1
|
Wu W, Xu L, Lu Q, Sun J, Xu Z, Song C, Yu JC, Wang Y. Addressing the Carbonate Issue: Electrocatalysts for Acidic CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312894. [PMID: 38722084 PMCID: PMC11733726 DOI: 10.1002/adma.202312894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable energy provides a promising route to CO2 conversion and utilization. However, the widely used neutral/alkaline electrolyte consumes a large amount of CO2 to produce (bi)carbonate byproducts, leading to significant challenges at the device level, thereby impeding the further deployment of this reaction. Conducting CO2RR in acidic electrolytes offers a promising solution to address the "carbonate issue"; however, it presents inherent difficulties due to the competitive hydrogen evolution reaction, necessitating concerted efforts toward advanced catalyst and electrode designs to achieve high selectivity and activity. This review encompasses recent developments of acidic CO2RR, from mechanism elucidation to catalyst design and device engineering. This review begins by discussing the mechanistic understanding of the reaction pathway, laying the foundation for catalyst design in acidic CO2RR. Subsequently, an in-depth analysis of recent advancements in acidic CO2RR catalysts is provided, highlighting heterogeneous catalysts, surface immobilized molecular catalysts, and catalyst surface enhancement. Furthermore, the progress made in device-level applications is summarized, aiming to develop high-performance acidic CO2RR systems. Finally, the existing challenges and future directions in the design of acidic CO2RR catalysts are outlined, emphasizing the need for improved selectivity, activity, stability, and scalability.
Collapse
Affiliation(s)
- Weixing Wu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Liangpang Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Qian Lu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jiping Sun
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Zhanyou Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Chunshan Song
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jimmy C. Yu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Ying Wang
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| |
Collapse
|
2
|
Hurkmans JW, Pelzer HM, Burdyny T, Peeters J, Vermaas DA. Heating dictates the scalability of CO 2 electrolyzer types. EES CATALYSIS 2024:d4ey00190g. [PMID: 39802814 PMCID: PMC11721209 DOI: 10.1039/d4ey00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Electrochemical CO2 reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO2 reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions. We describe here a model prediction for non-isothermal behavior beyond the typical 1D models to illustrate the severity of heating at larger scales. We develop a 2D model for two membrane electrode assembly (MEA) CO2 electrolyzers; a liquid anolyte fed MEA (exchange MEA) and a fully gas fed configuration (full MEA). Our results indicate that full MEA configurations exhibit very poor electrochemical performance at moderately larger scales due to non-isothermal effects. Heating results in severe membrane dehydration, which induces large Ohmic losses in the membrane, resulting in a sharp decline in the current density along the flow direction. In contrast, the anolyte employed in the exchange MEA configuration is effective in preventing large thermal gradients. Membrane dehydration is not a problem for the exchange MEA configuration, leading to a nearly constant current density over the entire length of the modeled domain, and indicating that exchange MEA configurations are well suited for scale-up. Our results additionally indicate that a balance between faster kinetics, higher ionic conductivity, smaller pH gradients and lower CO2 solubility causes an optimum operating temperature between 60 and 70 °C.
Collapse
Affiliation(s)
- Jan-Willem Hurkmans
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| | - Henri M Pelzer
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| | - Tom Burdyny
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| | - Jurriaan Peeters
- Process & Energy Department, Delft University of Technology 2628 CB Delft The Netherlands
| | - David A Vermaas
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| |
Collapse
|
3
|
Kuang Y, Chen G, Mudiyanselage DH, Rabiee H, Ma B, Dorosti F, Nanjundan AK, Zhu Z, Wang H, Ge L. Engineering Interfacial Molecular Interactions on Ag Hollow Fibre Gas Diffusion Electrodes for High Efficiency in CO 2 Conversion to CO. Chemistry 2024; 30:e202403251. [PMID: 39380544 DOI: 10.1002/chem.202403251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) occurs at the nanoscale interface of the electrode-electrolyte. Therefore, tailoring the interfacial properties in the interface microenvironment provides a powerful strategy to optimise the activity and selectivity of electrocatalysts towards the desired products. Here, the microenvironment at the electrode-electrolyte interface of the flow-through Ag-based hollow fibre gas diffusion electrode (Ag HFGDE) is modulated by introducing surfactant cetyltrimethylammonium bromide (CTAB) as the electrolyte additive. The porous hollow fibre configuration and gas penetration mode facilitate the CO2 mass transfer and the formation of the triple-phase interface. Through the ordered arrangement of hydrophobic long-alkyl chains, CTAB molecules at the electrode/electrolyte interface promoted CO2 penetration to active sites and repelled water to reduce the activity of competitive hydrogen evolution reaction (HER). By applying CTAB-containing catholyte, Ag HFGDE achieved a high CO Faradaic efficiency (FE) of over 95 % in a wide potential range and double the partial current density of CO. The enhancement of CO selectivity and suppression of hydrogen was attributed to the improvement of charge transfer and the CO2/H2O ratio enhancement. These findings highlight the importance of adjusting the local microenvironment to enhance the reaction kinetics and product selectivity in the electrochemical CO2 reduction reaction CO2RR.
Collapse
Affiliation(s)
- Yizhu Kuang
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | - Guoliang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | | | - Hesamoddin Rabiee
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Freiestrasse 3, 3012, Bern, Switzerland
| | - Beibei Ma
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fatereh Dorosti
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ashok Kumar Nanjundan
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, QLD, 4300, Australia
| |
Collapse
|
4
|
Peramaiah K, Yi M, Dutta I, Chatterjee S, Zhang H, Lai Z, Huang KW. Catalyst Design and Engineering for CO 2-to-Formic Acid Electrosynthesis for a Low-Carbon Economy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404980. [PMID: 39394824 DOI: 10.1002/adma.202404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/19/2024] [Indexed: 10/14/2024]
Abstract
Formic acid (FA) has emerged as a promising candidate for hydrogen energy storage due to its favorable properties such as low toxicity, low flammability, and high volumetric hydrogen storage capacity under ambient conditions. Recent analyses have suggested that FA produced by electrochemical carbon dioxide (CO2) reduction reaction (eCO2RR) using low-carbon electricity exhibits lower fugitive hydrogen (H2) emissions and global warming potential (GWP) during the H2 carrier production, storage and transportation processes compared to those of other alternatives like methanol, methylcyclohexane, and ammonia. eCO2RR to FA can enable industrially relevant current densities without the need for high pressures, high temperatures, or auxiliary hydrogen sources. However, the widespread implementation of eCO2RR to FA is hindered by the requirement for highly stable and selective catalysts. Herein, the aim is to explore and evaluate the potential of catalyst engineering in designing stable and selective nanostructured catalysts that can facilitate economically viable production of FA.
Collapse
Affiliation(s)
- Karthik Peramaiah
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Moyu Yi
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Indranil Dutta
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sudipta Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India
| | - Huabin Zhang
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Institute of Sustainability for Chemicals, Energy, and Environment, Agency for Science, Technology, and Research, 1 Pesek Rd, Singapore, 627833, Singapore
| |
Collapse
|
5
|
Galbicsek N, Kormányos A, Samu GF, Ayyub MM, Kotnik T, Kovačič S, Janáky C, Endrődi B. Comparative Study of Different Polymeric Binders in Electrochemical CO Reduction. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:22307-22314. [PMID: 39600607 PMCID: PMC11586900 DOI: 10.1021/acs.energyfuels.4c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Electrochemical reduction of carbon monoxide offers a possible route to produce valuable chemicals (such as acetate, ethanol or ethylene) from CO2 in two consecutive electrochemical reactions. Such deeply reduced products are formed via the transfer of 4-6 electrons per CO molecule. Assuming similar-sized CO2 and CO electrolyzers, 2-3-times larger current densities are required in the latter case to match the molar fluxes. Such high reaction rates can be ensured by tailoring the structure of the gas diffusion electrodes. Here, the structure of the cathode catalyst layer was systematically varied using different polymeric binders to achieve high reaction rates. Simple linear polymers, bearing the same backbone but different functional groups were compared to highlight the role of different structural motifs. The comparison was also extended to simple linear, partially fluorinated polymers. Interestingly, in some cases similar results were obtained as with the current state-of-the-art binders. Using different surface-wetting characterization techniques, we show that the hydrophobicity of the catalyst layer-provided by the binder- is a prerequisite for high-rate CO electrolysis. The validity of this notion was demonstrated by performing CO electrolysis experiments at high current density (1 A cm-2) for several hours using PVDF as the catalyst binder.
Collapse
Affiliation(s)
- Noémi
V. Galbicsek
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - Attila Kormányos
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - Gergely Ferenc Samu
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner Street 3, 6728, Szeged H-6728, Hungary
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
Square 7-8, Szeged H-6721, Hungary
| | - Mohd M. Ayyub
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - Tomaž Kotnik
- National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1001, Slovenia
| | - Sebastijan Kovačič
- National
Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1001, Slovenia
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
17, Maribor SI-2000, Slovenia
| | - Csaba Janáky
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - Balázs Endrődi
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| |
Collapse
|
6
|
Kumar B, Muchharla B, Dikshit M, Dongare S, Kumar K, Gurkan B, Spurgeon JM. Electrochemical CO 2 Conversion Commercialization Pathways: A Concise Review on Experimental Frontiers and Technoeconomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1161-1174. [PMID: 39554597 PMCID: PMC11562736 DOI: 10.1021/acs.estlett.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 11/19/2024]
Abstract
Technoeconomic analysis (TEA) studies are vital for formulating guidelines that drive the commercialization of electrochemical CO2 reduction (eCO2R) technologies. In this review, we first discuss the progress in the field of eCO2R processes by providing current state-of-the-art metrices (e.g., faradic efficiency, current density) based on the recent heterogeneous catalysts' discovery, electrolytes, electrolyzers configuration, and electrolysis process designs. Next, we assessed the TEA studies for a wide range of eCO2R final products, different modes of eCO2R systems/processes, and discussed their relative competitiveness with relevant commercial products. Finally, we discuss challenges and future directions essential for eCO2R commercialization by linking suggestions from TEA studies. We believe that this review will catalyze innovation in formulating advanced eCO2R strategies to meet the TEA benchmarks for the conversion of CO2 into valuable chemicals at the industrial scale.
Collapse
Affiliation(s)
- Bijandra Kumar
- Department
of Math. Comp. Science and Eng. Technology, Elizabeth City State University, Elizabeth City, North Carolina 27909 United States
| | - Baleeswaraiah Muchharla
- Department
of Math. Comp. Science and Eng. Technology, Elizabeth City State University, Elizabeth City, North Carolina 27909 United States
| | - Moumita Dikshit
- Laboratory
of Environmental Sustainability and Energy Research (LESER), National Institute of Technology Delhi, New Delhi, 110036 India
| | - Saudagar Dongare
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106 United States
| | - Kapil Kumar
- Laboratory
of Environmental Sustainability and Energy Research (LESER), National Institute of Technology Delhi, New Delhi, 110036 India
| | - Burcu Gurkan
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106 United States
| | - Joshua M. Spurgeon
- Conn
Center for Renewable Energy Research, University
of Louisville, Louisville, Kentucky 40292 United States
| |
Collapse
|
7
|
Ramadhany P, Luong Q, Zhang Z, Leverett J, Samorì P, Corrie S, Lovell E, Canbulat I, Daiyan R. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405029. [PMID: 38838055 DOI: 10.1002/adma.202405029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.
Collapse
Affiliation(s)
- Putri Ramadhany
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quang Luong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Ziling Zhang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Josh Leverett
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Simon Corrie
- Chemical and Biological Engineering Department, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Clayton, VIC 3800, Australia
| | - Emma Lovell
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ismet Canbulat
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Sun Y, Chen J, Du X, Cui J, Chen X, Wu C, Yang X, Liu L, Ye J. Anchoring Cs + Ions on Carbon Vacancies for Selective CO 2 Electroreduction to CO at High Current Densities in Membrane Electrode Assembly Electrolyzers. Angew Chem Int Ed Engl 2024; 63:e202410802. [PMID: 38923695 DOI: 10.1002/anie.202410802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Electrolyte cations have been demonstrated to effectively enhance the rate and selectivity of the electrochemical CO2 reduction reaction (CO2RR), yet their implementation in electrolyte-free membrane electrode assembly (MEA) electrolyzer presents significant challenges. Herein, an anchored cation strategy that immobilizes Cs+ on carbon vacancies was designed and innovatively implemented in MEA electrolyzer, enabling highly efficient CO2 electroreduction over commercial silver catalyst. Our approach achieves a CO partial current density of approximately 500 mA cm-2 in the MEA electrolyzer, three-fold enhancement compared to pure Ag. In situ Raman and theoretical analyses, combined with machine learning potentials, reveal anchored Cs induces an electric field that significantly promotes the adsorption of *CO2 - intermediates through performing muti-point energy calculations on each structure. Furthermore, reduced adsorption of *OH intermediates effectively hampers competing hydrogen evolution reaction, as clarified by disk electrode experiments and density functional theory studies. Additionally, coupling our system with commercial polysilicon solar cells yields a notable solar-to-CO energy conversion efficiency of 8.3 %. This study opens a new avenue for developing effective cation-promoting strategy in MEA reactors for efficient CO2RR.
Collapse
Affiliation(s)
- Yanhui Sun
- Advanced Catalytic Materials Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - XueMei Du
- Advanced Catalytic Materials Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiwei Cui
- Advanced Catalytic Materials Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xin Chen
- Advanced Catalytic Materials Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chenhe Wu
- Advanced Catalytic Materials Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinmin Yang
- Advanced Catalytic Materials Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lequan Liu
- Advanced Catalytic Materials Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jinhua Ye
- Advanced Catalytic Materials Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0047, Japan
| |
Collapse
|
9
|
Nelson VE, O'Brien CP, Edwards JP, Liu S, Gabardo CM, Sargent EH, Sinton D. Scaling CO 2 Electrolyzer Cell Area from Bench to Pilot. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50818-50825. [PMID: 39254196 DOI: 10.1021/acsami.4c11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
To contribute meaningfully to carbon dioxide (CO2) emissions reduction, CO2 electrolyzer technology will need to scale immensely. Bench-scale electrolyzers are the norm, with active areas <5 cm2. However, cell areas on the order of 100s or 1000s of cm2 will be required for industrial deployment. Here, we study the effects of increasing cell area, scaling over 2 orders of magnitude from a 5 cm2 lab-scale cell to an 800 cm2 pilot plant-scale cell. A direct scaling of the bench-scale cell architecture to the larger area results in a ∼20% drop in ethylene (C2H4) selectivity and an increase in the parasitic hydrogen (H2) evolution reaction (HER). We instrument an 800 cm2 electrolyzer cell to serve as a diagnostic tool and determine that nonuniformities in electrode compression and flow-influenced local CO2 availability are the key drivers of performance loss upon scaling. Machining of an initial 800 cm2 cell results in a standard deviation in MEA compression that is 7-fold that of a similarly produced 5 cm2 cell (0.009 mm). Using these findings, we redesign an 800 cm2 cell for compression tolerance and increased CO2 transport and achieve an H2 FE in the revised 800 cm2 cell similar to that of the 5 cm2 case (16% at 200 mA cm-2). These results demonstrate that by ensuring uniform compression and fluid flow, the CO2 electrolyzer area can be scaled over 100-fold and retain C2H4 selectivity (within 10% of small-scale selectivity).
Collapse
Affiliation(s)
- Vivian E Nelson
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Jonathan P Edwards
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Shijie Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
10
|
Li M, Lees EW, Ju W, Subramanian S, Yang K, Bui JC, Iglesias van Montfort HP, Abdinejad M, Middelkoop J, Strasser P, Weber AZ, Bell AT, Burdyny T. Local ionic transport enables selective PGM-free bipolar membrane electrode assembly. Nat Commun 2024; 15:8222. [PMID: 39300064 DOI: 10.1038/s41467-024-52409-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Bipolar membranes in electrochemical CO2 conversion cells enable different reaction environments in the CO2-reduction and O2-evolution compartments. Under ideal conditions, water-splitting in the bipolar membrane allows for platinum-group-metal-free anode materials and high CO2 utilizations. In practice, however, even minor unwanted ion crossover limits stability to short time periods. Here we report the vital role of managing ionic species to improve CO2 conversion efficiency while preventing acidification of the anodic compartment. Through transport modelling, we identify that an anion-exchange ionomer in the catalyst layer improves local bicarbonate availability and increasing the proton transference number in the bipolar membranes increases CO2 regeneration and limits K+ concentration in the cathode region. Through experiments, we show that a uniform local distribution of bicarbonate ions increases the accessibility of reverted CO2 to the catalyst surface, improving Faradaic efficiency and limiting current densities by twofold. Using these insights, we demonstrate a fully platinum-group-metal-free bipolar membrane electrode assembly CO2 conversion system exhibiting <1% CO2/cation crossover rates and 80-90% CO2-to-CO utilization efficiency over 150 h operation at 100 mA cm-2 without anolyte replenishment.
Collapse
Affiliation(s)
- Mengran Li
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands.
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Eric W Lees
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Wen Ju
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, 10623, Germany
- Department of Electrochemistry and Catalysis, Leibniz Institute for Catalysis, 18059, Rostock, Germany
| | - Siddhartha Subramanian
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Kailun Yang
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Justin C Bui
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biological Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joost Middelkoop
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands
| | - Peter Strasser
- Chemical Engineering Division, Department of Chemistry, Technical University Berlin, Berlin, 10623, Germany
| | - Adam Z Weber
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biological Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Thomas Burdyny
- Department of Chemical Engineering, Delft University of Technology; 9 van der Maasweg, Delft, 2629HZ, the Netherlands.
| |
Collapse
|
11
|
Belsa B, Xia L, García de Arquer FP. CO 2 Electrolysis Technologies: Bridging the Gap toward Scale-up and Commercialization. ACS ENERGY LETTERS 2024; 9:4293-4305. [PMID: 39296967 PMCID: PMC11406523 DOI: 10.1021/acsenergylett.4c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 09/21/2024]
Abstract
CO2 electroreduction (CO2E) converts CO2 into carbon-based fuels and chemical feedstocks that can be integrated into existing chemical processes. After decades of research, CO2E is approaching commercialization with several startups, pilot plants, and large initiatives targeting different products. Here, we analyze the global efforts in scaling up CO2E, addressing implementation challenges and proposing methods for acceleration. We present a comparative analysis of key performance indicators (KPIs) between laboratory and industrial settings and suggest a stepwise technoeconomic analysis (TEA) framework, supported by industrial data, exploiting interactions within the academic and industrial communities. We identify the lack of systems-oriented standardization and durability as the main bottlenecks slowing down progress in the lab-to-prototype-to-market pathway of CO2E technologies. Inspired by electrolysis and fuel cell technologies, we outline protocols to advance fundamental research and aid catalyst development progress in performance, upscaling, and technology readiness level of CO2E.
Collapse
Affiliation(s)
- Blanca Belsa
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| | - Lu Xia
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| | - F Pelayo García de Arquer
- The Barcelona Institute of Science and Technology, ICFO - Institut de Ciències Fotòniques, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
12
|
Osorio-Tejada J, Escriba-Gelonch M, Vertongen R, Bogaerts A, Hessel V. CO 2 conversion to CO via plasma and electrolysis: a techno-economic and energy cost analysis. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:5833-5853. [PMID: 39144614 PMCID: PMC11320396 DOI: 10.1039/d4ee00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 08/16/2024]
Abstract
Electrification and carbon capture technologies are essential for achieving net-zero emissions in the chemical sector. A crucial strategy involves converting captured CO2 into CO, a valuable chemical feedstock. This study evaluates the feasibility of two innovative methods: plasma activation and electrolysis, using clean electricity and captured CO2. Specifically, it compares a gliding arc plasma reactor with an embedded novel carbon bed system to a modern zero-gap type low-temperature electrolyser. The plasma method stood out with an energy cost of 19.5 GJ per tonne CO, marking a 43% reduction compared to electrolysis and conventional methods. CO production costs for plasma- and electrolysis-based plants were $671 and $962 per tonne, respectively. However, due to high uncertainty regarding electrolyser costs, the CO production costs in electrolysis-based plants may actually range from $570 to $1392 per tonne. The carbon bed system in the plasma method was a key factor in facilitating additional CO generation from O2 and enhancing CO2 conversion, contributing to its cost-effectiveness. Challenges for electrolysis included high costs of equipment and low current densities. Addressing these limitations could significantly decrease production costs, but challenges arise from the mutual relationship between intrinsic parameters, such as CO2 conversion, CO2 input flow, or energy cost. In a future scenario with affordable feedstocks and equipment, costs could drop below $500 per tonne for both methods. While this may be more challenging for electrolysis due to complexity and expensive catalysts, plasma-based CO production appears more viable and competitive.
Collapse
Affiliation(s)
| | - Marc Escriba-Gelonch
- Department of Environment, Soil Sciences and Chemistry, University of Lleida Spain
| | - Rani Vertongen
- Research Group PLASMANT, Department of Chemistry, University of Antwerp Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp Belgium
| | - Volker Hessel
- School of Engineering, University of Warwick UK
- School of Chemical Engineering, University of Adelaide Australia
| |
Collapse
|
13
|
Wu H, Yu H, Chow YL, Webley PA, Zhang J. Toward Durable CO 2 Electroreduction with Cu-Based Catalysts via Understanding Their Deactivation Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403217. [PMID: 38845132 DOI: 10.1002/adma.202403217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The technology of CO2 electrochemical reduction (CO2ER) provides a means to convert CO2, a waste greenhouse gas, into value-added chemicals. Copper is the most studied element that is capable of catalyzing CO2ER to obtain multicarbon products, such as ethylene, ethanol, acetate, etc., at an appreciable rate. Under the operating condition of CO2ER, the catalytic performance of Cu decays because of several factors that alters the surface properties of Cu. In this review, these factors that cause the degradation of Cu-based CO2ER catalysts are categorized into generalized deactivation modes, that are applicable to all electrocatalytic systems. The fundamental principles of each deactivation mode and the associated effects of each on Cu-based catalysts are discussed in detail. Structure- and composition-activity relationship developed from recent in situ/operando characterization studies are presented as evidence of related deactivation modes in operation. With the aim to address these deactivation modes, catalyst design and reaction environment engineering rationales are suggested. Finally, perspectives and remarks built upon the recent advances in CO2ER are provided in attempts to improve the durability of CO2ER catalysts.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Haoming Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, China
| | - Yuen-Leong Chow
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
14
|
An G, Wang K, Wang Z, Zhang M, Guo H, Wang L. Amine-Functionalized Metal-Free Nanocarbon to Boost Selective CO 2 Electroreduction to CO in a Flow Cell. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29060-29068. [PMID: 38767933 DOI: 10.1021/acsami.4c04502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Highly efficient electrochemical CO2-to-CO conversion is a promising approach for achieving carbon neutrality. While nonmetallic carbon electrocatalysts have shown potential for CO2-to-CO utilization in H-type cells, achieving efficient conversion in flow cells at an industrial scale remains challenging. In this study, we present a cost-effective synthesis strategy for preparing ultrathin 2D carbon nanosheet catalysts through simple amine functionalization. The optimized catalyst, NCNs-2.5, demonstrates exceptional CO selectivity with a maximum Faradaic efficiency of 98% and achieves a high current density of 55 mA cm-2 in a flow cell. Furthermore, the catalyst exhibits excellent long-term stability, operating continuously for 50 h while maintaining a CO selectivity above 90%. The superior catalytic activity of NCNs-2.5 is attributed to the presence of amine-N active sites within the carbon lattice structure. This work establishes a foundation for the rational design of cost-effective nonmetallic carbon catalysts as sustainable alternatives to metals in energy conversion systems.
Collapse
Affiliation(s)
- Guangbin An
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Mingwan Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| |
Collapse
|
15
|
Zhang Y, Wu Y. New perspective crosslinking electrochemistry and other research fields: beyond electrochemical reactors. Chem Sci 2024; 15:6608-6621. [PMID: 38725513 PMCID: PMC11077527 DOI: 10.1039/d3sc06983d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Over the years, electrochemical reactors have evolved significantly, with modern reactors now able to achieve a high current density and power output in compact sizes. This leap in performance has not only greatly accelerated the rate of electrochemical reactions but also had a broader impact on the environment. Traditional research perspectives, focused primarily on the internal working systems of reactors, possibly overlook the potential of electrochemical systems in regulating their surrounding environment. A novel research perspective considering the interaction between electrochemical processes and their environmental context as a unified subject of study has gradually emerged alongside the dramatic development of electrochemical techniques. This viewpoint introduces a paradigm shift: electrochemical reactors are not isolated entities but rather are integral parts that interact with their surroundings. Correspondingly, this calls for an innovative research methodology that goes beyond studying the electrochemical processes in isolation. Rather, it integrates the design of the electrochemical system with its specific application environment, ensuring seamless integration for optimal performance under various practical conditions. Therefore, performance metrics should include not only the basic parameters of the electrochemical reactions but also the adaptability of the electrochemical system in real-world scenarios beyond the laboratory. By focusing on environmental integration and application-driven design, the applications of electrochemical technology can be more effectively leveraged. This perspective is exemplified by an electrochemical system based on coupled cathodic oxygen reduction and anodic oxygen evolution reactions. By adopting this new research paradigm, the applications of this electrochemical system can be extended to fields like medical treatment, food science, and microbial fermentation, with an emphasis on tailored designs for these specific application fields. This comprehensive and systematic new research approach aims to fully explore the potential applications of electrochemical technology and foster interdisciplinary collaboration in the electrochemical field.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
16
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
17
|
Kong CJ, Ager JW. Electrochemical CO 2 reduction passes the acid test. NATURE NANOTECHNOLOGY 2024; 19:269-270. [PMID: 38151643 DOI: 10.1038/s41565-023-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Affiliation(s)
- Calton J Kong
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Joel W Ager
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
18
|
Raya-Imbernón A, Samu AA, Barwe S, Cusati G, Fődi T, Hepp BM, Janáky C. Renewable Syngas Generation via Low-Temperature Electrolysis: Opportunities and Challenges. ACS ENERGY LETTERS 2024; 9:288-297. [PMID: 38239720 PMCID: PMC10795495 DOI: 10.1021/acsenergylett.3c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
The production of syngas (i.e., a mixture of CO and H2) via the electrochemical reduction of CO2 and water can contribute to the green transition of various industrial sectors. Here we provide a joint academic-industrial perspective on the key technical and economical differences of the concurrent (i.e., CO and H2 are generated in the same electrolyzer cell) and separated (i.e., CO and H2 are electrogenerated in different electrolyzers) production of syngas. Using a combination of literature analysis, experimental data, and techno-economic analysis, we demonstrate that the production of synthesis gas is notably less expensive if we operate a CO2 electrolyzer in a CO-selective mode and combine it with a separate PEM electrolyzer for H2 generation. We also conclude that by the further decrease of the cost of renewable electricity and the increase of CO2 emission taxes, such prepared renewable syngas will become cost competitive.
Collapse
Affiliation(s)
- Andrés Raya-Imbernón
- Air
Liquide Forschung & Entwicklung GmbH, Innovation Campus Frankfurt, Gwinnerstraße 27−33, 60388 Frankfurt am Main, Germany
| | - Angelika A. Samu
- eChemicles
Zrt, Alsó Kikötő
sor 11, Szeged H-6726, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| | - Stefan Barwe
- Air
Liquide Forschung & Entwicklung GmbH, Innovation Campus Frankfurt, Gwinnerstraße 27−33, 60388 Frankfurt am Main, Germany
| | - Giuseppe Cusati
- Air
Liquide Forschung & Entwicklung GmbH, Innovation Campus Frankfurt, Gwinnerstraße 27−33, 60388 Frankfurt am Main, Germany
| | - Tamás Fődi
- eChemicles
Zrt, Alsó Kikötő
sor 11, Szeged H-6726, Hungary
| | - Balázs M. Hepp
- eChemicles
Zrt, Alsó Kikötő
sor 11, Szeged H-6726, Hungary
| | - Csaba Janáky
- eChemicles
Zrt, Alsó Kikötő
sor 11, Szeged H-6726, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary
| |
Collapse
|
19
|
Wang Z, Zhou Y, Qiu P, Xia C, Fang W, Jin J, Huang L, Deng P, Su Y, Crespo-Otero R, Tian X, You B, Guo W, Di Tommaso D, Pang Y, Ding S, Xia BY. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303052. [PMID: 37589167 DOI: 10.1002/adma.202303052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wensheng Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Rachel Crespo-Otero
- Department of Chemistry, University of College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
20
|
Takagi K, Suzuki N, Hunge YM, Kuriyama H, Hayakawa T, Serizawa I, Terashima C. Synergistic effect of Ag decorated in-liquid plasma treated titanium dioxide catalyst for efficient electrocatalytic CO 2 reduction application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166018. [PMID: 37543324 DOI: 10.1016/j.scitotenv.2023.166018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Recently, the conversion of carbon dioxide (CO2) into a useful resource and its byproducts by electrocatalytic reduction has been studied. It is well known that CO2 can be selectively reduced by gold, lead, etc. supported on conductive carbon. However, the high pH in the vicinity of the electrode raises concerns about the catalyst and catalyst support degradation. Therefore, we considered that using chemically stable TiO2 (titanium dioxide) powder as an alternative to carbon. Surface treatment using in-liquid plasma was used to improve the electrochemical properties of TiO2. TiO2 maintained its particle shape and crystalline structure after in-liquid plasma treatment. Electrochemical properties were evaluated and the disappearance of Ti4+ and Ti3+ redox peaks derived from TiO2 and a decrease in hydrogen overvoltage were observed. The hydrogen overvoltage relationship suggested that tungsten coating or doping on a portion of the reduced TiO2 surface. Electrocatalytic CO2 reduction using the silver nanoparticle-supported in-liquid plasma treated TiO2 showed increased hydrogen production. In electrocatalytic CO2 reduction, the ratio of hydrogen to carbon monoxide gas is important. Therefore, in-liquid plasma treated TiO2 is useful for the electrocatalytic CO2 reduction application.
Collapse
Affiliation(s)
- Kai Takagi
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; ORC Manufacturing Co., Ltd., 4896 Tamagawa, Chino, Nagano 391-0011, Japan
| | - Norihiro Suzuki
- Research institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuvaraj M Hunge
- Research institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Haruo Kuriyama
- ORC Manufacturing Co., Ltd., 4896 Tamagawa, Chino, Nagano 391-0011, Japan
| | - Takenori Hayakawa
- ORC Manufacturing Co., Ltd., 4896 Tamagawa, Chino, Nagano 391-0011, Japan
| | - Izumi Serizawa
- ORC Manufacturing Co., Ltd., 4896 Tamagawa, Chino, Nagano 391-0011, Japan
| | - Chiaki Terashima
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
21
|
Xue L, Gao Z, Ning T, Li W, Li J, Yin J, Xiao L, Wang G, Zhuang L. Dual-Role of Polyelectrolyte-Tethered Benzimidazolium Cation in Promoting CO 2 /Pure Water Co-Electrolysis to Ethylene. Angew Chem Int Ed Engl 2023; 62:e202309519. [PMID: 37750552 DOI: 10.1002/anie.202309519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR), as a promising route to realize negative carbon emissions, is known to be strongly affected by electrolyte cations (i.e., cation effect). In contrast to the widely-studied alkali cations in liquid electrolytes, the effect of organic cations grafted on alkaline polyelectrolytes (APE) remains unexplored, although APE has already become an essential component of CO2 electrolyzers. Herein, by studying the organic cation effect on CO2 RR, we find that benzimidazolium cation (Beim+ ) significantly outperforms other commonly-used nitrogenous cations (R4 N+ ) in promoting C2+ (mainly C2 H4 ) production over copper electrode. Cyclic voltammetry and in situ spectroscopy studies reveal that the Beim+ can synergistically boost the CO2 to *CO conversion and reduce the proton supply at the electrocatalytic interface, thus facilitating the *CO dimerization toward C2+ formation. By utilizing the homemade APE ionomer, we further realize efficient C2 H4 production at an industrial-scale current density of 331 mA cm-2 from CO2 /pure water co-electrolysis, thanks to the dual-role of Beim+ in synergistic catalysis and ionic conduction. This study provides a new avenue to boost CO2 RR through the structural design of polyelectrolytes.
Collapse
Affiliation(s)
- Liwei Xue
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Zeyu Gao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Tianshu Ning
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Wenzheng Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Jinmeng Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Jinlong Yin
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
- Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
22
|
Baumgartner LM, Goryachev A, Koopman CI, Franzen D, Ellendorff B, Turek T, Vermaas DA. Electrowetting limits electrochemical CO 2 reduction in carbon-free gas diffusion electrodes. ENERGY ADVANCES 2023; 2:1893-1904. [PMID: 38013932 PMCID: PMC10634457 DOI: 10.1039/d3ya00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
CO2 electrolysis might be a key process to utilize intermittent renewable electricity for the sustainable production of hydrocarbon chemicals without relying on fossil fuels. Commonly used carbon-based gas diffusion electrodes (GDEs) enable high Faradaic efficiencies for the desired carbon products at high current densities, but have limited stability. In this study, we explore the adaption of a carbon-free GDE from a Chlor-alkali electrolysis process as a cathode for gas-fed CO2 electrolysis. We determine the impact of electrowetting on the electrochemical performance by analyzing the Faradaic efficiency for CO at industrially relevant current density. The characterization of used GDEs with X-ray photoelectron spectroscopy (XPS) and X-Ray diffraction (XRD) reveals a potential-dependent degradation, which can be explained through chemical polytetrafluorethylene (PTFE) degradation and/or physical erosion of PTFE through the restructuring of the silver surface. Our results further suggest that electrowetting-induced flooding lets the Faradaic efficiency for CO drop below 40% after only 30 min of electrolysis. We conclude that the effect of electrowetting has to be managed more carefully before the investigated carbon-free GDEs can compete with carbon-based GDEs as cathodes for CO2 electrolysis. Further, not only the conductive phase (such as carbon), but also the binder (such as PTFE), should be carefully selected for stable CO2 reduction.
Collapse
Affiliation(s)
| | - Andrey Goryachev
- Department of Chemical Engineering, Delft University of Technology Netherlands
| | - Christel I Koopman
- Department of Chemical Engineering, Delft University of Technology Netherlands
| | - David Franzen
- Institute for Chemical and Electrochemical Process Engineering, Technical University Clausthal Germany
| | - Barbara Ellendorff
- Institute for Chemical and Electrochemical Process Engineering, Technical University Clausthal Germany
| | - Thomas Turek
- Institute for Chemical and Electrochemical Process Engineering, Technical University Clausthal Germany
| | - David A Vermaas
- Department of Chemical Engineering, Delft University of Technology Netherlands
| |
Collapse
|
23
|
Sahin B, Kimberly Raymond S, Ntourmas F, Pastusiak R, Wiesner-Fleischer K, Fleischer M, Simon E, Hinrichsen O. Accumulation of Liquid Byproducts in an Electrolyte as a Critical Factor That Compromises Long-Term Functionality of CO 2-to-C 2H 4 Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45844-45854. [PMID: 37729427 DOI: 10.1021/acsami.3c08454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Electrochemical conversion of CO2 using Cu-based gas diffusion electrodes opens the way to green chemical production as an alternative to thermocatalytic processes and a storage solution for intermittent renewable electricity. However, diverse challenges, including short lifetimes, currently inhibit their industrial usage. Among well-studied determinants such as catalyst characteristics and electrode architecture, possible effects of byproduct accumulation in the electrolyte as an operational factor have not been elucidated. This work quantifies the influence of ethanol, n-propanol, and formate accumulation on selectivity, stability, and cell potential in a CO2-to-C2H4 electrolyzer. Alcohols accelerated flooding by degrading the hydrophobic electrode characteristics, undermining selective and stable ethylene formation. Furthermore, high alcohol concentrations triggered the catalyst layer's abrasion and structural disfigurements in the Nafion 117 membrane, leading to high cell potentials. Therefore, continuous removal of alcohols from the electrolyte medium or substantial modifications in the cell components must be considered to ensure long-term performing CO2-to-C2H4 electrolyzers.
Collapse
Affiliation(s)
- Baran Sahin
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
- Catalysis Research Center and Chemistry Department, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b Munich, Germany
| | - Samantha Kimberly Raymond
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
- Catalysis Research Center and Chemistry Department, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b Munich, Germany
| | - Felix Ntourmas
- Technology Department, Siemens AG, Schuckertstr. 2, 91058 Erlangen, Germany
| | - Remigiusz Pastusiak
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
| | | | - Maximilian Fleischer
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
| | - Elfriede Simon
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
| | - Olaf Hinrichsen
- Catalysis Research Center and Chemistry Department, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b Munich, Germany
| |
Collapse
|
24
|
da Cunha SC, Resasco J. Maximizing single-pass conversion does not result in practical readiness for CO 2 reduction electrolyzers. Nat Commun 2023; 14:5513. [PMID: 37679385 PMCID: PMC10484981 DOI: 10.1038/s41467-023-41348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
The authors comment that maximizing product concentration is a more meaningful target for CO2 electrolyzers than maximizing single-pass conversion.
Collapse
Affiliation(s)
- Shashwati C da Cunha
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Joaquin Resasco
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
25
|
Lang JT, Kulkarni D, Foster CW, Huang Y, Sepe MA, Shimpalee S, Parkinson DY, Zenyuk IV. X-ray Tomography Applied to Electrochemical Devices and Electrocatalysis. Chem Rev 2023; 123:9880-9914. [PMID: 37579025 PMCID: PMC10450694 DOI: 10.1021/acs.chemrev.2c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 08/16/2023]
Abstract
X-ray computed tomography (CT) is a nondestructive three-dimensional (3D) imaging technique used for studying morphological properties of porous and nonporous materials. In the field of electrocatalysis, X-ray CT is mainly used to quantify the morphology of electrodes and extract information such as porosity, tortuosity, pore-size distribution, and other relevant properties. For electrochemical systems such as fuel cells, electrolyzers, and redox flow batteries, X-ray CT gives the ability to study evolution of critical features of interest in ex situ, in situ, and operando environments. These include catalyst degradation, interface evolution under real conditions, formation of new phases (water and oxygen), and dynamics of transport processes. These studies enable more efficient device and electrode designs that will ultimately contribute to widespread decarbonization efforts.
Collapse
Affiliation(s)
- Jack T. Lang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
| | - Devashish Kulkarni
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| | - Collin W. Foster
- Department
of Aerospace Engineering, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Ying Huang
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| | - Mitchell A. Sepe
- Hydrogen
and Fuel Cell Center, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sirivatch Shimpalee
- Hydrogen
and Fuel Cell Center, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dilworth Y. Parkinson
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Iryna V. Zenyuk
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| |
Collapse
|
26
|
Mardle P, Gangrade A, Saatkamp T, Jiang Z, Cassegrain S, Zhao N, Shi Z, Holdcroft S. Performance and Stability of Aemion and Aemion+ Membranes in Zero-Gap CO 2 Electrolyzers with Mild Anolyte Solutions. CHEMSUSCHEM 2023; 16:e202202376. [PMID: 36997499 DOI: 10.1002/cssc.202202376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/14/2023]
Abstract
The dependence of performance and stability of a zero-gap CO2 electrolyzer on the properties of the anion exchange membrane (AEM) is examined. This work firstly assesses the influence of the anolyte when using an Aemion membrane and then shows that when using 10 mM KHCO3 , a CO2 electrolyzer using a next-generation Aemion+ membrane can achieve lower cell voltages and longer lifetimes due to increased water permeation. The impact of lower permselectivity of Aemion+ on water transport is also discussed. Using Aemion+, a cell voltage of 3.17 V at 200 mA cm-2 is achieved at room temperature, with a faradaic efficiency of >90 %. Stable CO2 electrolysis at 100 mA cm-2 is demonstrated for 100 h, but with reduced lifetime at 300 mA cm-2 . However, the lifetime of the cell at high current densities is shown to be increased by improving water transport characteristics of the AEM and reducing dimensional swelling, as well as by improving cathode design to reduce localized dehydration of the membrane.
Collapse
Affiliation(s)
- Peter Mardle
- Energy, Mining & Environment Research Centre, National Research Council Canada, Vancouver, BC V6T 1 W5, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5 A 1S6, Canada
| | - Apurva Gangrade
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5 A 1S6, Canada
| | - Torben Saatkamp
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5 A 1S6, Canada
| | - Zhengming Jiang
- Energy, Mining & Environment Research Centre, National Research Council Canada, Vancouver, BC V6T 1 W5, Canada
| | - Simon Cassegrain
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5 A 1S6, Canada
| | - Nana Zhao
- Energy, Mining & Environment Research Centre, National Research Council Canada, Vancouver, BC V6T 1 W5, Canada
| | - Zhiqing Shi
- Energy, Mining & Environment Research Centre, National Research Council Canada, Vancouver, BC V6T 1 W5, Canada
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5 A 1S6, Canada
| |
Collapse
|
27
|
Staerz AF, van Leeuwen M, Priamushko T, Saatkamp T, Endrődi B, Plankensteiner N, Jobbagy M, Pahlavan S, Blom MJW, Janáky C, Cherevko S, Vereecken PM. Effects of Iron Species on Low Temperature CO 2 Electrolyzers. Angew Chem Int Ed Engl 2023:e202306503. [PMID: 37466922 DOI: 10.1002/anie.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion devices are considered key in reducing CO2 emissions and significant efforts are being applied to accelerate device development. Unlike other technologies, low temperature electrolyzers have the ability to directly convert CO2 into a range of value-added chemicals. To make them commercially viable, however, device efficiency and durability must be increased. Although their design is similar to more mature water electrolyzers and fuel cells, new cell concepts and components are needed. Due to the complexity of the system, singular component optimization is common. As a result, the component interplay is often overlooked. The influence of Fe-species clearly shows that the cell must be considered holistically during optimization, to avoid future issues due to component interference or cross-contamination. Fe-impurities are ubiquitous, and their influence on single components is well-researched. The activity of non-noble anodes has been increased through the deliberate addition of iron. At the same time, however, Fe-species accelerate cathode and membrane degradation. Here, we interpret literature on single components to gain an understanding of how Fe-species influence low temperature CO2 electrolyzers holistically. The role of Fe-species serves to highlight the need for considerations regarding component interplay in general.
Collapse
Affiliation(s)
- Anna F Staerz
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Marieke van Leeuwen
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tatiana Priamushko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Torben Saatkamp
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Balázs Endrődi
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
| | - Nina Plankensteiner
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Matias Jobbagy
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Sohrab Pahlavan
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Martijn J W Blom
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
- eChemicles Zrt., Alsó Kikötő sor 11, 6726, Szeged, Hungary
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Philippe M Vereecken
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
28
|
Ma X, Albertsma J, Gabriels D, Horst R, Polat S, Snoeks C, Kapteijn F, Eral HB, Vermaas DA, Mei B, de Beer S, van der Veen MA. Carbon monoxide separation: past, present and future. Chem Soc Rev 2023; 52:3741-3777. [PMID: 37083229 PMCID: PMC10243283 DOI: 10.1039/d3cs00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 04/22/2023]
Abstract
Large amounts of carbon monoxide are produced by industrial processes such as biomass gasification and steel manufacturing. The CO present in vent streams is often burnt, this produces a large amount of CO2, e.g., oxidation of CO from metallurgic flue gasses is solely responsible for 2.7% of manmade CO2 emissions. The separation of N2 from CO due to their very similar physical properties is very challenging, meaning that numerous energy-intensive steps are required for CO separation, making the CO separation from many process streams uneconomical in spite of CO being a valuable building block in the production of major chemicals through C1 chemistry and the production of linear hydrocarbons by the Fischer-Tropsch process. The development of suitable processes for the separation of carbon monoxide has both industrial and environmental significance. Especially since CO is a main product of electrocatalytic CO2 reduction, an emerging sustainable technology to enable carbon neutrality. This technology also requires an energy-efficient separation process. Therefore, there is a great need to develop energy efficient CO separation processes adequate for these different process streams. As such the urgency of separating carbon monoxide is gaining greater recognition, with research in the field becoming more and more crucial. This review details the principles on which CO separation is based and provides an overview of currently commercialised CO separation processes and their limitations. Adsorption is identified as a technology with the potential for CO separation with high selectivity and energy efficiency. We review the research efforts, mainly seen in the last decades, in developing new materials for CO separation via ad/bsorption and membrane technology. We have geared our review to both traditional CO sources and emerging CO sources, including CO production from CO2 conversion. To that end, a variety of emerging processes as potential CO2-to-CO technologies are discussed and, specifically, the need for CO capture after electrochemical CO2 reduction is highlighted, which is still underexposed in the available literature. Altogether, we aim to highlight the knowledge gaps that could guide future research to improve CO separation performance for industrial implementation.
Collapse
Affiliation(s)
- Xiaozhou Ma
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Jelco Albertsma
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Dieke Gabriels
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Rens Horst
- Science and Technology Faculty, University Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Sevgi Polat
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
- Chemical Engineering Department, Marmara University, 34854 İstanbul, Turkey
| | - Casper Snoeks
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Freek Kapteijn
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Hüseyin Burak Eral
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - David A Vermaas
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Bastian Mei
- Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Sissi de Beer
- Science and Technology Faculty, University Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Monique Ann van der Veen
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
29
|
Liu N, Chen L, Deng K, Feng H, Zhang Y, Duan J, Liu D, Li Q. Multiscale model to resolve the chemical environment in a pressurized CO 2-captured solution electrolyzer. Sci Bull (Beijing) 2023:S2095-9273(23)00316-X. [PMID: 37211489 DOI: 10.1016/j.scib.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
The community of electrochemical CO2 reduction is almost exclusively focused on gaseous CO2-fed electrolyzers. Here, we proposed a pressurized CO2-Captured solution electrolyzer to produce solar Fuel of CO (abbreviated "CCF") without the need to regenerate gaseous CO2. Specifically, we developed an experimentally validated multiscale model to quantitatively investigate the effect of pressure-induced chemical environment and to resolve the complex relationship between this effect and the activity and selectivity of CO production. Our results show that the pressure-induced variation of the cathode pH has a negative effect on the hydrogen evolution reaction, whereas the species coverage variation positively affects CO2 reduction. These effects are more pronounced at pressures below 15 bar (1 bar = 101 kPa). Consequently, a mild increase in the pressure of the CO2-captured solution from 1 to 10 bar leads to a dramatic enhancement in selectivity. Using a commercial Ag nanoparticle catalyst, our pressurized CCF prototype achieved CO selectivity higher than 95% at a low cathode potential of -0.6 V versus reversible hydrogen electrode (RHE), comparable to that under the gaseous CO2-fed condition. This enables the demonstration of a solar-to-CO efficiency of 16.8%, superior to any known devices with an aqueous feed.
Collapse
Affiliation(s)
- Ning Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longfei Chen
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kai Deng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Feng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ying Zhang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingjing Duan
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qiang Li
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
30
|
El-Nagar GA, Haun F, Gupta S, Stojkovikj S, Mayer MT. Unintended cation crossover influences CO 2 reduction selectivity in Cu-based zero-gap electrolysers. Nat Commun 2023; 14:2062. [PMID: 37045816 PMCID: PMC10097803 DOI: 10.1038/s41467-023-37520-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Membrane electrode assemblies enable CO2 electrolysis at industrially relevant rates, yet their operational stability is often limited by formation of solid precipitates in the cathode pores, triggered by cation crossover from the anolyte due to imperfect ion exclusion by anion exchange membranes. Here we show that anolyte concentration affects the degree of cation movement through the membranes, and this substantially influences the behaviors of copper catalysts in catholyte-free CO2 electrolysers. Systematic variation of the anolyte (KOH or KHCO3) ionic strength produced a distinct switch in selectivity between either predominantly CO or C2+ products (mainly C2H4) which closely correlated with the quantity of alkali metal cation (K+) crossover, suggesting cations play a key role in C-C coupling reaction pathways even in cells without discrete liquid catholytes. Operando X-ray absorption and quasi in situ X-ray photoelectron spectroscopy revealed that the Cu surface speciation showed a strong dependence on the anolyte concentration, wherein dilute anolytes resulted in a mixture of Cu+ and Cu0 surface species, while concentrated anolytes led to exclusively Cu0 under similar testing conditions. These results show that even in catholyte-free cells, cation effects (including unintentional ones) significantly influence reaction pathways, important to consider in future development of catalysts and devices.
Collapse
Affiliation(s)
- Gumaa A El-Nagar
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
| | - Flora Haun
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Institut für Chemie & Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Siddharth Gupta
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Institut für Chemie & Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Sasho Stojkovikj
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Institut für Chemie & Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Matthew T Mayer
- Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
| |
Collapse
|
31
|
Hoof L, Pellumbi K, Heuser S, Siegmund D, junge Puring K, Apfel UP. Wassermanagement als Schlüsselparameter für die Skalierung eines CO
2
‐Elektrolyseurs. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
32
|
Sun JW, Wu X, Liu PF, Chen J, Liu Y, Lou ZX, Zhao JY, Yuan HY, Chen A, Wang XL, Zhu M, Dai S, Yang HG. Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO 2 electrolysis. Nat Commun 2023; 14:1599. [PMID: 37072410 PMCID: PMC10113237 DOI: 10.1038/s41467-023-36688-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/10/2023] [Indexed: 04/20/2023] Open
Abstract
Practical electrochemical CO2-to-CO conversion requires a non-precious catalyst to react at high selectivity and high rate. Atomically dispersed, coordinatively unsaturated metal-nitrogen sites have shown great performance in CO2 electroreduction; however, their controllable and large-scale fabrication still remains a challenge. Herein, we report a general method to fabricate coordinatively unsaturated metal-nitrogen sites doped within carbon nanotubes, among which cobalt single-atom catalysts can mediate efficient CO2-to-CO formation in a membrane flow configuration, achieving a current density of 200 mA cm-2 with CO selectivity of 95.4% and high full-cell energy efficiency of 54.1%, outperforming most of CO2-to-CO conversion electrolyzers. By expanding the cell area to 100 cm2, this catalyst sustains a high-current electrolysis at 10 A with 86.8% CO selectivity and the single-pass conversion can reach 40.4% at a high CO2 flow rate of 150 sccm. This fabrication method can be scaled up with negligible decay in CO2-to-CO activity. In situ spectroscopy and theoretical results reveal the crucial role of coordinatively unsaturated metal-nitrogen sites, which facilitate CO2 adsorption and key *COOH intermediate formation.
Collapse
Affiliation(s)
- Ji Wei Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jiacheng Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Aiping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
33
|
Samu AA, Szenti I, Kukovecz Á, Endrődi B, Janáky C. Systematic screening of gas diffusion layers for high performance CO 2 electrolysis. Commun Chem 2023; 6:41. [PMID: 36828885 PMCID: PMC9958001 DOI: 10.1038/s42004-023-00836-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Certain industrially relevant performance metrics of CO2 electrolyzers have already been approached in recent years. The energy efficiency of CO2 electrolyzers, however, is yet to be improved, and the reasons behind performance fading must be uncovered. The performance of the electrolyzer cells is strongly affected by their components, among which the gas diffusion electrode is one of the most critical elements. To understand which parameters of the gas diffusion layers (GDLs) affect the cell performance the most, we compared commercially available GDLs in the electrochemical reduction of CO2 to CO, under identical, fully controlled experimental conditions. By systematically screening the most frequently used GDLs and their counterparts differing in only one parameter, we tested the influence of the microporous layer, the polytetrafluoroethylene content, the thickness, and the orientation of the carbon fibers of the GDLs. The electrochemical results were correlated to different physical/chemical parameters of the GDLs, such as their hydrophobicity and surface cracking.
Collapse
Affiliation(s)
- Angelika Anita Samu
- grid.9008.10000 0001 1016 9625Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged, H-6720 Hungary ,eChemicles Zrt, Alsó Kikötő sor 11, Szeged, H-6726 Hungary
| | - Imre Szenti
- grid.9008.10000 0001 1016 9625Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Square 1, Szeged, H-6720 Hungary
| | - Ákos Kukovecz
- grid.9008.10000 0001 1016 9625Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Square 1, Szeged, H-6720 Hungary
| | - Balázs Endrődi
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged, H-6720, Hungary.
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Square 1, Szeged, H-6720, Hungary. .,eChemicles Zrt, Alsó Kikötő sor 11, Szeged, H-6726, Hungary.
| |
Collapse
|
34
|
Blake JW, Konderla V, Baumgartner LM, Vermaas DA, Padding JT, Haverkort JW. Inhomogeneities in the Catholyte Channel Limit the Upscaling of CO 2 Flow Electrolysers. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:2840-2852. [PMID: 36844750 PMCID: PMC9945194 DOI: 10.1021/acssuschemeng.2c06129] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The use of gas diffusion electrodes that supply gaseous CO2 directly to the catalyst layer has greatly improved the performance of electrochemical CO2 conversion. However, reports of high current densities and Faradaic efficiencies primarily come from small lab scale electrolysers. Such electrolysers typically have a geometric area of 5 cm2, while an industrial electrolyser would require an area closer to 1 m2. The difference in scales means that many limitations that manifest only for larger electrolysers are not captured in lab scale setups. We develop a 2D computational model of both a lab scale and upscaled CO2 electrolyser to determine performance limitations at larger scales and how they compare to the performance limitations observed at the lab scale. We find that for the same current density larger electrolysers exhibit much greater reaction and local environment inhomogeneity. Increasing catalyst layer pH and widening concentration boundary layers of the KHCO3 buffer in the electrolyte channel lead to higher activation overpotential and increased parasitic loss of reactant CO2 to the electrolyte solution. We show that a variable catalyst loading along the direction of the flow channel may improve the economics of a large scale CO2 electrolyser.
Collapse
Affiliation(s)
- Joseph W. Blake
- Department
of Process and Energy, Delft University
of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - Vojtěch Konderla
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZDelft, Netherlands
| | - Lorenz M. Baumgartner
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZDelft, Netherlands
| | - David A. Vermaas
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZDelft, Netherlands
| | - Johan T. Padding
- Department
of Process and Energy, Delft University
of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| | - J. W. Haverkort
- Department
of Process and Energy, Delft University
of Technology, Leeghwaterstraat 39, 2628 CBDelft, The Netherlands
| |
Collapse
|
35
|
Larrea C, Avilés-Moreno JR, Ocón P. Strategies to Enhance CO 2 Electrochemical Reduction from Reactive Carbon Solutions. Molecules 2023; 28:molecules28041951. [PMID: 36838939 PMCID: PMC9960053 DOI: 10.3390/molecules28041951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
CO2 electrochemical reduction (CO2 ER) from (bi)carbonate feed presents an opportunity to efficiently couple this process to alkaline-based carbon capture systems. Likewise, while this method of reducing CO2 currently lags behind CO2 gas-fed electrolysers in certain performance metrics, it offers a significant improvement in CO2 utilization which makes the method worth exploring. This paper presents two simple modifications to a bicarbonate-fed CO2 ER system that enhance the selectivity towards CO. Specifically, a modified hydrophilic cathode with Ag catalyst loaded through electrodeposition and the addition of dodecyltrimethylammonium bromide (DTAB), a low-cost surfactant, to the catholyte enabled the system to achieve a FECO of 85% and 73% at 100 and 200 mA·cm-2, respectively. The modifications were tested in 4 h long experiments where DTAB helped maintain FECO stable even when the pH of the catholyte became more alkaline, and it improved the CO2 utilization compared to a system without DTAB.
Collapse
|
36
|
Past and present of electrochemical science in Hungary. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractThe electrochemistry-related scientific activities in Hungary over the past 3 decades are reviewed. In the first section, we summarize those research areas that are already ceased; in the next section, the ongoing research is discussed; finally, the trends and outlook are highlighted. A special emphasis is put on new experimental methods elaborated in the country.
Collapse
|
37
|
Hursán D, Janáky C. Operando characterization of continuous flow CO 2 electrolyzers: current status and future prospects. Chem Commun (Camb) 2023; 59:1395-1414. [PMID: 36655495 PMCID: PMC9894021 DOI: 10.1039/d2cc06065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The performance of continuous-flow CO2 electrolyzers has substantially increased in recent years, achieving current density and selectivity (particularly for CO production) meeting the industrial targets. Further improvement is, however, necessary in terms of stability and energy efficiency, as well as in high-value multicarbon product formation. Accelerating this process requires deeper understanding of the complex interplay of chemical-physical processes taking place in CO2 electrolyzer cells. Operando characterization can provide these insights under working conditions, helping to identify the reasons for performance losses. Despite this fact, only relatively few studies have taken advantage of such methods up to now, applying operando techniques to characterize practically relevant CO2 electrolyzers. These studies include X-ray absorption- and Raman spectroscopy, fluorescent microscopy, scanning probe techniques, mass spectrometry, and radiography. Their objective was to characterize the catalyst structure, its microenviroment, membrane properties, etc., and relate them to the device performance (reaction rates and product distribution). Here we review the current state-of-the-art of operando methods, associated challenges, and also their future potential. We aim to motivate researchers to perform operando characterization in continuous-flow CO2 electrolyzers, to understand the reaction mechanism and device operation under practically relevant conditions, thereby advancing the field towards industrialization.
Collapse
Affiliation(s)
- Dorottya Hursán
- University of Szeged, Department of Physical Chemistry and Materials ScienceAradi sq. 1Szeged6720Hungary
| | - Csaba Janáky
- University of Szeged, Department of Physical Chemistry and Materials ScienceAradi sq. 1Szeged6720Hungary
| |
Collapse
|
38
|
Kato S, Hashimoto T, Iwase K, Harada T, Nakanishi S, Kamiya K. Selective and high-rate CO 2 electroreduction by metal-doped covalent triazine frameworks: a computational and experimental hybrid approach. Chem Sci 2023; 14:613-620. [PMID: 36741519 PMCID: PMC9847663 DOI: 10.1039/d2sc03754h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has attracted intensive attention as a technology to achieve a carbon-neutral society. The use of gas diffusion electrodes (GDEs) enables the realization of high-rate CO2RRs, which is one of the critical requirements for social implementation. Although both a high reaction rate and good selectivity are simultaneously required for electrocatalysts on GDEs, no systematic study of the relationship among active metal centers in electrocatalysts, reaction rate, and selectivity under high-rate CO2RR conditions has been reported. In the present study, we employed various metal-doped covalent triazine frameworks (M-CTFs) as platforms for CO2 reduction reaction (CO2RR) electrocatalysts on GDEs and systematically investigated them to deduce sophisticated design principles using a combined computational and experimental approach. The Ni-CTF showed both high selectivity (faradaic efficiency (FE) > 98% at -0.5 to -0.9 V vs. reversible hydrogen electrode) and a high reaction rate (current density < -200 mA cm-2) for CO production. By contrast, the Sn-CTF exhibited selective formic acid production, and the FE and partial current density reached 85% and 150 mA cm-2, respectively. These results for the CO2RR activity and selectivity at high current density with respect to metal centers correspond well with predictions based on first-principles calculations. This work is the first demonstration of a clear relationship between the computational adsorption energy of intermediates depending on metal species and the experimental high-rate gaseous CO2RR.
Collapse
Affiliation(s)
- Shintaro Kato
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Takuya Hashimoto
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Kazuyuki Iwase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Takashi Harada
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Suita Osaka 565-0871 Japan
| | - Kazuhide Kamiya
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
39
|
Xu Q, Xu A, Garg S, Moss AB, Chorkendorff I, Bligaard T, Seger B. Enriching Surface-Accessible CO 2 in the Zero-Gap Anion-Exchange-Membrane-Based CO 2 Electrolyzer. Angew Chem Int Ed Engl 2023; 62:e202214383. [PMID: 36374271 PMCID: PMC10108229 DOI: 10.1002/anie.202214383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Zero-gap anion exchange membrane (AEM)-based CO2 electrolysis is a promising technology for CO production, however, their performance at elevated current densities still suffers from the low local CO2 concentration due to heavy CO2 neutralization. Herein, via modulating the CO2 feed mode and quantitative analyzing CO2 utilization with the aid of mass transport modeling, we develop a descriptor denoted as the surface-accessible CO2 concentration ([CO2 ]SA ), which enables us to indicate the transient state of the local [CO2 ]/[OH- ] ratio and helps define the limits of CO2 -to-CO conversion. To enrich the [CO2 ]SA , we developed three general strategies: (1) increasing catalyst layer thickness, (2) elevating CO2 pressure, and (3) applying a pulsed electrochemical (PE) method. Notably, an optimized PE method allows to keep the [CO2 ]SA at a high level by utilizing the dynamic balance period of CO2 neutralization. A maximum jCO of 368±28 mA cmgeo -2 was achieved using a commercial silver catalyst.
Collapse
Affiliation(s)
- Qiucheng Xu
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Aoni Xu
- CatTheory Center, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Sahil Garg
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Asger B Moss
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Ib Chorkendorff
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Thomas Bligaard
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Brian Seger
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| |
Collapse
|
40
|
Sassenburg M, Kelly M, Subramanian S, Smith WA, Burdyny T. Zero-Gap Electrochemical CO 2 Reduction Cells: Challenges and Operational Strategies for Prevention of Salt Precipitation. ACS ENERGY LETTERS 2023; 8:321-331. [PMID: 36660368 PMCID: PMC9841607 DOI: 10.1021/acsenergylett.2c01885] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Salt precipitation is a problem in electrochemical CO2 reduction electrolyzers that limits their long-term durability and industrial applicability by reducing the active area, causing flooding and hindering gas transport. Salt crystals form when hydroxide generation from electrochemical reactions interacts homogeneously with CO2 to generate substantial quantities of carbonate. In the presence of sufficient electrolyte cations, the solubility limits of these species are reached, resulting in "salting out" conditions in cathode compartments. Detrimental salt precipitation is regularly observed in zero-gap membrane electrode assemblies, especially when operated at high current densities. This Perspective briefly discusses the mechanisms for salt formation, and recently reported strategies for preventing or reversing salt formation in zero-gap CO2 reduction membrane electrode assemblies. We link these approaches to the solubility limit of potassium carbonate within the electrolyzer and describe how each strategy separately manipulates water, potassium, and carbonate concentrations to prevent (or mitigate) salt formation.
Collapse
Affiliation(s)
- Mark Sassenburg
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| | - Maria Kelly
- Department
of Chemical and Biological Engineering and Renewable and Sustainable
Energy Institute (RASEI), University of
Colorado Boulder, Boulder, Colorado80303, United States
- National
Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Siddhartha Subramanian
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| | - Wilson A. Smith
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
- Department
of Chemical and Biological Engineering and Renewable and Sustainable
Energy Institute (RASEI), University of
Colorado Boulder, Boulder, Colorado80303, United States
- National
Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Thomas Burdyny
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Delft University of Technology, 2629 ZHDelft, The Netherlands
| |
Collapse
|
41
|
She X, Wang Y, Xu H, Chi Edman Tsang S, Ping Lau S. Challenges and Opportunities in Electrocatalytic CO 2 Reduction to Chemicals and Fuels. Angew Chem Int Ed Engl 2022; 61:e202211396. [PMID: 35989680 PMCID: PMC10091971 DOI: 10.1002/anie.202211396] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Abstract
The global temperature increase must be limited to below 1.5 °C to alleviate the worst effects of climate change. Electrocatalytic CO2 reduction (ECO2 R) to generate chemicals and feedstocks is considered one of the most promising technologies to cut CO2 emission at an industrial level. However, despite decades of studies, advances at the laboratory scale have not yet led to high industrial deployment rates. This Review discusses practical challenges in the industrial chain that hamper the scaling-up deployment of the ECO2 R technology. Faradaic efficiencies (FEs) of about 100 % and current densities above 200 mA cm-2 have been achieved for the ECO2 R to CO/HCOOH, and the stability of the electrolysis system has been prolonged to 2000 h. For ECO2 R to C2 H4 , the maximum FE is over 80 %, and the highest current density has reached the A cm-2 level. Thus, it is believed that ECO2 R may have reached the stage for scale-up. We aim to provide insights that can accelerate the development of the ECO2 R technology.
Collapse
Affiliation(s)
- Xiaojie She
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| | - Yifei Wang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Hui Xu
- Institute for Energy ResearchSchool of the Environment and Safety EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Shu Ping Lau
- Department of Applied Physics, theHong Kong Polytechnic UniversityHung Hom, Hong KongP. R. China
| |
Collapse
|
42
|
Toward economical application of carbon capture and utilization technology with near-zero carbon emission. Nat Commun 2022; 13:7482. [PMID: 36470930 PMCID: PMC9722933 DOI: 10.1038/s41467-022-35239-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/15/2022] [Indexed: 12/11/2022] Open
Abstract
Carbon capture and utilization technology has been studied for its practical ability to reduce CO2 emissions and enable economical chemical production. The main challenge of this technology is that a large amount of thermal energy must be provided to supply high-purity CO2 and purify the product. Herein, we propose a new concept called reaction swing absorption, which produces synthesis gas (syngas) with net-zero CO2 emission through direct electrochemical CO2 reduction in a newly proposed amine solution, triethylamine. Experimental investigations show high CO2 absorption rates (>84%) of triethylamine from low CO2 concentrated flue gas. In addition, the CO Faradaic efficiency in a triethylamine supplied membrane electrode assembly electrolyzer is approximately 30% (@-200 mA cm-2), twice higher than those in conventional alkanolamine solvents. Based on the experimental results and rigorous process modeling, we reveal that reaction swing absorption produces high pressure syngas at a reasonable cost with negligible CO2 emissions. This system provides a fundamental solution for the CO2 crossover and low system stability of electrochemical CO2 reduction.
Collapse
|
43
|
Influence of the target product on the electrochemical reduction of diluted CO2 in a continuous flow cell. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Wu D, Jiao F, Lu Q. Progress and Understanding of CO 2/CO Electroreduction in Flow Electrolyzers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Donghuan Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Bagemihl I, Bhatraju C, van Ommen JR, van Steijn V. Electrochemical Reduction of CO 2 in Tubular Flow Cells under Gas-Liquid Taylor Flow. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12580-12587. [PMID: 36189111 PMCID: PMC9516770 DOI: 10.1021/acssuschemeng.2c03038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical reduction of CO2 using renewable energy is a promising avenue for sustainable production of bulk chemicals. However, CO2 electrolysis in aqueous systems is severely limited by mass transfer, leading to low reactor performance insufficient for industrial application. This paper shows that structured reactors operated under gas-liquid Taylor flow can overcome these limitations and significantly improve the reactor performance. This is achieved by reducing the boundary layer for mass transfer to the thin liquid film between the CO2 bubbles and the electrode. This work aims to understand the relationship between process conditions, mass transfer, and reactor performance by developing an easy-to-use analytical model. We find that the film thickness and the volume ratio of CO2/electrolyte fed to the reactor significantly affect the current density and the faradaic efficiency. Additionally, we find industrially relevant performance when operating the reactor at an elevated pressure beyond 5 bar. We compare our predictions with numerical simulations based on the unit cell approach, showing good agreement for a large window of operating parameters, illustrating when the easy-to-use predictive expressions for the current density and faradaic efficiency can be applied.
Collapse
|
46
|
Kong Y, Liu M, Hu H, Hou Y, Vesztergom S, Gálvez-Vázquez MDJ, Zelocualtecatl Montiel I, Kolivoška V, Broekmann P. Cracks as Efficient Tools to Mitigate Flooding in Gas Diffusion Electrodes Used for the Electrochemical Reduction of Carbon Dioxide. SMALL METHODS 2022; 6:e2200369. [PMID: 35810472 DOI: 10.1002/smtd.202200369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The advantage of employing gas diffusion electrodes (GDEs) in carbon dioxide reduction electrolyzers is that they allow CO2 to reach the catalyst in gaseous state, enabling current densities that are orders of magnitude larger than what is achievable in standard H-type cells. The gain in the reaction rate comes, however, at the cost of stability issues related to flooding that occurs when excess electrolyte permeates the micropores of the GDE, effectively blocking the access of CO2 to the catalyst. For electrolyzers operated with alkaline electrolytes, flooding leaves clear traces within the GDE in the form of precipitated potassium (hydrogen)carbonates. By analyzing the amount and distribution of precipitates, and by quantifying potassium salts transported through the GDE during operation (electrolyte perspiration), important information can be gained with regard to the extent and means of flooding. In this work, a novel combination of energy dispersive X-ray and inductively coupled plasma mass spectrometry based methods is employed to study flooding-related phenomena in GDEs differing in the abundance of cracks in the microporous layer. It is concluded that cracks play an important role in the electrolyte management of CO2 electrolyzers, and that electrolyte perspiration through cracks is paramount in avoiding flooding-related performance drops.
Collapse
Affiliation(s)
- Ying Kong
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, 3012, Bern, Switzerland
| | - Menglong Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, 3012, Bern, Switzerland
| | - Huifang Hu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Yuhui Hou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, 3012, Bern, Switzerland
| | - Soma Vesztergom
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- Department of Physical Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | | | - Iván Zelocualtecatl Montiel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223, Prague, Czech Republic
| | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
47
|
Garg S, Li M, Hussain T, Idros MN, Wu Y, Zhao XS, Wang GGX, Rufford TE. Urea-Functionalized Silver Catalyst toward Efficient and Robust CO 2 Electrolysis with Relieved Reliance on Alkali Cations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35504-35512. [PMID: 35912581 DOI: 10.1021/acsami.2c05918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a new strategy to improve the reactivity and durability of a membrane electrode assembly (MEA)-type electrolyzer for CO2 electrolysis to CO by modifying the silver catalyst layer with urea. Our experimental and theoretical results show that mixing urea with the silver catalyst can promote electrochemical CO2 reduction (CO2R), relieve limitations of alkali cation transport from the anolyte, and mitigate salt precipitation in the gas diffusion electrode in long-term stability tests. In a 10 mM KHCO3 anolyte, the urea-modified Ag catalyst achieved CO selectivity 1.3 times better with energy efficiency 2.8-fold better than an untreated Ag catalyst, and operated stably at 100 mA cm-2 with a faradaic efficiency for CO above 85% for 200 h. Our work provides an alternative approach to fabricating catalyst interfaces in MEAs by modifying the catalyst structure and the local reaction environment for critical electrochemical applications such as CO2 electrolysis and fuel cells.
Collapse
Affiliation(s)
- Sahil Garg
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mengran Li
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tanveer Hussain
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
- School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| | - Mohamed Nazmi Idros
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Yuming Wu
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Xiu Song Zhao
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Geoff G X Wang
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Thomas E Rufford
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
Hursán D, Ábel M, Baán K, Fako E, Samu GF, Nguyën HC, López N, Atanassov P, Kónya Z, Sápi A, Janáky C. CO 2 Conversion on N-Doped Carbon Catalysts via Thermo- and Electrocatalysis: Role of C–NO x Moieties. ACS Catal 2022; 12:10127-10140. [PMID: 36033366 PMCID: PMC9397536 DOI: 10.1021/acscatal.2c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Indexed: 11/29/2022]
Abstract
![]()
N-doped carbon (N–C) materials are increasingly
popular
in different electrochemical and catalytic applications. Due to the
structural and stoichiometric diversity of these materials, however,
the role of different functional moieties is still controversial.
We have synthesized a set of N–C catalysts, with identical
morphologies (∼27 nm pore size). By systematically changing
the precursors, we have varied the amount and chemical nature of N-functions
on the catalyst surface. The CO2 reduction (CO2R) properties of these catalysts were tested in both electrochemical
(EC) and thermal catalytic (TC) experiments (i.e., CO2 +
H2 reaction). CO was the major CO2R product
in all cases, while CH4 appeared as a minor product. Importantly,
the CO2R activity changed with the chemical composition,
and the activity trend was similar in the EC and TC scenarios. The
activity was correlated with the amount of different N-functions,
and a correlation was found for the −NOx species. Interestingly, the amount of this species decreased
radically during EC CO2R, which was coupled with the performance
decrease. The observations were rationalized by the adsorption/desorption
properties of the samples, while theoretical insights indicated a
similarity between the EC and TC paths.
Collapse
Affiliation(s)
- Dorottya Hursán
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Marietta Ábel
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Kornélia Baán
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Edvin Fako
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Gergely F. Samu
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Huu Chuong Nguyën
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - András Sápi
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
49
|
Nattestad A, Wagner K, Wallace GG. Scale up of reactors for carbon dioxide reduction. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractIn recent times there has been a great deal of interest in the conversion of carbon dioxide into more useful chemical compounds. On the other hand, the translation of these developments in electrochemical reduction of carbon dioxide from the laboratory bench to practical scale remains an underexplored topic. Here we examine some of the major challenges, demonstrating some promising strategies towards such scale-up, including increased electrode area and stacking of electrode pairs in different configurations. We observed that increasing the electrode area from 1 to 10 cm2 led to only a 4% drop in current density, with similarly small penalties realised when stacking sub-cells together.
Collapse
|
50
|
Hann EC, Overa S, Harland-Dunaway M, Narvaez AF, Le DN, Orozco-Cárdenas ML, Jiao F, Jinkerson RE. A hybrid inorganic-biological artificial photosynthesis system for energy-efficient food production. NATURE FOOD 2022; 3:461-471. [PMID: 37118051 DOI: 10.1038/s43016-022-00530-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/09/2022] [Indexed: 04/30/2023]
Abstract
Artificial photosynthesis systems are proposed as an efficient alternative route to capture CO2 to produce additional food for growing global demand. Here a two-step CO2 electrolyser system was developed to produce a highly concentrated acetate stream with a 57% carbon selectivity (CO2 to acetate), allowing its direct use for the heterotrophic cultivation of yeast, mushroom-producing fungus and a photosynthetic green alga, in the dark without inputs from biological photosynthesis. An evaluation of nine crop plants found that carbon from exogenously supplied acetate incorporates into biomass through major metabolic pathways. Coupling this approach to existing photovoltaic systems could increase solar-to-food energy conversion efficiency by about fourfold over biological photosynthesis, reducing the solar footprint required. This technology allows for a reimagination of how food can be produced in controlled environments.
Collapse
Affiliation(s)
- Elizabeth C Hann
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sean Overa
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Marcus Harland-Dunaway
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Andrés F Narvaez
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
- Plant Transformation Research Center, University of California, Riverside, CA, USA
| | - Dang N Le
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | | | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Robert E Jinkerson
- Center for Industrial Biotechnology, Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|