1
|
Nemčovičová I, Lopušná K, Štibrániová I, Benedetti F, Berti F, Felluga F, Drioli S, Vidali M, Katrlík J, Pažitná L, Holazová A, Blahutová J, Lenhartová S, Sláviková M, Klempa B, Ondrejovič M, Chmelová D, Legerská B, Miertuš S, Klacsová M, Uhríková D, Kerti L, Frecer V. Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. J Enzyme Inhib Med Chem 2024; 39:2301772. [PMID: 38221792 PMCID: PMC10791089 DOI: 10.1080/14756366.2024.2301772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases Mpro and PLpro became attractive targets for the design of antiviral agents. Here, we develop and evaluate new bis(benzylidene)cyclohexanones (BBC) and identify potential antiviral compounds. Three compounds were found to be effective in reducing the SARS-CoV-2 load, with EC50 values in the low micromolar concentration range. However, these compounds also exhibited inhibitory activity IC50 against PLpro at approximately 10-fold higher micromolar concentrations. Although originally developed as PLpro inhibitors, the comparison between IC50 and EC50 of BBC indicates that the mechanism of their in vitro antiviral activity is probably not directly related to inhibition of viral cysteine proteases. In conclusion, our study has identified new potential noncytotoxic antiviral compounds suitable for in vivo testing and further improvement.
Collapse
Affiliation(s)
- Ivana Nemčovičová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Lopušná
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Fabio Benedetti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Mattia Vidali
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Holazová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Blahutová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Lenhartová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Lukáš Kerti
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Vladimír Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Chu H, Shuai H, Qiao J, Yoon C, Zhang G, Hou Y, Xia X, Wang L, Deng X, Wang Y, Li Q, Du L, Liu Y, Zhou M, Wong HT, Liu H, Hu B, Chen Y, Fang Z, Xia Z, Chai Y, Shi J, Wang Y, Zhu T, Zhang H, Yuan S, Zhou J, Chan J, Yuen KY, Xu C, Lei J, Yang S. An orally available Mpro/TMPRSS2 bispecific inhibitor with potent anti-coronavirus efficacy in vivo. RESEARCH SQUARE 2024:rs.3.rs-5454588. [PMID: 39606435 PMCID: PMC11601862 DOI: 10.21203/rs.3.rs-5454588/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Coronaviruses have caused three major endemics in the past two decades. Alarmingly, recent identification of novel zoonotic coronaviruses that caused human infections suggests the risk of future coronavirus outbreak caused by spillover infection from animal reservoirs remains high1,2. Therefore, development of novel therapeutic options with broad-spectrum anti-coronavirus activities are urgently needed. Here, we develop an orally-available bispecific inhibitor, TMP1, which simultaneously targets key coronavirus replication protease Mpro and the essential airway protease TMPRSS23,4. TMP1 shows broad-spectrum protection not only against different SARS-CoV-2 variants but also against multiple human-pathogenic coronaviruses in vitro. By using the K18-hACE2 transgenic mouse, hDPP4 knock-in mouse and golden Syrian hamster models, we demonstrate TMP1 cross-protects against highly-pathogenic coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) in vivo and efficiently abrogates SARS-CoV-2 transmission. Through structural and mutagenesis studies, we confirmed the direct interaction of TMP1 with Mpro and TMPRSS2, and pinpoint the key sites of interactions. Importantly, TMP1 inhibits the infection of nirmatrelvir-resistant SARS-CoV-2 escape mutants. Together, our findings demonstrate the antiviral potential of the novel bispecific Mpro/TMPRSS2 antiviral design against human-pathogenic coronaviruses and other emerging coronaviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhen Fang
- West China Hospital, Sichuan University
| | | | | | | | | | | | | | | | | | | | | | - Chunfu Xu
- National Institute of Biological Sciences, Beijing
| | | | | |
Collapse
|
3
|
Zhang Y, Kandwal S, Fayne D, Stevenson NJ. MERS-CoV-nsp5 expression in human epithelial BEAS 2b cells attenuates type I interferon production by inhibiting IRF3 nuclear translocation. Cell Mol Life Sci 2024; 81:433. [PMID: 39395053 PMCID: PMC11470912 DOI: 10.1007/s00018-024-05458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an enveloped, positive-sense RNA virus that emerged in 2012, causing sporadic cases and localized outbreaks of severe respiratory illness with high fatality rates. A characteristic feature of the immune response to MERS-CoV infection is low type I IFN induction, despite its importance in viral clearance. The non-structural proteins (nsps) of other coronaviruses have been shown to block IFN production. However, the role of nsp5 from MERS-CoV in IFN induction of human respiratory cells is unclear. In this study, we elucidated the role of MERS-CoV-nsp5, the viral main protease, in modulating the host's antiviral responses in human bronchial epithelial BEAS 2b cells. We found that overexpression of MERS-CoV-nsp5 had a dose-dependent inhibitory effect on IFN-β promoter activation and cytokine production induced by HMW-poly(I:C). It also suppressed IFN-β promoter activation triggered by overexpression of key components in the RIG-I-like receptor (RLR) pathway, including RIG-I, MAVS, IKK-ε and IRF3. Moreover, the overexpression of MERS-CoV-nsp5 did not impair expression or phosphorylation of IRF3, but suppressed the nuclear translocation of IRF3. Further investigation revealed that MERS-CoV-nsp5 specifically interacted with IRF3. Using docking and molecular dynamic (MD) simulations, we also found that amino acids on MERS-CoV-nsp5, IRF3, and KPNA4 may participate in protein-protein interactions. Additionally, we uncovered protein conformations that mask the nuclear localization signal (NLS) regions of IRF3 and KPNA4 when interacting with MERS-CoV-nsp5, suggesting a mechanism by which this viral protein blocks IRF3 nuclear translocation. Of note, the IFN-β expression was restored after administration of protease inhibitors targeting nsp5, indicating this suppression of IFN-β production was dependent on the enzyme activity of nsp5. Collectively, our findings elucidate a mechanism by which MERS-CoV-nsp5 disrupts the host's innate antiviral immunity and thus provides insights into viral pathogenesis.
Collapse
Affiliation(s)
- Y Zhang
- Viral Immunology Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - S Kandwal
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland
- DCU Life Sciences Institute, Dublin City University, Dublin, Ireland
| | - D Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
- DCU Life Sciences Institute, Dublin City University, Dublin, Ireland
| | - N J Stevenson
- Viral Immunology Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Deng W, Hu X, Tian X, Zhang Y, Shang W, Zhang L, Shang L. Peptidomimetic Analogues Act as Effective Inhibitors against SARS-CoV-2 by Blocking the Function of Cathepsin L. J Med Chem 2024; 67:17124-17143. [PMID: 39292661 DOI: 10.1021/acs.jmedchem.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cathepsin L (CatL) is a promising antiviral drug target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an important protease for cleaving the SARS-CoV-2 spike protein and enhancing viral entry to cells. We identified a tripeptide aldehyde candidate, D1-1, which exhibited inhibitory effects against SARS-CoV-2 in Vero E6 cells. The protease screening analysis and protein pull-down assays demonstrated the direct binding of D1-1 to CatL. Guided by molecular docking, we synthesized 72 analogues. Upon analyzing the structure-activity relationships of these inhibitors, the D6 series was developed. Among them, D6-3 functioned as the most potent CatL inhibitor (IC50 = 0.27 nM, EC50 = 0.26 μM). D6-3 effectively blocked the CatL function and substantially hindered the entry of the SARS-CoV-2 pseudovirus to cells. Our work presented novel compounds for targeting and inhibiting CatL, offering valuable insights into the development of SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Weilong Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, KLMDASR of Tianjin and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300353, People's Republic of China
| | - Xiao Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, KLMDASR of Tianjin and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300353, People's Republic of China
| | - Xiaoman Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, KLMDASR of Tianjin and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300353, People's Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, KLMDASR of Tianjin and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300353, People's Republic of China
| | - Weijuan Shang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Leike Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, KLMDASR of Tianjin and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300353, People's Republic of China
| |
Collapse
|
5
|
Niyomdecha N, Boonarkart C, Thongon S, Auewarakul P. Comparative study of the propagation and plaque titration conditions for human coronavirus OC43 as a surrogate for SARS-CoV-2. Arch Virol 2024; 169:214. [PMID: 39365483 DOI: 10.1007/s00705-024-06146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
The ongoing COVID-19 pandemic is threatening human health globally. The development of effective drugs and vaccines against SARS-CoV-2 is hindered by the limited access to high-biosafety-level facilities. Although human coronavirus (HCoV) OC43, a low-pathogenic endemic human coronavirus, has been used as a surrogate virus for SARS-CoV-2 research, a standard technique for HCoV-OC43 culture and plaque titration has not been established. Our objective was to establish optimized culture and titration protocols for HCoV-OC43. The growth kinetics and permissibility to HCoV-OC43 infection of seven different cell lines were examined concurrently at two different temperatures, 33°C and 37°C. Cell lines exhibiting a cytopathic effect (CPE) were selected for plaque titration. No significant difference in the rate of cell growth was observed at the two temperatures tested. Interestingly, HCoV-OC43 was found not to be a high-temperature-sensitive virus, since it grew well at 37°C. Although RD, LLC-MK2, MRC-5, and HCT-8 cell lines supported virus growth with an obvious cytopathic effect and a high yield of virus after two days of infection, only RD cells were suitable for producing countable plaques. The incubation of the cells with 1.2% low-viscosity Avicel as an overlay medium at 37°C for 4 days appeared to promote clearer and sharper plaque morphology. However, further optimization of the plaque titration protocol is still required due to the continued observation of plaque size variation and hazy zones. We propose a cost-effective protocol for HCoV-OC43 culture and plaque titration that can be implemented at a standard conventional temperature without the need for additional special equipment.
Collapse
Affiliation(s)
- Nattamon Niyomdecha
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani, 12120, Thailand.
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Songkran Thongon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
6
|
Cheng S, Feng Y, Li W, Liu T, Lv X, Tong X, Xi G, Ye X, Li X. Development of novel antivrial agents that induce the degradation of the main protease of human-infecting coronaviruses. Eur J Med Chem 2024; 275:116629. [PMID: 38941718 DOI: 10.1016/j.ejmech.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
The family of human-infecting coronaviruses (HCoVs) poses a serious threat to global health and includes several highly pathogenic strains that cause severe respiratory illnesses. It is essential that we develop effective broad-spectrum anti-HCoV agents to prepare for future outbreaks. In this study, we used PROteolysis TArgeting Chimera (PROTAC) technology focused on degradation of the HCoV main protease (Mpro), a conserved enzyme essential for viral replication and pathogenicity. By adapting the Mpro inhibitor GC376, we produced two novel PROTACs, P2 and P3, which showed relatively broad-spectrum activity against the human-infecting CoVs HCoV-229E, HCoV-OC43, and SARS-CoV-2. The concentrations of these PROTACs that reduced virus replication by 50 % ranged from 0.71 to 4.6 μM, and neither showed cytotoxicity at 100 μM. Furthermore, mechanistic binding studies demonstrated that P2 and P3 effectively targeted HCoV-229E, HCoV-OC43, and SARS-CoV-2 by degrading Mpro within cells in vitro. This study highlights the potential of PROTAC technology in the development of broad-spectrum anti-HCoVs agents, presenting a novel approach for dealing with future viral outbreaks, particularly those stemming from CoVs.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China.
| | - Yong Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Tong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Xiaomei Tong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Gan Xi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, 101408, China.
| |
Collapse
|
7
|
Paulis A, Onali A, Vidalain PO, Lotteau V, Jaquemin C, Corona A, Distinto S, Delogu GL, Tramontano E. Identification of new benzofuran derivatives as STING agonists with broad-spectrum antiviral activity. Virus Res 2024; 347:199432. [PMID: 38969014 PMCID: PMC11294726 DOI: 10.1016/j.virusres.2024.199432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The Stimulator of Interferon Genes (STING) is involved in cytosolic DNA sensing and type I Interferons (IFN-I) induction. Aiming to identify new STING agonists with antiviral activity and given the known biological activity of benzothiazole and benzimidazole derivatives, a series of benzofuran derivatives were tested for their ability to act as STING agonists, induce IFN-I and inhibit viral replication. Compounds were firstly evaluated in a gene reporter assay measuring luciferase activity driven by the human IFN-β promoter in cells expressing exogenous STING (HEK293T). Seven of them were able to induce IFN-β transcription while no induction of the IFN promoter was observed in the presence of a mutated and inactive STING, showing specific protein-ligand interaction. Docking studies were performed to predict their putative binding mode. The best hit compounds were then tested on human coronavirus 229E replication in BEAS-2B and MRC-5 cells and three derivatives showed EC50 values in the μM range. Such compounds were also tested on SARS-CoV-2 replication in BEAS-2B cells and in Calu-3 showing they can inhibit SARS-CoV-2 replication at nanomolar concentrations. To further confirm their IFN-dependent antiviral activity, compounds were tested to verify their effect on phospho-IRF3 nuclear localization, that was found to be induced by benzofuran derivatives, and SARS-CoV-2 replication in Vero E6 cells, lacking IFN production, founding them to be inactive. In conclusion, we identified benzofurans as STING-dependent immunostimulatory compounds and host-targeting inhibitors of coronaviruses representing a novel chemical scaffold for the development of broad-spectrum antivirals.
Collapse
Affiliation(s)
- A Paulis
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - A Onali
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - P O Vidalain
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - V Lotteau
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - C Jaquemin
- CIRI, Centre International de Recherche en Infectiologie, University Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France
| | - A Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - S Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| | - G L Delogu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - E Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| |
Collapse
|
8
|
Zhang W, Xiao L, Li D, Hu Y, Yu W. New Strategies for Responding to SARS-CoV-2: The Present and Future of Dual-Target Drugs. J Med Chem 2024; 67:11522-11542. [PMID: 38967785 DOI: 10.1021/acs.jmedchem.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The 2019 coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths, posing a serious threat to public health and safety. Rapid mutations of SARS-CoV-2 and complex interactions among multiple targets during infection pose a risk of expiry for small molecule inhibitors. This suggests that the traditional concept of "one bug, one drug" could be ineffective in dealing with the coronavirus. The dual-target drug strategy is expected to be the key to ending coronavirus infections. However, the lack of design method and improper combination of dual-targets poses obstacle to the discovery of new dual-target drugs. In this Perspective, we summarized the profiles concerning drug design methods, structure-activity relationships, and pharmacological parameters of dual-target drugs for the treatment of COVID-19. Importantly, we underscored how target combination and rational drug design illuminate the development of dual-target drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lecheng Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
10
|
Messore A, Malune P, Patacchini E, Madia VN, Ialongo D, Arpacioglu M, Albano A, Ruggieri G, Saccoliti F, Scipione L, Tramontano E, Canton S, Corona A, Scognamiglio S, Paulis A, Suleiman M, Al-Maqtari HM, Abid FMA, Kawsar SMA, Sankaranarayanan M, Di Santo R, Esposito F, Costi R. New Thiazolidine-4-One Derivatives as SARS-CoV-2 Main Protease Inhibitors. Pharmaceuticals (Basel) 2024; 17:650. [PMID: 38794220 PMCID: PMC11124136 DOI: 10.3390/ph17050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
It has been more than four years since the first report of SARS-CoV-2, and humankind has experienced a pandemic with an unprecedented impact. Moreover, the new variants have made the situation even worse. Among viral enzymes, the SARS-CoV-2 main protease (Mpro) has been deemed a promising drug target vs. COVID-19. Indeed, Mpro is a pivotal enzyme for viral replication, and it is highly conserved within coronaviruses. It showed a high extent of conservation of the protease residues essential to the enzymatic activity, emphasizing its potential as a drug target to develop wide-spectrum antiviral agents effective not only vs. SARS-CoV-2 variants but also against other coronaviruses. Even though the FDA-approved drug nirmatrelvir, a Mpro inhibitor, has boosted the antiviral therapy for the treatment of COVID-19, the drug shows several drawbacks that hinder its clinical application. Herein, we report the synthesis of new thiazolidine-4-one derivatives endowed with inhibitory potencies in the micromolar range against SARS-CoV-2 Mpro. In silico studies shed light on the key structural requirements responsible for binding to highly conserved enzymatic residues, showing that the thiazolidinone core acts as a mimetic of the Gln amino acid of the natural substrate and the central role of the nitro-substituted aromatic portion in establishing π-π stacking interactions with the catalytic His-41 residue.
Collapse
Affiliation(s)
- Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Paolo Malune
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Elisa Patacchini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Davide Ialongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Merve Arpacioglu
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Aurora Albano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Giuseppe Ruggieri
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Francesco Saccoliti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Serena Canton
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Angela Corona
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Sante Scognamiglio
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Annalaura Paulis
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Mustapha Suleiman
- Department of Chemistry, Sokoto State University, Sokoto 852101, Nigeria;
| | | | - Fatma Mohamed A. Abid
- Department of Chemistry, Faculty of Science, Al-Azzaytuna University, Tarhuna 537622224, Libya;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India;
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| |
Collapse
|
11
|
Falke S, Lieske J, Herrmann A, Loboda J, Karničar K, Günther S, Reinke PYA, Ewert W, Usenik A, Lindič N, Sekirnik A, Dretnik K, Tsuge H, Turk V, Chapman HN, Hinrichs W, Ebert G, Turk D, Meents A. Structural Elucidation and Antiviral Activity of Covalent Cathepsin L Inhibitors. J Med Chem 2024; 67:7048-7067. [PMID: 38630165 PMCID: PMC11089505 DOI: 10.1021/acs.jmedchem.3c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/15/2024]
Abstract
Emerging RNA viruses, including SARS-CoV-2, continue to be a major threat. Cell entry of SARS-CoV-2 particles via the endosomal pathway involves cysteine cathepsins. Due to ubiquitous expression, cathepsin L (CatL) is considered a promising drug target in the context of different viral and lysosome-related diseases. We characterized the anti-SARS-CoV-2 activity of a set of carbonyl- and succinyl epoxide-based inhibitors, which were previously identified as inhibitors of cathepsins or related cysteine proteases. Calpain inhibitor XII, MG-101, and CatL inhibitor IV possess antiviral activity in the very low nanomolar EC50 range in Vero E6 cells and inhibit CatL in the picomolar Ki range. We show a relevant off-target effect of CatL inhibition by the coronavirus main protease α-ketoamide inhibitor 13b. Crystal structures of CatL in complex with 14 compounds at resolutions better than 2 Å present a solid basis for structure-guided understanding and optimization of CatL inhibitors toward protease drug development.
Collapse
Affiliation(s)
- Sven Falke
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Julia Lieske
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alexander Herrmann
- Institute
of Virology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - Jure Loboda
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Katarina Karničar
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Sebastian Günther
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Patrick Y. A. Reinke
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Wiebke Ewert
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Aleksandra Usenik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Nataša Lindič
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Andreja Sekirnik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Klemen Dretnik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- The
Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Hideaki Tsuge
- Faculty of
Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Vito Turk
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Henry N. Chapman
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Hamburg
Centre for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
- Department
of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Winfried Hinrichs
- Institute
of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Gregor Ebert
- Institute
of Virology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
- Institute
of Virology, Technical University of Munich, Trogerstraße 30, 81675 Munich, Germany
| | - Dušan Turk
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Alke Meents
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
12
|
Zhang J, Zhao L, Bai Y, Li S, Zhang M, Wei B, Wang X, Xue Y, Li L, Ma G, Tang Y, Wang X. An ascidian Polycarpa aurata-derived pan-inhibitor against coronaviruses targeting M pro. Bioorg Med Chem Lett 2024; 103:129706. [PMID: 38508325 DOI: 10.1016/j.bmcl.2024.129706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Coronaviruses (CoVs) are responsible for a wide range of illnesses in both animals and human. The main protease (Mpro) of CoVs is an attractive drug target, owing its critical and highly conserved role in viral replication. Here, we developed and refined an enzymatic technique to identify putative Mpro inhibitors from 189 marine chemicals and 46 terrestrial natural products. The IC50 values of Polycarpine (1a), a marine natural substance we studied and synthesized, are 30.0 ± 2.5 nM for SARS-CoV-2 Mpro and 0.12 ± 0.05 μM for PEDV Mpro. Our research further demonstrated that pretreatment with Polycarpine (1a) inhibited the betacoronavirus SARS-CoV-2 and alphacoronavirus PEDV multiplication in Vero-E6 cells. As a result, Polycarpine (1a), a pan-inhibitor of Mpro, will function as an effective and promising antiviral option to combat CoVs infection and as a foundation for further therapeutic research.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Lili Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Yuxin Bai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Shanshan Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Bo Wei
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xianyang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Guiliang Ma
- Department of General Surgery, Qingdao Municipal Hospital, No. 5, Donghaizhong Road, Qingdao 266071, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| |
Collapse
|
13
|
Lin C, Zhu Z, Jiang H, Zou X, Zeng X, Wang J, Zeng P, Li W, Zhou X, Zhang J, Wang Q, Li J. Structural Basis for Coronaviral Main Proteases Inhibition by the 3CLpro Inhibitor GC376. J Mol Biol 2024; 436:168474. [PMID: 38311236 DOI: 10.1016/j.jmb.2024.168474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
The main protease (Mpro) of coronaviruses participates in viral replication, serving as a hot target for drug design. GC376 is able to effectively inhibit the activity of Mpro, which is due to nucleophilic addition of GC376 by binding covalently with Cys145 in Mpro active site. Here, we used fluorescence resonance energy transfer (FRET) assay to analyze the IC50 values of GC376 against Mpros from six different coronaviruses (SARS-CoV-2, HCoV-229E, HCoV-HUK1, MERS-CoV, SARS-CoV, HCoV-NL63) and five Mpro mutants (G15S, M49I, K90R, P132H, S46F) from SARS-CoV-2 variants. The results showed that GC376 displays effective inhibition to various coronaviral Mpros and SARS-CoV-2 Mpro mutants. In addition, the crystal structures of SARS-CoV-2 Mpro (wide type)-GC376, SARS-CoV Mpro-GC376, MERS-CoV Mpro-GC376, and SARS-CoV-2 Mpro mutants (G15S, M49I, S46F, K90R, and P132H)-GC376 complexes were solved. We found that GC376 is able to fit into the active site of Mpros from different coronaviruses and different SARS-CoV-2 variants properly. Detailed structural analysis revealed key molecular determinants necessary for inhibition and illustrated the binding patterns of GC376 to these different Mpros. In conclusion, we not only proved the inhibitory activity of GC376 against different Mpros including SARS-CoV-2 Mpro mutants, but also revealed the molecular mechanism of inhibition by GC376, which will provide scientific guidance for the development of broad-spectrum drugs against SARS-CoV-2 as well as other coronaviruses.
Collapse
Affiliation(s)
- Cheng Lin
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhimin Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Haihai Jiang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiaofang Zou
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Xiangyi Zeng
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Jie Wang
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Pei Zeng
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Wenwen Li
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Xuelan Zhou
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen 518118, China; Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou 341000, China
| | - Jin Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| | - Qisheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
14
|
Li P, Kim Y, Dampalla CS, Nhat Nguyen H, Meyerholz DK, Johnson DK, Lovell S, Groutas WC, Perlman S, Chang KO. Potent 3CLpro inhibitors effective against SARS-CoV-2 and MERS-CoV in animal models by therapeutic treatment. mBio 2024; 15:e0287823. [PMID: 38126789 PMCID: PMC10865860 DOI: 10.1128/mbio.02878-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic betacoronaviruses that continue to have a significant impact on public health. Timely development and introduction of vaccines and antivirals against SARS-CoV-2 into the clinic have substantially mitigated the burden of COVID-19. However, a limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections, respectively, calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. In this report, we examined the efficacy of two potent 3CLpro inhibitors, 5d and 11d, in fatal animal models of SARS-CoV-2 and MERS-CoV to demonstrate their broad-spectrum activity against both viral infections. These compounds significantly increased the survival of mice in both models when treatment started 1 day post infection compared to no treatment which led to 100% fatality. Especially, the treatment with compound 11d resulted in 80% and 90% survival in SARS-CoV-2 and MERS-CoV-infected mice, respectively. Amelioration of lung viral load and histopathological changes in treated mice correlated well with improved survival in both infection models. Furthermore, compound 11d exhibited significant antiviral activities in K18-hACE2 mice infected with SARS-CoV-2 Omicron subvariant XBB.1.16. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.IMPORTANCEHuman coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) continue to have a significant impact on public health. A limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. We have previously reported a series of small-molecule 3C-like protease (3CLpro) inhibitors against human coronaviruses. In this report, we demonstrated the in vivo efficacy of 3CLpro inhibitors for their broad-spectrum activity against both SARS-CoV-2 and MERS-CoV infections using the fatal animal models. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Microbiology and Immunology, The University of Iowa, lowa, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | | | - David K. Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, lowa, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Mao L, Shaabani N, Zhang X, Jin C, Xu W, Argent C, Kushnareva Y, Powers C, Stegman K, Liu J, Xie H, Xu C, Bao Y, Xu L, Zhang Y, Yang H, Qian S, Hu Y, Shao J, Zhang C, Li T, Li Y, Liu N, Lin Z, Wang S, Wang C, Shen W, Lin Y, Shu D, Zhu Z, Kotoi O, Kerwin L, Han Q, Chumakova L, Teijaro J, Royal M, Brunswick M, Allen R, Ji H, Lu H, Xu X. Olgotrelvir, a dual inhibitor of SARS-CoV-2 M pro and cathepsin L, as a standalone antiviral oral intervention candidate for COVID-19. MED 2024; 5:42-61.e23. [PMID: 38181791 DOI: 10.1016/j.medj.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Oral antiviral drugs with improved antiviral potency and safety are needed to address current challenges in clinical practice for treatment of COVID-19, including the risks of rebound, drug-drug interactions, and emerging resistance. METHODS Olgotrelvir (STI-1558) is designed as a next-generation antiviral targeting the SARS-CoV-2 main protease (Mpro), an essential enzyme for SARS-CoV-2 replication, and human cathepsin L (CTSL), a key enzyme for SARS-CoV-2 entry into host cells. FINDINGS Olgotrelvir is a highly bioavailable oral prodrug that is converted in plasma to its active form, AC1115. The dual mechanism of action of olgotrelvir and AC1115 was confirmed by enzyme activity inhibition assays and co-crystal structures of AC1115 with SARS-CoV-2 Mpro and human CTSL. AC1115 displayed antiviral activity by inhibiting replication of all tested SARS-CoV-2 variants in cell culture systems. Olgotrelvir also inhibited viral entry into cells using SARS-CoV-2 Spike-mediated pseudotypes by inhibition of host CTSL. In the K18-hACE2 transgenic mouse model of SARS-CoV-2-mediated disease, olgotrelvir significantly reduced the virus load in the lungs, prevented body weight loss, and reduced cytokine release and lung pathologies. Olgotrelvir demonstrated potent activity against the nirmatrelvir-resistant Mpro E166 mutants. Olgotrelvir showed enhanced oral bioavailability in animal models and in humans with significant plasma exposure without ritonavir. In phase I studies (ClinicalTrials.gov: NCT05364840 and NCT05523739), olgotrelvir demonstrated a favorable safety profile and antiviral activity. CONCLUSIONS Olgotrelvir is an oral inhibitor targeting Mpro and CTSL with high antiviral activity and plasma exposure and is a standalone treatment candidate for COVID-19. FUNDING Funded by Sorrento Therapeutics.
Collapse
Affiliation(s)
- Long Mao
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | | | - Xiaoying Zhang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Can Jin
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | - Wanhong Xu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | | | | | - Colin Powers
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Karen Stegman
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Jia Liu
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | - Hui Xie
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Changxu Xu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yimei Bao
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Lijun Xu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yuren Zhang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Haigang Yang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Shengdian Qian
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yong Hu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Jianping Shao
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Can Zhang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Tingting Li
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yi Li
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Na Liu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Zhenhao Lin
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Shanbo Wang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Chao Wang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Wei Shen
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yuanlong Lin
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, P.R. China
| | - Dan Shu
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, P.R. China
| | - Zhenhong Zhu
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | - Olivia Kotoi
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | - Lisa Kerwin
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Qing Han
- Structure Based Design, Inc., San Diego, CA 92121, USA
| | | | - John Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mike Royal
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | | | - Robert Allen
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Henry Ji
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Hongzhou Lu
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, P.R. China.
| | - Xiao Xu
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
16
|
Jiang Y, Wu Y, Wang J, Ma Y, Yu H, Wang Z. Fragment-based Drug Discovery Strategy and its Application to the Design of SARS-CoV-2 Main Protease Inhibitor. Curr Med Chem 2024; 31:6204-6226. [PMID: 38529602 DOI: 10.2174/0109298673294251240229070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (Mpro) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of Mpro inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Yu Jiang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yingnan Wu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Hui Yu
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
17
|
Liu X, Ren X, Hua M, Liu F, Ren X, Sui C, Li Q, Luo F, Jiang Z, Xia Z, Chen J, Yang B. Progress of SARS-CoV-2 Main protease peptide-like inhibitors. Chem Biol Drug Des 2024; 103:e14425. [PMID: 38082476 DOI: 10.1111/cbdd.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The pneumonia outbreak caused by Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) infection poses a serious threat to people worldwide. Although vaccines have been developed, antiviral drugs are still needed to combat SARS-CoV-2 infection due to the high mutability of the virus. SARS-CoV-2 main protein (Mpro ) is a special cysteine protease that is a key enzyme for SARS-CoV-2 replication. It is encoded by peptides and is responsible for processing peptides into functional proteins, making it an important drug target. The paper reviews the structure and peptide-like inhibitors of SARS-CoV-2 Mpro , also the binding mode and structure-activity relationship between the inhibitors and Mpro are introduced in detail. It is hoped that this review can provide ideas and help for the development of anti-coronavirus drugs such as COVID-19, and help to develop broad-spectrum antiviral drug for the treatment of coronavirus diseases as soon as possible.
Collapse
Affiliation(s)
- Xiaoyong Liu
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xiaoli Ren
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Miao Hua
- Chongqing Experimental School, Chongqing, China
| | - Fang Liu
- Biomedical Analysis and Testing Center, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Xiaoping Ren
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Chaoya Sui
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Qing Li
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Fen Luo
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Zhiyong Jiang
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Ziqiao Xia
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Jingxia Chen
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Bing Yang
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| |
Collapse
|
18
|
Yevsieieva LV, Lohachova KO, Kyrychenko A, Kovalenko SM, Ivanov VV, Kalugin ON. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv 2023; 13:35500-35524. [PMID: 38077980 PMCID: PMC10698513 DOI: 10.1039/d3ra06479d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The pandemic caused by the coronavirus SARS-CoV-2 led to a global crisis in the world healthcare system. Despite some progress in the creation of antiviral vaccines and mass vaccination of the population, the number of patients continues to grow because of the spread of new SARS-CoV-2 mutations. There is an urgent need for direct-acting drugs capable of suppressing or stopping the main mechanisms of reproduction of the coronavirus SARS-CoV-2. Several studies have shown that the successful replication of the virus in the cell requires proteolytic cleavage of the protein structures of the virus. Two proteases are crucial in replicating SARS-CoV-2 and other coronaviruses: the main protease (Mpro) and the papain-like protease (PLpro). In this review, we summarize the essential viral proteins of SARS-CoV-2 required for its viral life cycle as targets for chemotherapy of coronavirus infection and provide a critical summary of the development of drugs against COVID-19 from the drug repurposing strategy up to the molecular design of novel covalent and non-covalent agents capable of inhibiting virus replication. We overview the main antiviral strategy and the choice of SARS-CoV-2 Mpro and PLpro proteases as promising targets for pharmacological impact on the coronavirus life cycle.
Collapse
Affiliation(s)
- Larysa V Yevsieieva
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Kateryna O Lohachova
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Sergiy M Kovalenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Volodymyr V Ivanov
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Oleg N Kalugin
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| |
Collapse
|
19
|
Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur J Med Chem 2023; 260:115772. [PMID: 37659195 PMCID: PMC10529944 DOI: 10.1016/j.ejmech.2023.115772] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected ∼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Tan B, Liu C, Li K, Jadhav P, Lambrinidis G, Zhu L, Olson L, Tan H, Wen Y, Kolocouris A, Liu W, Wang J. Structure-Based Lead Optimization of Enterovirus D68 2A Protease Inhibitors. J Med Chem 2023; 66:14544-14563. [PMID: 37857371 PMCID: PMC11457037 DOI: 10.1021/acs.jmedchem.3c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Enterovirus D68 (EV-D68) virus is a nonpolio enterovirus that typically causes respiratory illness and, in severe cases, can lead to paralysis and death in children. There is currently no vaccine or antiviral for EV-D68. We previously discovered the viral 2A protease (2Apro) as a viable antiviral drug target and identified telaprevir as a 2Apro inhibitor. 2Apro is a viral cysteine protease that cleaves the viral VP1-2A polyprotein junction. In this study, we report the X-ray crystal structures of EV-D68 2Apro, wild-type, and the C107A mutant and the structure-based lead optimization of telaprevir. Guided by the X-ray crystal structure, we predicted the binding pose of telaprevir in 2Apro using molecular dynamics simulations. We then utilized this model to inform structure-based optimization of the telaprevir's reactive warhead and P1-P4 substitutions. These efforts led to the discovery of 2Apro inhibitors with improved antiviral activity than telaprevir. These compounds represent promising lead compounds for further development as EV-D68 antivirals.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Chang Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Prakash Jadhav
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - George Lambrinidis
- Laboratory of Medicinal Chemistry, Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Linda Olson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Yu Wen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, United States
| |
Collapse
|
21
|
Tan B, Sacco M, Tan H, Li K, Joyce R, Zhang X, Chen Y, Wang J. Exploring diverse reactive warheads for the design of SARS-CoV-2 main protease inhibitors. Eur J Med Chem 2023; 259:115667. [PMID: 37482021 PMCID: PMC10529912 DOI: 10.1016/j.ejmech.2023.115667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
SARS-CoV-2 main protease (Mpro) is a validated antiviral drug target of nirmatrelvir, the active ingredient in Pfizer's oral drug Paxlovid. Drug-drug interactions limit the use of Paxlovid. In addition, drug-resistant Mpro mutants against nirmatrelvir have been identified from cell culture viral passage and naturally occurring variants. As such, there is a need for a second generation of Mpro inhibitors. In this study, we explored several reactive warheads in the design of Mpro inhibitors. We identified Jun11119R (vinyl sulfonamide warhead), Jun10221R (propiolamide warhead), Jun1112R (4-chlorobut-2-ynamide warhead), Jun10541R (nitrile warhead), and Jun10963R (dually activated nitrile warhead) as potent Mpro inhibitors. Jun10541R and Jun10963R also had potent antiviral activity against SARS-CoV-2 in Calu-3 cells with EC50 values of 2.92 and 6.47 μM, respectively. X-ray crystal structures of Mpro with Jun10541R and Jun10221 revealed covalent modification of Cys145. These Mpro inhibitors with diverse reactive warheads collectively represent promising candidates for further development.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Michael Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, United States.
| |
Collapse
|
22
|
Lie LK, Synowiec A, Mazur J, Rabalski L, Pyrć K. An engineered A549 cell line expressing CD13 and TMPRSS2 is permissive to clinical isolate of human coronavirus 229E. Virology 2023; 588:109889. [PMID: 37778059 DOI: 10.1016/j.virol.2023.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
The lack of suitable in vitro culture model has hampered research on wild-type (WT) human coronaviruses. While 3D tissue or organ cultures have been instrumental for this purpose, such models are challenging, time-consuming, expensive and require extensive cell culture adaptation and directed evolution. Consequently, high-throughput applications are beyond reach in most cases. Here we developed a robust A549 cell line permissive to a human coronavirus 229E (HCoV-229E) clinical isolate by transducing CD13 and transmembrane serine protease 2 (TMPRSS2), henceforth referred to as A549++ cells. This modification allowed for productive infection, and a more detailed analysis showed that the virus might use the TMPRSS2-dependent pathway but can still bypass this pathway using cathepsin-mediated endocytosis. Overall, our data showed that A549++ cells are permissive to HCoV-229E clinical isolate, and applicable for further studies on HCoV-229E infectiology. Moreover, this line constitutes a uniform platform for studies on multiple members of the Coronaviridae family.
Collapse
Affiliation(s)
- Laurensius Kevin Lie
- Virogenetics Group, Malopolska Center of Biotechnology, Jagiellonian University, Poland
| | - Aleksandra Synowiec
- Virogenetics Group, Malopolska Center of Biotechnology, Jagiellonian University, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Poland
| | - Jedrzej Mazur
- Virogenetics Group, Malopolska Center of Biotechnology, Jagiellonian University, Poland
| | - Lukasz Rabalski
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland; Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| | - Krzysztof Pyrć
- Virogenetics Group, Malopolska Center of Biotechnology, Jagiellonian University, Poland.
| |
Collapse
|
23
|
Reinke PYA, de Souza EE, Günther S, Falke S, Lieske J, Ewert W, Loboda J, Herrmann A, Rahmani Mashhour A, Karničar K, Usenik A, Lindič N, Sekirnik A, Botosso VF, Santelli GMM, Kapronezai J, de Araújo MV, Silva-Pereira TT, Filho AFDS, Tavares MS, Flórez-Álvarez L, de Oliveira DBL, Durigon EL, Giaretta PR, Heinemann MB, Hauser M, Seychell B, Böhler H, Rut W, Drag M, Beck T, Cox R, Chapman HN, Betzel C, Brehm W, Hinrichs W, Ebert G, Latham SL, Guimarães AMDS, Turk D, Wrenger C, Meents A. Calpeptin is a potent cathepsin inhibitor and drug candidate for SARS-CoV-2 infections. Commun Biol 2023; 6:1058. [PMID: 37853179 PMCID: PMC10584882 DOI: 10.1038/s42003-023-05317-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
Several drug screening campaigns identified Calpeptin as a drug candidate against SARS-CoV-2. Initially reported to target the viral main protease (Mpro), its moderate activity in Mpro inhibition assays hints at a second target. Indeed, we show that Calpeptin is an extremely potent cysteine cathepsin inhibitor, a finding additionally supported by X-ray crystallography. Cell infection assays proved Calpeptin's efficacy against SARS-CoV-2. Treatment of SARS-CoV-2-infected Golden Syrian hamsters with sulfonated Calpeptin at a dose of 1 mg/kg body weight reduces the viral load in the trachea. Despite a higher risk of side effects, an intrinsic advantage in targeting host proteins is their mutational stability in contrast to highly mutable viral targets. Here we show that the inhibition of cathepsins, a protein family of the host organism, by calpeptin is a promising approach for the treatment of SARS-CoV-2 and potentially other viral infections.
Collapse
Affiliation(s)
- Patrick Y A Reinke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Edmarcia Elisa de Souza
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Sven Falke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Julia Lieske
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Wiebke Ewert
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Jure Loboda
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | | | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Katarina Karničar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000, Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nataša Lindič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Andreja Sekirnik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Viviane Fongaro Botosso
- Virology Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Gláucia Maria Machado Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Josana Kapronezai
- Virology Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Marcelo Valdemir de Araújo
- Virology Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taiana Tainá Silva-Pereira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Mariana Silva Tavares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lizdany Flórez-Álvarez
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | | | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Roberta Giaretta
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4474 TAMU, School Station, TX, USA
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Maurice Hauser
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Brandon Seychell
- Department of Chemistry, Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Hendrik Böhler
- Department of Chemistry, Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Wioletta Rut
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Tobias Beck
- Department of Chemistry, Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Russell Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Christian Betzel
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Chemistry, Institute of Biochemistry and Molecular Biology and Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Universität Hamburg, 22607, Hamburg, Germany
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Winfried Hinrichs
- Universität Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Gregor Ebert
- Institute of Virology, Helmholtz Munich, Munich, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Sharissa L Latham
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Hospital Clinical School, UNSW, Sydney, NSW, Australia
| | - Ana Marcia de Sá Guimarães
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dusan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil.
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
24
|
Zhao S, Jiang M, Qing H, Ni J. Cathepsins and SARS-CoV-2 infection: From pathogenic factors to potential therapeutic targets. Br J Pharmacol 2023; 180:2455-2481. [PMID: 37403614 DOI: 10.1111/bph.16187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. The COVID-19 pandemic began in March 2020 and has wrought havoc on health and economic systems worldwide. Efficacious treatment for COVID-19 is lacking: Only preventive measures as well as symptomatic and supportive care are available. Preclinical and clinical studies have indicated that lysosomal cathepsins might contribute to the pathogenesis and disease outcome of COVID-19. Here, we discuss cutting-edge evidence on the pathological roles of cathepsins in SARS-CoV-2 infection, host immune dysregulations, and the possible underlying mechanisms. Cathepsins are attractive drug targets because of their defined substrate-binding pockets, which can be exploited as binding sites for pharmaceutical enzyme inhibitors. Accordingly, the potential modulatory strategies of cathepsin activity are discussed. These insights could shed light on the development of cathepsin-based interventions for COVID-19.
Collapse
Affiliation(s)
- Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Muzhou Jiang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
25
|
Citarella A, Dimasi A, Moi D, Passarella D, Scala A, Piperno A, Micale N. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Biomolecules 2023; 13:1339. [PMID: 37759739 PMCID: PMC10647625 DOI: 10.3390/biom13091339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Alessandro Dimasi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 CA, 09042 Cagliari, Italy;
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| |
Collapse
|
26
|
Hu Y, Lewandowski EM, Tan H, Zhang X, Morgan RT, Zhang X, Jacobs LMC, Butler SG, Gongora MV, Choy J, Deng X, Chen Y, Wang J. Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir. ACS CENTRAL SCIENCE 2023; 9:1658-1669. [PMID: 37637734 PMCID: PMC10451032 DOI: 10.1021/acscentsci.3c00538] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/29/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) is the drug target of Pfizer's oral drug nirmatrelvir. The emergence of SARS-CoV-2 variants with mutations in Mpro raised the alarm of potential drug resistance. To identify potential clinically relevant drug-resistant mutants, we systematically characterized 102 naturally occurring Mpro mutants located at 12 residues at the nirmatrelvir-binding site, among which 22 mutations in 5 residues, including S144M/F/A/G/Y, M165T, E166 V/G/A, H172Q/F, and Q192T/S/L/A/I/P/H/V/W/C/F, showed comparable enzymatic activity to the wild-type (kcat/Km < 10-fold change) while being resistant to nirmatrelvir (Ki > 10-fold increase). X-ray crystal structures were determined for six representative mutants with and/or without GC-376/nirmatrelvir. Using recombinant SARS-CoV-2 viruses generated from reverse genetics, we confirmed the drug resistance in the antiviral assay and showed that Mpro mutants with reduced enzymatic activity had attenuated viral replication. Overall, our study identified several drug-resistant hotspots in Mpro that warrant close monitoring for possible clinical evidence of nirmatrelvir resistance, some of which have already emerged in independent viral passage assays conducted by others.
Collapse
Affiliation(s)
- Yanmei Hu
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Eric M. Lewandowski
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Haozhou Tan
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Xiaoming Zhang
- Department
Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Oklahoma
Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Ryan T. Morgan
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lian M. C. Jacobs
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Shane G. Butler
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Maura V. Gongora
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - John Choy
- Department
Biology, School of Arts and Sciences, the
Catholic University of America, Washington, DC 20064, United States
| | - Xufang Deng
- Department
Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Oklahoma
Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yu Chen
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Wang
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| |
Collapse
|
27
|
Cheng FJ, Ho CY, Li TS, Chen Y, Yeh YL, Wei YL, Huynh TK, Chen BR, Ko HY, Hsueh CS, Tan M, Wu YC, Huang HC, Tang CH, Chen CH, Tu CY, Huang WC. Umbelliferone and eriodictyol suppress the cellular entry of SARS-CoV-2. Cell Biosci 2023; 13:118. [PMID: 37381062 DOI: 10.1186/s13578-023-01070-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Artemisia argyi (A. argyi), also called Chinese mugwort, has been widely used to control pandemic diseases for thousands of years since ancient China due to its anti-microbial infection, anti-allergy, and anti-inflammation activities. Therefore, the potential of A. argyi and its constituents in reducing the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated in this study. RESULTS Among the phytochemicals in A. argyi, eriodictyol and umbelliferone were identified to target transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) proteins, the essential factors for the cellular entry of SARS-CoV-2, in both FRET-based enzymatic assays and molecular docking analyses. These two ingredients of A. argyi suppressed the infection of ACE2-expressed HEK-293 T cells with lentiviral-based pseudo-particles (Vpp) expressing wild-type and variants of SARS-CoV-2 spike (S) protein (SARS-CoV-2 S-Vpp) via interrupting the interaction between S protein and cellular receptor ACE2 and reducing the expressions of ACE2 and TMPRSS2. Oral administration with umbelliferone efficiently prevented the SARS-CoV-2 S-Vpp-induced inflammation in the lung tissues of BALB/c mice. CONCLUSIONS Eriodictyol and umbelliferone, the phytochemicals of Artemisia argyi, potentially suppress the cellular entry of SARS-CoV-2 by preventing the protein binding activity of the S protein to ACE2.
Collapse
Affiliation(s)
- Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 404, Taiwan
- Division of Family Medicine, Physical Examination Center, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan
| | - Tzong-Shiun Li
- Department of Plastic Surgery, and Innovation Research Center, Show Chwan Memorial Hospital, Changhua, 500, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yi-Lun Yeh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Thanh Kieu Huynh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Bo-Rong Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Hung-Yu Ko
- Cognitive Science, University of California San Diego, San Diego, CA, 92093, USA
| | - Chen-Si Hsueh
- Taichung Girls' Senior High School, Taichung, 403, Taiwan
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chia-Hung Chen
- School of Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, 404, Taiwan
| | - Chih-Yen Tu
- School of Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, 404, Taiwan
| | - Wei-Chien Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 413, Taiwan.
- Drug Development Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
28
|
Wang L, Ma C, Sacco MD, Xue S, Mahmoud M, Calcul L, Chen Y, Wang J, Cai J. Development of the Safe and Broad-Spectrum Aldehyde and Ketoamide Mpro inhibitors Derived from the Constrained α, γ-AA Peptide Scaffold. Chemistry 2023; 29:e202300476. [PMID: 36920943 PMCID: PMC10330001 DOI: 10.1002/chem.202300476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/16/2023]
Abstract
SARS-CoV-2 is still wreaking havoc all over the world with surging morbidity and high mortality. The main protease (Mpro ) is essential in the replication of SARS-CoV-2, enabling itself an active target for antiviral development. Herein, we reported the design and synthesis of a new class of peptidomimetics-constrained α, γ-AA peptides, based on which a series of aldehyde and ketoamide inhibitors of the Mpro of SARS-CoV-2 were prepared. The lead compounds showed excellent inhibitory activity in the FRET-based Mpro enzymatic assay not only for the Mpro of SARS-CoV-2 but also for SARS-CoV and MERS-CoV, along with HCoVs like HCoV-OC43, HCoV-229E, HCoV-NL63 and HKU1. The X-ray crystallographic results demonstrated that our compounds form a covalent bond with the catalytic Cys145. They also demonstrated effective antiviral activity against live SARS-CoV-2. Overall, the results suggest that α, γ-AA peptide could be a promising molecular scaffold in designing novel Mpro inhibitors of SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Michael Dominic Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Songyi Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Mentalla Mahmoud
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, University of New Jersey, Piscataway, NJ, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
29
|
Anton DB, Galvez Bulhões Pedreira J, Zvirtes ML, Laufer SA, Ducati RG, Goettert M, Saraiva Macedo Timmers LF. Targeting SARS-CoV-2 Main Protease (MPro) with Kinase Inhibitors: A Promising Approach for Discovering Antiviral and Anti-inflammatory Molecules against SARS-CoV-2. J Chem Inf Model 2023. [PMID: 37329322 DOI: 10.1021/acs.jcim.3c00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infected over 688 million people worldwide, causing public health concern and approximately 6.8 million deaths due to COVID-19. COVID-19, especially severe cases, is characterized by exacerbated lung inflammation with an increase of pro-inflammatory cytokines. In addition to antiviral drugs, there is a need for anti-inflammatory therapies to treat all phases of COVID-19. One of the most attractive drug targets for COVID-19 is the SARS-CoV-2 main protease (MPro), an enzyme responsible for cleaving polyproteins formed after the translation of viral RNA, which is essential for viral replication. MPro inhibitors, therefore, have the potential to stop viral replication and act as antiviral drugs. Considering that several kinase inhibitors are known for their action in inflammatory pathways, this could also be investigated toward a potential anti-inflammatory treatment for COVID-19. Therefore, the use of kinase inhibitors against SARS-CoV-2 MPro may be a promising strategy to find molecules with dual activity─antiviral and anti-inflammatory. Considering this, the potential of six kinase inhibitors against SARS-CoV-2 MPro were evaluated in silico and in vitro, including Baricitinib, Tofacitinib, Ruxolitinib, BIRB-796, Skepinone-L, and Sorafenib. To assess the inhibitory potential of the kinase inhibitors, a continuous fluorescent-based enzyme activity assay was optimized with SARS-CoV-2 MPro and MCA-AVLQSGFR-K(Dnp)-K-NH2 (substrate). BIRB-796 and Baricitinib were identified as inhibitors of SARS-CoV-2 MPro, presenting IC50 values of 7.99 and 25.31 μM, respectively. As they are also known for their anti-inflammatory action, both are prototype compounds with the potential to present antiviral and anti-inflammatory activity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
| | - Júlia Galvez Bulhões Pedreira
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Maria Luiza Zvirtes
- Department of Medicine, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Rodrigo Gay Ducati
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
- Department of Medicine, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
| | - Márcia Goettert
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
- Department of Medicine, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado CEP 95914-014, Brazil
| |
Collapse
|
30
|
Ambrosio FA, Costa G, Romeo I, Esposito F, Alkhatib M, Salpini R, Svicher V, Corona A, Malune P, Tramontano E, Ceccherini-Silberstein F, Alcaro S, Artese A. Targeting SARS-CoV-2 Main Protease: A Successful Story Guided by an In Silico Drug Repurposing Approach. J Chem Inf Model 2023; 63:3601-3613. [PMID: 37227780 DOI: 10.1021/acs.jcim.3c00282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Mohammad Alkhatib
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Romina Salpini
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Valentina Svicher
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Paolo Malune
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | | | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
31
|
Zabiegala A, Kim Y, Chang KO. Roles of host proteases in the entry of SARS-CoV-2. ANIMAL DISEASES 2023; 3:12. [PMID: 37128508 PMCID: PMC10125864 DOI: 10.1186/s44149-023-00075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023] Open
Abstract
The spike protein (S) of SARS-CoV-2 is responsible for viral attachment and entry, thus a major factor for host susceptibility, tissue tropism, virulence and pathogenicity. The S is divided with S1 and S2 region, and the S1 contains the receptor-binding domain (RBD), while the S2 contains the hydrophobic fusion domain for the entry into the host cell. Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various cleavage sites. In this article, we review host proteases including furin, trypsin, transmembrane protease serine 2 (TMPRSS2) and cathepsins in the activation of SARS-CoV-2 S. Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin. The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2, and the binding triggers further conformational changes and exposure of the S2' site to proteases such as type II transmembrane serine proteases (TTPRs) including TMPRSS2. In the presence of TMPRSS2 on the target cells, SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane. In the absence of TMPRSS2, SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry. Additional host proteases involved in the cleavage of the S were discussed. This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2, and discussed the dual roles of such inhibitors in virus replication.
Collapse
Affiliation(s)
- Alexandria Zabiegala
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| |
Collapse
|
32
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
33
|
Kandeel M. An overview of the recent progress in Middle East Respiratory Syndrome Coronavirus (MERS-CoV) drug discovery. Expert Opin Drug Discov 2023; 18:385-400. [PMID: 36971501 DOI: 10.1080/17460441.2023.2192921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION The Middle East respiratory syndrome coronavirus (MERS-CoV) has remained a public health concern since it first emerged in 2012. Although many potential treatments for MERS-CoV have been developed and tested, none have had complete success in stopping the spread of this deadly disease. MERS-CoV replication comprises attachment, entry, fusion and replication steps. Targeting these events may lead to the creation of medications that effectively treat MERS-CoV infection. AREAS COVERED This review updates the research on the development of inhibitors of MERS-CoV. The main topics are MERS-CoV‒related proteins and host cell proteins that are involved in viral protein activation and infection. EXPERT OPINION Research on discovering drugs that can inhibit MERS-CoV started at a slow pace, and although efforts have steadily increased, clinical trials for new drugs specifically targeting MERS-CoV have not been extensive enough. The explosion in efforts to find new medications for the SARS-CoV-2 virus indirectly enhanced the volume of data on MERS-CoV inhibition by including MERS-CoV in drug assays. The appearance of COVID-19 completely transformed the data available on MERS-CoV inhibition. Despite the fact that new infected cases are constantly being diagnosed, there are currently no approved vaccines for or inhibitors of MERS-CoV.
Collapse
|
34
|
Garg A, Goel N, Abhinav N, Varma T, Achari A, Bhattacharjee P, Kamal IM, Chakrabarti S, Ravichandiran V, Reddy AM, Gupta S, Jaisankar P. Virtual screening of natural products inspired in-house library to discover potential lead molecules against the SARS-CoV-2 main protease. J Biomol Struct Dyn 2023; 41:2033-2045. [PMID: 35043750 DOI: 10.1080/07391102.2022.2027271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2, a new coronavirus emerged in 2019, causing a global healthcare epidemic. Although a variety of drug targets have been identified as potential antiviral therapies, and effective candidate against SARS-CoV-2 remains elusive. One of the most promising targets for combating COVID-19 is SARS-CoV-2 Main protease (Mpro, a protein responsible for viral replication. In this work, an in-house curated library was thoroughly evaluated for druggability against Mpro. We identified four ligands (FG, Q5, P5, and PJ4) as potential inhibitors based on docking scores, predicted binding energies (MMGBSA), in silico ADME, and RMSD trajectory analysis. Among the selected ligands, FG, a natural product from Andrographis nallamalayana, exhibited the highest binding energy of -10.31 kcal/mol close to the docking score of clinical candidates Boceprevir and GC376. Other ligands (P5, natural product from cardiospermum halicacabum and two synthetic molecules Q5 and PJ4) have shown comparable docking scores ranging -7.65 kcal/mol to -7.18 kcal/mol. Interestingly, we found all four top ligands had Pi bond interaction with the main amino acid residues HIS41 and CYS145 (catalytic dyad), H-bonding interactions with GLU166, ARG188, and GLN189, and hydrophobic interactions with MET49 and MET165 in the binding site of Mpro. According to the ADME analysis, Q5 and P5 are within the acceptable range of drug likeliness, compared to FG and PJ4. The interaction stability of the lead molecules with viral protease was verified using replicated MD simulations. Thus, the present study opens up the opportunity of developing drug candidates targeting SARS-CoV-2 main protease (Mpro) to mitigate the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aakriti Garg
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Narender Goel
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tanmay Varma
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Anushree Achari
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pinaki Bhattacharjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Izaz Monir Kamal
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Chakrabarti
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | | | - Sreya Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Parasuraman Jaisankar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
35
|
Tang M, Zhang X, Huang Y, Cheng W, Qu J, Gui S, Li L, Li S. Peptide-based inhibitors hold great promise as the broad-spectrum agents against coronavirus. Front Microbiol 2023; 13:1093646. [PMID: 36741878 PMCID: PMC9893414 DOI: 10.3389/fmicb.2022.1093646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome (MERS), and the recent SARS-CoV-2 are lethal coronaviruses (CoVs) that have caused dreadful epidemic or pandemic in a large region or globally. Infections of human respiratory systems and other important organs by these pathogenic viruses often results in high rates of morbidity and mortality. Efficient anti-viral drugs are needed. Herein, we firstly take SARS-CoV-2 as an example to present the molecular mechanism of CoV infection cycle, including the receptor binding, viral entry, intracellular replication, virion assembly, and release. Then according to their mode of action, we provide a summary of anti-viral peptides that have been reported in peer-reviewed publications. Even though CoVs can rapidly evolve to gain resistance to the conventional small molecule drugs, peptide-based inhibitors targeting various steps of CoV lifecycle remain a promising approach. Peptides can be continuously modified to improve their antiviral efficacy and spectrum along with the emergence of new viral variants.
Collapse
Affiliation(s)
- Mingxing Tang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanhong Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Qu
- Department of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuiqing Gui
- Department of Critical Care Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China,*Correspondence: Shuiqing Gui, ✉
| | - Liang Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China,Liang Li, ✉
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,Shuo Li, ✉
| |
Collapse
|
36
|
Tan B, Joyce R, Tan H, Hu Y, Wang J. SARS-CoV-2 Main Protease Drug Design, Assay Development, and Drug Resistance Studies. Acc Chem Res 2023; 56:157-168. [PMID: 36580641 PMCID: PMC9843634 DOI: 10.1021/acs.accounts.2c00735] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 12/31/2022]
Abstract
SARS-CoV-2 is the etiological pathogen of the COVID-19 pandemic, which led to more than 6.5 million deaths since the beginning of the outbreak in December 2019. The unprecedented disruption of social life and public health caused by COVID-19 calls for fast-track development of diagnostic kits, vaccines, and antiviral drugs. Small molecule antivirals are essential complements of vaccines and can be used for the treatment of SARS-CoV-2 infections. Currently, there are three FDA-approved antiviral drugs, remdesivir, molnupiravir, and paxlovid. Given the moderate clinical efficacy of remdesivir and molnupiravir, the drug-drug interaction of paxlovid, and the emergence of SARS-CoV-2 variants with potential drug-resistant mutations, there is a pressing need for additional antivirals to combat current and future coronavirus outbreaks.In this Account, we describe our efforts in developing covalent and noncovalent main protease (Mpro) inhibitors and the identification of nirmatrelvir-resistant mutants. We initially discovered GC376, calpain inhibitors II and XII, and boceprevir as dual inhibitors of Mpro and host cathepsin L from a screening of a protease inhibitor library. Given the controversy of targeting cathepsin L, we subsequently shifted the focus to designing Mpro-specific inhibitors. Specifically, guided by the X-ray crystal structures of these initial hits, we designed noncovalent Mpro inhibitors such as Jun8-76-3R that are highly selective toward Mpro over host cathepsin L. Using the same scaffold, we also designed covalent Mpro inhibitors with novel cysteine reactive warheads containing di- and trihaloacetamides, which similarly had high target specificity. In parallel to our drug discovery efforts, we developed the cell-based FlipGFP Mpro assay to characterize the cellular target engagement of our rationally designed Mpro inhibitors. The FlipGFP assay was also applied to validate the structurally disparate Mpro inhibitors reported in the literature. Lastly, we introduce recent progress in identifying naturally occurring Mpro mutants that are resistant to nirmatrelvir from genome mining of the nsp5 sequences deposited in the GISAID database. Collectively, the covalent and noncovalent Mpro inhibitors and the nirmatrelvir-resistant hot spot residues from our studies provide insightful guidance for future work aimed at developing orally bioavailable Mpro inhibitors that do not have overlapping resistance profile with nirmatrelvir.
Collapse
Affiliation(s)
- Bin Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yanmei Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
37
|
Pelliccia S, Cerchia C, Esposito F, Cannalire R, Corona A, Costanzi E, Kuzikov M, Gribbon P, Zaliani A, Brindisi M, Storici P, Tramontano E, Summa V. Easy access to α-ketoamides as SARS-CoV-2 and MERS M pro inhibitors via the PADAM oxidation route. Eur J Med Chem 2022; 244:114853. [PMID: 36332546 PMCID: PMC9575579 DOI: 10.1016/j.ejmech.2022.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
Abstract
SARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (Mpro) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel α-ketoamides as covalent reversible inhibitors of Mpro, exploiting the PADAM oxidation route. The reported compounds showed μM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 Mpro. In order to assess inhibitors’ binding mode, two co-crystal structures of SARS-CoV-2 Mpro in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of Mpro. Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS Mpro where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors.
Collapse
Affiliation(s)
- Sveva Pelliccia
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy,Corresponding author
| | - Carmen Cerchia
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, Cagliari, Monserrato, SS-554, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Angela Corona
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, Cagliari, Monserrato, SS-554, Italy
| | - Elisa Costanzi
- Protein Facility, Elettra - Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, Trieste, Basovizza, 34149, Italy
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, Hamburg, 22525, Germany,Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, Hamburg, 22525, Germany,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, Hamburg, 22525, Germany,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Margherita Brindisi
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Paola Storici
- Protein Facility, Elettra - Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, Trieste, Basovizza, 34149, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, Cagliari, Monserrato, SS-554, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy,Corresponding author
| |
Collapse
|
38
|
Parigger L, Krassnigg A, Schopper T, Singh A, Tappler K, Köchl K, Hetmann M, Gruber K, Steinkellner G, Gruber CC. Recent changes in the mutational dynamics of the SARS-CoV-2 main protease substantiate the danger of emerging resistance to antiviral drugs. Front Med (Lausanne) 2022; 9:1061142. [PMID: 36590977 PMCID: PMC9794616 DOI: 10.3389/fmed.2022.1061142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The current coronavirus pandemic is being combated worldwide by nontherapeutic measures and massive vaccination programs. Nevertheless, therapeutic options such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main-protease (Mpro) inhibitors are essential due to the ongoing evolution toward escape from natural or induced immunity. While antiviral strategies are vulnerable to the effects of viral mutation, the relatively conserved Mpro makes an attractive drug target: Nirmatrelvir, an antiviral targeting its active site, has been authorized for conditional or emergency use in several countries since December 2021, and a number of other inhibitors are under clinical evaluation. We analyzed recent SARS-CoV-2 genomic data, since early detection of potential resistances supports a timely counteraction in drug development and deployment, and discovered accelerated mutational dynamics of Mpro since early December 2021. Methods We performed a comparative analysis of 10.5 million SARS-CoV-2 genome sequences available by June 2022 at GISAID to the NCBI reference genome sequence NC_045512.2. Amino-acid exchanges within high-quality regions in 69,878 unique Mpro sequences were identified and time- and in-depth sequence analyses including a structural representation of mutational dynamics were performed using in-house software. Results The analysis showed a significant recent event of mutational dynamics in Mpro. We report a remarkable increase in mutational variability in an eight-residue long consecutive region (R188-G195) near the active site since December 2021. Discussion The increased mutational variability in close proximity to an antiviral-drug binding site as described herein may suggest the onset of the development of antiviral resistance. This emerging diversity urgently needs to be further monitored and considered in ongoing drug development and lead optimization.
Collapse
Affiliation(s)
- Lena Parigger
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Amit Singh
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Tappler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Michael Hetmann
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Karl Gruber
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Georg Steinkellner
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Christian C. Gruber
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
39
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
40
|
Klacsová M, Čelková A, Búcsi A, Martínez JC, Uhríková D. Interaction of GC376, a SARS-COV-2 M PRO inhibitor, with model lipid membranes. Colloids Surf B Biointerfaces 2022; 220. [PMCID: PMC9557139 DOI: 10.1016/j.colsurfb.2022.112918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Partitioning and effect of antiviral GC376, a potential SARS-CoV-2 inhibitor, on model lipid membranes was studied using dynamic light scattering (DLS), UV–VIS spectrometry, Excimer fluorescence, Differential scanning calorimetry (DSC) and Small- and Wide-angle X-ray scattering (SAXS/WAXS). Partition coefficient of GC376 between lipid and water phase was found to be low, reaching KP = 46.8 ± 18.2. Results suggest that GC376 partitions into lipid bilayers at the level of lipid head-groups, close to the polar/hydrophobic interface. Changes in structural and thermodynamic properties strongly depend on the GC376/lipid mole ratio. Already at lowest mole ratios GC376 induces increase of lateral pressures, mainly in the interfacial region of the bilayer. Hereby, the pre- and main-transition temperature of the lipid system increases, what is attributed to tighter packing of acyl chains induced by GC376. At GC376/DPPC ≥ 0.03 mol/mol we detected formation of domains with different GC376 content resulting in the lateral phase separation and changes in both, main transition temperature and enthalpy. The observed changes are attributed to the response of the system on the increased lateral stresses induced by partitioning of GC376. Obtained results are discussed in context of liposome-based drug delivery systems for GC376 and in context of indirect mechanism of virus replication inhibition.
Collapse
Affiliation(s)
- Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia,Corresponding author
| | - Adriána Čelková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| | - Alexander Búcsi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| | | | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| |
Collapse
|
41
|
La Monica G, Bono A, Lauria A, Martorana A. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem 2022; 65:12500-12534. [PMID: 36169610 PMCID: PMC9528073 DOI: 10.1021/acs.jmedchem.2c01005] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors.
Collapse
Affiliation(s)
| | | | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| |
Collapse
|
42
|
Therapeutic use of calpeptin in COVID-19 infection. Clin Sci (Lond) 2022; 136:1439-1447. [PMID: 36268783 PMCID: PMC9594985 DOI: 10.1042/cs20220638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
This perspective considers the benefits of the potential future use of the cell permeant calpain inhibitor, calpeptin, as a drug to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recent work has reported calpeptin’s capacity to inhibit entry of the virus into cells. Elsewhere, several drugs, including calpeptin, were found to be able to inhibit extracellular vesicle (EV) biogenesis. Unsurprisingly, because of similarities between viral and EV release mechanisms, calpeptin has also been shown to inhibit viral egress. This approach, identifying calpeptin, through large-scale screening studies as a candidate drug to treat COVID-19, however, has not considered the longer term likely benefits of calpain inhibition, post-COVID-19. This perspective will reflect on the capacity of calpeptin for treating long COVID by inhibiting the overproduction of neutrophil extracellular traps potentially damaging lung cells and promoting clotting, together with limiting associated chronic inflammation, tissue damage and pulmonary fibrosis. It will also reflect on the tolerated and detrimental in vivo side-effects of calpain inhibition from various preclinical studies.
Collapse
|
43
|
Adaptive Mutation in the Main Protease Cleavage Site of Feline Coronavirus Renders the Virus More Resistant to Main Protease Inhibitors. J Virol 2022; 96:e0090722. [PMID: 36000844 PMCID: PMC9472640 DOI: 10.1128/jvi.00907-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.
Collapse
|
44
|
Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. J Biomed Sci 2022; 29:65. [PMID: 36064696 PMCID: PMC9444709 DOI: 10.1186/s12929-022-00847-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023] Open
Abstract
Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
45
|
Samrat SK, Xu J, Xie X, Gianti E, Chen H, Zou J, Pattis JG, Elokely K, Lee H, Li Z, Klein ML, Shi PY, Zhou J, Li H. Allosteric inhibitors of the main protease of SARS-CoV-2. Antiviral Res 2022; 205:105381. [PMID: 35835291 PMCID: PMC9272661 DOI: 10.1016/j.antiviral.2022.105381] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 has raised the alarm to search for effective therapy for this virus. To date several vaccines have been approved but few available drugs reported recently still need approval from FDA. Remdesivir was approved for emergency use only. In this report, the SARS-CoV-2 3CLpro was expressed and purified. By using a FRET-based enzymatic assay, we have screened a library consisting of more than 300 different niclosamide derivatives and identified three molecules JMX0286, JMX0301, and JMX0941 as potent allosteric inhibitors against SARS-CoV-2 3CLpro, with IC50 values similar to that of known covalent inhibitor boceprevir. In a cell-based antiviral assay, these inhibitors can inhibit the virus growth with EC50 in the range of 2-3 μM. The mechanism of action of JMX0286, JMX0301, and JMX0941 were characterized by enzyme kinetics, affinity binding and protein-based substrate digestion. Molecular docking, molecular dynamics (MD) simulations and hydration studies suggested that JMX0286, JMX0301, JMX0941 bind specifically to an allosteric pocket of the SARS-CoV-2 3CL protease. This study provides three potent compounds for further studies.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA.
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Eleonora Gianti
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, 19122, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jason G Pattis
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, 19122, USA
| | - Khaled Elokely
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, 19122, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences at College of Pharmacy and Biophysics Core at Research Resources Center, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, 19122, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ, 85721-0207, USA; BIO5 Institute, The University of Arizona, Tucson, Tucson, AZ, 85721, USA.
| |
Collapse
|
46
|
Qin Z, Sun Y, Zhang J, Zhou L, Chen Y, Huang C. Lessons from SARS‑CoV‑2 and its variants (Review). Mol Med Rep 2022; 26:263. [PMID: 35730623 PMCID: PMC9260876 DOI: 10.3892/mmr.2022.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has swept through mainland China by human-to-human transmission. The rapid spread of SARS-CoV-2 and its variants, including the currently prevalent Omicron strain, pose a serious threat worldwide. The present review summarizes epidemiological investigation and etiological analysis of genomic, epidemiological, and pathological characteristics of the original strain and its variants, as well as progress in diagnosis and treatment. Prevention and control measures used during the current Omicron pandemic are discussed to provide further knowledge of SARS-CoV-2.
Collapse
Affiliation(s)
- Ziwen Qin
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Yan Sun
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jian Zhang
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ling Zhou
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yujuan Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Chuanjun Huang
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
47
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Biomedicines 2022; 10:biomedicines10081787. [PMID: 35892687 PMCID: PMC9329733 DOI: 10.3390/biomedicines10081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an appealing target for the development of antiviral compounds, due to its critical role in the viral life cycle and its high conservation among different coronaviruses and the continuously emerging mutants of SARS-CoV-2. Ferulic acid (FA) is a phytochemical with several health benefits that is abundant in plant biomass and has been used as a basis for the enzymatic or chemical synthesis of derivatives with improved properties, including antiviral activity against a range of viruses. This study tested 54 reported FA derivatives for their inhibitory potential against Mpro by in silico simulations. Molecular docking was performed using Autodock Vina, resulting in comparable or better binding affinities for 14 compounds compared to the known inhibitors N3 and GC376. ADMET analysis showed limited bioavailability but significantly improved the solubility for the enzymatically synthesized hits while better bioavailability and druglikeness properties but higher toxicity were observed for the chemically synthesized ones. MD simulations confirmed the stability of the complexes of the most promising compounds with Mpro, highlighting FA rutinoside and compound e27 as the best candidates from each derivative category.
Collapse
|
48
|
Wang X, Lin S, Tang RWL, Lee HC, Chan HH, Choi SSA, Leung KW, Webb SE, Miller AL, Tsim KWK. Polygoni multiflori radix extracts inhibit SARS-CoV-2 pseudovirus entry in HEK293T cells and zebrafish larvae. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154154. [PMID: 35576740 PMCID: PMC9081044 DOI: 10.1016/j.phymed.2022.154154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Globally, COVID-19 has caused millions of deaths and led to unprecedented socioeconomic damage. There is therefore, in addition to vaccination, an urgent need to develop complementary effective treatments and/or protective and preventative therapies against this deadly disease. METHODS Here, a multi-component testing platform was established to screen a library of herbal extracts from traditional Chinese medicine (TCM), to identify potent herbal extracts/phytochemicals as possible therapeutics for COVID-19. We utilized assays for spike protein (S-protein) binding to angiotensin-converting enzyme II (ACE2); the enzymatic inhibition of 3CL protease; and entry of the SARS-CoV-2 pseudovirus into cultured HEK293T cells and zebrafish larvae. RESULTS Over a thousand herbal extracts were screened and approximately 20 positive hits were identified. Among these, we found that the water and ethanol extracts of Polygoni Multiflori Radix (PMR) significantly inhibited S-protein binding to ACE2, 3CL protease activity, and viral entry into the cell and fish models. The water extract was more effective than the ethanol extract, with IC50 values of 25 to 500 µg/ml. In addition, the polysaccharide-depleted fraction of the former, and epigallocatechin gallate (EGCG) which was found in both extracts, displayed significant antiviral activity. CONCLUSIONS Our results indicate that the water and ethanol extracts of PMR have an inhibitory effect on SARS-CoV-2 pseudovirus host-cell entry. Furthermore, EGCG might be an active component of PMR, which blocks SARS-CoV-2 entry to cells. Taken together, our findings suggest that PMR might be considered as a potential treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengying Lin
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Roy Wai-Lun Tang
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hung Chun Lee
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ho-Hin Chan
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sheyne S A Choi
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Wing Leung
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sarah E Webb
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Andrew L Miller
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
49
|
Corona A, Wycisk K, Talarico C, Manelfi C, Milia J, Cannalire R, Esposito F, Gribbon P, Zaliani A, Iaconis D, Beccari AR, Summa V, Nowotny M, Tramontano E. Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities. ACS Pharmacol Transl Sci 2022; 5:226-239. [PMID: 35434533 PMCID: PMC9003574 DOI: 10.1021/acsptsci.1c00253] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/27/2022]
Abstract
![]()
SARS-CoV-2 infection
is still spreading worldwide, and new antiviral
therapies are an urgent need to complement the approved vaccine preparations.
SARS-CoV-2 nps13 helicase is a validated drug target participating
in the viral replication complex and possessing two associated activities:
RNA unwinding and 5′-triphosphatase. In the search of SARS-CoV-2
direct antiviral agents, we established biochemical assays for both
SARS-CoV-2 nps13-associated enzyme activities and screened both in silico and in vitro a small in-house
library of natural compounds. Myricetin, quercetin, kaempferol, and
flavanone were found to inhibit the SARS-CoV-2 nps13 unwinding activity
at nanomolar concentrations, while licoflavone C was shown to block
both SARS-CoV-2 nps13 activities at micromolar concentrations. Mode
of action studies showed that all compounds are nsp13 noncompetitive
inhibitors versus ATP, while computational studies suggested that
they can bind both nucleotide and 5′-RNA nsp13 binding sites,
with licoflavone C showing a unique pattern of interaction with nsp13
amino acid residues. Overall, we report for the first time natural
flavonoids as selective inhibitors of SARS-CoV-2 nps13 helicase with
low micromolar activity.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Krzysztof Wycisk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Carmine Talarico
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Jessica Milia
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, Napoli 80131, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, Napoli 80131, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
50
|
Ma C, Tan H, Choza J, Wang Y, Wang J. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Acta Pharm Sin B 2022; 12:1636-1651. [PMID: 34745850 PMCID: PMC8558150 DOI: 10.1016/j.apsb.2021.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 main protease (Mpro) is one of the most extensively exploited drug targets for COVID-19. Structurally disparate compounds have been reported as Mpro inhibitors, raising the question of their target specificity. To elucidate the target specificity and the cellular target engagement of the claimed Mpro inhibitors, we systematically characterize their mechanism of action using the cell-free FRET assay, the thermal shift-binding assay, the cell lysate Protease-Glo luciferase assay, and the cell-based FlipGFP assay. Collectively, our results have shown that majority of the Mpro inhibitors identified from drug repurposing including ebselen, carmofur, disulfiram, and shikonin are promiscuous cysteine inhibitors that are not specific to Mpro, while chloroquine, oxytetracycline, montelukast, candesartan, and dipyridamole do not inhibit Mpro in any of the assays tested. Overall, our study highlights the need of stringent hit validation at the early stage of drug discovery.
Collapse
|