1
|
Gahlot K, Kraft JN, Pérez-Escribano M, Koushki RM, Ahmadi M, Ortí E, Kooi BJ, Portale G, Calbo J, Protesescu L. Growth mechanism of oleylammonium-based tin and lead bromide perovskite nanostructures. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:15152-15162. [PMID: 39234288 PMCID: PMC11367222 DOI: 10.1039/d4tc02029d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metal halide perovskites, particularly using tin and lead as bivalent cations, are well known for their synthetic versatility and ion mobility. These materials possess intriguing ionic properties that allow the formation of 2D Ruddlesden-Popper (RP) and 3D metal halide perovskite nanocrystals (NCs) under similar synthetic conditions. We studied the synthesis mechanism of oleylammonium-based Sn and Pb bromide perovskites 2D Ruddlesden-Popper (RP) in comparison with the 3D CsPbBr3 and CsSnBr3 NCs. Using experimental techniques in combination with theoretical calculations, we studied the interactions of the long-chain organic cations with the inorganic layers and between each other to assess their stability. Our findings suggest that tin bromide is more inclined toward forming higher-order RP phases or 3D NCs than lead bromide. Furthermore, we demonstrate the synthesis of precisely tuned CsSnBr3 3D NCs (7 and 10 nm) using standard surface ligands. When the 3D and 2D tin halide perovskite nanostructures coexist in suspension, the obtained drop-cast thin films showed the preferential positioning of residual RP nanostructures at the interface with the substrate. This study encourages further exploration of low-dimensional hybrid materials and emphasizes the need for understanding mechanisms to develop efficient synthetic routes for high-quality tin-halide perovskite NCs.
Collapse
Affiliation(s)
- Kushagra Gahlot
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| | - Julia N Kraft
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| | - Manuel Pérez-Escribano
- Instituto de Ciencia Molecular, Universitat de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Razieh M Koushki
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| | - Majid Ahmadi
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universitat de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Bart J Kooi
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| | - Joaquín Calbo
- Instituto de Ciencia Molecular, Universitat de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Loredana Protesescu
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 Groningen 9747AG The Netherlands
| |
Collapse
|
2
|
Wang B, Lou YH, Xia Y, Hu F, Li YH, Wang KL, Chen J, Chen CH, Su ZH, Gao XY, Wang ZK. Chemical Reaction Modulated Low-Dimensional Phase Toward Highly Efficient Sky-Blue Perovskite Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202406140. [PMID: 38981859 DOI: 10.1002/anie.202406140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Blue perovskite light-emitting diodes (PeLEDs) are crucial avenues for achieving full-color displays and lighting based on perovskite materials. However, the relatively low external quantum efficiency (EQE) has hindered their progression towards commercial applications. Quasi-two-dimensional (quasi-2D) perovskites stand out as promising candidates for blue PeLEDs, with optimized control over low-dimensional phases contributing to enhanced radiative properties of excitons. Herein, the impact of organic molecular dopants on the crystallization of various n-phase structures in quasi-2D perovskite films. The results reveal that the highly reactive bis(4-(trifluoromethyl)phenyl)phosphine oxide (BTF-PPO) molecule could effectively restrain the formation of organic spacer cation-ordered layered perovskite phases through chemical reactions, simultaneously passivate those uncoordinated Pb2+ defects. Consequently, the prepared PeLEDs exhibited a maximum EQE of 16.6 % (@ 490 nm). The finding provides a new route to design dopant molecules for phase modulation in quasi-2D PeLEDs.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Yu Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Fan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yu-Han Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Kai-Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chun-Hao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhen-Huang Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xing-Yu Gao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Qi H, Tong Y, Zhang X, Wang H, Zhang L, Chen Y, Wang Y, Shang J, Wang K, Wang H. Homogenizing Energy Landscape for Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409319. [PMID: 39302002 DOI: 10.1002/adma.202409319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Blue perovskite light-emitting diodes (PeLEDs) have attracted enormous attention; however, their unsatisfactory device efficiency and spectral stability still remain great challenges. Unfavorable low-dimensional phase distribution and defects with deeper energy levels usually cause energy disorder, substantially limiting the device's performance. Here, an additive-interface optimization strategy is reported to tackle these issues, thus realizing efficient and spectrally stable blue PeLEDs. A new type of additive-formamidinium tetrafluorosuccinate (FATFSA) is introduced into the quasi-2D mixed halide perovskite accompanied by interface engineering, which effectively impedes the formation of undesired low-dimensional phases with various bandgaps throughout the entire film, thereby boosting energy transfer process for accelerating radiative recombination; this strategy also diminishes the halide vacancies especially chloride-related defects with deep energy level, thus reducing nonradiative energy loss for efficient radiative recombination. Benefitting from homogenized energy landscape throughout the entire perovskite emitting layer, PeLEDs with spectrally-stable blue emission (478 nm) and champion external quantum efficiency (EQE) of 21.9% are realized, which represents a record value among this type of PeLEDs in the pure blue region.
Collapse
Affiliation(s)
- Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuewen Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Materials Science Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yali Chen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yibo Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jingzhi Shang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Kun Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Chen J, Li J, Nedelcu G, Hansch P, Di Mario L, Protesescu L, Loi MA. Blade-coated perovskite nanoplatelet polymer composites for sky-blue light-emitting diodes. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:13847-13853. [PMID: 39144138 PMCID: PMC11318649 DOI: 10.1039/d4tc02404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Colloidal perovskite nanoplatelets (NPLs) have shown promise in tackling blue light-emitting diode challenges based on their tunable band gap and high photoluminescence efficiencies. However, high quality and large area dense NPL films have been proven to be very hard to prepare because of their chemical and physical fragility during the liquid phase deposition. Herein, we report a perovskite-polymer composite film deposition strategy with fine morphology engineering obtained using the blade coating method. The effects of the polymer type, solution concentration, compounding ratio and film thickness on the film quality are systematically investigated. We found that a relatively high-concentration suspension with an optimized NPL to polymer ratio of 1 : 2 is crucial for the suppression of phase separation and arriving at a uniform film. Finally, sky-blue NPL-based perovskite light-emitting diodes were fabricated by blade coating showing an EQE of 0.12% on a device area of 16 mm2.
Collapse
Affiliation(s)
- Jiale Chen
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Jiaxiong Li
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Georgian Nedelcu
- Materials Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Paul Hansch
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Lorenzo Di Mario
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Loredana Protesescu
- Materials Chemistry, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| | - Maria A Loi
- Photophysics & OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 3 9747AG Groningen The Netherlands
| |
Collapse
|
5
|
Dubey C, Yadav A, Kachhap S, Singh SK, Gupta G, Singh SP, Singh AK. Effect of Mn 2+doping and DDAB-assisted postpassivation on the structural and optical properties of CsPb(Cl/Br) 3halide perovskite nanocrystals. Methods Appl Fluoresc 2024; 12:045004. [PMID: 39111336 DOI: 10.1088/2050-6120/ad6ca1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Cesium lead halide perovskite (CsPbX3; X = Cl, Br, I) nanocrystals showing intense band-edge emission and high photoluminescence quantum yield are known to be a potential candidate for application in optoelectronic devices. However, controlling toxicity due to the presence of Pb2+in lead-based halide perovskites is a major challenge for the environment that needs to be tackled cautiously. In this work, we have partially replaced Pb2+with Mn2+ions in the CsPb(Cl/Br)3nanocrystals and investigated their impact on the structural and optical properties. The Rietveld refinement shows that CsPbCl2Br nanocrystals possess a cubic crystal structure withPm3̅mspace group, the Mn2+doping results in the contraction of the unit cell. The CsPb(Cl/Br)3: Mn nanocrystals show a substantial change in the optical properties with an additional emission band at ∼588 nm through a d-d transition, changing the emission color from blue to pink. Here, a didodecyldimethylammonium bromide (DDAB) ligand that triggers both anion and ligand exchange in the CsPb(Cl/Br)3: Mn nanocrystals have been used to regulate the exchange reaction and tune the emission color of halide perovskites by changing the peak position and the PL intensities of band-edge and Mn2+defect states. We have also shown that oleic acid helps in the desorption of oleylamine capping from the CsPb(Cl/Br)3: Mn nanocrystal surfaces and DDAB, resulting in the substitution of Cl-with Br-as well as provides capping with shorter branched length ligand which led to increase in the overall PL intensity by many folds.
Collapse
Affiliation(s)
- Charu Dubey
- Department of Physical Sciences, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Anjana Yadav
- Department of Physical Sciences, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Santosh Kachhap
- Department of Physics, Indian Institute of Technology (Banaras Hindu University) Varanasi 221005, India
| | - Sunil Kumar Singh
- Department of Physics, Indian Institute of Technology (Banaras Hindu University) Varanasi 221005, India
| | - Govind Gupta
- CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi 110012, India
| | | | - Akhilesh Kumar Singh
- Department of Physical Sciences, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| |
Collapse
|
6
|
Enomoto K, Miranti R, Liu J, Okano R, Inoue D, Kim D, Pu YJ. Anisotropic electronic coupling in three-dimensional assembly of CsPbBr 3 quantum dots. Chem Sci 2024; 15:13049-13057. [PMID: 39148765 PMCID: PMC11323341 DOI: 10.1039/d4sc01769b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Cesium lead halide (CsPbX3, X = Cl, Br, or I) perovskite quantum dots (PeQDs) show promise for next-generation optoelectronics. In this study, we controlled the electronic coupling between PeQD multilayers using a layer-by-layer method and dithiol linkers of varying structures. The energy shift of the first excitonic peak from monolayer to bilayer decreases exponentially with increasing interlayer spacer distance, indicating the resonant tunnelling effect. X-ray diffraction measurements revealed anisotropic inter-PeQD distances in multiple layers. Photoluminescence (PL) analysis showed lower energy emission in the in-plane direction due to the electronic coupling in the out-of-plane direction, supporting the anisotropic electronic state in the PeQD multilayers. Temperature-dependent PL and PL lifetimes indicated changes in exciton behaviour due to the delocalized electronic state in PeQD multilayers. Particularly, the electron-phonon coupling strength increased, and the exciton recombination rate decreased. This is the first study demonstrating controlled electronic coupling in a three-dimensional ordered structure, emphasizing the importance of the anisotropic electronic state for high-performance PeQDs devices.
Collapse
Affiliation(s)
- Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Retno Miranti
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Jianjun Liu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Rinkei Okano
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - DaeGwi Kim
- Department of Physics and Electronics, Osaka Metropolitan University Osaka 558-8585 Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| |
Collapse
|
7
|
Qi H, Tong Y, Zhang X, Wang H, Fang Z, Zhang Y, Li H, Wang K, Wang H. Synergistic Steric Effect of Precursor And Antisolvent Enables Strongly Confined Perovskite Films with Efficient and Spectral Stable Blue Emission. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39664-39672. [PMID: 39025786 DOI: 10.1021/acsami.4c08227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Reducing the crystal size of perovskites to the strong quantum confinement regime is an effective way to realize blue luminescence for light-emitting applications. However, challenges remain in directly constraining the crystal growth during film preparation to achieve three-dimensional quantum confinement, and the widely used long-chain ligands may bring difficulties for charge transport and unfavorably affect the device performance. Herein, we report a novel strategy for fabricating strongly confined blue-emitting perovskite nanocrystalline films via synergistic steric effect modulation by precursors and antisolvents. We synthesize cesium pentafluoropropanoate (CsPFPA) as a new type of precursor agent, where the steric effect of the PFPA group can help constrain the growth of perovskite crystals and passivate the defects. Furthermore, different types of antisolvents with varied molecular sizes and steric hindrance are used to regulate the size of perovskite crystals and improve film quality. Consequently, highly emissive blue perovskite films are realized with the emission wavelength effectively tuned in the blue region by varying the concentration of CsPFPA as well as the type of antisolvents. Based on the strongly confined perovskite films, blue light-emitting diodes (LEDs) are constructed, showing good spectral tunability and stability in the electroluminescence. This work demonstrates a novel pathway for developing bright perovskite blue emitters for LEDs, which may potentially advance their future applications in display and lighting.
Collapse
Affiliation(s)
- Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Xiuhai Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Hao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Zhiyu Fang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Youqian Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Huixin Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Kun Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| |
Collapse
|
8
|
Qin X, Li M, Zhao Y, Luo J, Zhang Q, Hou E, Lu J, Li J, Tian C, Lin K, Li Z, Wei Z. Surface Treatment with Tailored π-Conjugated Fluorene Derivatives Significantly Enhances the Performance of Perovskite Light-Emitting Diodes. ACS NANO 2024; 18:14696-14707. [PMID: 38780914 DOI: 10.1021/acsnano.4c03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Surface defect passivation and carrier injection regulation have emerged as effective strategies for enhancing the performance of perovskite light-emitting diodes (Pero-LEDs). It usually requires two functional molecules to realize defect passivation and carrier injection regulation separately. In other words, developing one single molecule possessing these capabilities remains challenging. Herein, we utilized π-conjugated fluorene derivatives as surface treatment materials, 9,9-Spirobi[fluorene] (SBF), 9,9-Spirobifluoren-2-yl-diphenylphosphine oxide (SPPO1), and 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13), to investigate the influence of their chemical structure on device optoelectronic performance, especially for defect passivation and carrier injection regulation. Consequently, the passivation capability of double-bonded SPPO13 surpassed single-bonded SPPO1 and nonbonded SBF, which all showed excellent electron transport properties, enhancing electron injection. The maximum external quantum efficiencies (EQE) for Pero-LEDs treated with SBF, SPPO1, and SPPO13 were 8.13, 17.48, and 22.10%, respectively, exceeding that of the derivative-free device (6.55%). Notably, SPPO13-treated devices exhibited exceptional reproducibility, yielding an average EQE of 20.00 ± 1.10% based on 30 devices. This result emphasizes the potential of tailored fluorene derivatives for enhancing the device performance of Pero-LEDs.
Collapse
Affiliation(s)
- Xiangqian Qin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
- National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Mingliang Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, People's Republic of China
| | - Yaping Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Jiefeng Luo
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Qin Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Enlong Hou
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Jiasheng Li
- National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Chengbo Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kebin Lin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Zongtao Li
- National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| |
Collapse
|
9
|
Li LY, Song YH, Yang JN, Ru XC, Yin YC, Yao HB. Short-branched alkyl sulfobetaine-passivated CsPbBr 3 nanocrystals for efficient green light emitting diodes. NANOSCALE 2024; 16:7387-7395. [PMID: 38545886 DOI: 10.1039/d4nr00965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Inorganic cesium lead bromide nanocrystals (CsPbBr3 NCs) hold promising prospects for high performance green light-emitting diodes (LEDs) due to their exceptional color purity and high luminescence efficiency. However, the common ligands employed for passivating these indispensable NCs, such as long-chain organic ligands like oleic acid and oleylamine (OA/OAm), display highly dynamic binding and electronic insulating issues, thereby resulting in a low efficiency of the as-fabricated LEDs. Herein, we report a new zwitterionic short-branched alkyl sulfobetaine ligand, namely trioctyl(propyl-3-sulfonate) ammonium betaine (TOAB), to in situ passivate CsPbBr3 NCs via a feasible one-step solution synthesis, enabling efficiency improvement of CsPbBr3 NC-based LEDs. The zwitterionic TOAB ligand not only strengthened the surface passivation of CsPbBr3 NCs with a high photoluminescence quantum yield (PLQY) of 97%, but also enhanced the carrier transport in the fabricated CsPbBr3 NC thin films due to the short-branched alkyl design. Consequently, CsPbBr3 NCs passivated with TOAB achieved a green LED with an external quantum efficiency (EQE) of 7.3% and a maximum luminance of 5716 cd m-2, surpassing those of LEDs based on insulating long-chain ligand-passivated NCs. Our work provides an effective surface passivation ligand design to enhance the performance of CsPbBr3 NC-based LEDs.
Collapse
Affiliation(s)
- Lian-Yue Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Hui Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun-Nan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xue-Chen Ru
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Chen Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Mustafa N, Jumaah F, Ludin N, Akhtaruzzaman M, Hassan N, Ahmad A, Chan K, Su'ait M. Tetraalkylammonium salts (TAS) in solar energy applications - A review on in vitro and in vivo toxicity. Heliyon 2024; 10:e27381. [PMID: 38560257 PMCID: PMC10979238 DOI: 10.1016/j.heliyon.2024.e27381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Tetraalkylammonium salt (TAS) is an organic salt widely employed as a precursor, additive or electrolyte in solar cell applications, such as perovskite or dye-sensitized solar cells. Notably, Perovskite solar cells (PSCs) have garnered acclaim for their exceptional efficiency. However, PSCs have been associated with environmental and health concerns due to the presence of lead (Pb) content, the use of hazardous solvents, and the incorporation of TAS in their fabrication processes, which significantly contributes to environmental and human health toxicity. As a response, there is a growing trend towards transitioning to safer and biobased materials in PSC fabrication to address these concerns. However, the potential health hazards associated with TAS necessitate a thorough evaluation, considering the widespread use of this substance. Nevertheless, the overexploitation of TAS could potentially increase the disposal of TAS in the ecosystem, thus, posing a major health risk and severe pollution. Therefore, this review article presents a comprehensive discussion on the in vitro and in vivo toxicity assays of TAS as a potential material in solar energy applications, including cytotoxicity, genotoxicity, in vivo dermal, and systemic toxicity. In addition, this review emphasizes the toxicity of TAS compounds, particularly the linear tetraalkyl chain structures, and summarizes essential findings from past studies as a point of reference for the development of non-toxic and environmentally friendly TAS derivatives in future studies. The effects of the TAS alkyl chain length, polar head and hydrophobicity, cation and anion, and other properties are also included in this review.
Collapse
Affiliation(s)
- N.M. Mustafa
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - F.N. Jumaah
- Department of Materials & Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - N.A. Ludin
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - M. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - N.H. Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Battery Technology Research Group (UKMBATT), Polymer Research Centre (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - A. Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Battery Technology Research Group (UKMBATT), Polymer Research Centre (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, JI. Mulyorejo, Surabaya, 60115, Indonesia
| | - K.M. Chan
- Product Stewardship and Toxicology, Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), 50088 Kuala Lumpur, Malaysia
| | - M.S. Su'ait
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
Aebli M, Kaul CJ, Yazdani N, Krieg F, Bernasconi C, Guggisberg D, Marczak M, Morad V, Piveteau L, Bodnarchuk MI, Verel R, Wood V, Kovalenko MV. Disorder and Halide Distributions in Cesium Lead Halide Nanocrystals as Seen by Colloidal 133Cs Nuclear Magnetic Resonance Spectroscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2767-2775. [PMID: 38558917 PMCID: PMC10976639 DOI: 10.1021/acs.chemmater.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Colloidal nuclear magnetic resonance (cNMR) spectroscopy on inorganic cesium lead halide nanocrystals (CsPbX3 NCs) is found to serve for noninvasive characterization and quantification of disorder within these structurally soft and labile particles. In particular, we show that 133Cs cNMR is highly responsive to size variations from 3 to 11 nm or to altering the capping ligands on the surfaces of CsPbX3 NCs. Distinct 133Cs signals are attributed to the surface and core NC regions. Increased heterogeneous broadening of 133Cs signals, observed for smaller NCs as well as for long-chain zwitterionic capping ligands (phosphocholines, phosphoethanol(propanol)amine, and sulfobetaines), can be attributed to more significant surface disorder and multifaceted surfaces (truncated cubes). On the contrary, capping with dimethyldidodecylammonium bromide (DDAB) successfully reduces signal broadening owing to better surface passivation and sharper (001)-bound cuboid shape. DFT calculations on various sizes of NCs corroborate the notion that the surface disorder propagates over several octahedral layers. 133Cs NMR is a sensitive probe for studying halide gradients in mixed Br/Cl NCs, indicating bromide-rich surfaces and chloride-rich cores. On the contrary, mixed Br/I NCs exhibit homogeneous halide distributions.
Collapse
Affiliation(s)
- Marcel Aebli
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Christoph J. Kaul
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Nuri Yazdani
- Department
of Information Technology and Electrical Engineering, ETH Zürich, Vladimir-Prelog-Weg
1-5, Zürich CH-8093, Switzerland
| | - Franziska Krieg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Caterina Bernasconi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Dominic Guggisberg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Malwina Marczak
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maryna I. Bodnarchuk
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - René Verel
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
| | - Vanessa Wood
- Department
of Information Technology and Electrical Engineering, ETH Zürich, Vladimir-Prelog-Weg
1-5, Zürich CH-8093, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
12
|
Kshirsagar AS, Koch KA, Srimath Kandada AR, Gangishetty MK. Unraveling the Luminescence Quenching Mechanism in Strong and Weak Quantum-Confined CsPbBr 3 Triggered by Triarylamine-Based Hole Transport Layers. JACS AU 2024; 4:1229-1242. [PMID: 38559743 PMCID: PMC10976578 DOI: 10.1021/jacsau.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Luminescence quenching by hole transport layers (HTLs) is one of the major issues in developing efficient perovskite light-emitting diodes (PeLEDs), which is particularly prominent in blue-emitting devices. While a variety of material systems have been used as interfacial layers, the origin of such quenching and the type of interactions between perovskites and HTLs are still ambiguous. Here, we present a systematic investigation of the luminescence quenching of CsPbBr3 by a commonly employed hole transport polymer, poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine)] (TFB), in LEDs. Strong and weak quantum-confined CsPbBr3 (nanoplatelets (NPLs)/nanocrystals (NCs)) are rationally selected to study the quenching mechanism by considering the differences in their morphology, energy level alignments, and quantum confinement. The steady-state and time-resolved Stern-Volmer plots unravel the dominance of dynamic and static quenching at lower and higher concentrations of TFB, respectively, with a maximum quenching efficiency of 98%. The quenching rate in NCs is faster than that in NPLs owing to their longer PL lifetimes and weak quantum confinement. The ultrafast transient absorption results support these dynamics and rule out the involvement of Forster or Dexter energy transfer. Finally, the 1D 1H and 2D nuclear overhauser effect spectroscopy nuclear magnetic resonance (NOESY NMR) study confirms the exchange of native ligands at the NCs surface with TFB, leading to dark CsPbBr3-TFB ensemble formation accountable for luminescence quenching. This highlights the critical role of the triarylamine functional group on TFB (also the backbone of many HTLs) in the quenching process. These results shed light on the underlying reasons for the luminescence quenching in PeLEDs and will help to rationally choose the interfacial layers for developing efficient LEDs.
Collapse
Affiliation(s)
- Anuraj S. Kshirsagar
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Katherine A. Koch
- Department
of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston Salem, North Carolina 27109, United
States
| | - Ajay Ram Srimath Kandada
- Department
of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston Salem, North Carolina 27109, United
States
| | - Mahesh K. Gangishetty
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
- Department
of Physics and Astronomy, Mississippi State
University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
13
|
Dai J, Roshan H, De Franco M, Goldoni L, De Boni F, Xi J, Yuan F, Dong H, Wu Z, Di Stasio F, Manna L. Partial Ligand Stripping from CsPbBr 3 Nanocrystals Improves Their Performance in Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11627-11636. [PMID: 38381521 DOI: 10.1021/acsami.3c15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Halide perovskite nanocrystals (NCs), specifically CsPbBr3, have attracted considerable interest due to their remarkable optical properties for optoelectronic devices. To achieve high-efficiency light-emitting diodes (LEDs) based on CsPbBr3 nanocrystals (NCs), it is crucial to optimize both their photoluminescence quantum yield (PLQY) and carrier transport properties when they are deposited to form films on substrates. While the exchange of native ligands with didodecyl dimethylammonium bromide (DDAB) ligand pairs has been successful in boosting their PLQY, dense DDAB coverage on the surface of NCs should impede carrier transport and limit device efficiency. Following our previous work, here, we use oleyl phosphonic acid (OLPA) as a selective stripping agent to remove a fraction of DDAB from the NC surface and demonstrate that such stripping enhances carrier transport while maintaining a high PLQY. Through systematic optimization of OLPA dosage, we significantly improve the performance of CsPbBr3 LEDs, achieving a maximum external quantum efficiency (EQE) of 15.1% at 516 nm and a maximum brightness of 5931 cd m-2. These findings underscore the potential of controlled ligand stripping to enhance the performance of CsPbBr3 NC-based optoelectronic devices.
Collapse
Affiliation(s)
- Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Hossein Roshan
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Manuela De Franco
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Università degli Studi di Genova, Via Dodecaneso 31, 16146Genova, Italy
| | - Luca Goldoni
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Francesco De Boni
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
14
|
Kim J, Chu YH, Park J, Bang K, Yoon S, Park S, Park K, Kwon J, Kim N, Yoon KT, Kim Y, Lee YS, Shin B. Spectrally Stable Deep-Blue Light-Emitting Diodes Based on Layer-Transferred Single-Crystalline Ruddlesden-Popper Halide Perovskites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6274-6283. [PMID: 38282293 DOI: 10.1021/acsami.3c17911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A novel approach to producing high-color-purity blue-light-emitting diodes based on single-crystalline Ruddlesden-Popper perovskites (RPPs) is reported. The utilization of a pure bromide composition eliminates any possibility of halide segregation, which can otherwise lead to undesired shifts in the emission wavelength or irreversible degradation of the spectral line width. Phase-pure PEA2MAPb2Br7 single crystals with a lateral size exceeding 1 cm2 can be synthesized using the inverse temperature crystallization method. To prepare RPP layers with a thickness of less than 50 nm, we employ a thinning process of the initially thick bulk crystals, followed by a dry-transfer process to place them onto a hole transport layer and an indium-tin-oxide-coated glass substrate. By utilizing polydimethylsiloxane as a handling layer, deformations of the bulk RPP crystal and exfoliated RPP layer, as well as the formation of defects such as pinholes, can be effectively suppressed. Subsequent depositions of an electron transport layer and a metal contact complete the fabrication of electroluminescence (EL) devices. The EL devices utilizing the single-crystalline RPP demonstrate excellent spectral stability across a broad range of the applied bias voltage spanning from 4.5 to 10 V, exhibiting a significantly narrow line width of 14 nm at an emission wavelength of 440 nm that can potentially cover 99.3% of the Rec. 2020 color gamut. The sharp EL emission spectrum can be effectively preserved, avoiding any broadening of the line width, by suppressing Joule heating throughout the device operation, in addition to the intrinsic stability of single-crystalline RPPs.
Collapse
Affiliation(s)
- Joonyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Ho Chu
- Department of Mechanical Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Jinu Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kijoon Bang
- Department of Mechanical Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Sunggun Yoon
- Department of Mechanical Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Seoyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kitae Park
- Department of Mechanical Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Jiyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nakyung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Tak Yoon
- Department of Mechanical Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Yunna Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yun Seog Lee
- Department of Mechanical Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Byungha Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Jeong WH, Lee S, Song H, Shen X, Choi H, Choi Y, Yang J, Yoon JW, Yu Z, Kim J, Seok GE, Lee J, Kim HY, Snaith HJ, Choi H, Park SH, Lee BR. Synergistic Surface Modification for High-Efficiency Perovskite Nanocrystal Light-Emitting Diodes: Divalent Metal Ion Doping and Halide-Based Ligand Passivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305383. [PMID: 38037253 PMCID: PMC10811502 DOI: 10.1002/advs.202305383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Surface defects of metal halide perovskite nanocrystals (PNCs) substantially compromise the optoelectronic performances of the materials and devices via undesired charge recombination. However, those defects, mainly the vacancies, are structurally entangled with each other in the PNC lattice, necessitating a delicately designed strategy for effective passivation. Here, a synergistic metal ion doping and surface ligand exchange strategy is proposed to passivate the surface defects of CsPbBr3 PNCs with various divalent metal (e.g., Cd2+ , Zn2+, and Hg2+ ) acetate salts and didodecyldimethylammonium (DDA+ ) via one-step post-treatment. The addition of metal acetate salts to PNCs is demonstrated to suppress the defect formation energy effectively via the ab initio calculations. The developed PNCs not only have near-unity photoluminescence quantum yield and excellent stability but also show luminance of 1175 cd m-2 , current efficiency of 65.48 cd A-1 , external quantum efficiency of 20.79%, wavelength of 514 nm in optimized PNC light-emitting diodes with Cd2+ passivator and DDA ligand. The "organic-inorganic" hybrid engineering approach is completely general and can be straightforwardly applied to any combination of quaternary ammonium ligands and source of metal, which will be useful in PNC-based optoelectronic devices such as solar cells, photodetectors, and transistors.
Collapse
Affiliation(s)
- Woo Hyeon Jeong
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Seongbeom Lee
- Department of ChemistryResearch Institute for Convergence of Basic Sciencesand Research Institute for Natural ScienceHanyang UniversitySeoul04763Republic of Korea
- Department of PhysicsPukyong National UniversityBusan48513Republic of Korea
- CECS Research InstituteCore Research InstituteBusan48513Republic of Korea
| | - Hochan Song
- Department of ChemistryResearch Institute for Convergence of Basic Sciencesand Research Institute for Natural ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Xinyu Shen
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
- Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordOxfordOX1 3PUUK
| | - Hyuk Choi
- Department of Materials Science and EngineeringChungnam National UniversityDaehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Yejung Choi
- Department of Materials Science and EngineeringChungnam National UniversityDaehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Jonghee Yang
- Institute for Advanced Materials and ManufacturingDepartment of Materials Science and EngineeringUniversity of TennesseeKnoxvilleTN37996USA
| | - Jung Won Yoon
- Department of ChemistryResearch Institute for Convergence of Basic Sciencesand Research Institute for Natural ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Zhongkai Yu
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jihoon Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Gyeong Eun Seok
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jeongjae Lee
- School of Earth and Environmental SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and EngineeringChungnam National UniversityDaehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Henry J. Snaith
- Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordOxfordOX1 3PUUK
| | - Hyosung Choi
- Department of ChemistryResearch Institute for Convergence of Basic Sciencesand Research Institute for Natural ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Sung Heum Park
- Department of PhysicsPukyong National UniversityBusan48513Republic of Korea
- CECS Research InstituteCore Research InstituteBusan48513Republic of Korea
| | - Bo Ram Lee
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
16
|
Zhan W, Liu M, Wan Q, He M, Zhang Q, Liao X, Yuan C, Kong L, Wang Y, Sun B, Brovelli S, Li L. Fluorine Passivation Inhibits "Particle Talking" Behaviors under Thermal and Electrical Conditions of Pure Blue Mixed Halide Perovskite Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304829. [PMID: 37403273 DOI: 10.1002/smll.202304829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 07/06/2023]
Abstract
Owing to outstanding optoelectronic properties, lead halide perovskite nanocrystals (PNCs) are considered promising emitters for next-generation displays. However, the development of pure blue (460-470 nm) perovskite nanocrystal light-emitting diodes (PNC-LEDs), which correspond to the requirements of Rec. 2020 standard, lag far behind that of their green and red counterparts. Here, pure blue CsPb(Br/Cl)3 nanocrystals with remarkable optical performance are demonstrated by a facile fluorine passivation strategy. Prominently, the fluorine passivation on halide vacancies and strong bonding of Pb-F intensely enhance crystal structure stability and inhibit "particle talking" behaviors under both thermal and electrical conditions. Fluorine-based PNCs with high resistance of luminescence thermal quenching retain 70% of photoluminescent intensity when heated to 343 K, which can be attributed to the elevated activation energy for carrier trapping and unchanged grain size. Fluorine-based PNC-LEDs also exhibit stable pure blue electroluminescence (EL) emission with sevenfold promoted luminance and external quantum efficiencies (EQEs), where the suppression of ion migration is further evidenced by a lateral structure device with applied polarizing potential.
Collapse
Affiliation(s)
- Wenji Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Mingming Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qun Wan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Mengda He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qinggang Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinrong Liao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Changwei Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yusheng Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Baoquan Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Sergio Brovelli
- Università degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, Milan, 20125, Italy
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macao, 999078, P. R. China
| |
Collapse
|
17
|
Chen F, Liu Y, Zhang D, Jiang X, Cai P, Si J, Hu Q, Fang Z, Dai X, Song J, Ye Z, He H. Bilayer phosphine oxide modification toward efficient and large-area pure-blue perovskite quantum dot light-emitting diodes. Sci Bull (Beijing) 2023; 68:2354-2361. [PMID: 37730508 DOI: 10.1016/j.scib.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
Blue emissive halide perovskite light-emitting diodes (LEDs) are gaining increasing attention. Reducing defects in halide perovskites to improve the performance of the resulting LEDs is a main research direction, but there are limited passivation methods for achieving efficient and spectrally-stable pure-blue LEDs based on mixed-halide perovskites. In this work, double modification layers containing phosphine oxides, i.e., diphenyl[4-(triphenylsilyl)phenyl]phosphine oxide (TSPO1) and 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13), are developed to passivate mixed-halide perovskite quantum dot (QD) films. The comprehensive spectroscopic and structural characterization results indicate the presence of strong interactions between TSPO1/SPPO13 and the QDs. Besides, the combination of the bilayer exhibits a synergistic hole-blocking effect, improving the charge balance of the LEDs. LEDs based on the QD/TSPO1/SPPO13 films deliver stable electroluminesence at 469 nm and present a maximum external quantum efficiency (EQE) and luminance of 4.87% and 560 cd m-2, respectively. Benefiting from the uniform QD/TSPO1/SPPO13 film over a large area, LEDs with an area of 64 mm2 show a maximum EQE of 3.91%, which represents the first efficient large-area mixed-halide perovskite LED with stable pure-blue emission. This work provides a method to improve the perovskite QDs-based film quality and optoelectronic properties, and is a step toward the fabrication of highly-efficient large-area blue perovskite LEDs.
Collapse
Affiliation(s)
- Fang Chen
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China; Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China; Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, China
| | - Yanliang Liu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dingshuo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Xinyi Jiang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Junjie Si
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Qianqing Hu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhishan Fang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China; Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China; Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China.
| | - Jizhong Song
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China; Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China; Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China; Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China; Wenzhou XINXINTAIJING Tech. Co. Ltd., Wenzhou 325006, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030002, China.
| |
Collapse
|
18
|
Yang JN, Wang JJ, Yin YC, Yao HB. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes. Chem Soc Rev 2023; 52:5516-5540. [PMID: 37482807 DOI: 10.1039/d3cs00179b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Lead halide perovskite nanocrystals are promising for next-generation high-definition displays, especially in light of their tunable bandgaps, high color purities, and high carrier mobility. Within the past few years, the external quantum efficiency of perovskite nanocrystal-based light-emitting diodes has progressed rapidly, reaching the standard for commercial applications. However, the low operational stability of these perovskite nanocrystal-based light-emitting diodes remains a crucial issue for their industrial development. Recent experimental evidence indicates that the migration of ionic species is the primary factor giving rise to the performance degradation of perovskite nanocrystal-based light-emitting diodes, and ion migration is closely related to the defects on the surface of perovskite nanocrystals and at the grain boundaries of their thin films. In this review, we focus on the central idea of surface reconstruction of perovskite nanocrystals, discuss the influence of surface defects on halide ion migration, and summarize recent advances in resurfacing perovskite nanocrystal strategies toward mitigating halide ion migration to improve the stability of the as-fabricated light-emitting diode devices. From the perspective of perovskite nanocrystal resurfacing, we set out a promising research direction for improving both the spectral and operational stability of perovskite nanocrystal-based light-emitting diodes.
Collapse
Affiliation(s)
- Jun-Nan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Jing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Chen Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Li SN, Pan JL, Yu YJ, Zhao F, Wang YK, Liao LS. Advances in Solution-Processed Blue Quantum Dot Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101695. [PMID: 37242111 DOI: 10.3390/nano13101695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Quantum dot light-emitting diodes (QLEDs) have been identified as a next-generation display technology owing to their low-cost manufacturing, wide color gamut, and electrically driven self-emission properties. However, the efficiency and stability of blue QLEDs still pose a significant challenge, limiting their production and potential application. This review aims to analyse the factors leading to the failure of blue QLEDs and presents a roadmap to accelerate their development based on the progress made in the synthesis of II-VI (CdSe, ZnSe) quantum dots (QDs), III-V (InP) QDs, carbon dots, and perovskite QDs. The proposed analysis will include discussions on material synthesis, core-shell structures, ligand interactions, and device fabrication, providing a comprehensive overview of these materials and their development.
Collapse
Affiliation(s)
- Sheng-Nan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jia-Lin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yan-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Feng Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
20
|
Park JY, Jang JW, Shen X, Jang JH, Kwak SL, Choi H, Lee BR, Hwang DH. Fluorene- and arylamine-based photo-crosslinkable hole transporting polymer for solution-processed perovskite and organic light-emitting diodes. Macromol Res 2023. [DOI: 10.1007/s13233-023-00151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X. Ligands in Lead Halide Perovskite Nanocrystals: From Synthesis to Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205950. [PMID: 36515335 DOI: 10.1002/smll.202205950] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Ligands are indispensable for perovskite nanocrystals (NCs) throughout the whole lifetime, as they not only play key roles in the controllable synthesis of NCs with different sizes and shapes, but also act as capping shell that affects optical properties and electrical coupling of NCs. Establishing a systematic understanding of the relationship between ligands and perovskite NCs is significant to enable many potential applications of NCs. This review mainly focuses on the influence of ligands on perovskite NCs. First of all, the ligands-dominated size and shape control of NCs is discussed. Whereafter, the surface defects of NCs and the bonding between ligands and perovskite NCs are classified, and corresponding post-treatment of surface defects via ligands is also summarized. Furthermore, advances in engineering the ligands towards the high performance of optoelectronic devices based on perovskite NCs, including photodetector, solar cell, light emitting diode (LED), and laser, and finally to potential challenges are also discussed.
Collapse
Affiliation(s)
- Wenda Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Rui Yun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Yuling Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| |
Collapse
|
22
|
Ginterseder M, Sun W, Shcherbakov-Wu W, McIsaac AR, Berkinsky DB, Kaplan AEK, Wang L, Krajewska C, Šverko T, Perkinson CF, Utzat H, Tisdale WA, Van Voorhis T, Bawendi MG. Lead Halide Perovskite Nanocrystals with Low Inhomogeneous Broadening and High Coherent Fraction through Dicationic Ligand Engineering. NANO LETTERS 2023; 23:1128-1134. [PMID: 36780509 DOI: 10.1021/acs.nanolett.2c03354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lead halide perovskite nanocrystals (LHP NCs) are an emerging materials system with broad potential applications, including as emitters of quantum light. We apply design principles aimed at the structural optimization of surface ligand species for CsPbBr3 NCs, leading us to the study of LHP NCs with dicationic quaternary ammonium bromide ligands. Through the selection of linking groups and aliphatic backbones guided by experiments and computational support, we demonstrate consistently narrow photoluminescence line shapes with a full-width-at-half-maximum below 70 meV. We observe bulk-like Stokes shifts throughout our range of particle sizes, from 7 to 16 nm. At cryogenic temperatures, we find sub-200 ps lifetimes, significant photon coherence, and the fraction of photons emitted into the coherent channel increasing markedly to 86%. A 4-fold reduction in inhomogeneous broadening from previous work paves the way for the integration of LHP NC emitters into nanophotonic architectures to enable advanced quantum optical investigation.
Collapse
Affiliation(s)
- Matthias Ginterseder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Weiwei Sun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandra R McIsaac
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lili Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chantalle Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tara Šverko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hendrik Utzat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Montanarella F, Akkerman QA, Bonatz D, van der Sluijs MM, van der Bok JC, Prins PT, Aebli M, Mews A, Vanmaekelbergh D, Kovalenko MV. Growth and Self-Assembly of CsPbBr 3 Nanocrystals in the TOPO/PbBr 2 Synthesis as Seen with X-ray Scattering. NANO LETTERS 2023; 23:667-676. [PMID: 36607192 PMCID: PMC9881167 DOI: 10.1021/acs.nanolett.2c04532] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite broad interest in colloidal lead halide perovskite nanocrystals (LHP NCs), their intrinsic fast growth has prevented controlled synthesis of small, monodisperse crystals and insights into the reaction mechanism. Recently, a much slower synthesis of LHP NCs with extreme size control has been reported, based on diluted TOPO/PbBr2 precursors and a diisooctylphosphinate capping ligand. We report new insights into the nucleation, growth, and self-assembly in this reaction, obtained by in situ synchrotron-based small-angle X-ray scattering and optical absorption spectroscopy. We show that dispersed 3 nm Cs[PbBr3] agglomerates are the key intermediate species: first, they slowly nucleate into crystals, and then they release Cs[PbBr3] monomers for further growth of the crystals. We show the merits of a low Cs[PbBr3] monomer concentration for the reaction based on oleate ligands. We also examine the spontaneous superlattice formation mechanism occurring when the growing nanocrystals in the solvent reach a critical size of 11.6 nm.
Collapse
Affiliation(s)
- Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600Dübendorf, Switzerland
- Email
for F.M.:
| | - Quinten A. Akkerman
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600Dübendorf, Switzerland
| | - Dennis Bonatz
- Institute
of Physical Chemistry, University of Hamburg, 20146Hamburg, Germany
| | | | - Johanna C. van der Bok
- Debye
Institute for Nanomaterials Science, Utrecht
University, 3584 CCUtrecht, The Netherlands
| | - P. Tim Prins
- Debye
Institute for Nanomaterials Science, Utrecht
University, 3584 CCUtrecht, The Netherlands
| | - Marcel Aebli
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600Dübendorf, Switzerland
| | - Alf Mews
- Institute
of Physical Chemistry, University of Hamburg, 20146Hamburg, Germany
| | - Daniel Vanmaekelbergh
- Debye
Institute for Nanomaterials Science, Utrecht
University, 3584 CCUtrecht, The Netherlands
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600Dübendorf, Switzerland
- Email for M.V.K.:
| |
Collapse
|
24
|
Vighnesh K, Wang S, Liu H, Rogach AL. Hot-Injection Synthesis Protocol for Green-Emitting Cesium Lead Bromide Perovskite Nanocrystals. ACS NANO 2022; 16:19618-19625. [PMID: 36484795 DOI: 10.1021/acsnano.2c11689] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
All-inorganic cesium lead bromide (CsPbBr3) nanocrystals are one of the prominent members of the metal halide perovskite family of semiconductor materials, which possess considerable stability and excellent optoelectronic properties leading to a multitude of their potential applications in solar cells, light-emitting devices, photodetectors, and lasers. Hot-injection strategy is a popular method used to synthesize CsPbBr3 nanocrystals, which provides a convenient route to produce them in the shape of rather monodisperse nanocubes. As in any synthetic procedure, there are different factors like temperature, surface ligands, precursor concentration, as well as necessary postpreparation purification steps. Herein, we provide a comprehensive hot-injection synthesis protocol for CsPbBr3 nanocrystals, outlining intrinsic and extrinsic factors that affect its reproducibility and elucidating in detail the precursor solution preparation, nanocrystal formation and growth, and postpreparative purification and storage conditions to allow for the fabrication of high-quality green-emitting material.
Collapse
Affiliation(s)
- Kunnathodi Vighnesh
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., P.R. China 999077
| | - Shixun Wang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., P.R. China 999077
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., P.R. China 999077
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., P.R. China 999077
| |
Collapse
|
25
|
Hu Y, Cao S, Qiu P, Yu M, Wei H. All-Inorganic Perovskite Quantum Dot-Based Blue Light-Emitting Diodes: Recent Advances and Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4372. [PMID: 36558224 PMCID: PMC9781770 DOI: 10.3390/nano12244372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Light-emitting diodes (LEDs) based on all-inorganic lead halide perovskite quantum dots (PQDs) have undergone rapid development especially in the past five years, and external quantum efficiencies (EQEs) of the corresponding green- and red-emitting devices have exceeded 23%. However, the blue-emitting devices are facing greater challenges than their counterparts, and their poor luminous efficiency has hindered the display application of PQD-based LEDs (PeQLEDs). This review focuses on the key challenges of blue-emitting PeQLEDs including low EQEs, short operating lifetime, and spectral instability, and discusses the essential mechanism by referring to the latest research. We then systematically summarize the development of preparation methods of blue emission PQDs, as well as the current strategies on alleviating the poor device performance involved in composition engineering, ligand engineering, surface/interface engineering, and device structural engineering. Ultimately, suggestions and outlooks are proposed around the major challenges and future research direction of blue PeQLEDs.
Collapse
Affiliation(s)
- Yuyu Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto–Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Shijie Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto–Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Qiu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto–Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Meina Yu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Huiyun Wei
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto–Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, Wenzhou Institute of Biomaterials & Engineering, University of Chinese Academy of Sciences, Wenzhou 325027, China
| |
Collapse
|
26
|
Cirignano M, Fiorito S, Barelli M, Aglieri V, De Franco M, Bahmani Jalali H, Toma A, Di Stasio F. Layer-by-layer assembly of CsPbX 3 nanocrystals into large-scale homostructures. NANOSCALE 2022; 14:15525-15532. [PMID: 36239340 PMCID: PMC9612634 DOI: 10.1039/d2nr04169c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Advances in surface chemistry of CsPbX3 (where X = Cl, Br or I) nanocrystals (NCs) enabled the replacement of native chain ligands in solution. However, there are few reports on ligand exchange carried out on CsPbX3 NC thin films. Solid-state ligand exchange can improve the photoluminescence quantum yield (PLQY) of the film and promote a change in solubility of the solid surface, thus enabling multiple depositions of subsequent nanocrystal layers. Fine control of nanocrystal film thickness is of importance for light-emitting diodes (LEDs), solar cells and lasers alike. The thickness of the emissive material film is crucial to assure the copious recombination of charges injected into a LED, resulting in bright electroluminescence. Similarly, solar cell performance is determined by the amount of absorbed light, and hence the light absorber content in the device. In this study, we demonstrate a layer-by-layer (LbL) assembly method that results in high quality films, whose thicknesses can be finely controlled. In the solid state, we replaced oleic acid and oleylamine ligands with didodecyldimethylammonium bromide or ammonium thiocyanate that enhance the PLQY of the film. The exchange is carried out through a spin-coating technique, using solvents with strategic polarity to avoid NC dissolution or damage. Exploiting this technique, the deposition of various layers results in considerable thickening of films as proven by atomic force microscope measurements. The ease of handling of our combined process (i.e. ligand exchange and layer-by-layer deposition) enables thickness control over CsPbX3 NC films with applicability to other perovskite nanomaterials paving the way for a large variety of layer permutations.
Collapse
Affiliation(s)
- Matilde Cirignano
- Dipartimento di Chimica e Chimica Industriale, Università, Degli Studi di Genova, Via Dodecaneso 31, 16146, Genoa, Italy
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Sergio Fiorito
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Matteo Barelli
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Vincenzo Aglieri
- Clean Room Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Manuela De Franco
- Dipartimento di Chimica e Chimica Industriale, Università, Degli Studi di Genova, Via Dodecaneso 31, 16146, Genoa, Italy
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Houman Bahmani Jalali
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Andrea Toma
- Clean Room Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| |
Collapse
|
27
|
Sakhatskyi K, John RA, Guerrero A, Tsarev S, Sabisch S, Das T, Matt GJ, Yakunin S, Cherniukh I, Kotyrba M, Berezovska Y, Bodnarchuk MI, Chakraborty S, Bisquert J, Kovalenko MV. Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites. ACS ENERGY LETTERS 2022; 7:3401-3414. [PMID: 36277137 PMCID: PMC9578653 DOI: 10.1021/acsenergylett.2c01663] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Since the inception of the unprecedented rise of halide perovskites for photovoltaic research, ion migration has shadowed this material class with undesirable hysteresis and degradation effects, limiting its practical implementations. Unfortunately, the localized doping and electrochemical reactions triggered by ion migration cause many more undesirable effects that are often unreported or misinterpreted because they deviate from classical semiconductor behavior. In this Perspective, we provide a concise overview of such effects in halide perovskites, such as operational instability in photovoltaics, polarization-induced abnormal external quantum efficiency in light-emitting diodes, and energy channel shift and anomalous sensitivities in hard radiation detection. Finally, we highlight a unique use case of exploiting ion migration as a boon to design emerging memory technologies such as memristors for information storage and computing.
Collapse
Affiliation(s)
- Kostiantyn Sakhatskyi
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Rohit Abraham John
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Antonio Guerrero
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12006 Castelló, Spain
| | - Sergey Tsarev
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Sebastian Sabisch
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tisita Das
- Materials
Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Allahabad, Uttar Pradesh 211019, India
| | - Gebhard J. Matt
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Sergii Yakunin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Ihor Cherniukh
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Martin Kotyrba
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yuliia Berezovska
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Sudip Chakraborty
- Materials
Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Allahabad, Uttar Pradesh 211019, India
| | - Juan Bisquert
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12006 Castelló, Spain
- Yonsei
Frontier Lab, Yonsei University, Seoul 03722, South Korea
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
28
|
Avugadda S, Castelli A, Dhanabalan B, Fernandez T, Silvestri N, Collantes C, Baranov D, Imran M, Manna L, Pellegrino T, Arciniegas MP. Highly Emitting Perovskite Nanocrystals with 2-Year Stability in Water through an Automated Polymer Encapsulation for Bioimaging. ACS NANO 2022; 16:13657-13666. [PMID: 35914190 PMCID: PMC9527756 DOI: 10.1021/acsnano.2c01556] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/26/2022] [Indexed: 05/29/2023]
Abstract
Lead-based halide perovskite nanocrystals are highly luminescent materials, but their sensitivity to humid environments and their biotoxicity are still important challenges to solve. Here, we develop a stepwise approach to encapsulate representative CsPbBr3 nanocrystals into water-soluble polymer capsules. We show that our protocol can be extended to nanocrystals coated with different ligands, enabling an outstanding high photoluminescence quantum yield of ∼60% that is preserved over two years in capsules dispersed in water. We demonstrate that this on-bench strategy can be implemented on an automated platform with slight modifications, granting access to a faster and more reproducible fabrication process. Also, we reveal that the capsules can be exploited as photoluminescent probes for cell imaging at a dose as low as 0.3 μgPb/mL that is well below the toxicity threshold for Pb and Cs ions. Our approach contributes to expanding significantly the fields of applications of these luminescent materials including biology and biomedicine.
Collapse
Affiliation(s)
- Sahitya
Kumar Avugadda
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Castelli
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Balaji Dhanabalan
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Tamara Fernandez
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Niccolo Silvestri
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cynthia Collantes
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
| | - Dmitry Baranov
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Muhammad Imran
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Teresa Pellegrino
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Milena P. Arciniegas
- Nanomaterials
for Biomedical Applications and Nanochemistry, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
29
|
Cai Y, Li W, Tian D, Shi S, Chen X, Gao P, Xie R. Organic Sulfonium‐Stabilized High‐Efficiency Cesium or Methylammonium Lead Bromide Perovskite Nanocrystals. Angew Chem Int Ed Engl 2022; 61:e202209880. [DOI: 10.1002/anie.202209880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yuting Cai
- College of Materials and Fujian Key Laboratory of Materials Genome Xiamen University Xiamen 361005 China
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wenbo Li
- Laboratory of Advanced Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen 361005 China
| | - Dongjie Tian
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shuchen Shi
- College of Materials and Fujian Key Laboratory of Materials Genome Xiamen University Xiamen 361005 China
| | - Xi Chen
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Peng Gao
- Laboratory of Advanced Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen 361005 China
| | - Rong‐Jun Xie
- College of Materials and Fujian Key Laboratory of Materials Genome Xiamen University Xiamen 361005 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces Xiamen 361005 China
| |
Collapse
|
30
|
Akkerman QA, Nguyen TPT, Boehme SC, Montanarella F, Dirin DN, Wechsler P, Beiglböck F, Rainò G, Erni R, Katan C, Even J, Kovalenko MV. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 2022; 377:1406-1412. [PMID: 36074820 DOI: 10.1126/science.abq3616] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Colloidal lead halide perovskite (LHP) nanocrystals are of interest as photoluminescent quantum dots (QDs) whose properties depend on the size and shape. They are normally synthesized on subsecond time scales through hard-to-control ionic metathesis reactions. We report a room-temperature synthesis of monodisperse, isolable spheroidal APbBr3 QDs (A=Cs, formamidinium, methylammonium) that are size-tunable from 3 to over 13 nanometers. The kinetics of both nucleation and growth are temporally separated and drastically slowed down by the intricate equilibrium between the precursor (PbBr2) and the A[PbBr3] solute, with the latter serving as a monomer. QDs of all these compositions exhibit up to four excitonic transitions in their linear absorption spectra, and we demonstrate that the size-dependent confinement energy for all transitions is independent of the A-site cation.
Collapse
Affiliation(s)
- Quinten A Akkerman
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland.,Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Tan P T Nguyen
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Simon C Boehme
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland.,Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Federico Montanarella
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland.,Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland.,Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Philipp Wechsler
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Finn Beiglböck
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Gabriele Rainò
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland.,Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Claudine Katan
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, F-35000 Rennes, France
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland.,Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| |
Collapse
|
31
|
Zhu H, Tong G, Li J, Xu E, Tao X, Sheng Y, Tang J, Jiang Y. Enriched-Bromine Surface State for Stable Sky-Blue Spectrum Perovskite QLEDs With an EQE of 14.6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205092. [PMID: 35906787 DOI: 10.1002/adma.202205092] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Halogen vacancies are of great concern in blue-emitting perovskite quantum-dot light-emitting diodes because they affect their efficiency and spectral shift. Here, an enriched-bromine surface state is realized using a facile strategy that employs a PbBr2 stock solution for anion exchange based on Cd-doped perovskite quantum dots. It is found that the doped Cd ions are expected to reduce the formation energy of halogen vacancies filled by the external bromine ions, and the excess free bromine ions in solution are enriched in the surface by anchoring with halogen vacancies as sites, accompanied with the shedding of surface long-chain ligands during the anion exchange process, resulting in a Br-rich and "neat" surface. Moreover, the surface state exhibits good passivation of the surface defects of the controlled perovskite QDs and simultaneously increases the exciton binding energy, leading to excellent optical properties and stability. Finally, the sky-blue emitting perovskite quantum-dot light-emitting diodes (QLEDs) (490 nm) are conducted with a record external quantum efficiency of 14.6% and current efficiency of 19.9 cd A-1 . Meanwhile, the electroluminescence spectra exhibit great stability with negligible shifts under a constant operating voltage from 3 to 7 V. This strategy paves the way for improving the efficiency and stability of perovskite QLEDs.
Collapse
Affiliation(s)
- Hanwen Zhu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Guoqing Tong
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Junchun Li
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Enze Xu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Xuyong Tao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuanyuan Sheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jianxin Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Yang Jiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
32
|
Cai Y, Li W, Tian D, Shi S, Chen X, Gao P, Xie RJ. Organic Sulfonium‐Stabilized High‐Efficiency Cesium or Methylammonium Lead Bromide Perovskite Nanocrystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuting Cai
- Xiamen University College of Materials and Fujian Key Laboratory of Materials Genome CHINA
| | - Wenbo Li
- Chinese Academy of Sciences Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute CHINA
| | - Dongjie Tian
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Shuchen Shi
- Xiamen University College of Materials and Fujian Key Laboratory of Materials Genome CHINA
| | - Xi Chen
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Peng Gao
- Chinese Academy of Sciences Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute CHINA
| | - Rong-Jun Xie
- Xiamen University College of Materials 422 Siming South Road 361005 Xiamen CHINA
| |
Collapse
|
33
|
Das S, Samanta A. On direct synthesis of high quality APbX 3 (A = Cs +, MA + and FA +; X = Cl -, Br - and I -) nanocrystals following a generic approach. NANOSCALE 2022; 14:9349-9358. [PMID: 35726794 DOI: 10.1039/d2nr01305c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct synthesis of APbX3 [A = Cs+, methylammonium (MA+) or formamidinium (FA+) and X = Cl-, Br- or I-] perovskite nanocrystals (NCs) following a generic approach is a challenging task even today. Motivated by our recent success in obtaining directly high-quality red/NIR-emitting APbI3 NCs employing 1,3-diiodo-5,5-dimethylhydantoin (DIDMH) as an iodide precursor, we explore here whether violet/green-emitting APbCl3 and APbBr3 NCs can also be obtained using the chloro- and bromo-analog of DIDMH keeping in mind that a positive outcome will provide the generic protocol for direct synthesis of all APbX3 NCs using similar halide precursors. It is shown that green-emitting APbBr3 NCs with near-unity PLQY and violet-emitting CsPbCl3 NCs with an impressive PLQY of ∼70%, mixed-halide NCs, CsPb(Cl/Br)3 and CsPb(Br/I)3, emitting in the blue and yellow-orange region with PLQYs of 87-95% and 68-98%, respectively can indeed be obtained employing the bromo- and chloro-analog of DIDMH. These NCs exhibit remarkable stability under different conditions including the polar environment. Femtosecond pump-probe studies show no ultrafast carrier trapping in these systems. The key elements of the halide precursors that facilitated the synthesis and the factors contributing to the excellent characteristics of the NCs are determined by careful analysis of the data. The results are of great significance because a direct method of obtaining highly luminescent and stable APbX3 NCs (except violet-emitting hybrid NCs) is eventually identified and the work provides valuable insight into the selection of appropriate halide precursors for the development of superior systems.
Collapse
Affiliation(s)
- Somnath Das
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| |
Collapse
|
34
|
Challenges and Opportunities for the Blue Perovskite Quantum Dot Light-Emitting Diodes. CRYSTALS 2022. [DOI: 10.3390/cryst12070929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Perovskite quantum dots (PQDs), as the promising materials for the blue light-emitting diodes (LEDs), own huge advantages as ultra-high color purity, flexibility and whole-spectrum tunability. Through dimensional and compositional engineering, PQD-LEDs have shown superiority in deep-blue light emission. However, compared with the fast development of red and green PeLEDs, the electroluminescent performance of PQD-LEDs has faced more obstacles. In this review, we aim to explore and state the uniqueness and the possible solutions for the bottleneck problems of the PQD-LEDs.
Collapse
|
35
|
2D Material and Perovskite Heterostructure for Optoelectronic Applications. NANOMATERIALS 2022; 12:nano12122100. [PMID: 35745439 PMCID: PMC9228184 DOI: 10.3390/nano12122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023]
Abstract
Optoelectronic devices are key building blocks for sustainable energy, imaging applications, and optical communications in modern society. Two-dimensional materials and perovskites have been considered promising candidates in this research area due to their fascinating material properties. Despite the significant progress achieved in the past decades, challenges still remain to further improve the performance of devices based on 2D materials or perovskites and to solve stability issues for their reliability. Recently, a novel concept of 2D material/perovskite heterostructure has demonstrated remarkable achievements by taking advantage of both materials. The diverse fabrication techniques and large families of 2D materials and perovskites open up great opportunities for structure modification, interface engineering, and composition tuning in state-of-the-art optoelectronics. In this review, we present comprehensive information on the synthesis methods, material properties of 2D materials and perovskites, and the research progress of optoelectronic devices, particularly solar cells and photodetectors which are based on 2D materials, perovskites, and 2D material/perovskite heterostructures with future perspectives.
Collapse
|
36
|
Pascazio R, Zaccaria F, van Beek B, Infante I. Classical Force-Field Parameters for CsPbBr 3 Perovskite Nanocrystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:9898-9908. [PMID: 35747512 PMCID: PMC9207923 DOI: 10.1021/acs.jpcc.2c00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Understanding the chemico-physical properties of colloidal semiconductor nanocrystals (NCs) requires exploration of the dynamic processes occurring at the NC surfaces, in particular at the ligand-NC interface. Classical molecular dynamics (MD) simulations under realistic conditions are a powerful tool to acquire this knowledge because they have good accuracy and are computationally cheap, provided that a set of force-field (FF) parameters is available. In this work, we employed a stochastic algorithm, the adaptive rate Monte Carlo method, to optimize FF parameters of cesium lead halide perovskite (CsPbBr3) NCs passivated with typical organic molecules used in the synthesis of these materials: oleates, phosphonates, sulfonates, and primary and quaternary ammonium ligands. The optimized FF parameters have been obtained against MD reference trajectories computed at the density functional theory level on small NC model systems. We validated our parameters through a comparison of a wide range of nonfitted properties to experimentally available values. With the exception of the NC-phosphonate case, the transferability of the FF model has been successfully tested on realistically sized systems (>5 nm) comprising thousands of passivating organic ligands and solvent molecules, just as those used in experiments.
Collapse
Affiliation(s)
- Roberta Pascazio
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Francesco Zaccaria
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Bas van Beek
- Department
of Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Ivan Infante
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
37
|
Grisorio R, Fasulo F, Muñoz-García AB, Pavone M, Conelli D, Fanizza E, Striccoli M, Allegretta I, Terzano R, Margiotta N, Vivo P, Suranna GP. In Situ Formation of Zwitterionic Ligands: Changing the Passivation Paradigms of CsPbBr 3 Nanocrystals. NANO LETTERS 2022; 22:4437-4444. [PMID: 35609011 PMCID: PMC9185741 DOI: 10.1021/acs.nanolett.2c00937] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Indexed: 05/03/2023]
Abstract
CsPbBr3 nanocrystals (NCs) passivated by conventional lipophilic capping ligands suffer from colloidal and optical instability under ambient conditions, commonly due to the surface rearrangements induced by the polar solvents used for the NC purification steps. To avoid onerous postsynthetic approaches, ascertained as the only viable stability-improvement strategy, the surface passivation paradigms of as-prepared CsPbBr3 NCs should be revisited. In this work, the addition of an extra halide source (8-bromooctanoic acid) to the typical CsPbBr3 synthesis precursors and surfactants leads to the in situ formation of a zwitterionic ligand already before cesium injection. As a result, CsPbBr3 NCs become insoluble in nonpolar hexane, with which they can be washed and purified, and form stable colloidal solutions in a relatively polar medium (dichloromethane), even when longly exposed to ambient conditions. The improved NC stability stems from the effective bidentate adsorption of the zwitterionic ligand on the perovskite surfaces, as supported by theoretical investigations. Furthermore, the bidentate functionalization of the zwitterionic ligand enables the obtainment of blue-emitting perovskite NCs with high PLQYs by UV-irradiation in dichloromethane, functioning as the photoinduced chlorine source.
Collapse
Affiliation(s)
- Roberto Grisorio
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
- CNR
NANOTEC − Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Fasulo
- Dipartimento
di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 21, 80126 Napoli, Italy
| | - Ana Belén Muñoz-García
- Dipartimento
di Fisica “Ettore Pancini”, Università di Napoli
Federico II, Complesso Universitario di
Monte Sant’Angelo, Via Cintia 21, 80126 Napoli, Italy
| | - Michele Pavone
- Dipartimento
di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 21, 80126 Napoli, Italy
| | - Daniele Conelli
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Elisabetta Fanizza
- Dipartimento
di Chimica, Università degli Studi
di Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - Marinella Striccoli
- CNR−Istituto
per i Processi Chimico Fisici, UOS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ignazio Allegretta
- Dipartimento
di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Roberto Terzano
- Dipartimento
di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Nicola Margiotta
- Dipartimento
di Chimica, Università degli Studi
di Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - Paola Vivo
- Hybrid
Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Gian Paolo Suranna
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
- CNR
NANOTEC − Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
38
|
Dhaene E, Pokratath R, Aalling-Frederiksen O, Jensen KMØ, Smet PF, De Buysser K, De Roo J. Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis. ACS NANO 2022; 16:7361-7372. [PMID: 35476907 DOI: 10.1021/acsnano.1c08966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ligands play a crucial role in the synthesis of colloidal nanocrystals. Nevertheless, only a handful molecules are currently used, oleic acid being the most typical example. Here, we show that monoalkyl phosphinic acids are another interesting ligand class, forming metal complexes with a reactivity that is intermediate between the traditional carboxylates and phosphonates. We first present the synthesis of n-hexyl, 2-ethylhexyl, n-tetradecyl, n-octadecyl, and oleylphosphinic acid. These compounds are suitable ligands for high-temperature nanocrystal synthesis (240-300 °C) since, in contrast to phosphonic acids, they do not form anhydride oligomers. Consequently, CdSe quantum dots synthesized with octadecylphosphinic acid are conveniently purified, and their UV-vis spectrum is free from background scattering. The CdSe nanocrystals have a low polydispersity and a photoluminescence quantum yield up to 18% (without shell). Furthermore, we could synthesize CdSe and CdS nanorods using phosphinic acid ligands with high shape purity. We conclude that the reactivity toward TOP-S and TOP-Se precursors decreases in the following series: cadmium carboxylate > cadmium phosphinate > cadmium phosphonate. By introducing a third and intermediate class of surfactants, we enhance the versatility of surfactant-assisted syntheses.
Collapse
Affiliation(s)
- Evert Dhaene
- Department of Chemistry, Ghent University, Gent B-9000, Belgium
| | - Rohan Pokratath
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | | | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Philippe F Smet
- Department of Solid State Sciences, Ghent University, Gent B-9000, Belgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| |
Collapse
|
39
|
Liu Y, Wang Y, Cheng H, Ma Z, Li Q, Wang G, Pan D, Wang L, Ming J. Luminescent Thin Films Enabled by CsPbX 3 (X=Cl, Br, I) Precursor Solution. Chemistry 2022; 28:e202104463. [PMID: 35253944 DOI: 10.1002/chem.202104463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/10/2022]
Abstract
Inorganic cesium lead halide perovskite nanocrystals are candidates for lighting and display materials due to their outstanding optoelectronic properties. However, the dissolution issue of perovskite nanocrystals in polar solvents remains a challenge for practical applications. Herein, we present a newly designed one-step spin-coating strategy to prepare a novel multicolor-tunable CsPbX3 (X=Cl, Br, I) nanocrystal film, where the CsPbX3 precursor solution was formed by dissolving PbO, Cs2 CO3 , and CH3 NH3 X into the ionic liquid n-butylammonium butyrate. The as-designed CsPbX3 nanocrystal films show high color purity with a narrow emission width. Also, the blue CsPb(Cl/Br)3 film demonstrates an absolute photoluminescence quantum yields (PLQY) of 15.6 %, which is higher than 11.7 % of green CsPbBr3 and 8.3 % of red CsPb(Br/I)3 film. This study develops an effective approach to preparing CsPbX3 nanocrystal thin films, opening a new avenue to design perovskite nanocrystals-based devices for lighting and display applications.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuxiang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Haoran Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zheng Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qian Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Gang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Daocheng Pan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Limin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Ming
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
40
|
Lin CC, Li JY, She NZ, Huang SK, Huang CY, Wang IT, Tsai FL, Wei CY, Lee TY, Wang DY, Wen CY, Li SS, Yabushita A, Luo CW, Chen CC, Chen CW. Stabilized High-Membered and Phase-Pure 2D All Inorganic Ruddlesden-Popper Halide Perovskites Nanocrystals as Photocatalysts for the CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107881. [PMID: 35417059 DOI: 10.1002/smll.202107881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Indexed: 06/14/2023]
Abstract
In contrast to the 2D organic-inorganic hybrid Ruddlesden-Popper halide perovskites (RPP), a new class of 2D all inorganic RPP (IRPP) has been recently proposed by substituting the organic spacers with an optimal inorganic alternative of cesium cations (Cs+ ). Nevertheless, the synthesis of high-membered 2D IRPPs (n > 1) has been a very challenging task because the Cs+ need to act as both spacers and A-site cations simultaneously. This work presents the successful synthesis of stable phase-pure high-membered 2D IRPPs of Csn+1 Pbn Br3n+1 nanosheets (NSs) with n = 3 and 4 by employing the strategy of using additional strong binding bidentate ligands. The structures of the 2D IRPPs (n = 3 and 4) NSs are confirmed by powder X-ray diffraction and high-resolution aberration-corrected scanning transmission electron microscope measurements. These 2D IRPPs NSs exhibit a strong quantum confinement effect with tunable absorption and emission in the visible light range by varying their n values, attributed to their inherent 2D quantum-well structure. The superior structural and optical stability of the phase-pure high-membered 2D IRPPs make them a promising candidate as photocatalysts in CO2 reduction reactions with outstanding photocatalytic performance and long-term stability.
Collapse
Affiliation(s)
- Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei, 11529, Taiwan
| | - Jia-Ying Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, 11677, Taiwan
| | - Nian-Zu She
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu, 30010, Taiwan
| | - Shao-Ku Huang
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chih-Ying Huang
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei, 11529, Taiwan
| | - I-Ta Wang
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei, 11529, Taiwan
| | - Fu-Li Tsai
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, 11677, Taiwan
| | - Chuan-Yu Wei
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ting-Yi Lee
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, 11677, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Taichung, 407224, Taiwan
| | - Cheng-Yen Wen
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Shao-Sian Li
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhong-Xiao E. Rd, Taipei, 10608, Taiwan
| | - Atsushi Yabushita
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu, 30010, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001, University Road, Hsinchu, 30010, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd, Taipei, 11677, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| |
Collapse
|
41
|
Chang T, Wei Q, Wang Z, Gao Y, Lian B, Zhu X, Cao S, Zhao J, Zou B, Zeng R. Phase-Selective Solution Synthesis of Cd-Based Perovskite Derivatives and Their Structure/Emission Modulation. J Phys Chem Lett 2022; 13:3682-3690. [PMID: 35438490 DOI: 10.1021/acs.jpclett.2c00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rich phase structures of perovskite derivatives have attracted extensive attention and can be applied in the fields of optoelectronics due to their high emission efficiency and tunable emission. Herein, we explored a phase-selective solution synthetic route to obtain different Cd-based perovskite derivatives. First, the pristine tetragonal Cs7Cd3Br13 was obtained by a solvothermal method, and its photoluminescence quantum yield (PLQY) was boosted from 8.28% to 57.62% after appropriate Sb3+ doping. Furthermore, halogen substitution was adopted to modify Sb:Cs7Cd3Br13 and produced a series of Cd-based perovskite derivatives with different crystal structures and tunable emission from cyan to orange (517-625 nm). The mechanisms behind such experimental phenomena were further investigated and discussed on the basis of material characterization and theoretical computation. This study presented an effective strategy to synthesize bright Cd-based perovskite derivatives with different structures and modulated emission, and it also provided insights to understand the structure/emission modulation via halogen substitution.
Collapse
Affiliation(s)
- Tong Chang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Qilin Wei
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ziyi Wang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yilin Gao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bo Lian
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
42
|
Xiao H, Xiong H, Li P, Jiang L, Yang A, Lin L, Kang Z, Yan Q, Qiu Y. Tunable deep-blue luminescence from ball-milled chlorine-rich Cs x(NH 4) 1-xPbCl 2Br nanocrystals by ammonium modulation. Chem Commun (Camb) 2022; 58:3827-3830. [PMID: 35234752 DOI: 10.1039/d1cc07125d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, a novel class of deep-blue (DB)-emitting Csx(NH4)1-xPbCl2Br (0.3 ≤ x ≤ 1) perovskite nanocrystals (PNCs) were prepared by a facile ligand-assisted one-step ball milling method. The resulted PNCs are characterized by high chlorine content (66.7%) and excellent color purity. Their photoluminescence position can be finely modulated from 434 nm to 447 nm, which extends notably beyond the current Rec. 2020 color standard, by the NH4+ content. Among them, Cs0.3(NH4)0.7PbCl2Br shows the highest quantum yield close to 40%. The PNCs exhibit high phase and optical stability under ambient conditions and UV light according to the NH4+ content. This work offers a new avenue to produce DB perovskites for future full-color displays and optoelectronics.
Collapse
Affiliation(s)
- Hongfei Xiao
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.,Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China.
| | - Hao Xiong
- Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China.
| | - Ping Li
- Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China.
| | - Linqin Jiang
- Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China.
| | - Aijun Yang
- PV Metrology Institute, Fujian Metrology Institute, Fuzhou 350003, China
| | - Lingyan Lin
- Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China.
| | - Zhenjing Kang
- Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China.
| | - Qiong Yan
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.,Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China.
| | - Yu Qiu
- Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China.
| |
Collapse
|
43
|
Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR, Luscombe CK. Organic building blocks at inorganic nanomaterial interfaces. MATERIALS HORIZONS 2022; 9:61-87. [PMID: 34851347 DOI: 10.1039/d1mh01294k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
Collapse
Affiliation(s)
- Yunping Huang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Theodore A Cohen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Breena M Sperry
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Laura M Jacoby
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
44
|
He H, Mei S, Wen Z, Yang D, Yang B, Zhang W, Xie F, Xing G, Guo R. Recent Advances in Blue Perovskite Quantum Dots for Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103527. [PMID: 34713966 DOI: 10.1002/smll.202103527] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Metal halide perovskite nanostructures have sparked intense research interest due to their excellent optical properties. In recent years, although the green and red perovskite light-emitting diodes (PeLEDs) have achieved a significant breakthrough with the external quantum efficiency exceeding 20%, the blue PeLEDs still suffer from inferior performance. Previous reviews about blue PeLEDs focus more on 2D/quasi-2D or 3D perovskite materials. To develop more stable and efficient blue PeLEDs, a systematic review of blue perovskite quantum dots (PQDs) is urgently demanded to clarify how PQDs evolve. In this review, the recent advances in blue PQDs involving mixed-halide, quantum-confined all-bromide, metal-doped and lead-free PQDs as well as their applications in PeLEDs are highlighted. Although several excellent PeLEDs based on these PQDs have been demonstrated, there are still many problems to be solved. A deep insight into the advantages and disadvantages of these four types of blue-emitting PQDs is provided. Then, their respective potential and issues for blue PeLEDs have been discussed. Finally, the challenges and outlook for efficient and stable blue PeLEDs based on PQDs are addressed.
Collapse
Affiliation(s)
- Haiyang He
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Shiliang Mei
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhuoqi Wen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Dan Yang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Bobo Yang
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Zhongshan-Fudan Joint Innovation Center, Zhongshan, 528437, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang, 322000, China
| |
Collapse
|
45
|
Bai Y, Hao M, Ding S, Chen P, Wang L. Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105958. [PMID: 34643300 DOI: 10.1002/adma.202105958] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/07/2021] [Indexed: 05/27/2023]
Abstract
The presence of surface ligands not only plays a key role in keeping the colloidal integrity and non-defective surface of metal halide perovskite quantum dots (PQDs), but also serves as a knob to tune their optoelectronic properties for a variety of exciting applications including solar cells and light-emitting diodes. However, these indispensable surface ligands may also deteriorate the stability and key properties of PQDs due to their highly dynamic binding and insulating nature. To address these issues, a number of innovative surface chemistry engineering approaches have been developed in the past few years. Based on an in-depth fundamental understanding of the surface atomistic structure and surface defect formation mechanism in the tiny nanoparticles, a critical overview focusing on the surface chemistry engineering of PQDs including advanced colloidal synthesis, in-situ surface passivation, and solution-phase/solid-state ligand exchange is presented, after which their unprecedented achievements in photovoltaics and other optoelectronics are presented. The practical hurdles and future directions are critically discussed to inspire more rational design of PQD surface chemistry toward practical applications.
Collapse
Affiliation(s)
- Yang Bai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Mengmeng Hao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Shanshan Ding
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
46
|
Yan C, Luo C, Li W, Peng X, Cao J, Zeng X, Gao Y, Fu X, Chu X, Deng W, Chun F, Yang S, Wang Q, Yang W. Thermodynamics-Induced Injection Enhanced Deep-Blue Perovskite Quantum Dot LEDs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57560-57566. [PMID: 34812603 DOI: 10.1021/acsami.1c16428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precisely tuning emission spectra through the component control of mixed halides has been proved to be an efficient method for procuring deep-blue perovskite LEDs (PeLEDs). However, the inferior color instability and lifetime attenuation, originated from vacancy- and trap-mediated mechanisms under an external field, remain an uninterruptedly formidable challenge for the commercial development of PeLEDs. Here, an ultrafast thermodynamics-induced injection enhancement strategy was employed to promote efficient carrier recombination within perovskite quantum dots (QDs), accompanied by less inefficient charge accumulation and trap generation, enabling deep-blue PeLEDs with improved thermal and spectral stability. The resultant PeLEDs feature an external quantum efficiency (EQE) of 3.66%, a max luminance of 2100 cd/m2 at the electroluminescence (EL) of 460 nm, and a halftime of 288 s. This work provides a general platform for promoting the EL performances and a deep insight into unraveling the degradation mechanism of blue PeLEDs.
Collapse
Affiliation(s)
- Cheng Yan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chao Luo
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wen Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaodong Peng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jingjing Cao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiankan Zeng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Gao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuehai Fu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiang Chu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wen Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Fengjun Chun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shiyu Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qungui Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
47
|
Liu Y, Ono LK, Tong G, Bu T, Zhang H, Ding C, Zhang W, Qi Y. Spectral Stable Blue-Light-Emitting Diodes via Asymmetric Organic Diamine Based Dion-Jacobson Perovskites. J Am Chem Soc 2021; 143:19711-19718. [PMID: 34792336 PMCID: PMC8961879 DOI: 10.1021/jacs.1c07757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The spectral instability issue is
a challenge in blue perovskite
light-emitting diodes (PeLEDs). Dion–Jacobson (DJ) phase perovskites
are promising alternatives to achieve high-quality blue PeLEDs. However,
the current exploration of DJ phase perovskites is focused on symmetric
divalent cations, and the corresponding efficiency of blue PeLEDs
is still inferior to that of green and red ones. In this work, we
report a new type of DJ phase CsPb(Br/Cl)3 perovskite via
introduction of an asymmetric molecular configuration as the organic
spacer cation in perovskites. The primary and tertiary ammonium groups
on the asymmetric cations bridge with the lead halide octahedra forming
the DJ phase structures. Stable photoluminescence spectra were demonstrated
in perovskite films owing to the suppressed halide segregation. Meanwhile,
the radiative recombination efficiency of charges is improved significantly
as a result of the confinement effects and passivation of charge traps.
Finally, we achieved an external quantum efficiency of 2.65% in blue
PeLEDs with stable spectra emission under applied bias voltages. To
our best knowledge, this is the first report of asymmetric cations
used in PeLEDs, which provides a facile solution to the halide segregation
issue in PeLEDs.
Collapse
Affiliation(s)
- Yuqiang Liu
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.,College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Luis K Ono
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Guoqing Tong
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Tongle Bu
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Hui Zhang
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Chenfeng Ding
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Wei Zhang
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Yabing Qi
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
48
|
Wang S, Du L, Donmez S, Xin Y, Mattoussi H. Polysalt ligands achieve higher quantum yield and improved colloidal stability for CsPbBr 3 quantum dots. NANOSCALE 2021; 13:16705-16718. [PMID: 34591949 DOI: 10.1039/d1nr04753a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal lead halide perovskite quantum dots (PQDs) are relatively new semiconductor nanocrystals with great potential for use in optoelectronic applications. They also present a set of new scientifically challenging fundamental problems to investigate and understand. One of them is to address the rather poor colloidal and structural stability of these materials under solution phase processing and/or transfer between solvents. In this contribution, we detail the synthesis of a new family of multi-coordinating, bromide-based polysalt ligands and test their ability to stabilize CsPbBr3 nanocrystals in polar solutions. The ligands present multiple salt groups involving quaternary cations, namely ammonium and imidazolium as anchors for coordination onto PQD surfaces, along with several alkyl chains with varying chain length to promote solubilization in various conditions. The ligands provide a few key benefits including the ability to repair damaged surface sites, allow rapid ligand exchange and phase transfer, and preserve the crystalline structure and morphology of the nanocrystals. The polysalt-coated PQDs exhibit near unity PLQY and significantly enhanced colloidal stability in ethanol and methanol.
Collapse
Affiliation(s)
- Sisi Wang
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Liang Du
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Selin Donmez
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Yan Xin
- Florida State University, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida, 32310, USA
| | - Hedi Mattoussi
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| |
Collapse
|
49
|
Hooper TJN, Fang Y, Brown AAM, Pu SH, White TJ. Structure and surface properties of size-tuneable CsPbBr 3 nanocrystals. NANOSCALE 2021; 13:15770-15780. [PMID: 34528047 DOI: 10.1039/d1nr04602k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This investigation has characterised the structure and surface chemistry of CsPbBr3 nanocrystals with controlled diameters between 6.4 to 12.8 nm. The nanocrystals were investigated via a thorough 133Cs solid state NMR and nuclear relaxation study, identifying and mapping radially-increasing nanoscale disorder. This work has formalised 133Cs NMR as a highly sensitive probe of nanocrystal size, which can conveniently analyse nanocrystals in solid forms, as they would be utilised in optoelectronic devices. A combined multinuclear solid state NMR and XPS approach, including 133Cs-1H heteronuclear correlation 2D (HETCOR) NMR, was utilised to study the nanocrystal surface and ligands, demonstrating that the surface is Cs-Br rich with vacancies passivated by didodecyldimethylammonium bromide (DDAB) ligands. Furthermore, it is shown that a negligible amount of phosphonate ligands remain on the powder nanocrystal surface, despite the key role of octylphosphonic acid (OPA) in controlling the colloidal nanocrystal growth. The CsPbBr3 NCs were shown to be structurally stable under ambient conditions for up to 6 months, albeit with some particle agglomeration.
Collapse
Affiliation(s)
- Thomas J N Hooper
- Centre of High Field NMR Spectroscopy and Imaging, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore.
| | - Yanan Fang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Republic of Singapore.
| | - Alasdair A M Brown
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO171BJ, UK
- University of Southampton Malaysia, Iskandar Puteri, 79200, Johor, Malaysia
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Republic of Singapore
| | - Suan Hui Pu
- Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO171BJ, UK
- University of Southampton Malaysia, Iskandar Puteri, 79200, Johor, Malaysia
| | - Tim J White
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Republic of Singapore.
- Energy Research Institute at NTU (ERI@N), Research Techno Plaza, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Republic of Singapore
| |
Collapse
|
50
|
Ye J, Byranvand MM, Martínez CO, Hoye RLZ, Saliba M, Polavarapu L. Defect Passivation in Lead-Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angew Chem Int Ed Engl 2021; 60:21636-21660. [PMID: 33730428 PMCID: PMC8518834 DOI: 10.1002/anie.202102360] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Lead-halide perovskites (LHPs), in the form of both colloidal nanocrystals (NCs) and thin films, have emerged over the past decade as leading candidates for next-generation, efficient light-emitting diodes (LEDs) and solar cells. Owing to their high photoluminescence quantum yields (PLQYs), LHPs efficiently convert injected charge carriers into light and vice versa. However, despite the defect-tolerance of LHPs, defects at the surface of colloidal NCs and grain boundaries in thin films play a critical role in charge-carrier transport and nonradiative recombination, which lowers the PLQYs, device efficiency, and stability. Therefore, understanding the defects that play a key role in limiting performance, and developing effective passivation routes are critical for achieving advances in performance. This Review presents the current understanding of defects in halide perovskites and their influence on the optical and charge-carrier transport properties. Passivation strategies toward improving the efficiencies of perovskite-based LEDs and solar cells are also discussed.
Collapse
Affiliation(s)
- Junzhi Ye
- Cavendish LaboratoryUniversity of Cambridge19, JJ Thomson AvenueCambridgeCB3 0HEUK
| | - Mahdi Malekshahi Byranvand
- Institute for Photovoltaics (ipv)University of StuttgartPfaffenwaldring 4770569StuttgartGermany
- Helmholtz Young Investigator Group FRONTRUNNERIEK5-PhotovoltaikForschungszentrum Jülich52425JülichGermany
| | - Clara Otero Martínez
- CINBIOUniversidade de VigoMaterials Chemistry and Physics GroupDepartment of Physical ChemistryCampus Universitario Lagoas, Marcosende36310VigoSpain
| | - Robert L. Z. Hoye
- Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Michael Saliba
- Institute for Photovoltaics (ipv)University of StuttgartPfaffenwaldring 4770569StuttgartGermany
- Helmholtz Young Investigator Group FRONTRUNNERIEK5-PhotovoltaikForschungszentrum Jülich52425JülichGermany
| | - Lakshminarayana Polavarapu
- CINBIOUniversidade de VigoMaterials Chemistry and Physics GroupDepartment of Physical ChemistryCampus Universitario Lagoas, Marcosende36310VigoSpain
| |
Collapse
|