1
|
Rathi R, Mehetre NM, Goyal S, Singh I, Huanbutta K, Sangnim T. Advanced Drug Delivery Technologies for Enhancing Bioavailability and Efficacy of Risperidone. Int J Nanomedicine 2024; 19:12871-12887. [PMID: 39640049 PMCID: PMC11618854 DOI: 10.2147/ijn.s492684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Multidisciplinary research has been conducted on novel drug delivery technologies to maximize therapeutic advantages while curtailing undesirable reactions. Drugs under BCS Class II often have a low bioavailability because the dissolution phase limits the absorption efficiency. In this review, risperidone was used as a pharmacological model to examine the impact of solubility enhancement at the primary administration site for such pharmaceuticals. For tackling drug-related pertains like disease diagnostics, therapy, and prophylactic measures at the cellular or molecular levels, implementing nanocarriers in therapeutics has significant potential. The comprehensive pharmaceutical compositions of risperidone nano-microparticles that have been developed to alleviate psychosis are highlighted in the study, which also illustrates potential future developments in such domains.
Collapse
Affiliation(s)
- Ritu Rathi
- Chitkara College of Pharmacy, Chitkara University, Patiala, PB, India
| | | | - Shuchi Goyal
- Chitkara College of Pharmacy, Chitkara University, Patiala, PB, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala, PB, India
| | - Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Tanikan Sangnim
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
2
|
Messer T, Bernardo M, Anta L, Martínez-González J. Risperidone ISM ®: review and update of its usefulness in all phases of schizophrenia. Ther Adv Psychopharmacol 2024; 14:20451253241280046. [PMID: 39421638 PMCID: PMC11483852 DOI: 10.1177/20451253241280046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/15/2024] [Indexed: 10/19/2024] Open
Abstract
One of the most important challenges in the management of patients with schizophrenia is to ensure adherence to antipsychotic treatment. The contribution of long-acting injectables (LAI) is undeniable in this matter, but there are still some unmet medical needs not covered by these drugs (e.g. quick onset of action for patients with acute exacerbation of schizophrenia). This article summarises the pharmacokinetics, efficacy and safety of Risperidone ISM (in situ microparticles). The aim of this review is to provide information about the potential uses of this new LAI formulation of risperidone for the treatment of schizophrenia, contextualising and diving into the published evidence. Risperidone ISM shows a rapid release which allows achieving within 12 h risperidone active moiety levels similar to those observed in the steady-state for oral risperidone treatment, achieving a mean average concentration of 38.63 ng/mL. The plasma concentration of active moiety achieved by Risperidone ISM comes with a predictable dopamine D2 receptor occupancy above 65% throughout the 28-day dosing period, which is accepted as a threshold for the efficacy of the antipsychotic treatment. This can be associated with the positive efficacy findings throughout its clinical development. In the short term, it provides an early and progressive reduction of symptoms in adult patients with acute exacerbation of schizophrenia without the need for loading doses or oral risperidone supplementation, which could contribute to reinforcing the therapeutic alliance between the patient and the psychiatrist. In addition, long-term treatment was effective, safe and well tolerated regardless of the initial disease severity or whether patients were previously treated with Risperidone ISM during an acute exacerbation or switched from stable doses of oral risperidone. Improvement and maintenance of personal and social functioning and health-related quality of life were observed in each setting, respectively. All these findings endorse Risperidone ISM as a useful and valuable treatment for the acute and maintenance management of patients with schizophrenia.
Collapse
Affiliation(s)
- Thomas Messer
- Danuviusklinik GmbH, Pfaffenhofen an der Ilm, Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Akademisches Lehrkrankenhaus der Technischen Universität München, München, Germany
| | - Miquel Bernardo
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), CIBERSAM, ISCIII, Barcelona, Spain
| | - Lourdes Anta
- Medical Department, Laboratorios Farmacéuticos ROVI, S.A., Calle Alfonso Gómez, 45, Madrid 28037, Spain
| | | |
Collapse
|
3
|
Ma S, Ma Q, Hu S, Mo X, Zhu C, Zhang X, Jia Z, Tang L, Jiang L, Cui Y, Chen Z, Hu W, Zhang X. Deletion of histamine H2 receptor in VTA dopaminergic neurons of mice induces behavior reminiscent of mania. Cell Rep 2024; 43:114717. [PMID: 39264811 DOI: 10.1016/j.celrep.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Hyperfunction of the dopamine system has been implicated in manic episodes in bipolar disorders. How dopaminergic neuronal function is regulated in the pathogenesis of mania remains unclear. Histaminergic neurons project dense efferents into the midbrain dopaminergic nuclei. Here, we present mice lacking dopaminergic histamine H2 receptor (H2R) in the ventral tegmental area (VTA) that exhibit a behavioral phenotype mirroring some of the symptoms of mania, including increased locomotor activity and reduced anxiety- and depression-like behavior. These behavioral deficits can be reversed by the mood stabilizers lithium and valproate. H2R deletion in dopaminergic neurons significantly enhances neuronal activity, concurrent with a decrease in the γ-aminobutyric acid (GABA) type A receptor (GABAAR) membrane presence and inhibitory transmission. Conversely, either overexpression of H2R in VTA dopaminergic neurons or treatment of H2R agonist amthamine within the VTA counteracts amphetamine-induced hyperactivity. Together, our results demonstrate the engagement of H2R in reducing VTA dopaminergic activity, shedding light on the role of H2R as a potential target for mania therapy.
Collapse
Affiliation(s)
- Shijia Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Songhui Hu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
| | - Xinlei Mo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xingxian Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zetao Jia
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingjie Tang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yihui Cui
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
4
|
Chen Y, Lu H, He Q, Yang J, Lu H, Han J, Zhu Y, Hu P. Quantification of Microsphere Drug Release by Fluorescence Imaging with the FRET System. Pharmaceutics 2024; 16:1019. [PMID: 39204364 PMCID: PMC11360167 DOI: 10.3390/pharmaceutics16081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Accurately measuring drug and its release kinetics in both in vitro and in vivo environments is crucial for enhancing therapeutic effectiveness while minimizing potential side effects. Nevertheless, the real-time visualization of drug release from microspheres to monitor potential overdoses remains a challenge. The primary objective of this investigation was to employ fluorescence imaging for the real-time monitoring of drug release from microspheres in vitro, thereby simplifying the laborious analysis associated with the detection of drug release. Two distinct varieties of microspheres were fabricated, each encapsulating different drugs within PLGA polymers. Cy5 was selected as the donor, and Cy7 was selected as the acceptor for visualization and quantification of the facilitated microsphere drug release through the application of the fluorescence resonance energy transfer (FRET) principle. The findings from the in vitro experiments indicate a correlation between the FRET fluorescence alterations and the drug release profiles of the microspheres.
Collapse
Affiliation(s)
- Yuying Chen
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (Y.C.); (H.L.); (Q.H.); (J.Y.); (H.L.); (Y.Z.)
| | - Huangjie Lu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (Y.C.); (H.L.); (Q.H.); (J.Y.); (H.L.); (Y.Z.)
| | - Qingwei He
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (Y.C.); (H.L.); (Q.H.); (J.Y.); (H.L.); (Y.Z.)
| | - Jie Yang
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (Y.C.); (H.L.); (Q.H.); (J.Y.); (H.L.); (Y.Z.)
| | - Hong Lu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (Y.C.); (H.L.); (Q.H.); (J.Y.); (H.L.); (Y.Z.)
| | - Jiongming Han
- International School, Jinan University, Guangzhou 511436, China;
| | - Ying Zhu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (Y.C.); (H.L.); (Q.H.); (J.Y.); (H.L.); (Y.Z.)
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (Y.C.); (H.L.); (Q.H.); (J.Y.); (H.L.); (Y.Z.)
| |
Collapse
|
5
|
Sommerfeld-Klatta K, Jiers W, Rzepczyk S, Nowicki F, Łukasik-Głębocka M, Świderski P, Zielińska-Psuja B, Żaba Z, Żaba C. The Effect of Neuropsychiatric Drugs on the Oxidation-Reduction Balance in Therapy. Int J Mol Sci 2024; 25:7304. [PMID: 39000411 PMCID: PMC11242277 DOI: 10.3390/ijms25137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The effectiveness of available neuropsychiatric drugs in the era of an increasing number of patients is not sufficient, and the complexity of neuropsychiatric disease entities that are difficult to diagnose and therapeutically is increasing. Also, discoveries about the pathophysiology of neuropsychiatric diseases are promising, including those initiating a new round of innovations in the role of oxidative stress in the etiology of neuropsychiatric diseases. Oxidative stress is highly related to mental disorders, in the treatment of which the most frequently used are first- and second-generation antipsychotics, mood stabilizers, and antidepressants. Literature reports on the effect of neuropsychiatric drugs on oxidative stress are divergent. They are starting with those proving their protective effect and ending with those confirming disturbances in the oxidation-reduction balance. The presented publication reviews the state of knowledge on the role of oxidative stress in the most frequently used therapies for neuropsychiatric diseases using first- and second-generation antipsychotic drugs, i.e., haloperidol, clozapine, risperidone, olanzapine, quetiapine, or aripiprazole, mood stabilizers: lithium, carbamazepine, valproic acid, oxcarbazepine, and antidepressants: citalopram, sertraline, and venlafaxine, along with a brief pharmacological characteristic, preclinical and clinical studies effects.
Collapse
Affiliation(s)
- Karina Sommerfeld-Klatta
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Wiktoria Jiers
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Szymon Rzepczyk
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Filip Nowicki
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Magdalena Łukasik-Głębocka
- Department of Emergency Medicine, Poznań University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznań, Poland
| | - Paweł Świderski
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Barbara Zielińska-Psuja
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Zbigniew Żaba
- Department of Emergency Medicine, Poznań University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznań, Poland
| | - Czesław Żaba
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
6
|
Bondrescu M, Dehelean L, Farcas SS, Papava I, Nicoras V, Mager DV, Grecescu AE, Podaru PA, Andreescu NI. COMT and Neuregulin 1 Markers for Personalized Treatment of Schizophrenia Spectrum Disorders Treated with Risperidone Monotherapy. Biomolecules 2024; 14:777. [PMID: 39062492 PMCID: PMC11275090 DOI: 10.3390/biom14070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Pharmacogenetic markers are current targets for the personalized treatment of psychosis. Limited data exist on COMT and NRG1 polymorphisms in relation to risperidone treatment. This study focuses on the impact of COMT rs4680 and NRG1 (rs35753505, rs3924999) polymorphisms on risperidone treatment in schizophrenia spectrum disorders (SSDs). This study included 103 subjects with SSD treated with risperidone monotherapy. COMT rs4680, NRG1 rs35753505, and rs3924999 were analyzed by RT-PCR. Participants were evaluated via the Positive and Negative Syndrome Scale (PANSS) after six weeks. Socio-demographic and clinical characteristics were collected. COMT rs4680 genotypes significantly differed in PANSS N scores at admission: AG>AA genotypes (p = 0.03). After six weeks of risperidone, PANSS G improvement was AA>GG (p = 0.05). The PANSS total score was as follows: AA>AG (p = 0.04), AA>GG (p = 0.02). NRG1 rs35753504 genotypes significantly differed across educational levels, with CC>CT (p = 0.02), and regarding the number of episodes, TT>CC, CT>CC (p = 0.01). The PANSS total score after six weeks of treatment showed a better improvement for TT
Collapse
Affiliation(s)
- Mariana Bondrescu
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.B.); (I.P.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania; (V.N.); (D.V.M.); (A.E.G.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Liana Dehelean
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.B.); (I.P.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania; (V.N.); (D.V.M.); (A.E.G.)
| | - Simona Sorina Farcas
- Discipline of Medical Genetics, Department of Microscopic Morphology, Center of Genomic Medicine “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (S.S.F.); (N.I.A.)
| | - Ion Papava
- Department of Neurosciences-Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (M.B.); (I.P.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania; (V.N.); (D.V.M.); (A.E.G.)
| | - Vlad Nicoras
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania; (V.N.); (D.V.M.); (A.E.G.)
| | - Dana Violeta Mager
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania; (V.N.); (D.V.M.); (A.E.G.)
| | - Anca Eliza Grecescu
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, Liviu Rebreanu 156, 300723 Timisoara, Romania; (V.N.); (D.V.M.); (A.E.G.)
| | - Petre Adrian Podaru
- Faculty of Mathematics and Informatics, West University of Timisoara, Vasile Parvan 4, 300223 Timisoara, Romania;
| | - Nicoleta Ioana Andreescu
- Discipline of Medical Genetics, Department of Microscopic Morphology, Center of Genomic Medicine “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (S.S.F.); (N.I.A.)
| |
Collapse
|
7
|
Chamera K, Curzytek K, Kamińska K, Leśkiewicz M, Basta-Kaim A. Prenatal Immune Challenge Differentiates the Effect of Aripiprazole and Risperidone on CD200-CD200R and CX3CL1-CX3CR1 Dyads and Microglial Polarization: A Study in Organotypic Cortical Cultures. Life (Basel) 2024; 14:721. [PMID: 38929704 PMCID: PMC11205240 DOI: 10.3390/life14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the Cd200-Cd200r and Cx3cl1-Cx3cr1 axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons. Additionally, we evaluated the impact of these drugs on microglial pro- and anti-inflammatory markers (Cd40, Il-1β, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-β) and cytokine release (IL-6, IL-10). The research was executed in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those exposed to maternal immune activation (MIA OCCs), which allows for the exploration of schizophrenia-like disturbances in animals. All experiments were performed under basal conditions and after additional stimulation with lipopolysaccharide (LPS), following the "two-hit" hypothesis of schizophrenia. We found that MIA diminished the mRNA level of Cd200r and affected the OCCs' response to additional LPS exposure in terms of this parameter. LPS downregulated the Cx3cr1 expression and profoundly changed the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Risperidone increased Cd200 expression in MIA OCCs, while aripiprazole treatment elevated the gene levels of the Cx3cl1-Cx3cr1 dyad in control OCCs. The antipsychotics limited the LPS-generated increase in the expression of proinflammatory factors (Il-1β and Il-6) and enhanced the mRNA levels of anti-inflammatory components (Cd206 and Tgf-β) of microglial polarization, mostly in the absence of the MIA procedure. Finally, we observed a more pronounced modulating impact of aripiprazole on the expression of pro- and anti-inflammatory cytokines when compared to risperidone in MIA OCCs. In conclusion, our data suggest that MIA might influence microglial activation and crosstalk of microglial cells with neurons, whereas aripiprazole and risperidone could beneficially affect these changes in OCCs.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| |
Collapse
|
8
|
Wang W, Wang X, Dong Y, Walling DP, Liu P, Liu W, Shi Y, Sun K. Population Pharmacokinetic Analysis to Support and Facilitate Switching from Risperidone Formulations to Rykindo in Patients with Schizophrenia. Neurol Ther 2024; 13:355-372. [PMID: 38244179 PMCID: PMC10951188 DOI: 10.1007/s40120-024-00578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
INTRODUCTION RYKINDO® (Rykindo) is a novel, long-acting injectable risperidone formulation administered biweekly (Q2W) through intramuscular gluteal injection for the treatment of schizophrenia in adult patients. This analysis was conducted to demonstrate that the clinical outcomes of Rykindo are equivalent to those of RISPERDAL CONSTA® (Consta; Q2W), and to establish a dosing methodology to switch from Consta to Rykindo, as well as to introduce Rykindo to patients who are currently on oral RISPERDAL® (Risperdal). METHODS Population pharmacokinetic (PK) models for Rykindo and Consta were developed using a nonlinear mixed-effects model with the data from phase 1 studies. A model-based simulation was also conducted using NONMEM. RESULTS The PK profiles of Rykindo and Consta were adequately represented by a one-compartment model with an immediate release followed by an intermediate and third main release. Drug release of Rykindo was faster than for Consta, reaching steady state approximately 2-3 weeks earlier. The exposures of the active moiety of Rykindo and Consta were comparable at steady state. Model-based simulation indicated that switching from Consta to Rykindo requires administration of the first Rykindo injection within 4-5 weeks following the last Consta injection. For patients taking Risperdal, introducing Rykindo with 1 week of Risperdal supplemental for once-daily dosing (QD) can achieve comparable or superior exposure to that of Consta with 3 weeks of oral QD supplements. A dosing window of ± 3 days for Rykindo was recommended. CONCLUSIONS This established approach provides guidance to physicians to initiate Rykindo therapy in adult patients with schizophrenia. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT02055287, NCT02186769 and NCT02091388.
Collapse
Affiliation(s)
- Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
- Research and Development Center, Luye Pharma, Yantai, Shandong, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Yantai, Shandong, China.
| | | | - Ying Dong
- Global Clinical Development, Luye Pharma (US), Ltd., Princeton, NJ, USA
| | | | - Pinglan Liu
- Research and Development Center, Luye Pharma, Yantai, Shandong, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Yantai, Shandong, China
| | - Wanhui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
- Research and Development Center, Luye Pharma, Yantai, Shandong, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Yantai, Shandong, China
| | - Yanan Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
- Research and Development Center, Luye Pharma, Yantai, Shandong, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Yantai, Shandong, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
- Research and Development Center, Luye Pharma, Yantai, Shandong, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Yantai, Shandong, China.
| |
Collapse
|
9
|
Shilbayeh SAR, Adeen IS, Alhazmi AS, Aljurayb H, Altokhais RS, Alhowaish N, Aldilaijan KE, Kamal M, Alnakhli AM. The polymorphisms of candidate pharmacokinetic and pharmacodynamic genes and their pharmacogenetic impacts on the effectiveness of risperidone maintenance therapy among Saudi children with autism. Eur J Clin Pharmacol 2024:10.1007/s00228-024-03658-w. [PMID: 38421437 DOI: 10.1007/s00228-024-03658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Antipsychotics, including risperidone (RIS), are frequently indicated for various autism spectrum disorder (ASD) manifestations; however, "actionable" PGx testing in psychiatry regarding antipsychotic dosing and selection has limited applications in routine clinical practice because of the lack of standard guidelines, mostly due to the inconsistency and scarcity of genetic variant data. The current study is aimed at examining the association of RIS effectiveness, according to ABC-CV and CGI indexes, with relevant pharmacokinetics (PK) and pharmacodynamics (PD) genes. METHODS Eighty-nine ASD children who received a consistent RIS-based regimen for at least 8 weeks were included. The Axiom PharmacoFocus Array technique was employed to generate accurate star allele-predicted phenotypes of 3 PK genes (CYP3A4, CYP3A5, and CYP2D6). Genotype calls for 5 candidate PD receptor genes (DRD1, DRD2, DRD3, HTR2C, and HTR2A) were obtained and reported as wild type, heterozygous, or homozygous for 11 variants. RESULTS Based on the ABC total score, 42 (47.2%) children were classified as responders, while 47 (52.8%) were classified as nonresponders. Multivariate logistic regression analyses, adjusted for nongenetic factors, suggested nonsignificant impacts of the star allele-predicted phenotypes of all 3 PK genes on improvement in ASD symptoms or CGI scores. However, significant positive or negative associations of certain PD variants involved in dopaminergic and serotonergic pathways were observed with specific ASD core and noncore symptom subdomains. Our significant polymorphism findings, mainly those in DRD2 (rs1800497, rs1799978, and rs2734841), HTR2C (rs3813929), and HTR2A (rs6311), were largely consistent with earlier findings (predictors of RIS effectiveness in adult schizophrenia patients), confirming their validity for identifying ASD children with a greater likelihood of core symptom improvement compared to noncarriers/wild types. Other novel findings of this study, such as significant improvements in DRD3 rs167771 carriers, particularly in ABC total and lethargy/social withdrawal scores, and DRD1 rs1875964 homozygotes and DRD2 rs1079598 wild types in stereotypic behavior, warrant further verification in biochemical and clinical studies to confirm their feasibility for inclusion in a PGx panel. CONCLUSION In conclusion, we provide evidence of potential genetic markers involved in clinical response variability to RIS therapy in ASD children. However, replication in prospective samples with greater ethnic diversity and sample sizes is necessary.
Collapse
Affiliation(s)
- Sireen Abdul Rahim Shilbayeh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Iman Sharaf Adeen
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Shawqi Alhazmi
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Saud Medical City, Riyadh, Saudi Arabia
| | - Haya Aljurayb
- Molecular Pathology Laboratory, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rana Saad Altokhais
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nourah Alhowaish
- Department of Prevention and Research, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Khawlah Essa Aldilaijan
- Health Sciences Research Center, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mostafa Kamal
- Department of Life Science Application Support, Gulf Scientific Corporation, Riyadh, Saudi Arabia
| | - Anwar Mansour Alnakhli
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Biswas M, Vanwong N, Sukasem C. Pharmacogenomics and non-genetic factors affecting drug response in autism spectrum disorder in Thai and other populations: current evidence and future implications. Front Pharmacol 2024; 14:1285967. [PMID: 38375208 PMCID: PMC10875059 DOI: 10.3389/fphar.2023.1285967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Autism spectrum disorder (ASD) may affect family and social life profoundly. Although there is no selective pharmacotherapy for ASD, the Food and Drug Administration (FDA) has recommended risperidone/aripiprazole to treat the associated symptoms of ASD, such as agitation/irritability. Strong associations of some pharmacokinetic/pharmacodynamic gene variants, e.g., CYP2D6 and DRD2, with risperidone-induced hyperprolactinemia have been found in children with ASD, but such strong genetic associations have not been found directly for aripiprazole in ASD. In addition to pharmacogenomic (PGx) factors, drug-drug interactions (DDIs) and possibly cumulative effects of DDIs and PGx may affect the safety or effectiveness of risperidone/aripiprazole, which should be assessed in future clinical studies in children with ASD. Reimbursement, knowledge, and education of healthcare professionals are the key obstacles preventing the successful implementation of ASD pharmacogenomics into routine clinical practice. The preparation of national and international PGx-based dosing guidelines for risperidone/aripiprazole based on robust evidence may advance precision medicine for ASD.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Mueang, Thailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Alvarez-Herrera S, Rosel Vales M, Pérez-Sánchez G, Becerril-Villanueva E, Flores-Medina Y, Maldonado-García JL, Saracco-Alvarez R, Escamilla R, Pavón L. Risperidone Decreases Expression of Serotonin Receptor-2A (5-HT2A) and Serotonin Transporter (SERT) but Not Dopamine Receptors and Dopamine Transporter (DAT) in PBMCs from Patients with Schizophrenia. Pharmaceuticals (Basel) 2024; 17:167. [PMID: 38399382 PMCID: PMC10892557 DOI: 10.3390/ph17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
Dopamine and serotonin receptors and transporters play an essential role in the pathophysiology of schizophrenia; changes in their expression have been reported in neurons and leukocytes. Each antipsychotic induces a unique pattern in leukocyte function and phenotype. However, the use of polytherapy to treat schizophrenia makes it challenging to determine the specific effects of risperidone on peripheral blood mononuclear cells (PBMCs). The aim of this study was to evaluate the changes in the expression of D3, D5, DAT, 5-HT2A, and SERT in PBMCs from healthy volunteers (HV), drug-naive patients with schizophrenia (PWS), drug-free PWS, and PWS treated with risperidone for up to 40 weeks using quantitative PCR. Our study revealed elevated mRNA levels of D3, DAT, 5-HT2A, and SERT in unmedicated PWS. Treatment with risperidone led to a reduction only in the expression of 5-HT2A and SERT. Furthermore, we observed a moderate correlation between 5-HT2A expression and the positive and negative syndrome scale (PANSS), as well as SERT expression and PANSS scale. We also found a moderate correlation between 5-HT2A and SERT expression and the positive subscale. The duration of risperidone consumption had a significant negative correlation with the expression of 5-HT2A and SERT. Our study introduces the measurement of 5-HT2A and SERT expression in PBMCs as a useful parameter for assessing the response to risperidone in PWS.
Collapse
Affiliation(s)
- Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Mauricio Rosel Vales
- Clínica de Esquizofrenia, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Yvonne Flores-Medina
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (Y.F.-M.); (R.S.-A.)
| | - José Luis Maldonado-García
- Departamemto de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Departamemto de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ricardo Saracco-Alvarez
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (Y.F.-M.); (R.S.-A.)
| | - Raúl Escamilla
- Subdirección de Consulta Externa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| |
Collapse
|
12
|
Guo Z, Chen C, Deng S, Lu H, Ni X, Zhang M, Huang S, Wen Y, Shang D, Wang Z. Factors influencing concentrations of risperidone and 9-hydroxyrisperidone in psychiatric outpatients taking immediate-release formulations of risperidone. Hum Psychopharmacol 2024; 39:e2886. [PMID: 37983624 DOI: 10.1002/hup.2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVES To analyze the factors affecting the concentrations of the active moiety of risperidone (RIS) and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) in psychiatric outpatients taking immediate-release formulations. METHODS This is a retrospective study on the therapeutic drug monitoring (TDM) data regarding RIS and 9-OH-RIS in adult psychiatric outpatients. TDM data with simultaneous RIS and 9-OH-RIS monitoring from March 2018 to February 2020 and relevant medical records (including dosage, dosage form, sex, age, diagnosis, combined medication, and comorbid disease) from 399 adult psychiatric outpatients (223 males and 176 females) were included in this study. RESULTS The daily dose of RIS was 5.56 ± 2.05 mg, the concentration of total active moiety was 42.35 ± 25.46 ng/mL, and the dose-adjusted plasma concentration (C/D) of active moiety was 7.83 ± 3.87 (ng/ml)/(mg/day). Dose, sex, and age were identified as important factors influencing concentrations of RIS and 9-OH-RIS in adult psychiatric outpatients. CONCLUSIONS Individualized medication adjustments should be made according to the specific conditions of psychiatric outpatients. The findings strongly support the use of TDM to guide dosing decisions in psychiatric outpatients taking RIS.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Chunxiu Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
13
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
14
|
de Miguel L, Ballester P, Egoavil C, Sánchez-Ocaña ML, García-Muñoz AM, Cerdá B, Zafrilla P, Ramos E, Peiró AM. Pharmacogenetics May Prevent Psychotropic Adverse Events in Autism Spectrum Disorder: An Observational Pilot Study. Pharmaceuticals (Basel) 2023; 16:1496. [PMID: 37895967 PMCID: PMC10610471 DOI: 10.3390/ph16101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Up to 73% of individuals with autism spectrum disorder (ASD) and intellectual disability (ID) currently have prescriptions for psychotropic drugs. This is explained by a higher prevalence of medical and psychiatric chronic comorbidities, which favors polypharmacy, increasing the probability of the appearance of adverse events (AEs). These could be a preventable cause of harm to patients with ASD and an unnecessary waste of healthcare resources. OBJECTIVE To study the impact of pharmacogenetic markers on the prevention of AE appearance in a population with ASD and ID. METHODS This is a cross-sectional, observational study (n = 118, 72 participants completed all information) in the ASD population. Sociodemographic and pharmacological data were gathered. The Udvalg for Kliniske Undersøgelser Scale (UKU Scale) was used to identify AEs related to the use of psychotropic medication. Polymorphisms of DOP2, ABCB1, and COMT were genotyped and correlated with the AE to find candidate genes. Furthermore, a review of all medications assessed in a clinical trial for adults with autism was performed to enrich the search for potential pharmacogenetic markers, keeping in mind the usual medications. RESULTS The majority of the study population were men (75%) with multiple comorbidities and polypharmacy, the most frequently prescribed drugs were antipsychotics (69%); 21% of the participants had four or more AEs related to psychotropic drugs. The most common were "Neurological" and" Psychiatric" (both 41%). Statistical analysis results suggested a significant correlation between the neurological symptoms and the DOP2 genotype, given that they are not equally distributed among its allelic variants. The final review considered 19 manuscripts of medications for adults with ASD, and the confirmed genetic markers for those medications were consulted in databases. CONCLUSION A possible correlation between neurologic AEs and polymorphisms of DOP2 was observed; therefore, studying this gene could contribute to the safety of this population's prescriptions. The following studies are underway to maximize statistical power and have a better representation of the population.
Collapse
Affiliation(s)
- Laura de Miguel
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Pura Ballester
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Cecilia Egoavil
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology Unit, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | - María Luisa Sánchez-Ocaña
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Ana María García-Muñoz
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Begoña Cerdá
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Pilar Zafrilla
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Enrique Ramos
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Ana M. Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
- Clinical Pharmacology Unit, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| |
Collapse
|
15
|
Zhu X, Wang CL, Yu JF, Weng J, Han B, Liu Y, Tang X, Pan B. Identification of immune-related biomarkers in peripheral blood of schizophrenia using bioinformatic methods and machine learning algorithms. Front Cell Neurosci 2023; 17:1256184. [PMID: 37841288 PMCID: PMC10568181 DOI: 10.3389/fncel.2023.1256184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Schizophrenia is a group of severe neurodevelopmental disorders. Identification of peripheral diagnostic biomarkers is an effective approach to improving diagnosis of schizophrenia. In this study, four datasets of schizophrenia patients' blood or serum samples were downloaded from the GEO database and merged and de-batched for the analyses of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WCGNA). The WGCNA analysis showed that the cyan module, among 9 modules, was significantly related to schizophrenia, which subsequently yielded 317 schizophrenia-related key genes by comparing with the DEGs. The enrichment analyses on these key genes indicated a strong correlation with immune-related processes. The CIBERSORT algorithm was adopted to analyze immune cell infiltration, which revealed differences in eosinophils, M0 macrophages, resting mast cells, and gamma delta T cells. Furthermore, by comparing with the immune genes obtained from online databases, 95 immune-related key genes for schizophrenia were screened out. Moreover, machine learning algorithms including Random Forest, LASSO, and SVM-RFE were used to further screen immune-related hub genes of schizophrenia. Finally, CLIC3 was found as an immune-related hub gene of schizophrenia by the three machine learning algorithms. A schizophrenia rat model was established to validate CLIC3 expression and found that CLIC3 levels were reduced in the model rat plasma and brains in a brain-regional dependent manner, but can be reversed by an antipsychotic drug risperidone. In conclusion, using various bioinformatic and biological methods, this study found an immune-related hub gene of schizophrenia - CLIC3 that might be a potential diagnostic biomarker and therapeutic target for schizophrenia.
Collapse
Affiliation(s)
- Xiaoli Zhu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | | | - Jian-feng Yu
- Tongzhou District Hospital of TCM, Nantong, China
| | - Jianjun Weng
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Bing Han
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University Medical College, Yangzhou, China
| | - Bo Pan
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| |
Collapse
|
16
|
da Silva JF, Honorato MM, Cremaschi RMDC, Coelho FMS. Efficacy and tolerance profile of risperidone use in people with autism spectrum disorder in a clinic in Santarém, Pará, Brazil. A retrospective study. J Neurosci Rural Pract 2023; 14:308-312. [PMID: 37181171 PMCID: PMC10174143 DOI: 10.25259/jnrp_53_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/18/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives This study aimed to obtain the profile of efficacy and tolerance of risperidone in the treatment of people with autism spectrum disorder. Materials and Methods This research was a cross-sectional and retrospective study. The medical records of 100 patients diagnosed with ASD according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) were analyzed and measures of central tendency and correlation between variables such as gender, age at diagnosis, symptoms, daily dose, comorbidities, polytherapy, adverse drug effects, and outcome (improvement, worsening, and drug discontinuation) were calculated using Pearson's R test with a level of statistical significance P < 0.05. Results The male gender was the most affected, corresponding to 80% of the participants. The mean age at diagnosis was 6.88 ± 6.24 and the mean dose was 1.89 ± 1.68 mg/day. The use of risperidone for patients with aggressiveness, hyperactivity, insomnia, or self-harm improved in 76% of patients and adverse effects were reported in 27% of cases. The presence of self-harm implied lower chances of improvement (P = 0.05/r = -0.20). Adverse effects were strong predictors of discontinuation (P = 0.01/r = 0.39), and epileptic patients were more likely to have them (P = 0.02/r = 0.20). Male gender was associated with dosages lower than 2 mg/day (P = 0.05/r = 0.23). Conclusion Risperidone is a good option in the management of secondary symptoms of ASD, generally requiring low doses and presenting an acceptable profile of adverse effects. The age of diagnosis does not affect the drug's efficiency, but it can make the management of ASD difficult.
Collapse
Affiliation(s)
- João Ferreira da Silva
- Center of Biological and Health Sciences, State University of Pará, Santarém, São Paulo, Brazil
| | - Marcos Manoel Honorato
- Center of Biological and Health Sciences, State University of Pará, Santarém, São Paulo, Brazil
| | | | | |
Collapse
|
17
|
Jee JP, Kim YH, Lee JH, Min KA, Jang DJ, Jin SG, Cho KH. Paliperidone–Cation Exchange Resin Complexes of Different Particle Sizes for Controlled Release. Pharmaceutics 2023; 15:pharmaceutics15030932. [PMID: 36986792 PMCID: PMC10055564 DOI: 10.3390/pharmaceutics15030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
This study aimed to develop electrolyte complexes of paliperidone (PPD) with various particle sizes using cation-exchange resins (CERs) to enable controlled release (both immediate and sustained release). CERs of specific particle size ranges were obtained by sieving commercial products. PPD–CER complexes (PCCs) were prepared in an acidic solution of pH 1.2 and demonstrated a high binding efficiency (>99.0%). PCCs were prepared with CERs of various particle sizes (on average, 100, 150, and 400 μm) at the weight ratio of PPD to CER (1:2 and 1:4). Physicochemical characterization studies such as Fourier-transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy between PCCs (1:4) and physical mixtures confirmed PCC formation. In the drug release test, PPD alone experienced a complete drug release from PCC of >85% within 60 min and 120 min in pH 1.2 and pH 6.8 buffer solutions, respectively. Alternatively, PCC (1:4) prepared with CER (150 μm) formed spherical particles and showed an almost negligible release of PPD in pH 1.2 buffer (<10%, 2 h) while controlling the release in pH 6.8 buffer (>75%, 24 h). The release rate of PPD from PCCs was reduced with the increase in CER particle size and CER ratio. The PCCs explored in this study could be a promising technology for controlling the release of PPD in a variety of methods.
Collapse
Affiliation(s)
- Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Young Hoon Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
| | - Jun Hak Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
| | - Dong-Jin Jang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence: (S.G.J.); (K.H.C.); Tel.: +82-41-550-3558 (S.G.J.); +82-55-320-3883 (K.H.C.)
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
- Correspondence: (S.G.J.); (K.H.C.); Tel.: +82-41-550-3558 (S.G.J.); +82-55-320-3883 (K.H.C.)
| |
Collapse
|
18
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Lippi M, Fanelli G, Fabbri C, De Ronchi D, Serretti A. The dilemma of polypharmacy in psychosis: is it worth combining partial and full dopamine modulation? Int Clin Psychopharmacol 2022; 37:263-275. [PMID: 35815937 PMCID: PMC9521590 DOI: 10.1097/yic.0000000000000417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Antipsychotic polypharmacy in psychotic disorders is widespread despite international guidelines favoring monotherapy. Previous evidence indicates the utility of low-dose partial dopamine agonist (PDAs) add-ons to mitigate antipsychotic-induced metabolic adverse effects or hyperprolactinemia. However, clinicians are often concerned about using PDAs combined with high-potency, full dopaminergic antagonists (FDAs) due to the risk of psychosis relapse. We, therefore, conducted a literature review to find studies investigating the effects of combined treatment with PDAs (i.e. aripiprazole, cariprazine and brexpiprazole) and FDAs having a strong D 2 receptor binding affinity. Twenty studies examining the combination aripiprazole - high-potency FDAs were included, while no study was available on combinations with cariprazine or brexpiprazole. Studies reporting clinical improvement suggested that this may require a relatively long time (~11 weeks), while studies that found symptom worsening observed this happening in a shorter timeframe (~3 weeks). Patients with longer illness duration who received add-on aripiprazole on ongoing FDA monotherapy may be at greater risk for symptomatologic worsening. Especially in these cases, close clinical monitoring is therefore recommended during the first few weeks of combined treatment. These indications may be beneficial to psychiatrists who consider using this treatment strategy. Well-powered randomized clinical trials are needed to derive more solid clinical recommendations.
Collapse
Affiliation(s)
- Matteo Lippi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Yousefsani BS, Salimi A, Imani F, Ramezani M, Shirani K, Seydi E, Pourahmad J. Risperidone Toxicity on Human Blood Lymphocytes in Nano molar Concentrations. Drug Res (Stuttg) 2022; 72:343-349. [PMID: 35605969 DOI: 10.1055/a-1830-8701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Risperidone is an atypical antipsychotic drug used for the pharmacotherapy of psychiatric disorders. Some reports indicate that risperidone is toxic to various systems of the body, including the immune system. This study evaluated the toxicity effect of risperidone on human blood lymphocytes. To achieve this aim, lymphocytes were isolated using Ficoll paque plus. The results showed that risperidone (12, 24 and 48 nM) causes toxicity in human blood lymphocytes by increasing the level of intracellular reactive oxygen species (ROS), damage to lysosomal membrane, the collapse of the mitochondrial membrane potential (MMP), and increased extracellular oxidized glutathione (GSSG). Also, exposure of human blood lymphocytes to risperidone is associated with a decrease in intracellular glutathione (GSH) levels. Finally, it could be concluded that oxidative stress is one of the mechanisms of risperidone-induced toxicity in human blood lymphocytes.
Collapse
Affiliation(s)
- Bahareh Sadat Yousefsani
- Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.,School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farnaz Imani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Ramezani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Shirani
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Stojkovic M, Radmanovic B, Jovanovic M, Janjic V, Muric N, Ristic DI. Risperidone Induced Hyperprolactinemia: From Basic to Clinical Studies. Front Psychiatry 2022; 13:874705. [PMID: 35599770 PMCID: PMC9121093 DOI: 10.3389/fpsyt.2022.874705] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Risperidone is one of the most commonly used antipsychotics (AP), due to its safety and efficacy in reducing psychotic symptoms. Despite the favorable side effect profile, the therapy is accompanied by side effects due to the non-selectivity of this medicine. This review will briefly highlight the most important basic and clinical findings in this area, consider the clinical effects of AP-induced hyperprolactinemia (HPL), and suggest different approaches to the treatment.The route of application of this drug primarily affects the daily variation and the total concentration of drug levels in the blood, which consequently affects the appearance of side effects, either worsening or even reducing them. Our attention has been drawn to HPL, a frequent but neglected adverse effect observed in cases treated with Risperidone and its secondary manifestations. An increase in prolactin levels above the reference values result in impairment of other somatic functions (lactation, irregular menses, fertility) as well as a significant reduction in quality of life. It has been frequently shown that the side effects of the Risperidone are the most common cause of non-compliance with therapy, resulting in worsening of psychiatric symptoms and hospitalization. However, the mechanism of Risperidone-induced HPL is complicated and still far from fully understood. Most of the preclinical and clinical studies described in this study show that hyperprolactinemia is one of the most common if not the leading side effect of Risperidone therefore to improve the quality of life of these patients, clinicians must recognize and treat HPL associated with the use of these drugs.
Collapse
Affiliation(s)
- Milena Stojkovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Branimir Radmanovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Mirjana Jovanovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Vladimir Janjic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Nemanja Muric
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Dragana Ignjatovic Ristic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Psychiatric Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| |
Collapse
|
22
|
Biswas M, Vanwong N, Sukasem C. Pharmacogenomics in clinical practice to prevent risperidone-induced hyperprolactinemia in autism spectrum disorder. Pharmacogenomics 2022; 23:493-503. [PMID: 35477330 DOI: 10.2217/pgs-2022-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a global challenge that may disrupts family and social life significantly. There is robust evidence for the association of a pharmacokinetic gene variant (e.g., CYP2D6) with risperidone-induced hyperprolactinemia in ASD. Association of a pharmacodynamic gene variant (e.g., DRD2) with risperidone-induced hyperprolactinemia in ASD is also evident from multiple studies. In addition to genetic factors, dose, duration and drug-drug interactions of risperidone might also increase the serum prolactin level. There are several difficulties, such as reimbursement, knowledge and education of healthcare providers, in implementing risperidone pharmacogenomics into clinical practice. However, preparation of national and international pharmacogenomics-based dosing guidelines of risperidone may advance precision medicine of ASD.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics & Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.,Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, 10400, Thailand.,Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Clinical Chemistry, Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Clinical Chemistry, SYstems Neuroscience of Autism & PSychiatric Disorders (SYNAPS) Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics & Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.,Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, 10400, Thailand.,The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Pharmacogenomics & Precision Medicine Clinic, Bangkok, 10110, Thailand.,Department of Pharmacology & Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
| |
Collapse
|
23
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Shared postulations between bipolar disorder and polycystic ovary syndrome pathologies. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110498. [PMID: 34929323 DOI: 10.1016/j.pnpbp.2021.110498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Women with bipolar disorder (BD) present a high prevalence of polycystic ovary syndrome (PCOS) and other reproductive disorders even before diagnosis or treatment of the disease. Postulations on the potential molecular mechanisms of comorbid PCOS in women with BD remain limited to influence of medications and need further extension. OBJECTIVES This review focuses on evidence suggesting that common metabolic and immune disorders may play an important role in the development of BD and PCOS. RESULTS The literature covered in this review suggests that metabolic and immune disorders, including the dysfunction of the hypothalamic-pituitary-adrenal axis, chronic inflammatory state, gut microbial alterations, adipokine alterations and circadian rhythm disturbance, are observed in patients with BD and PCOS. Such disorders may be responsible for the increased prevalence of PCOS in the BD population and indicate a susceptibility gene overlap between the two diseases. Current evidence supports postulations of common metabolic and immune disorders as endophenotype in BD as well as in PCOS. CONCLUSIONS Metabolic and immune disorders may be responsible for the comorbid PCOS in the BD population. The identification of hallmark metabolic and immune features common to these two diseases will contribute to the clarification of the effect of BD on the reproductive endocrine function and development of symptomatic treatments targeting the biomarkers of the two diseases.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
24
|
Blass BE, Chen PJ, Taylor M, Griffin SA, Gordon JC, Luedtke RR. Design, synthesis, and evaluation of functionalized 5-(4-arylpiperazin-1-yl)-N-quinolinyl-pentanamides as selective dopamine D3 receptor ligands. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Taurines R, Fekete S, Preuss-Wiedenhoff A, Warnke A, Wewetzer C, Plener P, Burger R, Gerlach M, Romanos M, Egberts KM. Therapeutic drug monitoring in children and adolescents with schizophrenia and other psychotic disorders using risperidone. J Neural Transm (Vienna) 2022; 129:689-701. [PMID: 35303169 PMCID: PMC9188514 DOI: 10.1007/s00702-022-02485-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/24/2022] [Indexed: 01/31/2023]
Abstract
Risperidone is commonly used to treat different psychiatric disorders worldwide. Knowledge on dose–concentration relationships of risperidone treatment in children and adolescents with schizophrenia or other psychotic disorders is, however, scarce and no age-specific therapeutic ranges have been established yet. Multicenter data of a therapeutic drug monitoring service were analyzed to evaluate the relationship between risperidone dose and serum concentration of the active moiety (risperidone (RIS) plus its main metabolite 9-hydroxyrisperidone (9-OH-RIS)) in children and adolescents with psychotic disorders. Patient characteristics, doses, serum concentrations and therapeutic outcomes were assessed by standardized measures. The study also aimed to evaluate whether the therapeutic reference range for adults (20–60 ng/ml) is applicable for minors. In the 64 patients (aged 11–18 years) included, a positive correlation between daily dose and the active moiety (RISam) concentration was found (rs = 0.49, p = 0.001) with variation in dose explaining 24% (rs2 = 0.240) of the variability in serum concentrations. While the RISam concentration showed no difference, RIS as well 9-OH-RIS concentrations and the parent to metabolite ratio varied significantly in patients with co-medication of a CYP2D6 inhibitor. Patients with extrapyramidal symptoms (EPS) had on average higher RISam concentrations than patients without (p = 0.05). Considering EPS, the upper threshold of the therapeutic range of RISam was determined to be 33 ng/ml. A rough estimation method also indicated a possibly decreased lower limit of the preliminary therapeutic range in minors compared to adults. These preliminary data may contribute to the definition of a therapeutic window in children and adolescents with schizophrenic disorders treated with risperidone. TDM is recommended in this vulnerable population to prevent concentration-related adverse drug reactions.
Collapse
Affiliation(s)
- R Taurines
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Wuerzburg, Germany
| | - S Fekete
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Wuerzburg, Germany
| | - A Preuss-Wiedenhoff
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Wuerzburg, Germany
| | - A Warnke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Wuerzburg, Germany
| | - C Wewetzer
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Clinics of the City Cologne GmbH, Cologne, Germany
| | - P Plener
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Ulm, Ulm, Germany.,Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - R Burger
- Department of Psychiatry, Psychosomatics and Psychotherapy, Laboratory for Therapeutic Drug Monitoring, Centre for Mental Health, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - M Gerlach
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Wuerzburg, Germany
| | - M Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Wuerzburg, Germany
| | - K M Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, 97080, Wuerzburg, Germany.
| |
Collapse
|
26
|
Enhancing the Antipsychotic Effect of Risperidone by Increasing Its Binding Affinity to Serotonin Receptor via Picric Acid: A Molecular Dynamics Simulation. Pharmaceuticals (Basel) 2022; 15:ph15030285. [PMID: 35337083 PMCID: PMC8952232 DOI: 10.3390/ph15030285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to assess the utility of inexpensive techniques in evaluating the interactions of risperidone (Ris) with different traditional -acceptors, with subsequent application of the findings into a Ris pharmaceutical formulation with improved therapeutic properties. Molecular docking calculations were performed using Ris and its different charge-transfer complexes (CT) with picric acid (PA), 2,3-dichloro-5,6-dicyanop-benzoquinon (DDQ), tetracyanoquinodimethane (TCNQ), tetracyano ethylene (TCNE), tetrabromo-pquinon (BL), and tetrachloro-p-quinon (CL), as donors, and three receptors (serotonin, dopamine, and adrenergic) as acceptors to study the comparative interactions among them. To refine the docking results and further investigate the molecular processes of receptor–ligand interactions, a molecular dynamics simulation was run with output obtained from AutoDock Vina. Among all investigated complexes, the [(Ris) (PA)]-serotonin (CTcS) complex showed the highest binding energy. Molecular dynamics simulation of the 100 ns run revealed that both the Ris-serotonin (RisS) and CTcS complexes had a stable conformation; however, the CTcS complex was more stable.
Collapse
|
27
|
N JB, Goudgaon N. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Repurposing Antipsychotics for Cancer Treatment. Biomedicines 2021; 9:biomedicines9121785. [PMID: 34944601 PMCID: PMC8698939 DOI: 10.3390/biomedicines9121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer is a leading cause of death worldwide, with approximately 19 million new cases each year. Lately, several novel chemotherapeutic drugs have been introduced, efficiently inhibiting tumor growth and proliferation. However, developing a new drug is a time- and money-consuming process, requiring around 1 billion dollars and nearly ten years, with only a minority of the initially effective anti-cancer drugs experimentally finally being efficient in human clinical trials. Drug repurposing for cancer treatment is an optimal alternative as the safety of these drugs has been previously tested, and thus, in case of successful preclinical studies, can be introduced faster and with a lower cost into phase 3 clinical trials. Antipsychotic drugs are associated with anti-cancer properties and, lately, there has been an increasing interest in their role in cancer treatment. In the present review, we discussed in detail the in-vitro and in-vivo properties of the most common typical and atypical antipsychotics, along with their mechanism of action.
Collapse
|
29
|
Casey AB, Mukherjee M, McGlynn RP, Cui M, Kohut SJ, Booth RG. A new class of serotonin 5-HT 2A /5-HT 2C receptor inverse agonists: Synthesis, molecular modeling, in vitro and in vivo pharmacology of novel 2-aminotetralins. Br J Pharmacol 2021; 179:2610-2630. [PMID: 34837227 DOI: 10.1111/bph.15756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-HT receptor (5-HTR) subtypes 5-HT2A and 5-HT2C are important neurotherapeutic targets, though, obtaining selectivity over 5-HT2B and closely related histamine H1 Rs is challenging. Here, we delineated molecular determinants of selective binding to 5-HT2A and 5-HT2C Rs for novel 4-phenyl-2-dimethylaminotetralins (4-PATs). EXPERIMENTAL APPROACH We synthesized 42 novel 4-PATs with halogen or aryl moieties at the C(4)-phenyl meta position. Affinity, function, molecular modeling, and 5-HT2A R mutagenesis studies were undertaken to understand structure-activity relationships at 5-HT2 -type and H1 Rs. Lead 4-PAT-type selective 5-HT2A /5-HT2C R inverse agonists were compared to pimavanserin, a selective 5-HT2A /5-HT2C R inverse agonist approved to treat psychoses, in the mouse head twitch response, and locomotor activity assays, as models relevant to antipsychotic drug development. KEY RESULTS Most 4-PAT diastereomers in the (2S,4R)-configuration bound non-selectively to 5-HT2A , 5-HT2C, and H1 Rs, with >100-fold selectivity over 5-HT2B Rs, whereas, diastereomers in the (2R,4R)-configuration bound preferentially to 5-HT2A over 5-HT2C Rs and had >100-fold selectivity over 5-HT2B and H1 Rs. Results suggest that G2385.42 and V2355.39 in 5-HT2A Rs (conserved in 5-HT2C Rs) are important for high affinity binding, whereas, interactions with T1945.42 and W1584.56 determine H1 R affinity. The 4-PAT (2S,4R)-2k, a potent and selective 5-HT2A /5-HT2C R inverse agonist, had activity like pimavanserin in the mouse head-twitch response assay, but was distinct in not suppressing locomotor activity. CONCLUSIONS AND IMPLICATIONS We provide evidence that the novel 4-PAT chemotype can yield selective 5-HT2A /5-HT2C R inverse agonists for antipsychotic drug development by optimizing ligand-receptor interactions in transmembrane domain 5. We also show that chirality can be exploited to attain selectivity over H1 Rs which may circumvent sedative effects.
Collapse
Affiliation(s)
- Austen B Casey
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Munmun Mukherjee
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Ryan P McGlynn
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Meng Cui
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Stephen J Kohut
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Behavioral Neuroimaging Laboratory, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts, United States
| | - Raymond G Booth
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
30
|
Zhu Y, Zhang C, Siafis S, Zhuo K, Zhu D, Wu H, Liu D, Jiang K, Wang J, Leucht S, Li C. Prolactin levels influenced by antipsychotic drugs in schizophrenia: A systematic review and network meta-analysis. Schizophr Res 2021; 237:20-25. [PMID: 34481200 DOI: 10.1016/j.schres.2021.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Prolactin increase is a common side effect in antipsychotic treatment of schizophrenia, which crucially impacts drug choice and treatment compliance. As previous reviews by our group on this topic have included only few Chinese studies, we aimed to compare and rank antipsychotics based on broader evidence. This systematic review pooled data of 92 included studies from previous systematic review by Huhn et al. and 38 newly-added studies from Chinese-database search, including Chinese databases of China National Knowledge Infrastructure (CNKI), WANFANG DATA, WEIPU Journal Net (VIP) and Sino Biomedicine Service System (SinoMed) up to 20 May 2020. We conducted both network meta-analysis (NMA) and pairwise meta-analysis. The primary outcome was prolactin increase (continuous data). We calculated mean differences (MDs) for prolactin level with 95% confidence intervals (CIs) using random-effects model as primary analysis. 130 RCTs with 25,610 participants were included. Newer antipsychotics (risperidone, amisulpride and paliperidone) and older antipsychotics (chlorpromazine, haloperidol and sulpride) increase prolactin levels with large effect sizes. The SMD results were not identical to the MD results because consistency and heterogeneity assumption was tested to be different in calculations. Sensitivity analyses removing two studies with massive baseline imbalance or removing Chinese studies with high risk of bias did not affect the result. In contrast to a previous review clozapine and zotepine were no longer associated with decreased prolactin levels compared to placebo. Risperidone's ranking has more implications supported by CINeMA. This NMA draws the conclusion with larger sample size and extends evidence to more literature in this field.
Collapse
Affiliation(s)
- Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caidi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Spyridon Siafis
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Kaiming Zhuo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianming Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wu
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Dengtang Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kaida Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany.
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Zhou H, Hou T, Gao Z, Guo X, Wang C, Wang J, Liu Y, Liang X. Discovery of eight alkaloids with D1 and D2 antagonist activity in leaves of Nelumbo nucifera Gaertn. Using FLIPR assays. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114335. [PMID: 34139281 DOI: 10.1016/j.jep.2021.114335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dopamine receptors are long-standing primary targets in the treatment of mental diseases and there is growing evidence that suggests relationships between obesity and the dopamine system, especially dopamine D1 and D2 receptors. Leaves of Nelumbo nucifera Gaertn. (lotus leaves) have been medically used for helping long-term maintenance of weight loss. Whether and how components of lotus leaves function through the dopamine receptors remains unclear. AIM OF THE STUDY This work aimed to discover dopamine receptor-active alkaloids isolated from the lotus leaves, to evaluate their potencies and to analyze their structure activity relationship. MATERIALS AND METHODS Dried lotus leaves were prepared and total extract was divided into alkaloids and flavones. Eight alkaloids were separated and characterized by a combination of high-performance liquid chromatography, quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance, and assayed by a fluorometric imaging plate reader platform. Human embryonic kidney 239 cell lines expressing dopamine D1, D2 and serotonin 2A (5-HT2A) receptors, respectively, were cultured and used in the assay. RESULTS Alkaloids in the lotus leaves were the bioactive phytochemicals and inhibited dopamine from accessing the D1 and D2 receptors. All eight compounds functioned as D1-receptor antagonists and except N-nornuciferine, seven alkaloids functioned as D2-receptor antagonists. (S)-coclaurine and (R)-coclaurine are optical isomers and antagonized both D1 and D2 with equivalent potencies, suggesting that the optical rotation of the methylene linker in the monobenzyl isoquinoline backbone did not influence their activity. Among the eight alkaloids, O-nornuciferine was the potent antagonist to both receptors (the lowest IC50 values, D1: 2.09 ± 0.65 μM and D2: 1.14 ± 0.10 μM) while N-nornuciferine was found to be the least potent as it moderately antagonized D1 and was inactive on D2. O-nornuciferine was also a 5-HT2A antagonist (IC50~20 μM) while N-nornuciferine had no activity. These hinted the importance of a methyl group attached to the nitrogen atom in the aporphine backbone. Armepavine showed a nearly 10-fold selectivity to D2. CONCLUSIONS In this work, eight alkaloids were isolated from the leaves of Nelumbo nucifera Gaertn. and assayed on the D1 and D2 receptors. They were D1/D2 antagonists with IC50 values in the mid- to low-micromolar range and O-nornuciferine was the most potent alkaloid among the eight. This family of alkaloids was biochemically evaluated on the dopamine receptors by the same platform for the first time.
Collapse
Affiliation(s)
- Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Zhenhua Gao
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Xiujie Guo
- DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China.
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
32
|
Martínez A, García-Gutiérrez P, Zubillaga RA, Garza J, Vargas R. Main interactions of dopamine and risperidone with the dopamine D2 receptor. Phys Chem Chem Phys 2021; 23:14224-14230. [PMID: 34159983 DOI: 10.1039/d1cp01637g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psychosis is one of the psychiatric disorders that is controlled by dopaminergic drugs such as antipsychotics that have affinity for the dopamine D2 receptor (DRD2). In this investigation we perform quantum chemical calculations of two molecules [dopamine and risperidone] within a large cavity of DRD2 that represents the binding site of the receptor. Dopamine is an endogenous neurotransmitter and risperidone is a second-generation antipsychotic. Non-covalent interactions of dopamine and risperidone with DRD2 are analyzed using the Quantum Theory of Atoms in Molecules (QTAIM) and the Non-Covalent Interaction index (NCI). The QTAIM results show that these molecules strongly interact with the receptor. There are 22 non-covalent interactions for dopamine and 54 for risperidone. The electron density evaluated at each critical binding point is small in both systems but it is higher for dopamine than for risperidone, indicating that the interactions of DRD2 with the first are stronger than with the second molecule. However, the binding energy is higher for risperidone (-72.6 kcal mol-1) than for dopamine (-22.8 kcal mol-1). Thus, the strength of the binding energy is due to the number of contacts rather than the strength of the interactions themselves. This could be related to the ability of risperidone to block DRD2 and may explain the efficacy of this drug for controlling the symptoms of schizophrenia, but likewise its secondary effects.
Collapse
Affiliation(s)
- Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, CP 04510, CDMX, Mexico.
| | - Ponciano García-Gutiérrez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. AP Postal 55-534, CP 09340, CDMX, Mexico.
| | - Rafael A Zubillaga
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. AP Postal 55-534, CP 09340, CDMX, Mexico.
| | - Jorge Garza
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. AP Postal 55-534, CP 09340, CDMX, Mexico.
| | - Rubicelia Vargas
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. AP Postal 55-534, CP 09340, CDMX, Mexico.
| |
Collapse
|
33
|
Rashid H, Ahmed T. Gender dimorphic effect of dopamine D2 and muscarinic cholinergic receptors on memory retrieval. Psychopharmacology (Berl) 2021; 238:2225-2234. [PMID: 33891128 DOI: 10.1007/s00213-021-05847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Episodic memory retrieval is fundamental for daily activities of humans and animals. Muscarinic cholinergic signaling is important for memory functioning and shows gender-dependent response in episodic memory retrieval. Dopamine D2 receptors influence memory formation and retrieval by influencing cholinergic signaling in the brain. This study aimed to determine the gender-dependent effects of D2 and muscarinic activity on memory retrieval. Male and female mice were trained for Morris water maze test and contextual fear conditioning. Memory retrieval was assessed following sub-chronic treatment (for 5 days) with D2 antagonist (risperidone 2.5 mg/kg) alone or in combination with scopolamine (1 mg/kg) or donepezil (1 mg/kg). Open field test was performed prior to the retrieval test to evaluate effects of risperidone treatment on locomotor activity and exploratory behavior. Risperidone co-treatment with donepezil impaired spatial memory retrieval in males only. Muscarinic and D2 simultaneous antagonism tend to impair fear retrieval in males but significantly enhanced retrieval of fear memories in female mice. These results suggest that D2 signaling influence muscarinic receptor activity during memory retrieval in gender-dependent manner.
Collapse
Affiliation(s)
- Habiba Rashid
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
34
|
Mihai DP, Ungurianu A, Ciotu CI, Fischer MJM, Olaru OT, Nitulescu GM, Andrei C, Zbarcea CE, Zanfirescu A, Seremet OC, Chirita C, Negres S. Effects of Venlafaxine, Risperidone and Febuxostat on Cuprizone-Induced Demyelination, Behavioral Deficits and Oxidative Stress. Int J Mol Sci 2021; 22:7183. [PMID: 34281235 PMCID: PMC8268376 DOI: 10.3390/ijms22137183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, autoimmune disease that affects a large number of young adults. Novel therapies for MS are needed considering the efficiency and safety limitations of current treatments. In our study, we investigated the effects of venlafaxine (antidepressant, serotonin-norepinephrine reuptake inhibitor), risperidone (atypical antipsychotic) and febuxostat (gout medication, xanthine oxidase inhibitor) in the cuprizone mouse model of acute demyelination, hypothesizing an antagonistic effect on TRPA1 calcium channels. Cuprizone and drugs were administered to C57BL6/J mice for five weeks and locomotor activity, motor performance and cold sensitivity were assessed. Mice brains were harvested for histological staining and assessment of oxidative stress markers. Febuxostat and metabolites of venlafaxine (desvenlafaxine) and risperidone (paliperidone) were tested for TRPA1 antagonistic activity. Following treatment, venlafaxine and risperidone significantly improved motor performance and sensitivity to a cold stimulus. All administered drugs ameliorated the cuprizone-induced deficit of superoxide dismutase activity. Desvenlafaxine and paliperidone showed no activity on TRPA1, while febuxostat exhibited agonistic activity at high concentrations. Our findings indicated that all three drugs offered some protection against the effects of cuprizone-induced demyelination. The agonistic activity of febuxostat can be of potential use for discovering novel TRPA1 ligands.
Collapse
Affiliation(s)
- Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - Cosmin I. Ciotu
- Center for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, 1090 Vienna, Austria; (C.I.C.); (M.J.M.F.)
| | - Michael J. M. Fischer
- Center for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, 1090 Vienna, Austria; (C.I.C.); (M.J.M.F.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - Corina Andrei
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - Cristina Elena Zbarcea
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - Oana Cristina Seremet
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - Cornel Chirita
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| | - Simona Negres
- Faculty of Pharmacy, “Carol Davila”, University of Medicine and Pharmacy, 020956 Bucharest, Romania; (D.P.M.); (O.T.O.); (G.M.N.); (C.A.); (C.E.Z.); (A.Z.); (O.C.S.); (C.C.); (S.N.)
| |
Collapse
|
35
|
Guo L, Su M, Zhan H, Liu W, Wang S. Silver‐Catalyzed Direct Regioselective C3 Phosphonation of 4
H
‐pyrido[1,2‐
a
]pyrimidin‐4‐ones With
H
‐phosphites. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lina Guo
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Meiyun Su
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Haiying Zhan
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Shaohua Wang
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| |
Collapse
|
36
|
Synthesis, crystal structure and DFT study of a novel compound N-(4-(2,4-dimorpholinopyrido[2,3-d]pyrimidin-6-yl)phenyl)pyrrolidine-1-carboxamide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Davis JS, Zuber K. The Historical Landscape of Mental Health Evaluation and Treatment. PHYSICIAN ASSISTANT CLINICS 2021. [DOI: 10.1016/j.cpha.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Chen Y, Zhang Y, Fan K, Xu W, Teng C, Wang S, Tang W, Zhu X. Association between gonadal hormones and osteoporosis in schizophrenia patients undergoing risperidone monotherapy: a cross-sectional study. PeerJ 2021; 9:e11332. [PMID: 33987015 PMCID: PMC8086585 DOI: 10.7717/peerj.11332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/01/2021] [Indexed: 12/02/2022] Open
Abstract
Objective Patients with schizophrenia are at increased risk of osteoporosis. This study first determined the osteoporosis rate in patients with schizophrenia and then then explored the association between serum gonadal hormone levels and osteoporosis among these patients. Methods A total of 250 patients with schizophrenia and 288 healthy controls were recruited. Osteoporosis was defined by decreased bone mineral density (BMD) of the calcaneus. Serum fasting levels of gonadal hormones (prolactin, estradiol, testosterone, progesterone, follicle-stimulating hormone, luteinizing hormone) were determined. The relationship between osteoporosis and hormone levels was statistically analyzed by binary logistic regression analysis. Results Our results showed that patients with schizophrenia had a markedly higher rate of osteoporosis (24.4% vs. 10.1%) than healthy controls (P < 0.001). Patients with osteoporosis were older, had a longer disease course, and had a lower body mass index (BMI) than patients without osteoporosis (all P < 0.05). Regarding gonadal hormones, we found significantly higher prolactin, but lower estradiol, levels in patients with osteoporosis than in those without osteoporosis (both P < 0.05). The regression analysis revealed that PRL (OR = 1.1, 95% CI [1.08–1.15], P < 0.001) and E2 level (OR = 0.9, 95%CI [0.96–0.99], P = 0.011) were significantly associated with osteoporosis in patients with schizophrenia. Conclusion Our results indicate that patients with schizophrenia who are being treated with risperidone have a high rate of osteoporosis. Increased prolactin and reduced estradiol levels are significantly associated with osteoporosis.
Collapse
Affiliation(s)
- Yi Chen
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaoyao Zhang
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaili Fan
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqian Xu
- Department of Psychiatry, The Second People's Hospital of TaiZhou, Taizhou, Zhejiang, China
| | - Chao Teng
- Department of Psychiatry, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuangshuang Wang
- Department of Psychiatry, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Psychiatry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Zhu
- Department of Psychiatry, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
39
|
Gao L, Hao C, Chen J, Ma R, Zheng L, Wu Q, Liu X, Liu BF, Zhang G, Chen Y, Jin J. Discovery of a new class of multi-target heterocycle piperidine derivatives as potential antipsychotics with pro-cognitive effect. Bioorg Med Chem Lett 2021; 40:127909. [PMID: 33705900 DOI: 10.1016/j.bmcl.2021.127909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
A series of benzoisoxazoleylpiperidine derivatives were synthesized by using the multi-target strategies and their potent affinities for dopamine (DA), serotonin (5-HT) and human histamine H3 receptors have been evaluated. Of these compounds, the promising candidate 4w displayed high affinities for D2, D3, 5-HT1A, 5-HT2A and H3, a moderate affinity for 5-HT6, negligible effects on the human ether-a-go-go-related gene (hERG) channel, low affinities for off-target receptors (5-HT2C, adrenergic α1 and H1). In addition, the animal behavioral study revealed that, compared to risperidone, compound 4w significantly inhibited apomorphine-induced climbing and MK-801-induced movement behaviors with a high threshold for catalepsy and low liabilities for weight gain and hyperprolactinemia. Results from the conditioned avoidance response test and novel object recognition task demonstrated that 4w had pro-cognitive effects. Thus, the antipsychotic drug-like activities of 4w indicate that it may be a potential polypharmacological antipsychotic candidate drug.
Collapse
Affiliation(s)
- Lanchang Gao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Hao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiali Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ru Ma
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lu Zheng
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingkun Wu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guisen Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
40
|
Baranova J, Dragunas G, Botellho MCS, Ayub ALP, Bueno-Alves R, Alencar RR, Papaiz DD, Sogayar MC, Ulrich H, Correa RG. Autism Spectrum Disorder: Signaling Pathways and Prospective Therapeutic Targets. Cell Mol Neurobiol 2021; 41:619-649. [PMID: 32468442 DOI: 10.1007/s10571-020-00882-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
Abstract
The Autism Spectrum Disorder (ASD) consists of a prevalent and heterogeneous group of neurodevelopmental diseases representing a severe burden to affected individuals and their caretakers. Despite substantial improvement towards understanding of ASD etiology and pathogenesis, as well as increased social awareness and more intensive research, no effective drugs have been successfully developed to resolve the main and most cumbersome ASD symptoms. Hence, finding better treatments, which may act as "disease-modifying" agents, and novel biomarkers for earlier ASD diagnosis and disease stage determination are needed. Diverse mutations of core components and consequent malfunctions of several cell signaling pathways have already been found in ASD by a series of experimental platforms, including genetic associations analyses and studies utilizing pre-clinical animal models and patient samples. These signaling cascades govern a broad range of neurological features such as neuronal development, neurotransmission, metabolism, and homeostasis, as well as immune regulation and inflammation. Here, we review the current knowledge on signaling pathways which are commonly disrupted in ASD and autism-related conditions. As such, we further propose ways to translate these findings into the development of genetic and biochemical clinical tests for early autism detection. Moreover, we highlight some putative druggable targets along these pathways, which, upon further research efforts, may evolve into novel therapeutic interventions for certain ASD conditions. Lastly, we also refer to the crosstalk among these major signaling cascades as well as their putative implications in therapeutics. Based on this collective information, we believe that a timely and accurate modulation of these prominent pathways may shape the neurodevelopment and neuro-immune regulation of homeostatic patterns and, hopefully, rescue some (if not all) ASD phenotypes.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Mayara C S Botellho
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Ana Luisa P Ayub
- Department of Pharmacology, Federal University of São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Rebeca Bueno-Alves
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Rebeca R Alencar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Debora D Papaiz
- Department of Pharmacology, Federal University of São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Mari C Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
- Cell and Molecular Therapy Center, School of Medicine, University of São Paulo, Rua Pangaré 100 (Edifício NUCEL), Butantã, São Paulo, SP, 05360-130, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Ricardo G Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
41
|
Guo W, Yu Z, Gao Y, Lan X, Zang Y, Yu P, Wang Z, Sun W, Hao X, Gao F. A Machine Learning Model to Predict Risperidone Active Moiety Concentration Based on Initial Therapeutic Drug Monitoring. Front Psychiatry 2021; 12:711868. [PMID: 34867511 PMCID: PMC8637165 DOI: 10.3389/fpsyt.2021.711868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Risperidone is an efficacious second-generation antipsychotic (SGA) to treat a wide spectrum of psychiatric diseases, whereas its active moiety (risperidone and 9-hydroxyrisperidone) concentration without a therapeutic reference range may increase the risk of adverse drug reactions. We aimed to establish a prediction model of risperidone active moiety concentration in the next therapeutic drug monitoring (TDM) based on the initial TDM information using machine learning methods. A total of 983 patients treated with risperidone between May 2017 and May 2018 in Beijing Anding Hospital were collected as the data set. Sixteen predictors (the initial TDM value, dosage, age, WBC, PLT, BUN, weight, BMI, prolactin, ALT, MECT, Cr, AST, Ccr, TDM interval, and RBC) were screened from 26 variables through univariate analysis (p < 0.05) and XGBoost (importance score >0). Ten algorithms (XGBoost, LightGBM, CatBoost, AdaBoost, Random Forest, support vector machine, lasso regression, ridge regression, linear regression, and k-nearest neighbor) compared the model performance, and ultimately, XGBoost was chosen to establish the prediction model. A cohort of 210 patients treated with risperidone between March 1, 2019, and May 31, 2019, in Beijing Anding Hospital was used to validate the model. Finally, the prediction model was evaluated, obtaining R 2 (0.512 in test cohort; 0.374 in validation cohort), MAE (10.97 in test cohort; 12.07 in validation cohort), MSE (198.55 in test cohort; 324.15 in validation cohort), RMSE (14.09 in test cohort; 18.00 in validation cohort), and accuracy of the predicted TDM within ±30% of the actual TDM (54.82% in test cohort; 60.95% in validation cohort). The prediction model has promising performance to facilitate rational risperidone regimen on an individualized level and provide reference for other antipsychotic drugs' risk prediction.
Collapse
Affiliation(s)
- Wei Guo
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ze Yu
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| | - Ya Gao
- Lugouqiao Community Health Service Center, Beijing, China
| | - Xiaoqian Lan
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yannan Zang
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Peng Yu
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| | - Zeyuan Wang
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Wenzhuo Sun
- Xi'an Jiaotong-liverpool University, Suzhou, China
| | - Xin Hao
- Dalian Medicinovo Technology Co. Ltd., Dalian, China
| | - Fei Gao
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| |
Collapse
|
42
|
Goode-Romero G, Winnberg U, Domínguez L, Ibarra IA, Vargas R, Winnberg E, Martínez A. New information of dopaminergic agents based on quantum chemistry calculations. Sci Rep 2020; 10:21581. [PMID: 33299000 PMCID: PMC7725812 DOI: 10.1038/s41598-020-78446-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Dopamine is an important neurotransmitter that plays a key role in a wide range of both locomotive and cognitive functions in humans. Disturbances on the dopaminergic system cause, among others, psychosis, Parkinson's disease and Huntington's disease. Antipsychotics are drugs that interact primarily with the dopamine receptors and are thus important for the control of psychosis and related disorders. These drugs function as agonists or antagonists and are classified as such in the literature. However, there is still much to learn about the underlying mechanism of action of these drugs. The goal of this investigation is to analyze the intrinsic chemical reactivity, more specifically, the electron donor-acceptor capacity of 217 molecules used as dopaminergic substances, particularly focusing on drugs used to treat psychosis. We analyzed 86 molecules categorized as agonists and 131 molecules classified as antagonists, applying Density Functional Theory calculations. Results show that most of the agonists are electron donors, as is dopamine, whereas most of the antagonists are electron acceptors. Therefore, a new characterization based on the electron transfer capacity is proposed in this study. This new classification can guide the clinical decision-making process based on the physiopathological knowledge of the dopaminergic diseases.
Collapse
Affiliation(s)
- Guillermo Goode-Romero
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, CP 04510, Ciudad de México, CDMX, Mexico.
| | - Ulrika Winnberg
- Departamento Académico de Ingeniería Industrial y Operaciones, Instituto Tecnológico Autónomo de México, Río, Hondo 1, Altavista, Álvaro Obregón, CP 01080, Ciudad de México, CDMX, Mexico
| | - Laura Domínguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, CP 04510, Ciudad de México, CDMX, Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, CP 04510, Ciudad de México, CDMX, Mexico
| | - Rubicelia Vargas
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, AP Postal 55-534, CP 09340, Ciudad de México, CDMX, Mexico
| | - Elisabeth Winnberg
- Department of Health Care Sciences, Ersta Sköndal Bräcke University College, Stigbergsgatan 30, 116 28, Stockholm, Sweden
| | - Ana Martínez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, CP 04510, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
43
|
Gao L, Yang Z, Xiong J, Hao C, Ma R, Liu X, Liu BF, Jin J, Zhang G, Chen Y. Design, Synthesis and Biological Investigation of Flavone Derivatives as Potential Multi-Receptor Atypical Antipsychotics. Molecules 2020; 25:molecules25184107. [PMID: 32911828 PMCID: PMC7571155 DOI: 10.3390/molecules25184107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
The design of a series of novel flavone derivatives was synthesized as potential broad-spectrum antipsychotics by using multi-receptor affinity strategy between dopamine receptors and serotonin receptors. Among them, 7-(4-(4-(6-fluorobenzo[d]isoxazol-3-yl) piperidin- 1-yl) butoxy)-2,2-dimethylchroman-4-one (6j) exhibited a promising preclinical profile. Compound 6j not only showed high affinity for dopamine D2, D3, and serotonin 5-HT1A, 5-HT2A receptors, but was also endowed with low to moderate activities on 5-HT2C, α1, and H1 receptors, indicating a low liability to induce side effects such as weight gain, orthostatic hypotension and QT prolongation. In vivo behavioral studies suggested that 6j has favorable effects in alleviating the schizophrenia-like symptoms without causing catalepsy. Taken together, compound 6j has the potential to be further developed as a novel atypical antipsychotic.
Collapse
Affiliation(s)
- Lanchang Gao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.G.); (Z.Y.); (J.X.); (C.H.); (X.L.); (B.-F.L.)
| | - Zhengge Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.G.); (Z.Y.); (J.X.); (C.H.); (X.L.); (B.-F.L.)
| | - Jiaying Xiong
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.G.); (Z.Y.); (J.X.); (C.H.); (X.L.); (B.-F.L.)
| | - Chao Hao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.G.); (Z.Y.); (J.X.); (C.H.); (X.L.); (B.-F.L.)
| | - Ru Ma
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (R.M.); (J.J.)
| | - Xin Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.G.); (Z.Y.); (J.X.); (C.H.); (X.L.); (B.-F.L.)
| | - Bi-Feng Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.G.); (Z.Y.); (J.X.); (C.H.); (X.L.); (B.-F.L.)
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (R.M.); (J.J.)
| | - Guisen Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.G.); (Z.Y.); (J.X.); (C.H.); (X.L.); (B.-F.L.)
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (R.M.); (J.J.)
- Correspondence: (G.Z.); (Y.C.); Tel.: +86-27-8779-2235 (G.Z.); +86-0518-8589-5791 (Y.C.); Fax: +86-27-8779-2170 (G.Z.)
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (R.M.); (J.J.)
- Correspondence: (G.Z.); (Y.C.); Tel.: +86-27-8779-2235 (G.Z.); +86-0518-8589-5791 (Y.C.); Fax: +86-27-8779-2170 (G.Z.)
| |
Collapse
|
44
|
One-day tropisetron treatment improves cognitive deficits and P50 inhibition deficits in schizophrenia. Neuropsychopharmacology 2020; 45:1362-1368. [PMID: 32349117 PMCID: PMC7297960 DOI: 10.1038/s41386-020-0685-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Abstract
The core features of schizophrenia (SCZ) include cognitive deficits and impaired sensory gating represented by P50 inhibition deficits, which appear to be related to the α7 nicotinic acetylcholine receptor (nAChR). An agonist of nAChR receptor may improve these defects. This study aimed to investigate how administering multiple doses of tropisetron, a partial agonist of nAChR, for 1 day would affect cognitive deficits and P50 inhibition deficits in SCZ patients. We randomized 40 SCZ non-smokers into a double-blind clinical trial with four groups: placebo, 5 mg/d, 10 mg/d, and 20 mg/d of oral tropisetron. Their P50 ratios were all more than 0.5 and they took risperidone at 3-6 mg/day for at least a month before participating in the experiment. We measured the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and P50 inhibition before and one day after treatment. After one day of treatment, the total RBANS scores of the 20 mg and 5 mg tropisetron groups, and the immediate memory of the 10 mg group were significantly higher than placebo group. The P50 ratio was smaller in the 5 mg and 10 mg groups than in the placebo group (both p < 0.05) after treatment. Furthermore, the improvement in RBANS total score was correlated with increased S1 latency (p < 0.05), and the increase in immediate memory score was correlated with decreased S2 amplitude. One day of treatment with tropisetron improved both cognitive and P50 inhibition deficits, suggesting that longer term treatment with α7 nAChR agonists for these deficits in SCZ may be promising.
Collapse
|
45
|
Yunusa I, El Helou ML. The Use of Risperidone in Behavioral and Psychological Symptoms of Dementia: A Review of Pharmacology, Clinical Evidence, Regulatory Approvals, and Off-Label Use. Front Pharmacol 2020; 11:596. [PMID: 32528275 PMCID: PMC7256877 DOI: 10.3389/fphar.2020.00596] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Dementia represents a global health challenge due to the increase in elderly population worldwide. In addition to memory loss, dementia often results in severe behavioral and psychological changes where pharmacological treatments might be considered in addition to nonpharmacological strategies for optimal symptomatic control. Risperidone, the second oldest atypical antipsychotic, has been widely used off-label to treat behavioral and psychological symptoms of dementia (BPSD), including agitation, aggression, and psychosis. Several studies have indicated that risperidone offers a modest and statistically significant effectiveness in the clinical setting. However, in the past decade, safety concerns emerged due to increased risk for cerebrovascular adverse events and death following the use of risperidone in the elderly population. Clinical guidelines suggest that, in severe dementia where an older adult is threatening to harm himself or others, pharmacological treatments might be considered when nonpharmacological treatments fail. Risperidone was approved for BPSD in some countries (Australia, Canada, United Kingdom and New Zealand) but not in the United States. This article reviews risperidone’s pharmacological activity, clinical effectiveness and safety, marketing approval, and off-label use in BPSD.
Collapse
Affiliation(s)
- Ismaeel Yunusa
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
| | | |
Collapse
|
46
|
Alvarez-Herrera S, Escamilla R, Medina-Contreras O, Saracco R, Flores Y, Hurtado-Alvarado G, Maldonado-García JL, Becerril-Villanueva E, Pérez-Sánchez G, Pavón L. Immunoendocrine Peripheral Effects Induced by Atypical Antipsychotics. Front Endocrinol (Lausanne) 2020; 11:195. [PMID: 32373066 PMCID: PMC7186385 DOI: 10.3389/fendo.2020.00195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAP) or second-generation antipsychotics are the clinical option for schizophrenia treatment during acute psychoses, but they are also indicated for maintenance during lifetime, even though they are being used for other psychiatric conditions in clinical practice such as affective disorders and autism spectrum disorder, among others. These drugs are differentiated from typical antipsychotics based on their clinical profile and are a better choice because they cause fewer side effects regarding extrapyramidal symptoms (EPS). Even though they provide clear therapeutic benefits, AAP induce peripheral effects that trigger phenotypic, functional, and systemic changes outside the Central Nervous System (CNS). Metabolic disease is frequently associated with AAP and significantly impacts the patient's quality of life. However, other peripheral changes of clinical relevance are present during AAP treatment, such as alterations in the immune and endocrine systems as well as the intestinal microbiome. These less studied alterations also have a significant impact in the patient's health status. This manuscript aims to revise the peripheral immunological, endocrine, and intestinal microbiome changes induced by AAP consumption recommended in the clinical guidelines for schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Raúl Escamilla
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ricardo Saracco
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Yvonne Flores
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
- *Correspondence: Lenin Pavón
| |
Collapse
|
47
|
Lee ES, Kronsberg H, Findling RL. Psychopharmacologic Treatment of Schizophrenia in Adolescents and Children. Child Adolesc Psychiatr Clin N Am 2020; 29:183-210. [PMID: 31708047 DOI: 10.1016/j.chc.2019.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An increasing number of antipsychotic medications have demonstrated efficacy in randomized placebo-controlled trials in the treatment of children and adolescents with schizophrenia. This review summarizes and synthesizes relevant antipsychotic medication studies, with particular emphasis on second-generation agents, and discusses other clinical considerations that may influence medication selection. With the exception of clozapine demonstrating superior efficacy in the improvement of psychotic symptoms in treatment-resistant patients, many antipsychotic agents have been shown to be similarly efficacious, including first-generation medications. Consideration of the side-effect profile, which can differ substantially from medication to medication, is essential when choosing treatment options.
Collapse
Affiliation(s)
- Esther S Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center, Suite 12344, Baltimore, MD 21287, USA.
| | - Hal Kronsberg
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center, Suite 12344, Baltimore, MD 21287, USA
| | - Robert L Findling
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 1800 Orleans Street, Bloomberg Children's Center, Suite 12344, Baltimore, MD 21287, USA
| |
Collapse
|
48
|
Martínez A, Ibarra IA, Vargas R. A quantum chemical approach representing a new perspective concerning agonist and antagonist drugs in the context of schizophrenia and Parkinson's disease. PLoS One 2019; 14:e0224691. [PMID: 31830046 PMCID: PMC6907805 DOI: 10.1371/journal.pone.0224691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/18/2019] [Indexed: 02/03/2023] Open
Abstract
Schizophrenia and Parkinson's disease can be controlled with dopamine antagonists and agonists. In order to improve the understanding of the reaction mechanism of these drugs, in this investigation we present a quantum chemical study of 20 antagonists and 10 agonists. Electron donor acceptor capacity and global hardness are analyzed using Density Functional Theory calculations. Following this theoretical approach, we provide new insights into the intrinsic response of these chemical species. In summary, antagonists generally prove to be better electron acceptors and worse electron donors than dopamine, whereas agonists present an electron donor-acceptor capacity similar to that of dopamine. The chemical hardness is a descriptor that captures the resistance of a chemical compound to change its number of electrons. Within this model, harder molecules are less polarizable and more stable systems. Our results show that the global hardness is similar for dopamine and agonists whilst antagonists present smaller values. Following the Hard and Soft Acid and Bases principle, it is possible to conclude that dopamine and agonists are hard bases while antagonists are soft acids, and this can be related to their activity. From the electronic point of view, we have evolved a new perspective for the classification of agonist and antagonist, which may help to analyze future results of chemical interactions triggered by these drugs.
Collapse
Affiliation(s)
- Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, CDMX, México
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Rubicelia Vargas
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
| |
Collapse
|
49
|
Shah UH, Gaitonde SA, Moreno JL, Glennon RA, Dukat M, González-Maeso J. Revised Pharmacophore Model for 5-HT 2A Receptor Antagonists Derived from the Atypical Antipsychotic Agent Risperidone. ACS Chem Neurosci 2019; 10:2318-2331. [PMID: 30609893 DOI: 10.1021/acschemneuro.8b00637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pharmacophore models for 5-HT2A receptor antagonists consist of two aromatic/hydrophobic regions at a given distance from a basic amine. We have previously shown that both aromatic/hydrophobic moieties are unnecessary for binding or antagonist action. Here, we deconstructed the 5-HT2A receptor antagonist/serotonin-dopamine antipsychotic agent risperidone into smaller structural segments that were tested for 5-HT2A receptor affinity and function. We show, again, that the entire risperidone structure is unnecessary for retention of affinity or antagonist action. Replacement of the 6-fluoro-3-(4-piperidinyl)-1,2-benz[ d]isoxazole moiety by isosteric tryptamines resulted in retention of affinity and antagonist action. Additionally, 3-(4-piperidinyl)-1,2-benz[ d]isoxazole (10), which represents less than half the structural features of risperidone, retains both affinity and antagonist actions. 5-HT2A receptor homology modeling/docking studies suggest that 10 binds in a manner similar to risperidone and that there is a large cavity to accept various N4-substituted analogues of 10 such as risperidone and related agents. Alterations of this "extended" moiety improve receptor binding and functional potency. We propose a new risperidone-based pharmacophore for 5-HT2A receptor antagonist action.
Collapse
Affiliation(s)
- Urjita H. Shah
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298, United States
| | - Supriya A. Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298, United States
| | - José L. Moreno
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Richard A. Glennon
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298, United States
| | - Małgorzata Dukat
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| |
Collapse
|
50
|
Zhang C, Li Q, Meng L, Ren Y. Design of novel dopamine D 2 and serotonin 5-HT 2A receptors dual antagonists toward schizophrenia: An integrated study with QSAR, molecular docking, virtual screening and molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:860-885. [PMID: 30916624 DOI: 10.1080/07391102.2019.1590244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The extrapyramidal side effects of schizophrenia treatment can be significantly reduced by simultaneously targeting dopamine D2 and serotonin 5-HT2A receptors. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) models of D2 receptor (CoMFA-1, q2 = 0.767, r2 = 0.969; CoMSIA-1, q2 = 0.717, r2 = 0.978) and 5-HT2A receptor antagonists (CoMFA-2, q2 = 0.703, r2 = 0.946; CoMSIA-2, q2 = 0.675, r2 = 0.916) were successfully constructed using 35 tetrahydropyridopyrimidinone derivatives. Topomer CoMFA and HQSAR models were then constructed to further validate and supplement above models. Results showed that all models had good predictive power and stability. Contour map analysis revealed that the electrostatic and hydrophobic fields played vital roles in the bioactivity of dual antagonists. Molecular docking and molecular dynamic studies also suggested that the hydrogen bonding, electrostatic and hydrophobic interactions played key roles in the formation of stable binding sites. Meanwhile, several key residues like ASP114, TRP100, PHE389 of dopamine D2 receptor and ASP134, PHE328, TRP324 of serotonin 5-HT2A receptor were identified. Based on above findings, seven compounds were obtained through bioisostere replacement and ten compounds were designed by contour map analysis, in which the predicted activity of compounds S6 and DS2 were equivalent to that of the template compound 15. 3D-QSAR and ADMET predictions indicated that all newly designed compounds had great biological activity and physicochemical properties. Moreover, based on the best pharmacophore model, four compounds (Z1, Z2, Z3 and Z4) with new backbones were obtained by virtual screening. Overall, this study could provide theoretical guidance for the structural optimization, design and synthesis of novel dopamine D2 and serotonin 5-HT2A receptors dual antagonists. Abbreviations3D-QSARThree-dimensional quantitative structure-activity relationship5-HT2ARSerotonin 5-hydroxytryptamine 5-HT2A receptor5-HT2CRSerotonin 5-hydroxytryptamine 5-HT2C receptor receptorCADDComputer-aided drug designCoMFAComparative molecular field analysisCoMSIAComparative molecular similarity index analysisD2RDopamine D(2) receptorGPCRG-protein coupled receptorPLSPartial least squares regressionHQSARHologram quantitative structure-activity relationship. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cuihua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Qunlin Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Lingwei Meng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yujie Ren
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|