structure (loss of equilibrium and homeostasis) are associated with several intestinal diseases including cancer. Such dysbiosis encompasses the loss of beneficial microorganisms, outgrowth of pathogens and pathobionts and a general loss of local microbiota diversity and richness. Notably, several mechanisms have recently been identified how bacteria induce cellular transformation and promote tumour progression. In particular, the formation of biofilms, the production of toxic metabolites or the secretion of genotoxins that lead to DNA damage in intestinal epithelial cells are newly discovered processes by which the microbiota can initiate tumour formation. The gut microbiota has also been implicated in the metabolism of therapeutic drugs (conventional chemotherapy) as well as in the modulation of radiotherapy responses and targeted immunotherapy. These new findings suggest that the efficacy of a given therapy depends on the composition of the host’s gut microbiota and may therefore vary from patient to patient. In this review we discuss the role of host-microbiota interactions in cancer with a focus on CRC pathogenesis. Additionally, we show how gut bacteria can be exploited in current therapies and how mechanisms directed by microbiota, such as immune cell boost, probiotics and oncolytic bacteria, can be applied in the development of novel therapies.
Collapse
Affiliation(s)
- Miguel Silva
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Graduate Program in Areas of Basic and Applied Biology (GABBA)/ICBAS - Institute for the Biomedical Sciences Abel Salazar, Porto University, Porto, Portugal
| | - Valentina Brunner
- Institute for Experimental Cancer Therapy, Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Tschurtschenthaler
- Institute for Experimental Cancer Therapy, Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
35
|
Jain N, Tamura K, Déjean G, Van Petegem F, Brumer H. Orthogonal Active-Site Labels for Mixed-Linkage endo-β-Glucanases. ACS Chem Biol 2021; 16:1968-1984. [PMID: 33988963 DOI: 10.1021/acschembio.1c00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small molecule irreversible inhibitors are valuable tools for determining catalytically important active-site residues and revealing key details of the specificity, structure, and function of glycoside hydrolases (GHs). β-glucans that contain backbone β(1,3) linkages are widespread in nature, e.g., mixed-linkage β(1,3)/β(1,4)-glucans in the cell walls of higher plants and β(1,3)glucans in yeasts and algae. Commensurate with this ubiquity, a large diversity of mixed-linkage endoglucanases (MLGases, EC 3.2.1.73) and endo-β(1,3)-glucanases (laminarinases, EC 3.2.1.39 and EC 3.2.1.6) have evolved to specifically hydrolyze these polysaccharides, respectively, in environmental niches including the human gut. To facilitate biochemical and structural analysis of these GHs, with a focus on MLGases, we present here the facile chemo-enzymatic synthesis of a library of active-site-directed enzyme inhibitors based on mixed-linkage oligosaccharide scaffolds and N-bromoacetylglycosylamine or 2-fluoro-2-deoxyglycoside warheads. The effectiveness and irreversibility of these inhibitors were tested with exemplar MLGases and an endo-β(1,3)-glucanase. Notably, determination of inhibitor-bound crystal structures of a human-gut microbial MLGase from Glycoside Hydrolase Family 16 revealed the orthogonal labeling of the nucleophile and catalytic acid/base residues with homologous 2-fluoro-2-deoxyglycoside and N-bromoacetylglycosylamine inhibitors, respectively. We anticipate that the selectivity of these inhibitors will continue to enable the structural and mechanistic analyses of β-glucanases from diverse sources and protein families.
Collapse
Affiliation(s)
- Namrata Jain
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kazune Tamura
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guillaume Déjean
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
36
|
Sui Y, Wu J, Chen J. The Role of Gut Microbial β-Glucuronidase in Estrogen Reactivation and Breast Cancer. Front Cell Dev Biol 2021; 9:631552. [PMID: 34458248 PMCID: PMC8388929 DOI: 10.3389/fcell.2021.631552] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, the gut microbiota has received considerable attention for its interactions with the host. Microbial β-glucuronidase generated by this community has hence aroused concern for its biotransformation activity to a wide range of exogenous (foreign) and endogenous compounds. Lately, the role of gut microbial β-glucuronidase in the pathogenesis of breast cancer has been proposed for its estrogen reactivation activity. This is plausible considering that estrogen glucuronides are the primary products of estrogens' hepatic phase II metabolism and are subject to β-glucuronidase-catalyzed hydrolysis in the gut via bile excretion. However, research in this field is still at its very preliminary stage. This review outlines the biology of microbial β-glucuronidase in the gastrointestinal tract and elaborates on the clues to the existence of microbial β-glucuronidase-estrogen metabolism-breast cancer axis. The research gaps in this field will be discussed and possible strategies to address these challenges are suggested.
Collapse
Affiliation(s)
- Yue Sui
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
37
|
Parvez MM, Basit A, Jariwala PB, Gáborik Z, Kis E, Heyward S, Redinbo MR, Prasad B. Quantitative Investigation of Irinotecan Metabolism, Transport, and Gut Microbiome Activation. Drug Metab Dispos 2021; 49:683-693. [PMID: 34074730 PMCID: PMC8407663 DOI: 10.1124/dmd.121.000476] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
The anticancer drug irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating 1) in vitro metabolism and transport data of irinotecan and its metabolites, 2) ex vivo gut microbial activation of the toxic metabolite SN-38, and 3) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES)-mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared with its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and organic anion transporting polypeptide-2B1-mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein likely facilitates SN-38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by β-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. SIGNIFICANCE STATEMENT: This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. The quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Parth B Jariwala
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Zsuzsanna Gáborik
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Emese Kis
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Matthew R Redinbo
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| |
Collapse
|
38
|
Fenner K, Elsner M, Lueders T, McLachlan MS, Wackett LP, Zimmermann M, Drewes JE. Methodological Advances to Study Contaminant Biotransformation: New Prospects for Understanding and Reducing Environmental Persistence? ACS ES&T WATER 2021; 1:1541-1554. [PMID: 34278380 PMCID: PMC8276273 DOI: 10.1021/acsestwater.1c00025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 05/14/2023]
Abstract
Complex microbial communities in environmental systems play a key role in the detoxification of chemical contaminants by transforming them into less active metabolites or by complete mineralization. Biotransformation, i.e., transformation by microbes, is well understood for a number of priority pollutants, but a similar level of understanding is lacking for many emerging contaminants encountered at low concentrations and in complex mixtures across natural and engineered systems. Any advanced approaches aiming to reduce environmental exposure to such contaminants (e.g., novel engineered biological water treatment systems, design of readily degradable chemicals, or improved regulatory assessment strategies to determine contaminant persistence a priori) will depend on understanding the causal links among contaminant removal, the key driving agents of biotransformation at low concentrations (i.e., relevant microbes and their metabolic activities), and how their presence and activity depend on environmental conditions. In this Perspective, we present the current understanding and recent methodological advances that can help to identify such links, even in complex environmental microbiomes and for contaminants present at low concentrations in complex chemical mixtures. We discuss the ensuing insights into contaminant biotransformation across varying environments and conditions and ask how much closer we have come to designing improved approaches to reducing environmental exposure to contaminants.
Collapse
Affiliation(s)
- Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Tillmann Lueders
- Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95448 Bayreuth, Germany
| | - Michael S McLachlan
- Department of Environmental Science (ACES), Stockholm University, 106 91 Stockholm, Sweden
| | - Lawrence P Wackett
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Michael Zimmermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
39
|
Tsunoda SM, Gonzales C, Jarmusch AK, Momper JD, Ma JD. Contribution of the Gut Microbiome to Drug Disposition, Pharmacokinetic and Pharmacodynamic Variability. Clin Pharmacokinet 2021; 60:971-984. [PMID: 33959897 PMCID: PMC8332605 DOI: 10.1007/s40262-021-01032-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
The trillions of microbes that make up the gut microbiome are an important contributor to health and disease. With respect to xenobiotics, particularly orally administered compounds, the gut microbiome interacts directly with drugs to break them down into metabolic products. In addition, microbial products such as bile acids interact with nuclear receptors on host drug-metabolizing enzyme machinery, thus indirectly influencing drug disposition and pharmacokinetics. Gut microbes also influence drugs that undergo enterohepatic recycling by reversing host enzyme metabolic processes and increasing exposure to toxic metabolites as exemplified by the chemotherapy agent irinotecan and non-steroidal anti-inflammatory drugs. Recent data with immune checkpoint inhibitors demonstrate the impact of the gut microbiome on drug pharmacodynamics. We summarize the clinical importance of gut microbe interaction with digoxin, irinotecan, immune checkpoint inhibitors, levodopa, and non-steroidal anti-inflammatory drugs. Understanding the complex interactions of the gut microbiome with xenobiotics is challenging; and highly sensitive methods such as untargeted metabolomics with molecular networking along with other in silico methods and animal and human in vivo studies will uncover mechanisms and pathways. Incorporating the contribution of the gut microbiome to drug disposition, pharmacokinetics, and pharmacodynamics is vital in this era of precision medicine.
Collapse
Affiliation(s)
- Shirley M Tsunoda
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA.
| | - Christopher Gonzales
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA
| | - Alan K Jarmusch
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA.,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA
| | - Joseph D Ma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC 0657, La Jolla, San Diego, CA, 90293-0657, USA
| |
Collapse
|
40
|
Wang P, Jia Y, Wu R, Chen Z, Yan R. Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem Pharmacol 2021; 190:114566. [PMID: 33865833 DOI: 10.1016/j.bcp.2021.114566] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Bacterial β-glucuronidase enzymes (BGUSs) are at the interface of host-microbial metabolic symbiosis, playing an important role in health and disease as well as medication outcomes (efficacy or toxicity) by deconjugating a large number of endogenous and exogenous glucuronides. In recent years, BGUSs inhibition has emerged as a new approach to manage diseases and medication therapy and attracted an increasing research interest. However, a growing body of evidence underlines great genetic diversity, functional promiscuity and varied inhibition propensity of BGUSs, which have posed big challenges to identifying BGUSs involved in a specific pathophysiological or pharmacological process and developing effective inhibition. In this article, we offered a general introduction of the function, in particular the physiological, pathological and pharmacological roles, of BGUSs and their taxonomic distribution in human gut microbiota, highlighting the structural features (active sites and adjacent loop structures) that affecting the protein-substrate (inhibitor) interactions. Recent advances in BGUSs-mediated deconjugation of drugs and carcinogens and the discovery and applications of BGUS inhibitors in management of medication therapy, typically, irinotecan-induced diarrhea and non-steroidal anti-inflammatory drugs (NSAIDs)-induced enteropathy, were also reviewed. At the end, we discussed the perspectives and the challenges of tailoring BGUS inhibition towards precision medicine.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yifei Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Zhiqiang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
41
|
Alexander M, Turnbaugh PJ. Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. Immunity 2021; 53:264-276. [PMID: 32814025 DOI: 10.1016/j.immuni.2020.07.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Emerging evidence suggests that the effect of dietary intake on human health and disease is linked to both the immune system and the microbiota. Yet, we lack an integrated mechanistic model for how these three complex systems relate, limiting our ability to understand and treat chronic and infectious disease. Here, we review recent findings at the interface of microbiology, immunology, and nutrition, with an emphasis on experimentally tractable models and hypothesis-driven mechanistic work. We outline emerging mechanistic concepts and generalizable approaches to bridge the gap between microbial ecology and molecular mechanism. These set the stage for a new era of precision human nutrition informed by a deep and comprehensive knowledge of the diverse cell types in and on the human body.
Collapse
Affiliation(s)
- Margaret Alexander
- Department of Microbiology and Immunology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA.
| |
Collapse
|
42
|
Zimmermann M, Patil KR, Typas A, Maier L. Towards a mechanistic understanding of reciprocal drug-microbiome interactions. Mol Syst Biol 2021; 17:e10116. [PMID: 33734582 PMCID: PMC7970330 DOI: 10.15252/msb.202010116] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Broad-spectrum antibiotics target multiple gram-positive and gram-negative bacteria, and can collaterally damage the gut microbiota. Yet, our knowledge of the extent of damage, the antibiotic activity spectra, and the resistance mechanisms of gut microbes is sparse. This limits our ability to mitigate microbiome-facilitated spread of antibiotic resistance. In addition to antibiotics, non-antibiotic drugs affect the human microbiome, as shown by metagenomics as well as in vitro studies. Microbiome-drug interactions are bidirectional, as microbes can also modulate drugs. Chemical modifications of antibiotics mostly function as antimicrobial resistance mechanisms, while metabolism of non-antibiotics can also change the drugs' pharmacodynamic, pharmacokinetic, and toxic properties. Recent studies have started to unravel the extensive capacity of gut microbes to metabolize drugs, the mechanisms, and the relevance of such events for drug treatment. These findings raise the question whether and to which degree these reciprocal drug-microbiome interactions will differ across individuals, and how to take them into account in drug discovery and precision medicine. This review describes recent developments in the field and discusses future study areas that will benefit from systems biology approaches to better understand the mechanistic role of the human gut microbiota in drug actions.
Collapse
Affiliation(s)
- Michael Zimmermann
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Kiran Raosaheb Patil
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Athanasios Typas
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenTübingenGermany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’University of TübingenTübingenGermany
| |
Collapse
|
43
|
Predicting drug-metagenome interactions: Variation in the microbial β-glucuronidase level in the human gut metagenomes. PLoS One 2021; 16:e0244876. [PMID: 33411719 PMCID: PMC7790408 DOI: 10.1371/journal.pone.0244876] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Characterizing the gut microbiota in terms of their capacity to interfere with drug metabolism is necessary to achieve drug efficacy and safety. Although examples of drug-microbiome interactions are well-documented, little has been reported about a computational pipeline for systematically identifying and characterizing bacterial enzymes that process particular classes of drugs. The goal of our study is to develop a computational approach that compiles drugs whose metabolism may be influenced by a particular class of microbial enzymes and that quantifies the variability in the collective level of those enzymes among individuals. The present paper describes this approach, with microbial β-glucuronidases as an example, which break down drug-glucuronide conjugates and reactivate the drugs or their metabolites. We identified 100 medications that may be metabolized by β-glucuronidases from the gut microbiome. These medications included morphine, estrogen, ibuprofen, midazolam, and their structural analogues. The analysis of metagenomic data available through the Sequence Read Archive (SRA) showed that the level of β-glucuronidase in the gut metagenomes was higher in males than in females, which provides a potential explanation for the sex-based differences in efficacy and toxicity for several drugs, reported in previous studies. Our analysis also showed that infant gut metagenomes at birth and 12 months of age have higher levels of β-glucuronidase than the metagenomes of their mothers and the implication of this observed variability was discussed in the context of breastfeeding as well as infant hyperbilirubinemia. Overall, despite important limitations discussed in this paper, our analysis provided useful insights on the role of the human gut metagenome in the variability in drug response among individuals. Importantly, this approach exploits drug and metagenome data available in public databases as well as open-source cheminformatics and bioinformatics tools to predict drug-metagenome interactions.
Collapse
|
44
|
Li L, Figeys D. Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass Dimensions to Modeling the Ecosystem at the Mucosal-luminal Interface. Mol Cell Proteomics 2020; 19:1409-1417. [PMID: 32581040 PMCID: PMC8143649 DOI: 10.1074/mcp.r120.002051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in gut microbiome studies have highlighted the importance of explicitly describing the ecological processes beyond correlative analysis. However, we are still at the early stage of understanding the organizational principles of the gut ecosystem, partially because of the limited information provided by currently used analytical tools in ecological modeling practices. Proteomics and metaproteomics can provide a number of insights for ecological studies, including biomass, matter and energy flow, and functional diversity. In this Mini Review, we discuss proteomics and metaproteomics-based experimental strategies that can contribute to studying the ecology, in particular at the mucosal-luminal interface (MLI) where the direct host-microbiome interaction happens. These strategies include isolation protocols for different MLI components, enrichment methods to obtain designated array of proteins, probing for specific pathways, and isotopic labeling for tracking nutrient flow. Integration of these technologies can generate spatiotemporal and site-specific biological information that supports mathematical modeling of the ecosystem at the MLI.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
45
|
Couvillion SP, Agrawal N, Colby SM, Brandvold KR, Metz TO. Who Is Metabolizing What? Discovering Novel Biomolecules in the Microbiome and the Organisms Who Make Them. Front Cell Infect Microbiol 2020; 10:388. [PMID: 32850487 PMCID: PMC7410922 DOI: 10.3389/fcimb.2020.00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Even as the field of microbiome research has made huge strides in mapping microbial community composition in a variety of environments and organisms, explaining the phenotypic influences on the host by microbial taxa-both known and unknown-and their specific functions still remain major challenges. A pressing need is the ability to assign specific functions in terms of enzymes and small molecules to specific taxa or groups of taxa in the community. This knowledge will be crucial for advancing personalized therapies based on the targeted modulation of microbes or metabolites that have predictable outcomes to benefit the human host. This perspective article advocates for the combined use of standards-free metabolomics and activity-based protein profiling strategies to address this gap in functional knowledge in microbiome research via the identification of novel biomolecules and the attribution of their production to specific microbial taxa.
Collapse
Affiliation(s)
- Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Neha Agrawal
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sean M. Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kristoffer R. Brandvold
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
46
|
Rizzo A, Nannini M, Novelli M, Dalia Ricci A, Scioscio VD, Pantaleo MA. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis. Ther Adv Med Oncol 2020; 12:1758835920936932. [PMID: 32684988 PMCID: PMC7343359 DOI: 10.1177/1758835920936932] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Regorafenib (REG) is an oral multikinase inhibitor used in colorectal cancer, gastrointestinal stromal tumour and hepatocellular carcinoma. Several adverse events (AEs) are commonly reported during REG administration, and strategies for managing AEs in everyday clinical practice include supportive care, dose modifications and, when necessary, treatment withdrawal. We performed a systematic review and meta-analysis to assess the schedule treatment modifications of REG associated with AEs across randomized controlled clinical trials (RCTs). Methods Eligible studies included RCTs assessing standard dose REG versus placebo. Outcomes of interest included: AE-related permanent discontinuation, dose interruptions and dose reductions. Results We retrieved all the relevant RCTs through PubMed/Med, Cochrane library and EMBASE: 7 eligible studies involving a total of 2099 patients (Regorafenib: 1362; placebo: 737) were included in our analysis. The use of REG was associated with higher incidence and risk of all outcomes of interest when compared with placebo. The incidences of permanent discontinuation, dose interruptions and dose reductions in patients receiving REG were 9.7%, 57.2% and 47%, respectively, versus 3.3%, 16.7% and 7.7% of placebo group; compared with placebo, the summary relative risks (RRs) of permanent discontinuation, dose interruptions and dose reductions in REG arm were 2.80 (95% CI 1.85-4.22), 3.21 (95% CI 2.59-3.99) and 6.02 (95% CI 3.28-11.03), respectively. Conclusions Treatment with REG at the standard dose of 160 mg is associated with a significant increase in AE-related permanent discontinuation, dose interruptions and dose reductions. Prompt identification and management of AEs seem mandatory to obtain maximal benefit from REG treatment. In the current landscape, dose personalization of REG may have the potential to improve quality of life, minimize treatment discontinuation and maximize patient outcomes.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Medical Oncology Unit, Sant’Orsola-Malpighi University Hospital, via Massarenti 9, Bologna, 40138, Italy
| | | | - Angela Dalia Ricci
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Dashnyam P, Lin HY, Chen CY, Gao S, Yeh LF, Hsieh WC, Tu Z, Lin CH. Substituent Position of Iminocyclitols Determines the Potency and Selectivity for Gut Microbial Xenobiotic-Reactivating Enzymes. J Med Chem 2020; 63:4617-4627. [PMID: 32105467 DOI: 10.1021/acs.jmedchem.9b01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective inhibitors of gut bacterial β-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (2-7) for the GUSs. Complex structures of Ruminococcus gnavus GUS with 2-7 explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity. N1 of uronic isofagomine (2) made strong electrostatic interactions with two catalytic glutamates of GUSs, resulting in the most potent inhibition (Ki ≥ 11 nM). C6-propyl analogue of 2 (6) displayed 700-fold selectivity for opportunistic bacterial GUSs (Ki = 74 nM for E. coli GUS and 51.8 μM for RgGUS). In comparison with 2, there was 200-fold enhancement in the selectivity, which was attributed to differential interactions between the propyl group and loop 5 residues of the GUSs. The results provide useful insights to develop potent and selective inhibitors for undesired GUSs.
Collapse
Affiliation(s)
- Punsaldulam Dashnyam
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chia-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Shijay Gao
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Lun-Fu Yeh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Wei-Che Hsieh
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No 128, Academia Road, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,National Chung-Hsing University, Taichung 40227, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
48
|
Kytidou K, Artola M, Overkleeft HS, Aerts JMFG. Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. FRONTIERS IN PLANT SCIENCE 2020; 11:357. [PMID: 32318081 PMCID: PMC7154165 DOI: 10.3389/fpls.2020.00357] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/11/2020] [Indexed: 05/10/2023]
Abstract
Plants contain numerous glycoconjugates that are metabolized by specific glucosyltransferases and hydrolyzed by specific glycosidases, some also catalyzing synthetic transglycosylation reactions. The documented value of plant-derived glycoconjugates to beneficially modulate metabolism is first addressed. Next, focus is given to glycosidases, the central theme of the review. The therapeutic value of plant glycosidases is discussed as well as the present production in plant platforms of therapeutic human glycosidases used in enzyme replacement therapies. The increasing knowledge on glycosidases, including structure and catalytic mechanism, is described. The novel insights have allowed the design of functionalized highly specific suicide inhibitors of glycosidases. These so-called activity-based probes allow unprecedented visualization of glycosidases cross-species. Here, special attention is paid on the use of such probes in plant science that promote the discovery of novel enzymes and the identification of potential therapeutic inhibitors and chaperones.
Collapse
Affiliation(s)
- Kassiani Kytidou
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
49
|
Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR, Darr DB, Bailey ST, Montgomery SA, Roach JM, Azcarate-Peril MA, Sartor RB, Gharaibeh RZ, Bultman SJ, Redinbo MR. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci U S A 2020; 117:7374-7381. [PMID: 32170007 PMCID: PMC7132129 DOI: 10.1073/pnas.1918095117] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial β-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models. We use in vitro, in fimo, and in vivo models to determine whether GUS inhibition alters the anticancer efficacy of irinotecan. We demonstrate that a single dose of irinotecan increases GI bacterial GUS activity in 1 d and reduces intestinal epithelial cell proliferation in 5 d, both blocked by a single dose of a GUS inhibitor. In a tumor xenograft model, GUS inhibition prevents intestinal toxicity and maintains the antitumor efficacy of irinotecan. Remarkably, GUS inhibitor also effectively blocks the striking irinotecan-induced bloom of Enterobacteriaceae in immune-deficient mice. In a genetically engineered mouse model of cancer, GUS inhibition alleviates gut damage, improves survival, and does not alter gut microbial composition; however, by allowing dose intensification, it dramatically improves irinotecan's effectiveness, reducing tumors to a fraction of that achieved by irinotecan alone, while simultaneously promoting epithelial regeneration. These results indicate that targeted gut microbial enzyme inhibitors can improve cancer chemotherapeutic outcomes by protecting the gut epithelium from microbial dysbiosis and proliferative crypt damage.
Collapse
Affiliation(s)
- Aadra P Bhatt
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
| | - Samuel J Pellock
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - Kristen A Biernat
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - William G Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - Bret D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - Benjamin C Creekmore
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - Marine M Letertre
- Computational and Systems Medicine, Department of Surgery & Cancer, Imperial College London, SW7 2AZ London, United Kingdom
| | - Jonathan R Swann
- Computational and Systems Medicine, Department of Surgery & Cancer, Imperial College London, SW7 2AZ London, United Kingdom
| | - Ian D Wilson
- Computational and Systems Medicine, Department of Surgery & Cancer, Imperial College London, SW7 2AZ London, United Kingdom
| | - Jose R Roques
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sean T Bailey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525
| | - Jeffrey M Roach
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
| | - R Balfour Sartor
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Raad Z Gharaibeh
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610
| | - Scott J Bultman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264
| | - Matthew R Redinbo
- Department of Biochemistry, Integrated Program for Biological and Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290;
- Department of Biophysics, Integrated Program for Biological and Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| |
Collapse
|
50
|
Abstract
The intestinal microbiome encodes vast metabolic potential, and multidisciplinary approaches are enabling a mechanistic understanding of how bacterial enzymes impact the metabolism of diverse pharmaceutical compounds, including chemotherapeutics. Microbiota alter the activity of many drugs and chemotherapeutics via direct and indirect mechanisms; some of these alterations result in changes to the drug's bioactivity and bioavailability, causing toxic gastrointestinal side effects. Gastrointestinal toxicity is one of the leading complications of systemic chemotherapy, with symptoms including nausea, vomiting, diarrhea, and constipation. Patients undergo dose reductions or drug holidays to manage these adverse events, which can significantly harm prognosis, and can result in mortality. Selective and precise targeting of the gut microbiota may alleviate these toxicities. Understanding the composition and function of the microbiota may serve as a biomarker for prognosis, and predict treatment efficacy and potential adverse effects, thereby facilitating personalized medicine strategies for cancer patients.
Collapse
Affiliation(s)
- Samantha M. Ervin
- Department of Chemistry, University of North Carolina at Chapel Hill, 250 Bell Tower Drive, Chapel Hill, NC 27599, USA
| | | | - Aadra P. Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Corresponding author:
| |
Collapse
|