1
|
Sobek J, Li J, Combes BF, Gerez JA, Henrich MT, Geibl FF, Nilsson PR, Shi K, Rominger A, Oertel WH, Nitsch RM, Nordberg A, Ågren H, Ni R. Efficient characterization of multiple binding sites of small molecule imaging ligands on amyloid-beta, tau and alpha-synuclein. Eur J Nucl Med Mol Imaging 2024; 51:3960-3977. [PMID: 38953933 PMCID: PMC11527973 DOI: 10.1007/s00259-024-06806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE There is an unmet need for compounds to detect fibrillar forms of alpha-synuclein (αSyn) and 4-repeat tau, which are critical in many neurodegenerative diseases. Here, we aim to develop an efficient surface plasmon resonance (SPR)-based assay to facilitate the characterization of small molecules that can bind these fibrils. METHODS SPR measurements were conducted to characterize the binding properties of fluorescent ligands/compounds toward recombinant amyloid-beta (Aβ)42, K18-tau, full-length 2N4R-tau and αSyn fibrils. In silico modeling was performed to examine the binding pockets of ligands on αSyn fibrils. Immunofluorescence staining of postmortem brain tissue slices from Parkinson's disease patients and mouse models was performed with fluorescence ligands and specific antibodies. RESULTS We optimized the protocol for the immobilization of Aβ42, K18-tau, full-length 2N4R-tau and αSyn fibrils in a controlled aggregation state on SPR-sensor chips and for assessing their binding to ligands. The SPR results from the analysis of binding kinetics suggested the presence of at least two binding sites for all fibrils, including luminescent conjugated oligothiophenes, benzothiazole derivatives, nonfluorescent methylene blue and lansoprazole. In silico modeling studies for αSyn (6H6B) revealed four binding sites with a preference for one site on the surface. Immunofluorescence staining validated the detection of pS129-αSyn positivity in the brains of Parkinson's disease patients and αSyn preformed-fibril injected mice, 6E10-positive Aβ in arcAβ mice, and AT-8/AT-100-positivity in pR5 mice. CONCLUSION SPR measurements of small molecules binding to Aβ42, K18/full-length 2N4R-tau and αSyn fibrils suggested the existence of multiple binding sites. This approach may provide efficient characterization of compounds for neurodegenerative disease-relevant proteinopathies.
Collapse
Affiliation(s)
- Jens Sobek
- Functional Genomics Center, University of Zurich & ETH Zurich, Zürich, Switzerland
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Peter R Nilsson
- Divison of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wolfgang H Oertel
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Agneta Nordberg
- Divison of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
2
|
Carroll EC, Yang H, Jones JG, Oehler A, Charvat AF, Montgomery KM, Yung A, Millbern Z, Vinueza NR, DeGrado WF, Mordes DA, Condello C, Gestwicki JE. Methods for high throughput discovery of fluoroprobes that recognize tau fibril polymorphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610853. [PMID: 39282355 PMCID: PMC11398390 DOI: 10.1101/2024.09.02.610853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aggregation of microtubule-associated protein tau (MAPT/tau) into conformationally distinct fibrils underpins neurodegenerative tauopathies. Fluorescent probes (fluoroprobes), such as thioflavin T (ThT), have been essential tools for studying tau aggregation; however, most of them do not discriminate between amyloid fibril conformations (polymorphs). This gap is due, in part, to a lack of high-throughput methods for screening large, diverse chemical collections. Here, we leverage advances in protein adaptive differential scanning fluorimetry (paDSF) to screen the Aurora collection of 300+ fluorescent dyes against multiple synthetic tau fibril polymorphs. This screen, coupled with orthogonal secondary assays, revealed pan-fibril binding chemotypes, as well as fluoroprobes selective for subsets of fibrils. One fluoroprobe recognized tau pathology in ex vivo brain slices from Alzheimer's disease patients. We propose that these scaffolds represent entry points for development of selective fibril ligands and, more broadly, that high throughput, fluorescence-based dye screening is a platform for their discovery.
Collapse
Affiliation(s)
- Emma C Carroll
- Department of Chemistry, San José State University, San José, CA 95192
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Hyunjun Yang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| | - Julia G Jones
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Annemarie F Charvat
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Kelly M Montgomery
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Anthony Yung
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Zoe Millbern
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695
| | - Nelson R Vinueza
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| | - Daniel A Mordes
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pathology, University of California San Francisco; San Francisco, CA 94158
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Neurology, University of California San Francisco; San Francisco, CA 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| |
Collapse
|
3
|
Hurtle BT, Jana S, Cai L, Pike VW. Ligand-Based Virtual Screening as a Path to New Chemotypes for Candidate PET Radioligands for Imaging Tauopathies. J Med Chem 2024; 67:14095-14109. [PMID: 39108178 DOI: 10.1021/acs.jmedchem.4c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Ligand-based virtual screening (LBVS) has rarely been tested as a method for discovering new structural scaffolds for PET radioligand development. This study used LBVS to discover potential chemotype leads for developing radioligands for PET imaging of tauopathies. ZINC12, a free database of over 12 million commercially available compounds, was searched to discover novel scaffolds based on similarities to four query compounds. Thirteen high-ranking hits were purchased and assayed for their ability to compete against three tritiated radioligands at their distinct binding sites in Alzheimer's disease brain tissue. Three hits were 2-substituted 6-methoxy naphthalenes. Synthetic elaboration of this new chemotype yielded three new ligands (25, 26, and 28) with high affinity for the [3H]6 (flortaucipur) neurofibrillary tangle binding site. Compound 28 showed remarkably high affinity (Ki, 7 nM) and other desirable properties for a candidate PET radioligand, including low topological polar surface area, moderate computed log D, and amenability for labeling with carbon-11. LBVS appears to be uniquely valuable for discovering new chemotypes for candidate PET radioligands.
Collapse
Affiliation(s)
- Bryan T Hurtle
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Todd TW, Islam NN, Cook CN, Caulfield TR, Petrucelli L. Cryo-EM structures of pathogenic fibrils and their impact on neurodegenerative disease research. Neuron 2024; 112:2269-2288. [PMID: 38834068 PMCID: PMC11257806 DOI: 10.1016/j.neuron.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Neurodegenerative diseases are commonly associated with the formation of aberrant protein aggregates within the brain, and ultrastructural analyses have revealed that the proteins within these inclusions often assemble into amyloid filaments. Cryoelectron microscopy (cryo-EM) has emerged as an effective method for determining the near-atomic structure of these disease-associated filamentous proteins, and the resulting structures have revolutionized the way we think about aberrant protein aggregation and propagation during disease progression. These structures have also revealed that individual fibril conformations may dictate different disease conditions, and this newfound knowledge has improved disease modeling in the lab and advanced the ongoing pursuit of clinical tools capable of distinguishing and targeting different pathogenic entities within living patients. In this review, we summarize some of the recently developed cryo-EM structures of ex vivo α-synuclein, tau, β-amyloid (Aβ), TAR DNA-binding protein 43 (TDP-43), and transmembrane protein 106B (TMEM106B) fibrils and discuss how these structures are being leveraged toward mechanistic research and therapeutic development.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naeyma N Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Duan P, El Mammeri N, Hong M. Milligram-scale assembly and NMR fingerprint of tau fibrils adopting the Alzheimer's disease fold. J Biol Chem 2024; 300:107326. [PMID: 38679331 PMCID: PMC11145547 DOI: 10.1016/j.jbc.2024.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
In the Alzheimer's disease (AD) brain, the microtubule-associated protein tau aggregates into paired helical filaments in which each protofilament has a C-shaped conformation. In vitro assembly of tau fibrils adopting this fold is highly valuable for both fundamental and applied studies of AD without requiring patient-brain extracted fibrils. To date, reported methods for forming AD-fold tau fibrils have been irreproducible and sensitive to subtle variations in fibrillization conditions. Here, we describe a route to reproducibly assemble tau fibrils adopting the AD fold on the multi-milligram scale. We investigated the fibrillization conditions of two constructs and found that a tau (297-407) construct that contains four AD phospho-mimetic glutamate mutations robustly formed the C-shaped conformation. 2D and 3D correlation solid-state NMR spectra show a single predominant set of chemical shifts, indicating a single molecular conformation. Negative-stain electron microscopy and cryo-EM data confirm that the protofilament formed by 4E-tau (297-407) adopts the C-shaped conformation, which associates into paired, triple, and quadruple helical filaments. In comparison, NMR spectra indicate that a previously reported construct, tau (297-391), forms a mixture of a four-layered dimer structure and the C-shaped structure, whose populations are sensitive to the environmental conditions. The determination of the NMR chemical shifts of the AD-fold tau opens the possibility for future studies of tau fibril conformations and ligand binding by NMR. The quantitative assembly of tau fibrils adopting the AD fold should facilitate the development of diagnostic and therapeutic compounds that target AD tau.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
6
|
Chisholm TS, Hunter CA. A closer look at amyloid ligands, and what they tell us about protein aggregates. Chem Soc Rev 2024; 53:1354-1374. [PMID: 38116736 DOI: 10.1039/d3cs00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The accumulation of amyloid fibrils is characteristic of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Detecting these fibrils with fluorescent or radiolabelled ligands is one strategy for diagnosing and better understanding these diseases. A vast number of amyloid-binding ligands have been reported in the literature as a result. To obtain a better understanding of how amyloid ligands bind, we have compiled a database of 3457 experimental dissociation constants for 2076 unique amyloid-binding ligands. These ligands target Aβ, tau, or αSyn fibrils, as well as relevant biological samples including AD brain homogenates. From this database significant variation in the reported dissociation constants of ligands was found, possibly due to differences in the morphology of the fibrils being studied. Ligands were also found to bind to Aβ(1-40) and Aβ(1-42) fibrils with similar affinities, whereas a greater difference was found for binding to Aβ and tau or αSyn fibrils. Next, the binding of ligands to fibrils was shown to be largely limited by the hydrophobic effect. Some Aβ ligands do not fit into this hydrophobicity-limited model, suggesting that polar interactions can play an important role when binding to this target. Finally several binding site models were outlined for amyloid fibrils that describe what ligands target what binding sites. These models provide a foundation for interpreting and designing site-specific binding assays.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| |
Collapse
|
7
|
Sahara N, Higuchi M. Diagnostic and therapeutic targeting of pathological tau proteins in neurodegenerative disorders. FEBS Open Bio 2024; 14:165-180. [PMID: 37746832 PMCID: PMC10839408 DOI: 10.1002/2211-5463.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
Tauopathies, characterized by fibrillar tau accumulation in neurons and glial cells, constitute a major neuropathological category of neurodegenerative diseases. Neurofibrillary tau lesions are strongly associated with cognitive deficits in these diseases, but the causal mechanisms underlying tau-induced neuronal dysfunction remain unresolved. Recent advances in cryo-electron microscopy examination have revealed various core structures of tau filaments from different tauopathy patients, which can be used to classify tauopathies. In vivo visualization of tau pathology is now available using several tau positron emission tomography tracers. Among these radioprobes, PM-PBB3 allows high-contrast imaging of tau deposits in the brains of patients with diverse disorders and tauopathy mouse models. Selective degradation of pathological tau species by the ubiquitin-proteasome system or autophagy machinery is a potential therapeutic strategy. Alternatively, the non-cell-autonomous clearance of pathological tau species through neuron-glia networks could be reinforced as a disease-modifying treatment. In addition, the development of neuroinflammatory biomarkers is required for understanding the contribution of immunocompetent cells in the brain to preventing neurodegeneration. This review provides an overview of the current research and development of diagnostic and therapeutic agents targeting divergent tau pathologies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
8
|
Kimura T, Sato H, Kano M, Tatsumi L, Tomita T. Novel aspects of the phosphorylation and structure of pathological tau: implications for tauopathy biomarkers. FEBS Open Bio 2024; 14:181-193. [PMID: 37391389 PMCID: PMC10839341 DOI: 10.1002/2211-5463.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023] Open
Abstract
The deposition of highly phosphorylated and aggregated tau is a characteristic of tauopathies, including Alzheimer's disease. It has long been known that different isoforms of tau are aggregated in different cell types and brain regions in each tauopathy. Recent advances in analytical techniques revealed the details of the biochemical and structural biological differences of tau specific to each tauopathy. In this review, we explain recent advances in the analysis of post-translational modifications of tau, particularly phosphorylation, brought about by the development of mass-spectrometry and Phos-tag technology. We then discuss the structure of tau filaments in each tauopathy revealed by the advent of cryo-EM. Finally, we describe the progress in biofluid and imaging biomarkers for tauopathy. This review summarizes current efforts to elucidate the characteristics of pathological tau and the landscape of the use of tau as a biomarker to diagnose and determine the pathological stage of tauopathy.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Maria Kano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Lisa Tatsumi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| |
Collapse
|
9
|
Chisholm T, Hunter CA. Ligand Profiling to Characterize Different Polymorphic Forms of α-Synuclein Aggregates. J Am Chem Soc 2023; 145:27030-27037. [PMID: 38029411 PMCID: PMC10722502 DOI: 10.1021/jacs.3c10521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
The presence of amyloid fibrils is a characteristic feature of many diseases, most famously neurodegenerative disease. The supramolecular structure of these fibrils appears to be disease-specific. Identifying the unique morphologies of amyloid fibrils could, therefore, form the basis of a diagnostic tool. Here we report a method to characterize the morphology of α-synuclein (αSyn) fibrils based on profiling multiple different ligand binding sites that are present on the surfaces of fibrils. By employing various competition binding assays, seven different types of binding sites were identified on four different morphologies of αSyn fibrils. Similar binding sites on different fibrils were shown to bind ligands with significantly different affinities. We combined this information to construct individual profiles for different αSyn fibrils based on the distribution of binding sites and ligand interactions. These results demonstrate that ligand-based profiling can be used as an analytical method to characterize fibril morphologies with operationally simple fluorescence binding assays.
Collapse
Affiliation(s)
- Timothy
S. Chisholm
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher A. Hunter
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
10
|
Li J, Kumar A, Långström B, Nordberg A, Ågren H. Insight into the Binding of First- and Second-Generation PET Tracers to 4R and 3R/4R Tau Protofibrils. ACS Chem Neurosci 2023; 14:3528-3539. [PMID: 37639522 PMCID: PMC10515481 DOI: 10.1021/acschemneuro.3c00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Primary supranuclear palsy (PSP) is a rare neurodegenerative disease that perturbs body movement, eye movement, and walking balance. Similar to Alzheimer's disease (AD), the abnormal aggregation of tau fibrils in the central neuronal and glial cells is a major hallmark of PSP disease. In this study, we use multiple approaches, including docking, molecular dynamics, and metadynamics simulations, to investigate the binding mechanism of 10 first- and second-generations of PET tracers for PSP tau and compare their binding in cortical basal degeneration (CBD) and AD tauopathies. Structure-activity relationships, binding preferences, the nature of ligand binding in terms of basic intermolecular interactions, the role of polar/charged residues, induced-fit mechanisms, grove closures, and folding patterns for the binding of these tracers in PSP, CBD, and AD tau fibrils are evaluated and discussed in detail in order to build a holistic picture of what is essential for the binding and also to rank the potency of the different tracers. For example, we found that the same tracer shows different binding preferences for the surface sites of tau fibrils that are intrinsically distinct in the folding patterns. Results from the metadynamics simulations predict that PMPBB3 and PBB3 exhibit the strongest binding free energies onto the Q276[I277]I278, Q351[S352]K353, and N368[K369]K370 sites of PSP than the other explored tracers, indicating a solid preference for vdW and cation-π interactions. Our results also reproduced known preferences of tracers, namely, that MK6240 binds better to AD tau than CBD tau and PSP tau and that CBD2115, PI2620, and PMPBB3 are 4R tau binders. These findings fill in the well-sought-after knowledge gap in terms of these tracers' potential binding mechanisms and will be important for the design of highly selective novel PET tracers for tauopathies.
Collapse
Affiliation(s)
- Junhao Li
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Amit Kumar
- Department
of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo, 141 84 Stockholm, Sweden
| | - Bengt Långström
- Department
of Chemistry - BMC, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Agneta Nordberg
- Department
of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo, 141 84 Stockholm, Sweden
- Theme
Inflammation and Aging, Karolinska University
Hospital, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
11
|
Shi Y, Ghetti B, Goedert M, Scheres SHW. Cryo-EM Structures of Chronic Traumatic Encephalopathy Tau Filaments with PET Ligand Flortaucipir. J Mol Biol 2023; 435:168025. [PMID: 37330290 PMCID: PMC7615338 DOI: 10.1016/j.jmb.2023.168025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Positron emission tomography (PET) imaging allows monitoring the progression of amyloid aggregation in the living brain. [18F]-Flortaucipir is the only approved PET tracer compound for the visualisation of tau aggregation. Here, we describe cryo-EM experiments on tau filaments in the presence and absence of flortaucipir. We used tau filaments isolated from the brain of an individual with Alzheimer's disease (AD), and from the brain of an individual with primary age-related tauopathy (PART) with a co-pathology of chronic traumatic encephalopathy (CTE). Unexpectedly, we were unable to visualise additional cryo-EM density for flortaucipir for AD paired helical or straight filaments (PHFs or SFs), but we did observe density for flortaucipir binding to CTE Type I filaments from the case with PART. In the latter, flortaucipir binds in a 1:1 molecular stoichiometry with tau, adjacent to lysine 353 and aspartate 358. By adopting a tilted geometry with respect to the helical axis, the 4.7 Å distance between neighbouring tau monomers is reconciled with the 3.5 Å distance consistent with π-π-stacking between neighbouring molecules of flortaucipir.
Collapse
Affiliation(s)
- Yang Shi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. https://twitter.com/GhettiBernardi1
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
12
|
Aramadaka S, Mannam R, Sankara Narayanan R, Bansal A, Yanamaladoddi VR, Sarvepalli SS, Vemula SL. Neuroimaging in Alzheimer's Disease for Early Diagnosis: A Comprehensive Review. Cureus 2023; 15:e38544. [PMID: 37273363 PMCID: PMC10239271 DOI: 10.7759/cureus.38544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting roughly half of those over the age of 85. We briefly discussed the risk factors, epidemiology, and treatment options for AD. The development of therapeutic therapies operating very early in the disease cascade has been spurred by the realization that the disease process begins at least a decade or more before the manifestation of symptoms. Thus, the clinical significance of early diagnosis was emphasized. Using various keywords, a literature search was carried out using PubMed and other databases. For inclusion, pertinent articles were chosen and reviewed. This article has reviewed different neuroimaging techniques that are considered advanced tools to aid in establishing a diagnosis and highlighted the advantages as well as disadvantages of those techniques. Besides, the prevalence of several in vivo biomarkers aided in discriminating affected individuals from healthy controls in the early stages of the disease. Each imaging method has its advantages and disadvantages, hence no single imaging approach can be the optimum modality for diagnosis. This article also commented on a better approach to using these techniques to increase the likelihood of an early diagnosis.
Collapse
Affiliation(s)
| | - Raam Mannam
- Research, Narayana Medical College, Nellore, IND
| | | | - Arpit Bansal
- Research, Narayana Medical College, Nellore, IND
| | | | | | | |
Collapse
|
13
|
Ozsahin I, Onakpojeruo EP, Uzun B, Uzun Ozsahin D, Butler TA. A Multi-Criteria Decision Aid Tool for Radiopharmaceutical Selection in Tau PET Imaging. Pharmaceutics 2023; 15:1304. [PMID: 37111789 PMCID: PMC10147085 DOI: 10.3390/pharmaceutics15041304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The accumulation of pathologically misfolded tau is a feature shared by a group of neurodegenerative disorders collectively referred to as tauopathies. Alzheimer's disease (AD) is the most prevalent of these tauopathies. Immunohistochemical evaluation allows neuropathologists to visualize paired-helical filaments (PHFs)-tau pathological lesions, but this is possible only after death and only shows tau in the portion of brain sampled. Positron emission tomography (PET) imaging allows both the quantitative and qualitative analysis of pathology over the whole brain of a living subject. The ability to detect and quantify tau pathology in vivo using PET can aid in the early diagnosis of AD, provide a way to monitor disease progression, and determine the effectiveness of therapeutic interventions aimed at reducing tau pathology. Several tau-specific PET radiotracers are now available for research purposes, and one is approved for clinical use. This study aims to analyze, compare, and rank currently available tau PET radiotracers using the fuzzy preference ranking organization method for enrichment of evaluations (PROMETHEE), which is a multi-criteria decision-making (MCDM) tool. The evaluation is based on relatively weighted criteria, such as specificity, target binding affinity, brain uptake, brain penetration, and rates of adverse reactions. Based on the selected criteria and assigned weights, this study shows that a second-generation tau tracer, [18F]RO-948, may be the most favorable. This flexible method can be extended and updated to include new tracers, additional criteria, and modified weights to help researchers and clinicians select the optimal tau PET tracer for specific purposes. Additional work is needed to confirm these results, including a systematic approach to defining and weighting criteria and clinical validation of tracers in different diseases and patient populations.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
| | | | - Berna Uzun
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
- Department of Statistics, Carlos III University of Madrid, Getafe, 28903 Madrid, Spain
| | - Dilber Uzun Ozsahin
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
- Medical Diagnostic Imaging Department, College of Health Sciences & Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Tracy A. Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
14
|
Gholampour M, Seradj H, Sakhteman A. Structure-Selectivity Relationship Prediction of Tau Imaging Tracers Using Machine Learning-Assisted QSAR Models and Interaction Fingerprint Map. ACS Chem Neurosci 2023. [PMID: 37037183 DOI: 10.1021/acschemneuro.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Protein aggregates composed of tau fibrils are major pathologic findings in different tauopathies. An ideal agent for imaging tau fibrils must be highly selective. The molecular basis for the binding of current available compounds to tau aggregates is not well understood. Herein, we provide insights into previously studied positron emission tomography tracers using various computational methods, including machine learning-based quantitative structure-activity relationship (QSAR) classification, docking, and molecular dynamics (MD) simulations to investigate the structural basis of selective tau aggregate binding for potential compounds. The QSAR classification model based on the Random Forest algorithm with an accuracy of 96.6% for the selective and 97.6% for the nonselective class of compounds revealed essential selective moieties. The combination of molecular docking, MD simulations, and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) binding free-energy calculation showed superior binding energy of ligand 63 toward tau and PHF6, a key hexapeptide in tau aggregation, as the most selective compound in the data set. Dissecting the binding properties of ligand 63 and ligand 8 (the least selective compound) within tau and Aβ structures confirmed that these two compounds favor different binding sites of tau; however, the preferential binding site in Aβ was similar for both with lower binding energies calculated for ligand 8. Results revealed that the number of N-heterocycles, the position of nitrogen atoms, and the presence of tertiary amine are important components of selective binding moieties, and they should be maintained in molecules for selective binding to tau aggregates. The predicted structure-selectivity relationship will facilitate the rational design and further development of selective tau imaging agents.
Collapse
Affiliation(s)
- Maryam Gholampour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Hassan Seradj
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising 85354, Germany
| |
Collapse
|
15
|
Betthauser TJ. In vitro evidence for a nonselective 4R tau PET tracer. Mol Psychiatry 2023; 28:1398-1399. [PMID: 36658333 PMCID: PMC10519575 DOI: 10.1038/s41380-023-01950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Tobey J Betthauser
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
16
|
Malarte ML, Gillberg PG, Kumar A, Bogdanovic N, Lemoine L, Nordberg A. Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy brains. Mol Psychiatry 2023; 28:1272-1283. [PMID: 36447011 PMCID: PMC10005967 DOI: 10.1038/s41380-022-01875-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Recent mechanistic and structural studies have challenged the classical tauopathy classification approach and revealed the complexity and heterogeneity of tau pathology in Alzheimer's disease (AD) and primary tauopathies such as corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), progressing beyond distinct tau isoforms. In this multi-tau tracer study, we focused on the new second-generation tau PET tracers PI2620, MK6240 and RO948 to investigate this tau complexity in AD, CBD, and PSP brains using post-mortem radioligand binding studies and autoradiography of large and small frozen brain sections. Saturation binding studies indicated multiple binding sites for 3H-PI2620 in AD, CBD and PSP brains with different binding affinities (Kd ranging from 0.2 to 0.7 nM) and binding site densities (following the order: BmaxAD > BmaxCBD > BmaxPSP). Competitive binding studies complemented these findings, demonstrating the presence of two binding sites [super-high affinity (SHA): IC50(1) = 8.1 pM; and high affinity (HA): IC50(2) = 4.9 nM] in AD brains. Regional binding distribution studies showed that 3H-PI2620 could discriminate between AD (n = 6) and control cases (n = 9), especially in frontal cortex and temporal cortex tissue (p < 0.001) as well as in the hippocampal region (p = 0.02). 3H-PI2620, 3H-MK6240 and 3H-RO948 displayed similar binding behaviour in AD brains (in both homogenate competitive studies and one large frozen hemispherical brain section autoradiography studies) in terms of binding affinities, number of sites and regional patterns. Our small section autoradiography studies in the frontal cortex of CBD (n = 3) and PSP brains (n = 2) showed high specificity for 3H-PI2620 but not for 3H-MK6240 or 3H-RO948. Our findings clearly demonstrate different binding properties among the second-generation tau PET tracers, which may assist in further understanding of tau heterogeneity in AD versus non-AD tauopathies and suggests potential for development of pure selective 4R tau PET tracers.
Collapse
Grants
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
- Stiftelsen Olle Engkvist Byggmästare
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- Stockholms Läns Landsting (Stockholm County Council)
- Hjärnfonden (Swedish Brain Foundation)
- Stockholm County Council -Karolinska Institute regional agreement on medical training and clinical research (ALF grant),the Swedish Alzheimer Foundation, the Foundation for Old Servants, Gun and Bertil Stohne’s Foundation, the KI Foundation for Geriatric Diseases, the Swedish Dementia Foundation, the Center for Innovative Medicine (CIMED) Region Stockholm, the Michael J Fox Foundation (MJFF-019728), the Alzheimer Association USA (AARF -21-848395), and the Recherche sur Alzheimer Foundation (Paris, France).
Collapse
Affiliation(s)
- Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Laëtitia Lemoine
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Hsieh CJ, Giannakoulias S, Petersson EJ, Mach RH. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development. Pharmaceuticals (Basel) 2023; 16:317. [PMID: 37259459 PMCID: PMC9964981 DOI: 10.3390/ph16020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 11/19/2023] Open
Abstract
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML).
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Mohammadi Z, Alizadeh H, Marton J, Cumming P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Biomolecules 2023; 13:290. [PMID: 36830659 PMCID: PMC9953528 DOI: 10.3390/biom13020290] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperphosphorylated tau aggregates, also known as neurofibrillary tangles, are a hallmark neuropathological feature of Alzheimer's disease (AD). Molecular imaging of tau by positron emission tomography (PET) began with the development of [18F]FDDNP, an amyloid β tracer with off-target binding to tau, which obtained regional specificity through the differing distributions of amyloid β and tau in AD brains. A concerted search for more selective and affine tau PET tracers yielded compounds belonging to at least eight structural categories; 18F-flortaucipir, known variously as [18F]-T807, AV-1451, and Tauvid®, emerged as the first tau tracer approved by the American Food and Drug Administration. The various tau tracers differ concerning their selectivity over amyloid β, off-target binding at sites such as monoamine oxidase and neuromelanin, and degree of uptake in white matter. While there have been many reviews of molecular imaging of tau in AD and other conditions, there has been no systematic comparison of the fitness of the various tracers for discriminating between AD patient and healthy control (HC) groups. In this narrative review, we endeavored to compare the binding properties of the various tau tracers in vitro and the effect size (Cohen's d) for the contrast by PET between AD patients and age-matched HC groups. The available tracers all gave good discrimination, with Cohen's d generally in the range of two-three in culprit brain regions. Overall, Cohen's d was higher for AD patient groups with more severe illness. Second-generation tracers, while superior concerning off-target binding, do not have conspicuously higher sensitivity for the discrimination of AD and HC groups. We suppose that available pharmacophores may have converged on a maximal affinity for tau fibrils, which may limit the specific signal imparted in PET studies.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hadi Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Straße 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
19
|
Liu T, Li Y, Wang Y, Yan XX, Dai J, Cui M. Discovery and evaluation of aza-fused tricyclic derivatives for detection of Tau pathology in Alzheimer's disease. Eur J Med Chem 2023; 246:114991. [PMID: 36493618 DOI: 10.1016/j.ejmech.2022.114991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
For various neurodegenerative diseases, including Alzheimer's disease (AD), the abnormal aggregation of Tau is not only the predominant contributing factor but also a major biomarker for disease diagnosis. In this study, a series of aza-fused tricyclic derivatives were designed and synthesized. By changing the position and number of nitrogen atoms on the fused tricyclic core, the imidazonaphthyridine scaffold was screened and reported for the first time which could potentially detect Tau aggregates. Through a series of in vitro and in vivo biological evaluations, probe [125I]5 possessed exceptional binding affinity (IC50 = 1.63 nM) to neurofibrillary tangles in the AD brain, high selectivity over Aβ plaques (23.4-fold), clean off-target profile to monoamine oxidase A/B (MAO-A/B), and suitable pharmacokinetics (initial brain uptake = 3.22% ID/g).
Collapse
Affiliation(s)
- Tianqing Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, 410013, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, 410013, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan, 430074, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China; Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
20
|
Kallinen A, Kassiou M. Tracer development for PET imaging of proteinopathies. Nucl Med Biol 2022; 114-115:108-120. [PMID: 35487833 DOI: 10.1016/j.nucmedbio.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022]
Abstract
This review outlines small molecule radiotracers developed for positron emission tomography (PET) imaging of proteinopathies, neurodegenerative diseases characterised by accumulation of malformed proteins, over the last two decades with the focus on radioligands that have progressed to clinical studies. Introduction provides a short summary of proteinopathy targets used for PET imaging, including vastly studied proteins Aβ and tau and emerging α-synuclein. In the main section, clinically relevant Aβ and tau radioligand classes and their properties are discussed, including an overview of lead compounds and radioligand candidates studied as α-synuclein imaging agents in the early discovery and preclinical development phase. Lastly, the specific challenges and future directions in proteinopathy radioligand development are summarized.
Collapse
Affiliation(s)
- Annukka Kallinen
- Garvan Institute of Medical Research, 384 Victoria St, NSW 2010, Australia.
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Knight AC, Morrone CD, Varlow C, Yu WH, McQuade P, Vasdev N. Head-to-Head Comparison of Tau-PET Radioligands for Imaging TDP-43 in Post-Mortem ALS Brain. Mol Imaging Biol 2022; 25:513-527. [PMID: 36258099 DOI: 10.1007/s11307-022-01779-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE In vivo detection of transactivation response element DNA binding protein-43 kDa (TDP-43) aggregates through positron emission tomography (PET) would impact the ability to successfully develop therapeutic interventions for a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The purpose of the present study is to evaluate the ability of six tau PET radioligands to bind to TDP-43 aggregates in post-mortem brain tissues from ALS patients. PROCEDURES Herein, we report the first head-to-head evaluation of six tritium labeled isotopologs of tau-targeting PET radioligands, [3H]MK-6240 (a.k.a. florquinitau), [3H]Genentech Tau Probe-1 (GTP-1), [3H]JNJ-64326067(JNJ-067), [3H]CBD-2115, [3H]flortaucipir, and [3H]APN-1607, and their ability to bind to the β-pleated sheet structures of aggregate TDP-43 in post-mortem ALS brain tissues by autoradiography and immunostaining methods. Post-mortem frontal cortex, motor cortex, and cerebellum tissues were evaluated, and binding intensity was aligned with areas of elevated phosphorylated tau (ptau), pTDP-43, and β-amyloid. RESULTS Negligible binding was observed with [3H]MK-6240, [3H]JNJ-067, and [3H]GTP-1. While [3H]CBD-2115 displayed marginal specific binding, this binding did not significantly correlate with the distribution of pTDP-43 and AT8 inclusions. Of the remaining ligands, the distribution of [3H]flortaucipir did not significantly correlate to pTDP-43 pathology; however, specific binding trends to a positive relationship with tau. Finally, [3H]APN-1607 relates most strongly to amyloid load and does not indicate pTDP-43 pathology as confirmed by [3H]PiB distribution in sister sections. CONCLUSIONS Our results demonstrate the prominent nature of mixed pathology in ALS, and do not support the application of [3H]MK-6240, [3H]JNJ-067, [3H]GTP-1, [3H]CBD-2115, [3H]flortaucipir, or [3H]APN-1607 for selective imaging TDP-43 in ALS for clinical research with the currently available in vitro data. Identification of potent and selective radiotracers for TDP-43 remains an ongoing challenge.
Collapse
Affiliation(s)
- Ashley C Knight
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Christopher D Morrone
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Wai Haung Yu
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Paul McQuade
- Takeda Pharmaceutical Company, Ltd, 35 Landsdowne Street, Cambridge, MA, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada.
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Canada.
| |
Collapse
|
22
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
23
|
Li Y, Liu T, Cui M. Recent development in selective Tau tracers for PET imaging in the brain. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhou Y, Kandel N, Bartoli M, Serafim LF, ElMetwally AE, Falkenberg SM, Paredes XE, Nelson CJ, Smith N, Padovano E, Zhang W, Mintz KJ, Ferreira BC, Cilingir EK, Chen J, Shah SK, Prabhakar R, Tagliaferro A, Wang C, Leblanc RM. Structure-Activity Relationship of Carbon Nitride Dots in Inhibiting Tau Aggregation. CARBON 2022; 193:1-16. [PMID: 35463198 PMCID: PMC9030089 DOI: 10.1016/j.carbon.2022.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Due to the numerous failed clinical trials of anti-amyloid drugs, microtubule associated protein tau (MAPT) now stands out as one of the most promising targets for AD therapy. In this study, we report for the first time the structure-dependent MAPT aggregation inhibition of carbon nitride dots (CNDs). CNDs have exhibited great promise as a potential treatment of Alzheimer's disease (AD) by inhibiting the aggregation of MAPT. In order to elucidate its structure-activity relationship, CNDs were separated via column chromatography and five fractions with different structures were obtained that were characterized by multiple spectroscopy methods. The increase of surface hydrophilic functional groups is consistent with the increase of polarity from fraction 1 to 5. Particle sizes (1-2 nm) and zeta potentials (~-20 mV) are similar among five fractions. With the increase of polarity from fraction 1 to 5, their MAPT aggregation inhibition capacity was weakened. This suggests hydrophobic interactions between CNDs and MAPT, validated via molecular dynamics simulations. With a zebrafish blood-brain barrier (BBB) model, CNDs were observed to cross the BBB through passive diffusion. CNDs were also found to inhibit the generation of multiple reactive oxygen species, which is an important contributor to AD pathogenesis.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- C-Dots, LLC, Miami, FL 33136, USA
| | - Nabin Kandel
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Mattia Bartoli
- Center for Sustainable Future, Italian Institute of Technology, Via Livorno 60, Turin 10144, Italy
| | | | | | | | - Xavier E. Paredes
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Nathan Smith
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Elisa Padovano
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Keenan J. Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Sujit K. Shah
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
25
|
Künze G, Kümpfel R, Rullmann M, Barthel H, Brendel M, Patt M, Sabri O. Molecular Simulations Reveal Distinct Energetic and Kinetic Binding Properties of [ 18F]PI-2620 on Tau Filaments from 3R/4R and 4R Tauopathies. ACS Chem Neurosci 2022; 13:2222-2234. [PMID: 35762647 DOI: 10.1021/acschemneuro.2c00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tauopathies are a class of neurodegenerative disorders characterized by the accumulation of tau protein filaments in the brain. On the basis of isoforms with three or four microtubule-binding repeats (3R or 4R) that constitute tau filaments, tauopathies can be divided into 3R, 4R, and 3R/4R tauopathies. [18F]PI-2620 is a tau-positron emission tomography (PET) tracer that detects tau filaments in the 3R/4R tauopathy Alzheimer's disease (AD) and the 4R tauopathies corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) with differential binding characteristics. A multiscale simulation workflow, including molecular docking, molecular dynamics simulation, metadynamics, and Brownian dynamics, was applied to uncover the molecular basis for the different binding properties of [18F]PI-2620 in these tauopathies. The energetically best binding sites of [18F]PI-2620 in the AD-tau filament are located in the C-shaped groove of the filament core structure that is accessible to the outside. The most favorable binding sites in CBD-tau and PSP-tau filaments are localized to cavities in the inner filament core. Sites on the outer surface have higher binding free energies, and interaction of [18F]PI-2620 at these sites was short-lived in the molecular dynamics simulations. Computationally predicted associated rates of [18F]PI-2620 with the groove sites in the AD-tau filament were higher than association rates with the cavity sites in the CBD- and PSP-tau filaments. The results indicate that tau filaments in AD combine favorable energetic and kinetic properties with regard to tracer binding, while the binding of [18F]PI-2620 to filaments in CBD and PSP is kinetically restricted. Our findings reveal that distinct structural, energetic, and kinetic properties of tau filaments from AD, CBD, and PSP govern their interaction with PET tracers, which highlights the possibility to achieve tau isoform specificity in future tracer developments.
Collapse
Affiliation(s)
- Georg Künze
- Institute for Drug Discovery, University of Leipzig, 04103 Leipzig, Germany
| | - Richy Kümpfel
- Institute for Drug Discovery, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig 04103, Germany
| |
Collapse
|
26
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
27
|
Maschio C, Ni R. Amyloid and Tau Positron Emission Tomography Imaging in Alzheimer’s Disease and Other Tauopathies. Front Aging Neurosci 2022; 14:838034. [PMID: 35527737 PMCID: PMC9074832 DOI: 10.3389/fnagi.2022.838034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The detection and staging of Alzheimer’s disease (AD) using non-invasive imaging biomarkers is of substantial clinical importance. Positron emission tomography (PET) provides readouts to uncover molecular alterations in the brains of AD patients with high sensitivity and specificity. A variety of amyloid-β (Aβ) and tau PET tracers are already available for the clinical diagnosis of AD, but there is still a lack of imaging biomarkers with high affinity and selectivity for tau inclusions in primary tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick’s disease (PiD). This review aims to provide an overview of the existing Aβ and tau PET imaging biomarkers and their binding properties from in silico, in vitro, and in vivo assessment. Imaging biomarkers for pathologic proteins are vital for clinical diagnosis, disease staging and monitoring of the potential therapeutic approaches of AD. Off-target binding of radiolabeled tracers to white matter or other neural structures is one confounding factor when interpreting images. To improve binding properties such as binding affinity and to eliminate off-target binding, second generation of tau PET tracers have been developed. To conclude, we further provide an outlook for imaging tauopathies and other pathological features of AD and primary tauopathies.
Collapse
Affiliation(s)
- Cinzia Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Cinzia Maschio,
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
- Ruiqing Ni,
| |
Collapse
|
28
|
Disclosing tau tangles using PET imaging: a pharmacological review of the radiotracers available in 2021. Acta Neurol Belg 2022; 122:263-272. [PMID: 34713414 DOI: 10.1007/s13760-021-01797-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Neurological symptoms depend on the topography of the lesions in the nervous system, hence the importance of brain imaging for neurologists. Neurological treatment, however, depends on the biological nature of the lesions. The development of radiotracers specific for the proteinopathies observed in neurodegenerative disorders is, therefore, crucially important for better understanding the relationships between the pathology and the clinical symptoms, as well as the efficacy of therapeutical interventions. The tau protein is involved in several neurodegenerative disorders, that can be distinguished both biologically and clinically as the type of tau isoforms and filaments observed in brain aggregates, and the brain regions affected differ between tauopathies. Over the past few years, several tracers have been developed for imaging tauopathies with positron emission tomography. The present review aims to compare the binding properties of these tracers, with a specific focus on how these properties might be relevant for neurologists using these biomarkers to characterize the pathology of patients presenting with clinical symptoms suspect of a neurodegenerative disorder.
Collapse
|
29
|
Silva MC, Nandi G, Donovan KA, Cai Q, Berry BC, Nowak RP, Fischer ES, Gray NS, Ferguson FM, Haggarty SJ. Discovery and Optimization of Tau Targeted Protein Degraders Enabled by Patient Induced Pluripotent Stem Cells-Derived Neuronal Models of Tauopathy. Front Cell Neurosci 2022; 16:801179. [PMID: 35317195 PMCID: PMC8934437 DOI: 10.3389/fncel.2022.801179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Accumulation of misfolded, aggregating proteins concurrent with disease onset and progression is a hallmark of neurodegenerative proteinopathies. An important class of these are tauopathies, such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD), associated with accumulation of aberrant forms of tau protein in the brain. Pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization and changes in solubility, cellular redistribution, and spreading. Development and testing of experimental therapeutics that target these pathological tau conformers requires use of cellular models that recapitulate neuronal endogenous, non-heterologous tau expression under genomic and physiological contexts relevant to disease. In this study, we employed FTD-patient induced pluripotent stem cells (iPSC)-derived neurons, expressing a tau variant or mutation, as primary models for driving a medicinal chemistry campaign around tau targeting degrader series. Our screening goal was to establish structure-activity relationships (SAR) for the different chemical series to identify the molecular composition that most efficiently led to tau degradation in human FTD ex vivo neurons. We describe the identification of the lead compound QC-01-175 and follow-up optimization strategies for this molecule. We present three final lead molecules with tau degradation activity in mutant neurons, which establishes potential disease relevance and will drive future studies on specificity and pharmacological properties.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Ghata Nandi
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Quan Cai
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Bethany C. Berry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Radoslaw P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Nathanael S. Gray
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Fleur M. Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Fleur M. Ferguson,
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Stephen J. Haggarty,
| |
Collapse
|
30
|
Goyzueta-Mamani LD, Barazorda-Ccahuana HL, Chávez-Fumagalli MA, F. Alvarez KL, Aguilar-Pineda JA, Vera-Lopez KJ, Lino Cardenas CL. In Silico Analysis of Metabolites from Peruvian Native Plants as Potential Therapeutics against Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030918. [PMID: 35164183 PMCID: PMC8838509 DOI: 10.3390/molecules27030918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
Background: Despite research on the molecular bases of Alzheimer’s disease (AD), effective therapies against its progression are still needed. Recent studies have shown direct links between AD progression and neurovascular dysfunction, highlighting it as a potential target for new therapeutics development. In this work, we screened and evaluated the inhibitory effect of natural compounds from native Peruvian plants against tau protein, amyloid beta, and angiotensin II type 1 receptor (AT1R) pathologic AD markers. Methods: We applied in silico analysis, such as virtual screening, molecular docking, molecular dynamics simulation (MD), and MM/GBSA estimation, to identify metabolites from Peruvian plants with inhibitory properties, and compared them to nicotinamide, telmisartan, and grapeseed extract drugs in clinical trials. Results: Our results demonstrated the increased bioactivity of three plants’ metabolites against tau protein, amyloid beta, and AT1R. The MD simulations indicated the stability of the AT1R:floribundic acid, amyloid beta:rutin, and tau:brassicasterol systems. A polypharmaceutical potential was observed for rutin due to its high affinity to AT1R, amyloid beta, and tau. The metabolite floribundic acid showed bioactivity against the AT1R and tau, and the metabolite brassicasterol showed bioactivity against the amyloid beta and tau. Conclusions: This study has identified molecules from native Peruvian plants that have the potential to bind three pathologic markers of AD.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
- Correspondence: (L.D.G.-M.); (C.L.L.C.)
| | - Haruna Luz Barazorda-Ccahuana
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Miguel Angel Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Karla Lucia F. Alvarez
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Jorge Alberto Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Karin Jannet Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Christian Lacks Lino Cardenas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence: (L.D.G.-M.); (C.L.L.C.)
| |
Collapse
|
31
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Chen Y, Ouyang Q, Li Y, Zeng Q, Dai B, Liang Y, Chen B, Tan H, Cui M. Evaluation of N, O-Benzamide difluoroboron derivatives as near-infrared fluorescent probes to detect β-amyloid and tau tangles. Eur J Med Chem 2021; 227:113968. [PMID: 34752954 DOI: 10.1016/j.ejmech.2021.113968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
β-Amyloid (Aβ) plaques and Tau tangles are cognitive impairment markers vital for diagnosing and preventing Alzheimer's disease (AD). To systematically explore the relationship between the number or position of nitrogen atoms and their optical properties and biological properties, five series of new N, O-coordinated organo-difluoroboron probes were introduced as binding scaffolds for Aβ plaques and Tau tangles. These probes exhibited suitable optical properties for near-infrared (NIR) imaging. Probe 4PmNO-2 (4-((1E,3E)-4-(1,1-difluoro-1H-1λ4,9λ4-pyrimido[1,6-c][1,3,5,2]oxadiazaborinin-3-yl)buta-1,3-dien-1-yl)-N,N-dimethylaniline) displayed the excellent emission maximum (716 nm in PBS), a high quantum yield (61.4% in CH2Cl2), and a high affinity for synthetic Aβ1-42 (Kd = 23.64 ± 1.08 nM) and Tau (K18) aggregates (Kd = 26.38 ± 1.29 nM), as well as for native Aβ plaques and NFTs in the brain tissue from AD patients. 4PmNO-2, with significantly enhanced fluorescence (Aβ1-42, 136 fold; Tau (K18), 96 fold) and the highest initial brain uptake (11.57% ID/g at 2 min) in normal ICR mice, was evaluated further. In vivo NIR fluorescent imaging studies in living Aβ and Tau transgenic mice revealed that it could differentiate healthy and diseased animals. Further ex vivo fluorescent staining studies showed that 4PmNO-2 specifically bound to Aβ plaques and Tau tangles in transgenic mice. In summary, the probe 4PmNO-2 may be a useful near-infrared fluorescence (NIRF) probe for AD biomarkers.
Collapse
Affiliation(s)
- Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qingwen Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qi Zeng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Bin Dai
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Baian Chen
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China; Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China; Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
33
|
Todarwal Y, Gustafsson C, Thi Minh NN, Ertzgaard I, Klingstedt T, Ghetti B, Vidal R, König C, Lindgren M, Nilsson KPR, Linares M, Norman P. Tau Protein Binding Modes in Alzheimer's Disease for Cationic Luminescent Ligands. J Phys Chem B 2021; 125:11628-11636. [PMID: 34643404 PMCID: PMC8558859 DOI: 10.1021/acs.jpcb.1c06019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bi-thiophene-vinylene-benzothiazole (bTVBT4) ligand developed for Alzheimer's disease (AD)-specific detection of amyloid tau has been studied by a combination of several theoretical methods and experimental spectroscopies. With reference to the cryo-EM tau structure of the tau protofilament ( Nature 2017, 547, 185), a periodic model system of the fibril was created, and the interactions between this fibril and bTVBT4 were studied with nonbiased molecular dynamics simulations. Several binding sites and binding modes were identified and analyzed, and the results for the most prevailing fibril site and ligand modes are presented. A key validation of the simulation work is provided by the favorable comparison of the theoretical and experimental absorption spectra of bTVBT4 in solution and bound to the protein. It is conclusively shown that the ligand-protein binding occurs at the hydrophobic pocket defined by the residues Ile360, Thr361, and His362. This binding site is not accessible in the Pick's disease (PiD) fold, and fluorescence imaging of bTVBT4-stained brain tissue samples from patients diagnosed with AD and PiD provides strong support for the proposed tau binding site.
Collapse
Affiliation(s)
- Yogesh Todarwal
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Camilla Gustafsson
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Nghia Nguyen Thi Minh
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstr. 3A, 30167 Hannover, Germany
| | - Ingrid Ertzgaard
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Carolin König
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstr. 3A, 30167 Hannover, Germany
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Mathieu Linares
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.,Laboratory of Organic Electronics, ITN, Linköping University, SE-581 83 Linköping, Sweden.,Scientific Visualization Group, ITN, Linköping University, SE-581 83 Linköping, Sweden
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
34
|
Barredo PA, Fernandez MJF, Ambe CE, Balanay MP. Tau fibril with membrane lipids: Insight from computational modeling and simulations. PLoS One 2021; 16:e0258692. [PMID: 34653235 PMCID: PMC8519458 DOI: 10.1371/journal.pone.0258692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022] Open
Abstract
The microtubule-binding protein tau has been the center of researches concerning Alzheimer's disease (AD) due to several clinical trials of β-amyloid therapies failing recently. The availability of the tau fibril structure from AD brain enables computational modeling studies to calculate binding affinities with different ligands. In this study, the tau paired helical filaments (PHF-Tau) (PDB ID: 5O3L) was used as receptor and interactions with the lipids: 3-alpha-cholesterol; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; and C18:1 sphingomyelin, were explored with molecular docking, molecular dynamics, and natural bond orbital analysis. Docking sites upon solvation of the protein with transferable interatomic potential-3 points reveal the amphipathic nature of PHF-Tau and molecular dynamics simulations show that the embedded phosphocholine at the tail side gives high potential energy values with some amino acids forming H-bond interactions.
Collapse
Affiliation(s)
- Prechiel A. Barredo
- Department of Chemistry, Iligan Institute of Technology, Mindanao State University, Iligan, Republic of the Philippines
| | - Marvin Jose F. Fernandez
- Department of Chemistry, Iligan Institute of Technology, Mindanao State University, Iligan, Republic of the Philippines
| | - Christopher E. Ambe
- Department of Chemistry, Iligan Institute of Technology, Mindanao State University, Iligan, Republic of the Philippines
| | - Mannix P. Balanay
- Department of Chemistry, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
35
|
Ataeinia B, Heidari P. Artificial Intelligence and the Future of Diagnostic and Therapeutic Radiopharmaceutical Development:: In Silico Smart Molecular Design. PET Clin 2021; 16:513-523. [PMID: 34364818 PMCID: PMC8453048 DOI: 10.1016/j.cpet.2021.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Novel diagnostic and therapeutic radiopharmaceuticals are increasingly becoming a central part of personalized medicine. Continued innovation in the development of new radiopharmaceuticals is key to sustained growth and advancement of precision medicine. Artificial intelligence has been used in multiple fields of medicine to develop and validate better tools for patient diagnosis and therapy, including in radiopharmaceutical design. In this review, we first discuss common in silico approaches and focus on their usefulness and challenges in radiopharmaceutical development. Next, we discuss the practical applications of in silico modeling in design of radiopharmaceuticals in various diseases.
Collapse
Affiliation(s)
- Bahar Ataeinia
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Wht 427, Boston, MA 02114, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Wht 427, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Zhou Y, Li J, Nordberg A, Ågren H. Dissecting the Binding Profile of PET Tracers to Corticobasal Degeneration Tau Fibrils. ACS Chem Neurosci 2021; 12:3487-3496. [PMID: 34464084 PMCID: PMC8447187 DOI: 10.1021/acschemneuro.1c00536] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
Alzheimer’s
disease and primary tauopathies are characterized
by the presence of tau pathology in brain. Several tau positron emission
tomography (PET) tracers have been developed and studied in Alzheimer’s
disease (AD), but there is still a lack of 4R-tau specific tracers
for non-AD tauopathies. We here present the first computational study
on the binding profiles of four tau different PET tracers, PI2620,
CBD2115, PM-PBB3, and MK6240, to corticobasal degeneration (CBD) tau.
The in silico results showed different preferences
for the various binding sites on the 4R fibril, and especially an
entry site, a concave site, and a core site showed high binding affinity
to these tracers. The core site and entry site both showed higher
binding affinity than the surface sites, but the tracers were less
likely to enter these sites. PI2620, CBD2115, and PM-PBB3 all showed
higher binding affinities to CBD tau than the 3R/4R tracer MK6240.
The same strategy has also been applied to AD tau fibrils, and significant
differences in selectivity of binding sites were also observed. A
higher binding affinity was observed for CBD2115 and PM-PBB3 to AD
tau compared to PI2620. None of the studied tracers showed a selectivity
for 4R compared to 3R/4R tau. This study clearly shows that identified
binding sites from cryo-EM with low resolution can be further refined
by metadynamics simulations in order to provide atomic resolution
of the binding modes as well as of the thermodynamic properties.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 84, Stockholm, Sweden
- Theme Aging Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
37
|
Phillips JS, Nitchie FJ, Da Re F, Olm CA, Cook PA, McMillan CT, Irwin DJ, Gee JC, Dubroff JG, Grossman M, Nasrallah IM. Rates of longitudinal change in 18 F-flortaucipir PET vary by brain region, cognitive impairment, and age in atypical Alzheimer's disease. Alzheimers Dement 2021; 18:1235-1247. [PMID: 34515411 PMCID: PMC9292954 DOI: 10.1002/alz.12456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 01/12/2023]
Abstract
Introduction Longitudinal positron emission tomography (PET) studies of tau accumulation in Alzheimer's disease (AD) have noted reduced increases or frank decreases in tau signal. We investigated how such reductions related to analytical confounds and disease progression markers in atypical AD. Methods We assessed regional and interindividual variation in longitudinal change on 18F‐flortaucipir PET imaging in 24 amyloid beta (Aβ)+ patients with atypical, early‐onset amnestic or non‐amnestic AD plus 62 Aβ– and 132 Aβ+ Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. Results In atypical AD, 18F‐flortaucipir uptake slowed or declined over time in areas with high baseline signal and older, more impaired individuals. ADNI participants had reduced longitudinal change in early Braak stage regions relative to late‐stage areas. Discussion Results suggested radioligand uptake plateaus or declines in advanced neurodegeneration. Further research should investigate whether results generalize to other radioligands and whether they relate to changes of the radioligand binding site structure or accessibility.
Collapse
Affiliation(s)
| | | | - Fulvio Da Re
- University of Milan-Bicocca Faculty of Medicine and Surgery, Universita degli Studi di Milano-Bicocca Dipartimento di Medicina e Chirurgia, Milan, Italy
| | | | - Philip A Cook
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - David J Irwin
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James C Gee
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
38
|
Kroth H, Oden F, Molette J, Schieferstein H, Gabellieri E, Mueller A, Berndt M, Sreenivasachary N, Serra AM, Capotosti F, Schmitt-Willich H, Hickman D, Pfeifer A, Dinkelborg L, Stephens A. PI-2620 Lead Optimization Highlights the Importance of Off-Target Assays to Develop a PET Tracer for the Detection of Pathological Aggregated Tau in Alzheimer's Disease and Other Tauopathies. J Med Chem 2021; 64:12808-12830. [PMID: 34455780 DOI: 10.1021/acs.jmedchem.1c00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first candidate PI-2014 was tested in healthy controls and subjects with Alzheimer's disease (AD). As PI-2014 displayed off-target binding to monoamine oxidase A (MAO-A), a new lead with improved binding to Tau and decreased MAO-A binding was required. For compound optimization, Tau binding assays based on both human AD brain homogenate and Tau-paired helical filaments were employed. Furthermore, two MAO-A screening assays based on (1) human-recombinant MAO-A and (2) displacement of 2-fluoro-ethyl-harmine from mouse brain homogenate were employed. Removing the N-methyl group from the tricyclic core resulted in compounds displaying improved Tau binding. For the final round of optimization, the cyclic amine substituents were replaced by pyridine derivatives. PI-2620 (2-(2-fluoropyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine) emerged as a best candidate displaying high Tau binding, low MAO-A binding, high brain uptake, and fast and complete brain washout. Furthermore, PI-2620 showed Tau binding on brain sections from corticobasal degeneration, progressive supranuclear palsy, and Pick's disease.
Collapse
Affiliation(s)
- Heiko Kroth
- AC Immune SA, EPFL Innovation Park, Building B, 1015 Lausanne, Switzerland
| | - Felix Oden
- Life Molecular Imaging GmbH, Tegeler Strasse 6-7, 13353 Berlin, Germany
| | - Jerome Molette
- AC Immune SA, EPFL Innovation Park, Building B, 1015 Lausanne, Switzerland
| | | | | | - Andre Mueller
- Life Molecular Imaging GmbH, Tegeler Strasse 6-7, 13353 Berlin, Germany
| | - Mathias Berndt
- Life Molecular Imaging GmbH, Tegeler Strasse 6-7, 13353 Berlin, Germany
| | | | | | | | | | - David Hickman
- AC Immune SA, EPFL Innovation Park, Building B, 1015 Lausanne, Switzerland
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, 1015 Lausanne, Switzerland
| | - Ludger Dinkelborg
- Life Molecular Imaging GmbH, Tegeler Strasse 6-7, 13353 Berlin, Germany
| | - Andrew Stephens
- Life Molecular Imaging GmbH, Tegeler Strasse 6-7, 13353 Berlin, Germany
| |
Collapse
|
39
|
Alpha-Synuclein PET Tracer Development-An Overview about Current Efforts. Pharmaceuticals (Basel) 2021; 14:ph14090847. [PMID: 34577548 PMCID: PMC8466155 DOI: 10.3390/ph14090847] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson’s disease (PD) are manifested by inclusion bodies of alpha-synuclein (α-syn) also called α-synucleinopathies. Detection of these inclusions is thus far only possible by histological examination of postmortem brain tissue. The possibility of non-invasively detecting α-syn will therefore provide valuable insights into the disease progression of α-synucleinopathies. In particular, α-syn imaging can quantify changes in monomeric, oligomeric, and fibrillic α-syn over time and improve early diagnosis of various α-synucleinopathies or monitor treatment progress. Positron emission tomography (PET) is a non-invasive in vivo imaging technique that can quantify target expression and drug occupancies when a suitable tracer exists. As such, novel α-syn PET tracers are highly sought after. The development of an α-syn PET tracer faces several challenges. For example, the low abundance of α-syn within the brain necessitates the development of a high-affinity ligand. Moreover, α-syn depositions are, in contrast to amyloid proteins, predominantly localized intracellularly, limiting their accessibility. Furthermore, another challenge is the ligand selectivity over structurally similar amyloids such as amyloid-beta or tau, which are often co-localized with α-syn pathology. The lack of a defined crystal structure of α-syn has also hindered rational drug and tracer design efforts. Our objective for this review is to provide a comprehensive overview of current efforts in the development of selective α-syn PET tracers.
Collapse
|
40
|
Kawade H, Morise J, Mishra SK, Tsujioka S, Oka S, Kizuka Y. Tissue-Specific Regulation of HNK-1 Biosynthesis by Bisecting GlcNAc. Molecules 2021; 26:5176. [PMID: 34500611 PMCID: PMC8434142 DOI: 10.3390/molecules26175176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023] Open
Abstract
Human natural killer-1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.
Collapse
Affiliation(s)
- Haruka Kawade
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan;
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Sushil K. Mishra
- Glycoscience Center of Research Excellence, The University of Mississippi, Oxford, MS 38677, USA;
| | - Shuta Tsujioka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
41
|
Murugan NA, Nordberg A, Ågren H. Cryptic Sites in Tau Fibrils Explain the Preferential Binding of the AV-1451 PET Tracer toward Alzheimer's Tauopathy. ACS Chem Neurosci 2021; 12:2437-2447. [PMID: 34152739 PMCID: PMC8291571 DOI: 10.1021/acschemneuro.0c00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
![]()
Tauopathies are a subclass of neurodegenerative diseases characterized
by an accumulation of microtubule binding tau fibrils in brain regions.
Diseases such as Alzheimer’s (AD), chronic traumatic encephalopathy
(CTE), Pick’s disease (PiD), and corticobasal degeneration
(CBD) belong to this subclass. Development of tracers which can visualize
and discriminate between different tauopathies is of clinical importance
in the diagnosis of various tauopathies. Currently, several tau tracers
are available for in vivo imaging using a positron emission tomography
(PET) technique. Among these tracers, PBB3 is reported to bind to
various types of tau fibrils with comparable binding affinities.
In contrast, tau tracer AV-1451 is reported to bind to specific types
of tau fibrils (in particular to AD-associated and CTE) with higher
binding affinity and only show nonspecific or weaker binding toward
tau fibrils dominant with 3R isoforms (associated with PiD). The tau
fibrils associated with different tauopathies can adopt different
microstructures with different binding site microenvironments. By
using detailed studies of the binding profiles of tau tracers for
different types of tau fibrils, it may be possible to design tracers
with high selectivity toward a specific tauopathy. The microstructures
for the tau fibrils from patients with AD, PiD, and CTE have recently
been demonstrated by cryogenic electron microscopy (cryo-EM) measurements
allowing structure-based in silico simulations. In the present study,
we have performed a multiscale computational study involving molecular
docking, molecular dynamics, free energy calculations, and QM fragmentation
calculations to understand the binding profiles of tau tracer AV-1451
and its potential use for diagnosis of AD, CTE, and PiD tauopathies.
Our computational study reveals that different affinity binding sites
exist for AV-1451 in the tau fibrils associated with different tauopathies.
The binding affinity of this tracer toward different tau fibrils goes
in this order: PiD > AD > CTE. The interaction energies for different
tau fibril–tracer complexes using the QM fragmentation scheme
also showed the same trend. However, by carrying out molecular dynamics
simulations for the AD-derived tau fibrils in organic solvents, we
found additional high affinity binding sites for AV-1451. The AV-1451
binding profile in these cryptic sites correctly explains the preferential
binding of this tracer toward the AD fibrils when compared with the
PiD fibrils. This study clearly demonstrates having a cryo-EM structure
is still not sufficient for the structure-based tracer discovery for
certain targets, as they may have “potential but hidden”
high affinity binding sites, and we need additional strategies to
identify them.
Collapse
Affiliation(s)
- N. Arul Murugan
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 86 Stockholm, Sweden
- Theme Aging, The Aging Brain, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-75120, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
42
|
Naveh Tassa S, Ben Zichri S, Lacham-Hartman S, Oren O, Slobodnik Z, Eremenko E, Toiber D, Jelinek R, Papo N. A Mechanism for the Inhibition of Tau Neurotoxicity: Studies with Artificial Membranes, Isolated Mitochondria, and Intact Cells. ACS Chem Neurosci 2021; 12:1563-1577. [PMID: 33904703 DOI: 10.1021/acschemneuro.1c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is currently believed that molecular agents that specifically bind to and neutralize the toxic proteins/peptides, amyloid β (Aβ42), tau, and the tau-derived peptide PHF6, hold the key to attenuating the progression of Alzheimer's disease (AD). We thus tested our previously developed nonaggregating Aβ42 double mutant (Aβ42DM) as a multispecific binder for three AD-associated molecules, wild-type Aβ42, the tauK174Q mutant, and a synthetic PHF6 peptide. Aβ42DM acted as a functional inhibitor of these molecules in in vitro assays and in neuronal cell-based models of AD. The double mutant bound both cytotoxic tauK174Q and synthetic PHF6 and protected neuronal cells from the accumulation of tau in cell lysates and mitochondria. Aβ42DM also reduced toxic intracellular levels of calcium and the overall cell toxicity induced by overexpressed tau, synthetic PHF6, Aβ42, or a combination of PHF6and Aβ42. Aβ42DM inhibited PHF6-induced overall mitochondrial dysfunction: In particular, Aβ42DM inhibited PHF6-induced damage to submitochondrial particles (SMPs) and suppressed PHF6-induced elevation of the ζ-potential of inverted SMPs (proxy for the inner mitochondrial membrane, IMM). PHF6 reduced the lipid fluidity of cardiolipin/DOPC vesicles (that mimic the IMM) but not DOPC (which mimics the outer mitochondrial membrane), and this effect was inhibited by Aβ42DM. This inhibition may be explained by the conformational changes in PHF6 induced by Aβ42DM in solution and in membrane mimetics. On this basis, the paper presents a mechanistic explanation for the inhibitory activity of Aβ42DM against Aβ42- and tau-induced membrane permeability and cell toxicity and provides confirmatory evidence for its protective function in neuronal cells.
Collapse
Affiliation(s)
- Segev Naveh Tassa
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shani Ben Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Zeev Slobodnik
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ekaterina Eremenko
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
43
|
Shi Y, Murzin AG, Falcon B, Epstein A, Machin J, Tempest P, Newell KL, Vidal R, Garringer HJ, Sahara N, Higuchi M, Ghetti B, Jang MK, Scheres SHW, Goedert M. Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta Neuropathol 2021; 141:697-708. [PMID: 33723967 PMCID: PMC8043864 DOI: 10.1007/s00401-021-02294-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Tau and Aβ assemblies of Alzheimer’s disease (AD) can be visualized in living subjects using positron emission tomography (PET). Tau assemblies comprise paired helical and straight filaments (PHFs and SFs). APN-1607 (PM-PBB3) is a recently described PET ligand for AD and other tau proteinopathies. Since it is not known where in the tau folds PET ligands bind, we used electron cryo-microscopy (cryo-EM) to determine the binding sites of APN-1607 in the Alzheimer fold. We identified two major sites in the β-helix of PHFs and SFs and a third major site in the C-shaped cavity of SFs. In addition, we report that tau filaments from posterior cortical atrophy (PCA) and primary age-related tauopathy (PART) are identical to those from AD. In support, fluorescence labelling showed binding of APN-1607 to intraneuronal inclusions in AD, PART and PCA. Knowledge of the binding modes of APN-1607 to tau filaments may lead to the development of new ligands with increased specificity and binding activity. We show that cryo-EM can be used to identify the binding sites of small molecules in amyloid filaments.
Collapse
|
44
|
Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
van Oostveen WM, de Lange ECM. Imaging Techniques in Alzheimer's Disease: A Review of Applications in Early Diagnosis and Longitudinal Monitoring. Int J Mol Sci 2021; 22:ijms22042110. [PMID: 33672696 PMCID: PMC7924338 DOI: 10.3390/ijms22042110] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting many individuals worldwide with no effective treatment to date. AD is characterized by the formation of senile plaques and neurofibrillary tangles, followed by neurodegeneration, which leads to cognitive decline and eventually death. INTRODUCTION In AD, pathological changes occur many years before disease onset. Since disease-modifying therapies may be the most beneficial in the early stages of AD, biomarkers for the early diagnosis and longitudinal monitoring of disease progression are essential. Multiple imaging techniques with associated biomarkers are used to identify and monitor AD. AIM In this review, we discuss the contemporary early diagnosis and longitudinal monitoring of AD with imaging techniques regarding their diagnostic utility, benefits and limitations. Additionally, novel techniques, applications and biomarkers for AD research are assessed. FINDINGS Reduced hippocampal volume is a biomarker for neurodegeneration, but atrophy is not an AD-specific measure. Hypometabolism in temporoparietal regions is seen as a biomarker for AD. However, glucose uptake reflects astrocyte function rather than neuronal function. Amyloid-β (Aβ) is the earliest hallmark of AD and can be measured with positron emission tomography (PET), but Aβ accumulation stagnates as disease progresses. Therefore, Aβ may not be a suitable biomarker for monitoring disease progression. The measurement of tau accumulation with PET radiotracers exhibited promising results in both early diagnosis and longitudinal monitoring, but large-scale validation of these radiotracers is required. The implementation of new processing techniques, applications of other imaging techniques and novel biomarkers can contribute to understanding AD and finding a cure. CONCLUSIONS Several biomarkers are proposed for the early diagnosis and longitudinal monitoring of AD with imaging techniques, but all these biomarkers have their limitations regarding specificity, reliability and sensitivity. Future perspectives. Future research should focus on expanding the employment of imaging techniques and identifying novel biomarkers that reflect AD pathology in the earliest stages.
Collapse
Affiliation(s)
- Wieke M. van Oostveen
- Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
| | - Elizabeth C. M. de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-527-6330
| |
Collapse
|
46
|
Krause-Sorio B, Siddarth P, Laird KT, Ercoli L, Narr K, Barrio JR, Small G, Lavretsky H. [ 18F]FDDNP PET binding predicts change in executive function in a pilot clinical trial of geriatric depression. Int Psychogeriatr 2021; 33:149-156. [PMID: 31969201 PMCID: PMC7375908 DOI: 10.1017/s1041610219002047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Geriatric depression often presents with memory and cognitive complaints that are associated with increased risk for Alzheimer's disease (AD). In a parent clinical trial of escitalopram combined with memantine or placebo for geriatric depression and subjective memory complaints, we found that memantine improved executive function and delayed recall performance at 12 months (NCT01902004). In this report, we used positron emission tomography (PET) to assess the relationship between in-vivo amyloid and tau brain biomarkers and clinical and cognitive treatment response. DESIGN In a randomized double-blind placebo-controlled trial, we measured 2-(1-{6-[(2-[F18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene) malononitrile ([18F]FDDNP) binding at baseline and assessed mood and cognitive performance at baseline, posttreatment (6 months), and naturalistic follow-up (12 months). PARTICIPANTS Twenty-two older adults with major depressive disorder and subjective memory complaints completed PET scans and were included in this report. RESULTS Across both treatment groups, higher frontal lobe [18F]FDDNP binding at baseline was associated with improvement in executive function at 6 months (corrected p = .045). This effect was no longer significant at 12 months (corrected p = .12). There was no association of regional [18F]FDDNP binding with change in mood symptoms (corrected p = .2). CONCLUSIONS [18F]FDDNP binding may predict cognitive response to antidepressant treatment. Larger trials are required to further test the value of [18F]FDDNP binding as a biomarker for cognitive improvement with antidepressant treatment in geriatric depression.
Collapse
Affiliation(s)
- Beatrix Krause-Sorio
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Prabha Siddarth
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Kelsey T. Laird
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Linda Ercoli
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Katherine Narr
- Brain Research Institute, 635 Charles E Young Drive South, Los Angeles, CA, 90095, USA
| | - Jorge R. Barrio
- Department of Molecular and Medical Pharmacology, The David Geffen UCLA School of Medicine, Los Angeles, CA 90095
| | - Gary Small
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Helen Lavretsky
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
47
|
Yousefzadeh-Nowshahr E, Winter G, Bohn P, Kneer K, von Arnim CAF, Otto M, Solbach C, Anderl-Straub S, Polivka D, Fissler P, Prasad V, Kletting P, Riepe MW, Higuchi M, Ludolph A, Beer AJ, Glatting G. Comparison of MRI-based and PET-based image pre-processing for quantification of 11C-PBB3 uptake in human brain. Z Med Phys 2021; 31:37-47. [PMID: 33454153 DOI: 10.1016/j.zemedi.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Quantification of tau load using 11C-PBB3-PET has the potential to improve diagnosis of neurodegenerative diseases. Although MRI-based pre-processing is used as a reference method, not all patients have MRI. The feasibility of a PET-based pre-processing for the quantification of 11C-PBB3 tracer was evaluated and compared with the MRI-based method. MATERIALS AND METHODS Fourteen patients with decreased recent memory were examined with 11C-PBB3-PET and MRI. The PET scans were visually assessed and rated as either PBB3(+) or PBB3(-). The image processing based on the PET-based method was validated against the MRI-based approach. The regional uptakes were quantified using the Mesial-temporal/Temporoparietal/Rest of neocortex (MeTeR) regions. SUVR values were calculated by normalizing to the cerebellar reference region to compare both methods within the patient groups. RESULTS Significant correlations were observed between the SUVRs of the MRI-based and the PET-based methods in the MeTeR regions (rMe=0.91; rTe=0.98; rR=0.96; p<0.0001). However, the Bland-Altman plot showed a significant bias between both methods in the subcortical Me region (bias: -0.041; 95% CI: -0.061 to -0.024; p=0.003). As in the MRI-based method, the 11C-PBB3 uptake obtained with the PET-based method was higher for the PBB3(+) group in each of the cortical regions and for the whole brain than for the PBB3(-) group (PET-basedGlobal: 1.11 vs. 0.96; Cliff's Delta (d)=0.68; p=0.04; MRI-basedGlobal: 1.11 vs. 0.97; d=0.70; p=0.03). To differentiate between positive and negative scans, Youden's index estimated the best cut-off of 0.99 from the ROC curve with good accuracy (AUC: 0.88±0.10; 95% CI: 0.67-1.00) and the same sensitivity (83%) and specificity (88%) for both methods. CONCLUSION The PET-based pre-processing method developed to quantify the tau burden with 11C-PBB3 provided comparable SUVR values and effect sizes as the MRI-based reference method. Furthermore, both methods have a comparable discrimination accuracy between PBB3(+) and PBB3(-) groups as assessed by visual rating. Therefore, the presented PET-based method can be used for clinical diagnosis if no MRI image is available.
Collapse
Affiliation(s)
- Elham Yousefzadeh-Nowshahr
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany; Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Peter Bohn
- Department of Nuclear Medicine, Inselspital Bern - University of Bern, Bern, Switzerland
| | - Katharina Kneer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany; Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | | | | | - Dörte Polivka
- Department of Neurology, Ulm University, Ulm, Germany
| | - Patrick Fissler
- Department of Neurology, Ulm University, Ulm, Germany; Psychiatric Services of Thurgovia (Academic Teaching Hospital of Medical University Salzburg), Münsterlingen, Switzerland
| | - Vikas Prasad
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Peter Kletting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany; Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Matthias W Riepe
- Department of Psychiatry and Psychotherapy II, Ulm University, Ulm, Germany
| | - Makoto Higuchi
- National Institute of Radiological Sciences, Chiba, Japan
| | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany; German Center for Neurodegerative Diseases (DZNE), Ulm, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany; Department of Nuclear Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
48
|
Mishra SK, Yamaguchi Y, Higuchi M, Sahara N. Pick's Tau Fibril Shows Multiple Distinct PET Probe Binding Sites: Insights from Computational Modelling. Int J Mol Sci 2020; 22:E349. [PMID: 33396273 PMCID: PMC7796283 DOI: 10.3390/ijms22010349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/27/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023] Open
Abstract
In recent years, it has been realized that the tau protein is a key player in multiple neurodegenerative diseases. Positron emission tomography (PET) radiotracers that bind to tau filaments in Alzheimer's disease (AD) are in common use, but PET tracers binding to tau filaments of rarer, age-related dementias, such as Pick's disease, have not been widely explored. To design disease-specific and tau-selective PET tracers, it is important to determine where and how PET tracers bind to tau filaments. In this paper, we present the first molecular modelling study on PET probe binding to the structured core of tau filaments from a patient with Pick's disease (TauPiD). We have used docking, molecular dynamics simulations, binding-affinity and tunnel calculations to explore TauPiD binding sites, binding modes, and binding energies of PET probes (AV-1451, MK-6240, PBB3, PM-PBB3, THK-5351 and PiB) with TauPiD. The probes bind to TauPiD at multiple surface binding sites as well as in a cavity binding site. The probes show unique surface binding patterns, and, out of them all, PM-PBB3 proves to bind the strongest. The findings suggest that our computational workflow of structural and dynamic details of the tau filaments has potential for the rational design of TauPiD specific PET tracers.
Collapse
Affiliation(s)
- Sushil K. Mishra
- Advance Glycoscience Research Cluster, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Naruhiko Sahara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| |
Collapse
|
49
|
Lemoine L, Ledreux A, Mufson EJ, Perez SE, Simic G, Doran E, Lott I, Carroll S, Bharani K, Thomas S, Gilmore A, Hamlett ED, Nordberg A, Granholm AC. Regional binding of tau and amyloid PET tracers in Down syndrome autopsy brain tissue. Mol Neurodegener 2020; 15:68. [PMID: 33222700 PMCID: PMC7682014 DOI: 10.1186/s13024-020-00414-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Tau pathology is a major age-related event in Down syndrome with Alzheimer's disease (DS-AD). Although recently, several different Tau PET tracers have been developed as biomarkers for AD, these tracers showed different binding properties in Alzheimer disease and other non-AD tauopathies. They have not been yet investigated in tissue obtained postmortem for DS-AD cases. Here, we evaluated the binding characteristics of two Tau PET tracers (3H-MK6240 and 3H-THK5117) and one amyloid (3H-PIB) ligand in the medial frontal gyrus (MFG) and hippocampus (HIPP) in tissue from adults with DS-AD and DS cases with mild cognitive impairment (MCI) compared to sporadic AD. METHODS Tau and amyloid autoradiography were performed on paraffin-embedded sections. To confirm respective ligand targets, adjacent sections were immunoreacted for phospho-Tau (AT8) and stained for amyloid staining using Amylo-Glo. RESULTS The two Tau tracers showed a significant correlation with each other and with AT8, suggesting that both tracers were binding to Tau deposits. 3H-MK6240 Tau binding correlated with AT8 immunostaining but to a lesser degree than the 3H-THK5117 tracer, suggesting differences in binding sites between the two Tau tracers. 3H-THK5117, 3H-MK6240 and 3H-PIB displayed dense laminar binding in the HIPP and MFG in adult DS brains. A regional difference in Tau binding between adult DS and AD was observed suggesting differential regional Tau deposition in adult DS compared to AD, with higher THK binding density in the MFG in adult with DS compared to AD. No significant correlation was found between 3H-PIB and Amylo-Glo staining in adult DS brains suggesting that the amyloid PIB tracer binds to additional sites. CONCLUSIONS This study provides new insights into the regional binding distribution of a first-generation and a second-generation Tau tracer in limbic and neocortical regions in adults with DS, as well as regional differences in Tau binding in adult with DS vs. those with AD. These findings provide new information about the binding properties of two Tau radiotracers for the detection of Tau pathology in adults with DS in vivo and provide valuable data regarding Tau vs. amyloid binding in adult DS compared to AD.
Collapse
Affiliation(s)
- L Lemoine
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - A Ledreux
- Knoebel Institute for Healthy Aging (KIHA), University of Denver, Denver, CO, USA
| | - E J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - S E Perez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - G Simic
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - E Doran
- University of California Irvine, Irvine, CA, USA
| | - I Lott
- University of California Irvine, Irvine, CA, USA
| | - S Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - K Bharani
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - S Thomas
- Knoebel Institute for Healthy Aging (KIHA), University of Denver, Denver, CO, USA
| | - A Gilmore
- Knoebel Institute for Healthy Aging (KIHA), University of Denver, Denver, CO, USA
| | - E D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - A C Granholm
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Knoebel Institute for Healthy Aging (KIHA), University of Denver, Denver, CO, USA
| |
Collapse
|
50
|
Tagai K, Ono M, Kubota M, Kitamura S, Takahata K, Seki C, Takado Y, Shinotoh H, Sano Y, Yamamoto Y, Matsuoka K, Takuwa H, Shimojo M, Takahashi M, Kawamura K, Kikuchi T, Okada M, Akiyama H, Suzuki H, Onaya M, Takeda T, Arai K, Arai N, Araki N, Saito Y, Trojanowski JQ, Lee VMY, Mishra SK, Yamaguchi Y, Kimura Y, Ichise M, Tomita Y, Zhang MR, Suhara T, Shigeta M, Sahara N, Higuchi M, Shimada H. High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer's and Non-Alzheimer's Disease Tauopathies. Neuron 2020; 109:42-58.e8. [PMID: 33125873 DOI: 10.1016/j.neuron.2020.09.042] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/31/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023]
Abstract
A panel of radiochemicals has enabled in vivo positron emission tomography (PET) of tau pathologies in Alzheimer's disease (AD), although sensitive detection of frontotemporal lobar degeneration (FTLD) tau inclusions has been unsuccessful. Here, we generated an imaging probe, PM-PBB3, for capturing diverse tau deposits. In vitro assays demonstrated the reactivity of this compound with tau pathologies in AD and FTLD. We could also utilize PM-PBB3 for optical/PET imaging of a living murine tauopathy model. A subsequent clinical PET study revealed increased binding of 18F-PM-PBB3 in diseased patients, reflecting cortical-dominant AD and subcortical-dominant progressive supranuclear palsy (PSP) tau topologies. Notably, the in vivo reactivity of 18F-PM-PBB3 with FTLD tau inclusion was strongly supported by neuropathological examinations of brains derived from Pick's disease, PSP, and corticobasal degeneration patients who underwent PET scans. Finally, visual inspection of 18F-PM-PBB3-PET images was indicated to facilitate individually based identification of diverse clinical phenotypes of FTLD on a neuropathological basis.
Collapse
Affiliation(s)
- Kenji Tagai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, The Jikei University Graduate School of Medicine, Tokyo 105-8461, Japan
| | - Maiko Ono
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Manabu Kubota
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Soichiro Kitamura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Nara Medical University, Nara 634-8521, Japan
| | - Keisuke Takahata
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Chie Seki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yuhei Takado
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Hitoshi Shinotoh
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Neurology Clinic Chiba, Chiba 263-8555, Japan
| | - Yasunori Sano
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Yasuharu Yamamoto
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Kiwamu Matsuoka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Nara Medical University, Nara 634-8521, Japan
| | - Hiroyuki Takuwa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masafumi Shimojo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Manami Takahashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tatsuya Kikuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Maki Okada
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Haruhiko Akiyama
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hisaomi Suzuki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan; National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Mitsumoto Onaya
- National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Takahiro Takeda
- Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba 260-8712, Japan
| | - Kimihito Arai
- Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba 260-8712, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobuyuki Araki
- Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba 260-8712, Japan
| | - Yuko Saito
- National Center of Neurology and Pathology Brain Bank, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sushil K Mishra
- Glycoscience Group, National University of Ireland, Galway H91 W2TY, Ireland
| | - Yoshiki Yamaguchi
- Laboratory of Pharmaceutical Physical Chemistry, Tohoku Medical and Pharmaceutical University, Miyagi 981-8558, Japan
| | - Yasuyuki Kimura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Masanori Ichise
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | | | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tetsuya Suhara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Department of Psychiatry, The Jikei University Graduate School of Medicine, Tokyo 105-8461, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University Graduate School of Medicine, Tokyo 105-8461, Japan
| | - Naruhiko Sahara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Hitoshi Shimada
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|