1
|
López-Fernández AM, Neto JC, de Llanos R, Miravet JF, Galindo F. Minimalistic bis-triarylpyridinium cations: effective antimicrobials against bacterial and fungal pathogens. RSC Med Chem 2025:d4md00902a. [PMID: 40190417 PMCID: PMC11969996 DOI: 10.1039/d4md00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
A series of twelve compounds from the family of 2,4,6-triarylpyridinium cations have been synthesized, chemically characterized (1H, 13C NMR, HRMS), and microbiologically evaluated (MIC determination against S. aureus, E. faecalis, E. coli, P. aeruginosa, and C. albicans). These compounds are quaternary ammonium cations (QACs), classified as either mono-QACs or bis-QACs. The mono-QACs are further divided into those with short (three-carbon) and long (twelve-carbon) pendant chains. An additional structural variable is the number of bromine atoms attached to the aromatic rings, ranging from zero to three. The major findings of this study are: (a) bis-QACs exhibit notably higher antimicrobial activity than mono-QACs; (b) an increased number of bromine atoms on the structure appears to diminish antimicrobial properties and (c) one of the compounds (1a) shows particularly promising properties as a broad spectrum antimicrobial, given its low MICs across all five pathogenic microorganisms studied. Preliminary assays with C. albicans show that 1a has a strong mitochondrial activity, causing a remarkable mitochondrial membrane depolarization in this organelle. Taken together, this study positions triarylpyridinium cations-previously unexplored as antimicrobials-as promising candidates for future drug development, especially in light of the growing concern over drug-resistant microorganisms.
Collapse
Affiliation(s)
- Ana M López-Fernández
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Jean C Neto
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Juan F Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
2
|
Laguera B, Golden MM, Wang F, Gnewou O, Tuachi A, Egelman EH, Wuest WM, Conticello VP. Amphipathic Antimicrobial Peptides Illuminate a Reciprocal Relationship Between Self-assembly and Cytolytic Activity. Angew Chem Int Ed Engl 2025:e202500040. [PMID: 40073424 DOI: 10.1002/anie.202500040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Amphipathic character, encoded within the polar sequence patterns of antimicrobial peptides, is a critical structural feature that influences membrane disruptive behavior. Similarly, polar sequence patterns induce self-assembly of amphipathic peptides, which results in the formation of ordered supramolecular structures. The relationship between self-assembly and membrane activity remains an open question of relevance for the development of effective antimicrobial peptides. Here, we report the structural investigation of a class of lytic peptides that self-assemble into filamentous nanomaterials. CryoEM analysis was employed to determine the structure of one of the filaments, which revealed that the peptides are self-assembled into a bilayer nanotube, in which the interaction between layers of amphipathic α-helices was mediated through hydrophobic interactions. The relative stability of the filament peptide assemblies depended on the influence of sequence modifications on the helical conformation. Antimicrobial assays indicated that cytolytic activity was associated with dynamic disassociation of the filamentous assemblies under the assay conditions. Structural modifications of the peptides that stabilized the filaments abrogated lytic activity. These results illuminate a reciprocal relationship between self-assembly and antimicrobial activity in this class of amphipathic peptides and that reversible assembly was critical for the observation of biological activity.
Collapse
Affiliation(s)
- Breana Laguera
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Martina M Golden
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Fengbin Wang
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Abraham Tuachi
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | |
Collapse
|
3
|
Kowalczyk I, Koziróg A, Szulc A, Komasa A, Brycki B. Antimicrobial Properties of Monomeric and Dimeric Catanionic Surfactant System. Molecules 2025; 30:164. [PMID: 39795220 PMCID: PMC11720865 DOI: 10.3390/molecules30010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Cationic gemini surfactants are used due to their broad spectrum of activity, especially surface, anticorrosive and antimicrobial properties. Mixtures of cationic and anionic surfactants are also increasingly described. In order to investigate the effect of anionic additive on antimicrobial activity, experimental studies were carried out to obtain MIC (minimal inhibitory concentration) against E. coli and S. aureus bacteria. Two gemini surfactants (12-6-12 and 12-O-12) and two single quaternary ammonium salts (DTAB and DDAC) were analyzed. The most commonly used commercial compounds of this class, i.e., SDS and SL, were used as anionic additives. In addition, computer quantum mechanical studies were also carried out to confirm the relationship between the structure of the mixture and the activity. The obtained results of microbiological tests and quantum mechanical calculations are in agreement with each other and show the lack of synergism in catanionic mixtures in the case of antibacterial activity.
Collapse
Affiliation(s)
- Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (I.K.); (A.S.); (A.K.)
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (I.K.); (A.S.); (A.K.)
| | - Anna Komasa
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (I.K.); (A.S.); (A.K.)
| | - Bogumił Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (I.K.); (A.S.); (A.K.)
| |
Collapse
|
4
|
Vermeeren B, Van Praet S, Arts W, Narmon T, Zhang Y, Zhou C, Steenackers HP, Sels BF. From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Chem Soc Rev 2024; 53:11804-11849. [PMID: 39365265 DOI: 10.1039/d4cs00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.
Collapse
Affiliation(s)
- Benjamin Vermeeren
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Sofie Van Praet
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Wouter Arts
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Yingtuan Zhang
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | | | - Bert F Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| |
Collapse
|
5
|
Bote I, Krevlin ZA, Crespo MCF, Udomphan S, Levin CT, Lam CC, Glanzer AM, Hutchinson HL, Blades AM, McConnell DL, Lin C, Frank JP, Strutton WR, Merklin JC, Sinardo BA, Gueye KJ, Leiman KV, Thayaparan A, Adade JKA, Martinez NL, Kramer WW, Majireck MM. Bench-Stable 2-Halopyridinium Ketene Hemiaminals as Reagents for the Synthesis of 2-Aminopyridine Derivatives. Org Lett 2024; 26:9805-9810. [PMID: 39303224 PMCID: PMC11590095 DOI: 10.1021/acs.orglett.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
2-Chloro-1-(1-ethoxyvinyl)pyridinium triflate and several other bench-stable N-(1-alkoxyvinyl) 2-halopyridinium triflates have been developed as reagents for the synthesis of valuable 2-aminopyridine scaffolds via unusually mild SNAr substitutions with amine nucleophiles. Advantages of this approach include an operationally simple mix-and-stir procedure at room temperature or mild heat and ambient atmosphere and without the need for transition metal catalysts, coupling reagents, or high-boiling solvents. The stable N-(1-ethoxyvinyl) moiety serves as a dual SNAr-activating group and pyridine N-protecting group that can be cleaved under thermal, acidic, or oxidative conditions. Preliminary results of other nucleophilic substitutions using oxygen-, sulfur-, and carbon-based nucleophiles are also demonstrated.
Collapse
Affiliation(s)
| | | | - Maria Christina F. Crespo
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Sudchananya Udomphan
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Carolyn T. Levin
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Christie C. Lam
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Amy M. Glanzer
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Holly L. Hutchinson
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Alisha M. Blades
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Danielle L. McConnell
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Crystal Lin
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - John P. Frank
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - William R. Strutton
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Jordan C. Merklin
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Beau A. Sinardo
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Khady J. Gueye
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Karly V. Leiman
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Ashley Thayaparan
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Joel K. A. Adade
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Nestor L. Martinez
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Wesley W. Kramer
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| | - Max M. Majireck
- Chemistry Department, Hamilton College, 198
College Hill Rd., Clinton, New York 13323, United
States
| |
Collapse
|
6
|
Lainioti GC, Druvari D. Designing Antibacterial-Based Quaternary Ammonium Coatings (Surfaces) or Films for Biomedical Applications: Recent Advances. Int J Mol Sci 2024; 25:12264. [PMID: 39596329 PMCID: PMC11595235 DOI: 10.3390/ijms252212264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Antibacterial coatings based on quaternary ammonium compounds (QACs) have been widely investigated in controlled release applications. Quaternary ammonium compounds are low-cost and easily accessible disinfectants that have been extensively used, especially after the COVID-19 outbreak. There has been a growing interest in developing a clearer understanding of various aspects that need to be taken into account for the design of quaternary ammonium compounds to be used in the biomedical field. In this contribution, we outline the mechanism of action of those materials as well as the key design parameters associated with their structure and antibacterial activity. Moreover, emphasis has been placed on the type of antibacterial coatings based on QACs and their applications in the biomedical field. A brief outlook on future research guidelines for the development of dual-function antibacterial coatings is also discussed.
Collapse
Affiliation(s)
- Georgia C. Lainioti
- Department of Food Science & Technology, University of Patras, GR-30100 Agrinio, Greece
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece;
| |
Collapse
|
7
|
Crnčević D, Ramić A, Kastelic AR, Odžak R, Krce L, Weber I, Primožič I, Šprung M. Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents. Sci Rep 2024; 14:26211. [PMID: 39482460 PMCID: PMC11528103 DOI: 10.1038/s41598-024-77647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Quaternary ammonium compounds (QACs) are a biologically active group of chemicals with a wide range of different applications. Due to their strong antibacterial properties and broad spectrum of activity, they are commonly used as ingredients in antiseptics and disinfectants. In recent years, the spread of bacterial resistance to QACs, exacerbated by the spread of infectious diseases, has seriously threatened public health and endangered human lives. Recent trends in this field have suggested the development of a new generation of QACs, in parallel with the study of bacterial resistance mechanisms. In this work, we present a new series of quaternary 3-substituted quinuclidine compounds that exhibit potent activity across clinically relevant bacterial strains. Most of the derivatives had minimal inhibitory concentrations (MICs) in the low single-digit micromolar range. Notably, QApCl and QApBr were selected for further investigation due to their strong antibacterial activity and low toxicity to human cells along with their minimal potential to induce bacterial resistance. These compounds were also able to inhibit the formation of bacterial biofilms more effectively than commercial standard, eradicating the bacterial population within just 15 min of treatment. The candidates employ a membranolytic mode of action, which, in combination with the generation of reactive oxygen species (ROS), destabilizes the bacterial membrane. This treatment results in a loss of cell volume and alterations in surface morphology, ultimately leading to bacterial cell death. The prominent antibacterial potential of quaternary 3-aminoquinuclidines, as exemplified by QApCl and QApBr, paves the way for new trends in the development of novel generation of QACs.
Collapse
Affiliation(s)
- Doris Crnčević
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
- Faculty of Science, Doctoral Study in Biophysics, University of Split, R. Bošković 33, Split, Croatia
| | - Alma Ramić
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Andreja Radman Kastelic
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Renata Odžak
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
| | - Lucija Krce
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ivana Weber
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ines Primožič
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| | - Matilda Šprung
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia.
| |
Collapse
|
8
|
Hou W, Xu XL, Huang LJ, Zhang ZY, Zhou ZN, Wang JY, Ouyang X, Xin SY, Zhang ZY, Xiong Y, Huang H, Lan JX. Bioactivities and Action Mechanisms of Ellipticine Derivatives Reported Prior to 2023. Chem Biodivers 2024; 21:e202400210. [PMID: 38433548 DOI: 10.1002/cbdv.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/05/2024]
Abstract
Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xin-Liang Xu
- Department of Pharmacy, Xingguo People's Hospital, Xingguo Hospital Affiliated to Gannan Medical University, Ganzhou, 342400, P. R. China
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xi Ouyang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Yi Xiong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, P. R. China
| |
Collapse
|
9
|
Li Y, Chu C, Chen C, Sun B, Wu J, Wang S, Ding W, Sun D. Quaternized chitosan/oxidized bacterial cellulose cryogels with shape recovery for noncompressible hemorrhage and wound healing. Carbohydr Polym 2024; 327:121679. [PMID: 38171689 DOI: 10.1016/j.carbpol.2023.121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Management of noncompressible torso hemorrhage is an urgent clinical requirement, desiring biomaterials with rapid hemostasis, anti-infection and excellent resilient properties. In this research, we have prepared a highly resilient cryogel with both hemostatic and antibacterial effects by chemical crosslinking and electrostatic interaction. The network structure crosslinked by quaternized chitosan and genipin was interspersed with oxidized bacterial cellulose after lyophilization. The as-prepared cryogel can quickly return to the original volume when soaking in water or blood. The appropriately sized pores in the cryogel help to absorb blood cells and further activate coagulation, while the quaternary ammonium salt groups on quaternized chitosan inhibit bacterial infections. Both cell and animal experiments showed that the cryogel was hypotoxic and could promote the regeneration of wound tissue. This research provides a new pathway for the preparation of double crosslinking cryogels and offers effective and safe biomaterials for the emergent bleeding management of incompressible wounds.
Collapse
Affiliation(s)
- Yongsheng Li
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, Jiangsu Province, China
| | - Chengnan Chu
- Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu Province, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, Jiangsu Province, China.
| | - Bianjing Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, Jiangsu Province, China
| | - Jingjing Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan Province, China
| | - Shujun Wang
- Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu Province, China.
| | - Weiwei Ding
- Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu Province, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, Jiangsu Province, China.
| |
Collapse
|
10
|
Bacchetti F, Schito AM, Milanese M, Castellaro S, Alfei S. Anti Gram-Positive Bacteria Activity of Synthetic Quaternary Ammonium Lipid and Its Precursor Phosphonium Salt. Int J Mol Sci 2024; 25:2761. [PMID: 38474008 DOI: 10.3390/ijms25052761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.
Collapse
Affiliation(s)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sara Castellaro
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
11
|
Li Y, Li B, Guo X, Wang H, Cheng L. Applications of quaternary ammonium compounds in the prevention and treatment of oral diseases: State-of-the-art and future directions. J Dent 2023; 137:104678. [PMID: 37634613 DOI: 10.1016/j.jdent.2023.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVES The aim of this review is to comprehensively summarize the state-of-the-art developments of quaternary ammonium compounds (QACs) in the prevention and treatment of oral diseases. By discussing the structural diversity and the potential killing mechanism, we try to offer some insights for the future research of QACs. DATA, SOURCES & STUDY SELECTION A literature search was conducted in electronic databases (Web of Science, PubMed, Medline, and Scopus). Publications that involved the applications of QACs, especially those related to the prevention and treatment of oral diseases, are included. RESULTS We have reviewed the relevant research on QACs over the past two decades. The research results indicate that the current applications are mainly focused on dental material modification and direct pharmacological interventions. Concurrently, challenges such as potential risks to normal tissues and impediments in drug resistance and microbial persistence present certain application constraints. The latest studies have encompassed the exploration of smart materials and nanoparticle formulations. CONCLUSIONS The killing mechanism may possess a threshold related to charge density. However, the exact process remains enigmatic. The structural diversity and the exploration of intelligent materials and nanoparticle formulations provide directions in development of novel QACs. CLINICAL SIGNIFICANCE The intricate oral anatomy, combined with the multifaceted oral microbiome, necessitates specialized materials for the targeted prevention and treatment of oral pathologies. QACs represent a cohort of compounds distinguished by potent anti-infective and anti-tumor attributes. Innovations in intelligent materials and nanoparticle formulations amplify their potential in significantly advancing the prevention and therapeutic interventions for oral diseases.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
12
|
Ban GH, Kim SH, Kang DH, Park SH. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Sci Biotechnol 2023; 32:1679-1702. [PMID: 37780592 PMCID: PMC10533464 DOI: 10.1007/s10068-023-01312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm formation is a strategy in which microorganisms generate a matrix of extracellular polymeric substances to increase survival under harsh conditions. The efficacy of sanitization processes is lowered when biofilms form, in particular on industrial devices. While various traditional and emerging technologies have been explored for the eradication of biofilms, cell resistance under a range of environmental conditions renders evaluation of the efficacy of control challenging. This review aimed to: (1) classify biofilm control measures into chemical, physical, and combination methods, (2) discuss mechanisms underlying inactivation by each method, and (3) summarize the reduction of biofilm cells after each treatment. The review is expected to be useful for future experimental studies and help to guide the establishment of biofilm control strategies in the food industry.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| |
Collapse
|
13
|
Jennings J, Ašćerić D, Semeraro EF, Lohner K, Malanovic N, Pabst G. Combinatorial Screening of Cationic Lipidoids Reveals How Molecular Conformation Affects Membrane-Targeting Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40178-40190. [PMID: 37602460 PMCID: PMC10472336 DOI: 10.1021/acsami.3c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
The search for next-generation antibacterial compounds that overcome the development of resistance can be facilitated by identifying how to target the cell membrane of bacteria. Understanding the key molecular features that enable interactions with lipids and lead to membrane disruption is therefore crucial. Here, we employ a library of lipid-like compounds (lipidoids) comprising modular structures with tunable hydrophobic and hydrophilic architecture to shed light on how the chemical functionality and molecular shape of synthetic amphiphilic compounds determine their activity against bacterial membranes. Synthesized from combinations of 8 different polyamines as headgroups and 13 acrylates as tails, 104 different lipidoids are tested for activity against a model Gram-positive bacterial strain (Bacillus subtilis). Results from the combinatorial screening assay show that lipidoids with the most potent antimicrobial properties (down to 2 μM) have intermediate tail hydrophobicity (i.e., c log P values between 3 and 4) and lower headgroup charge density (i.e., longer spacers between charged amines). However, the most important factor appeared to be the ability of a lipidoid to self-assemble into an inverse hexagonal liquid crystalline phase, as observed by small-angle X-ray scattering (SAXS) analysis. The lipidoids active at lowest concentrations, which induced the most significant membrane damage during propidium iodide (PI) permeabilization assays, were those that aggregated into highly curved inverse hexagonal liquid crystal phases. These observations suggest that the introduction of strong curvature stress into the membrane is one way to maximize membrane disruption and lipidoid antimicrobial activity. Lipidoids that demonstrated the ability to furnish this phase consisted of either (i) branched or linear headgroups with shorter linear tails or (ii) cyclic headgroups with 4 bulky nonlinear tails. On the contrary, lipidoids previously observed to adopt disc-like conformations that pack into bicontinuous cubic phases were significantly less effective against B. subtilis. The discovery of these structure-property relationships demonstrates that it is not simply a balance of hydrophobic and hydrophilic moieties that govern membrane-active antibacterial activity, but also their intrinsic curvature and collective behavior.
Collapse
Affiliation(s)
- James Jennings
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Dunja Ašćerić
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Enrico Federico Semeraro
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Karl Lohner
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Nermina Malanovic
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Georg Pabst
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
14
|
Grunwald MA, Hagenlocher SE, Turkanovic L, Bauch SM, Wachsmann SB, Altevogt LA, Ebert M, Knöller JA, Raab AR, Schulz F, Kolmangadi MA, Zens A, Huber P, Schönhals A, Bilitiewski U, Laschat S. Does thermotropic liquid crystalline self-assembly control biological activity in amphiphilic amino acids? - tyrosine ILCs as a case study. Phys Chem Chem Phys 2023. [PMID: 37366119 DOI: 10.1039/d3cp00485f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0-3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli ΔTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity.
Collapse
Affiliation(s)
- Marco André Grunwald
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Selina Emilie Hagenlocher
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Larissa Turkanovic
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Soeren Magnus Bauch
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | - Luca Alexa Altevogt
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Max Ebert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Julius Agamemnon Knöller
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Aileen Rebecca Raab
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Finn Schulz
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Patrick Huber
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, D-21073 Hamburg, Germany
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, D-22605 Hamburg, Germany
- Centre for Hybrid Nanostructures ChyN, University Hamburg, D-21073 Hamburg, Germany.
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und-prüfung (BAM), D-12205 Berlin, Germany.
| | - Ursula Bilitiewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstr. 7, D-38124 Braunschweig, Germany.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| |
Collapse
|
15
|
Seferyan MA, Saverina EA, Frolov NA, Detusheva EV, Kamanina OA, Arlyapov VA, Ostashevskaya II, Ananikov VP, Vereshchagin AN. Multicationic Quaternary Ammonium Compounds: A Framework for Combating Bacterial Resistance. ACS Infect Dis 2023; 9:1206-1220. [PMID: 37161274 DOI: 10.1021/acsinfecdis.2c00546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens. Here, we introduce an original isocyanuric acid alkylation method with the use of available alkyl dichlorides, which opened access to a wide panel of multi-QACs with alkyl chains of various lengths between the nitrogen atoms of triazine and pyridine cycles. We used a complex approach for the resulting series of 17 compounds, including their antibiofilm properties, bacterial tolerance development, and antimicrobial activity toward multiresistant pathogenic strains. As a result of these efforts, available compounds have shown higher levels of antibacterial activity against ESKAPE pathogens than widely used commercial QACs. Hit compounds possessed high activity toward clinical bacterial strains and have also demonstrated a long-term biocidal effect without significant development of microorganism tolerance. The overall results indicated a high level of antibacterial activity and the broad application prospects of multi-QACs based on isocyanuric acid against multiresistant bacterial strains.
Collapse
Affiliation(s)
- Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Tula State University, Lenin pr. 92, 300012 Tula, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov, Moscow Region, Russia
| | | | | | - Irina I Ostashevskaya
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | | |
Collapse
|
16
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
17
|
Yang R, Hou E, Cheng W, Yan X, Zhang T, Li S, Yao H, Liu J, Guo Y. Membrane-Targeting Neolignan-Antimicrobial Peptide Mimic Conjugates to Combat Methicillin-Resistant Staphylococcus aureus (MRSA) Infections. J Med Chem 2022; 65:16879-16892. [PMID: 36512751 DOI: 10.1021/acs.jmedchem.2c01674] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) continue to endanger public health. Here, we report the synthesis of neolignan isomagnolone (I) and its isomer II, and the preparation of a series of novel neolignan-antimicrobial peptide (AMP) mimic conjugates. Notably, conjugates III5 and III15 exhibit potent anti-MRSA activity in vitro and in vivo, comparable to that of vancomycin, a current effective treatment for MRSA. Moreover, III5 and III15 display not only fast-killing kinetics and low resistance frequency but also low toxicity as well as effects on bacterial biofilms. Mechanism studies reveal that III5 and III15 exhibit rapid bactericidal effects through binding to the phosphatidylglycerol (PG) and cardiolipin (CL) of the bacterial membrane, thereby disrupting the cell membranes and allowing increased reactive oxygen species (ROS) as well as protein and DNA leakage. The results indicate that these neolignan-AMP mimic conjugates could be promising antimicrobial candidates for combating MRSA infections.
Collapse
Affiliation(s)
- Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Enhua Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoting Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
18
|
Li Y, Ma X, Zhang J, Pan X, Li N, Chen G, Zhu J. Degradable Selenium-Containing Polymers for Low Cytotoxic Antibacterial Materials. ACS Macro Lett 2022; 11:1349-1354. [PMID: 36413206 DOI: 10.1021/acsmacrolett.2c00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Developing biodegradable cationic polymers with high antibacterial efficiency and low cytotoxicity is of great significance in biological applications. Selenium is an essential trace element for the human body, and selenium-containing compounds are promising in various health-related applications. To combine selenium with biodegradability, selenide-functionalized polycaprolactones (PCL) with different hydrophobic substituents were synthesized followed by selenoniumization. The optimal polyselenonium salt showed excellent antibacterial activity with an MBC of 2 μg mL-1 and an MIC of 1 μg mL-1 and exhibited good biocompatibility before and after degradation. In addition, the obtained selenium polymer can be well blended with commercial PCL by electrospinning, and films with good antibacterial activity were prepared. This work enriches the knowledge of selenium derivatives and lays a foundation for follow-up research on selenium cationic polymers in the antimicrobial field.
Collapse
Affiliation(s)
- Yingying Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoliang Ma
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Na Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Gaojian Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Michaud ME, Allen RA, Morrison-Lewis KR, Sanchez CA, Minbiole KPC, Post SJ, Wuest WM. Quaternary Phosphonium Compound Unveiled as a Potent Disinfectant against Highly Resistant Acinetobacter baumannii Clinical Isolates. ACS Infect Dis 2022; 8:2307-2314. [PMID: 36301313 DOI: 10.1021/acsinfecdis.2c00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acinetobacter baumannii is classified as a highest threat pathogen, urgently necessitating novel antimicrobials that evade resistance to combat its spread. Quaternary ammonium compounds (QACs) have afforded a valuable first line of defense against antimicrobial resistant pathogens as broad-spectrum amphiphilic disinfectant molecules. However, a paucity of innovation in this space has driven the emergence of QAC resistance. Through this work, we sought to identify next-generation disinfectant molecules with efficacy against highly resistant A. baumannii clinical isolates. We selected 12 best-in-class molecules from our previous investigations of quaternary ammonium and quaternary phosphonium compounds (QPCs) to test against a panel of 35 resistant A. baumannii clinical isolates. The results highlighted the efficacy of our next-generation compounds over leading commercial QACs, with our best-in-class QAC (2Pyr-11,11) and QPC (P6P-10,10) displaying improved activities with a few exceptions. Furthermore, we elucidated a correlation between colistin resistance and QAC resistance, wherein the only pan-resistant isolate of the panel, also harboring colistin resistance, exhibited resistance to all tested QACs. Notably, P6P-10,10 maintained efficacy against this strain with an IC90 of 3 μM. In addition, P6P-10,10 displayed minimum biofilm eradication concentrations as low as 32 μM against extensively drug resistant clinical isolates. Lastly, examining the development of disinfectant resistance and cross-resistance, we generated QAC-resistant A. baumannii mutants and observed the development of QAC cross-resistance. In contrast, neither disinfectant resistance nor cross-resistance was observed in A. baumannii under P6P-10,10 treatment. Taken together, the results of this work illustrate the need for novel disinfectant compounds to treat resistant pathogens, such as A. baumannii, and underscore the promise of QPCs, such as P6P-10,10, as viable next-generation disinfectant molecules.
Collapse
Affiliation(s)
- Marina E Michaud
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A Allen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Christian A Sanchez
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Savannah J Post
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
20
|
Agbe H, Sarkar DK, Chen XG, Dodoo-Arhin D. Silver-Polymethylhydrosiloxane-Quaternary Ammonium Coating on Anodized Aluminum with Excellent Antibacterial Property. ACS APPLIED BIO MATERIALS 2022; 5:4760-4769. [PMID: 36103507 DOI: 10.1021/acsabm.2c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug-resistant bacteria are known to survive on high-touch surfaces for days, weeks, and months, contributing to the rise in nosocomial infections. Inducing antibacterial property in such surfaces can presumably reduce the overall microbial burden and subsequent nosocomial infections in hygiene critical environments. In the present study, a one-pot sol-gel process has been deployed to incorporate silver (Ag) and quaternary ammonium salt (QUAT) bactericides in a polymethylhydrosiloxane (PMHS) matrix. The Ag-PMHS-QUAT nanocomposite was coated on anodized aluminum (AAO/Al) by a simple ultrasound-assisted deposition process. The morphological features and chemical composition of the Ag-PMHS-QUAT nanocomposite have been characterized using SEM, XRD spectroscopy, and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) to confirm the formation of Ag-QUAT nanocomposites within the polymeric network of PMHS. The Ag-PMHS-QUAT nanocomposite coating on anodized aluminum oxide (AAO/Al) coupon exhibited superior antibacterial property with a 6-log bacterial reduction compared to the 5-log reduction for the commercially available antimicrobial copper coupon.
Collapse
Affiliation(s)
- Henry Agbe
- Laboratory for Biomaterials and Bioengineering - LBB, Canada Research Chair Tier I for the Innovation in Surgery, Dept Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center Laval University, Quebec, 10 rue de l'Espinay, Quebec City, QC G1L 3L5, Canada
| | - Dilip Kumar Sarkar
- Department of Applied Science, University of Québec at Chicoutimi, Aluminum Research Center - REGAL, Chicoutimi, QC G7H 2B1, Canada
| | - X-Grant Chen
- Department of Applied Science, University of Québec at Chicoutimi, Aluminum Research Center - REGAL, Chicoutimi, QC G7H 2B1, Canada
| | - David Dodoo-Arhin
- Department of Materials Science and Engineering, University of Ghana, P.O. Box LG 77, Legon-Accra, Ghana
| |
Collapse
|
21
|
Dan W, Gao J, Qi X, Wang J, Dai J. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur J Med Chem 2022; 243:114765. [PMID: 36116235 DOI: 10.1016/j.ejmech.2022.114765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Bacterial infections have seriously threatened public health especially with the increasing resistance and the cliff-like decline of the number of newly approved antibacterial agents. Quaternary ammonium compounds (QACs) possess potent medicinal properties with 95 successfully marketed drugs, which also have a long history as antibacterial agents. In this review, we summarize the chemical diversity of antibacterial QACs, divided into chain-like and aromatic ring, reported over the past decade (2012 to mid-2022). Additionally, the structure-activity relationships, mainly covering hydrophobicity, charges and skeleton features, are discussed. In the cases where sufficient information is available, antibacterial mechanisms including biofilm, cell membrane, and intracellular targets are presented. It is hoped that this review will provide sufficient information for medicinal chemists to discover the new generation of antibacterial agents based on QACs.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Xiaohui Qi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| |
Collapse
|
22
|
Zou W, Gu J, Li J, Wang Y, Chen S. Tailorable antibacterial and cytotoxic chitosan derivatives by introducing quaternary ammonium salt and sulfobetaine. Int J Biol Macromol 2022; 218:992-1001. [PMID: 35878673 DOI: 10.1016/j.ijbiomac.2022.07.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Abstract
Chitosan (CS) derivatives with improved water solubility, antibacterial activity and adequate biocompatibility are attracting increasingly interest in medical application. Herein, we have successfully synthesized isocyanate terminated quaternary ammonium salt (IQAS) and sulfopropylbetaine (ISB) to be readily covalently bounded to CS skeleton by selective reaction with amino and hydroxyl groups. And their molecular structures and crystallinity were confirmed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and X-ray diffraction. The effect of the substitution degree, carbon chain length, content ratio of IQAS/ISB on their water solubility, antibacterial activity and cytotoxicity were systematically investigated, which shows that those properties of the CS derivatives can be tailored by adjusting the grafted antibacterial agents and their additive amount. The structure-property relationship of these CS derivatives may provide a solid guidance on the development of CS derivatives for more efficient practical applications.
Collapse
Affiliation(s)
- Wanjing Zou
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jingwei Gu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jianna Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen 518060, China
| | - Yuanfang Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
23
|
Guo S, He Y, Zhu Y, Tang Y, Yu B. Combatting Antibiotic Resistance Using Supramolecular Assemblies. Pharmaceuticals (Basel) 2022; 15:ph15070804. [PMID: 35890105 PMCID: PMC9322166 DOI: 10.3390/ph15070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance has posed a great threat to human health. The emergence of antibiotic resistance has always outpaced the development of new antibiotics, and the investment in the development of new antibiotics is diminishing. Supramolecular self-assembly of the conventional antibacterial agents has been proved to be a promising and versatile strategy to tackle the serious problem of antibiotic resistance. In this review, the recent development of antibacterial agents based on supramolecular self-assembly strategies will be introduced.
Collapse
Affiliation(s)
- Shuwen Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| | - Yuling He
- Institute of Basic and Translational Medicine, Xi’an Medical University, No. 1 Xinwang Road, Xi’an 710021, China;
| | - Yuanyuan Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing 100029, China
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| |
Collapse
|
24
|
Crnčević D, Krce L, Cvitković M, Brkljača Z, Sabljić A, Vuko E, Primožič I, Odžak R, Šprung M. New Membrane Active Antibacterial and Antiviral Amphiphiles Derived from Heterocyclic Backbone of Pyridinium-4-Aldoxime. Pharmaceuticals (Basel) 2022; 15:ph15070775. [PMID: 35890073 PMCID: PMC9315884 DOI: 10.3390/ph15070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Quaternary ammonium salts (QAS) are irreplaceable membrane-active antimicrobial agents that have been widely used for nearly a century. Cetylpyridinium chloride (CPC) is one of the most potent QAS. However, recent data from the literature indicate that CPC activity against resistant bacterial strains is decreasing. The major QAS resistance pathway involves the QacR dimer, which regulates efflux pump expression. A plausible approach to address this issue is to structurally modify the CPC structure by adding other biologically active functional groups. Here, a series of QAS based on pyridine-4-aldoxime were synthesized, characterized, and tested for antimicrobial activity in vitro. Although we obtained several potent antiviral candidates, these candidates had lower antibacterial activity than CPC and were not toxic to human cell lines. We found that the addition of an oxime group to the pyridine backbone resulted in derivatives with large topological polar surfaces and with unfavorable cLog P values. Investigation of the antibacterial mode of action, involving the cell membrane, revealed altered cell morphologies in terms of corrugated and/or disrupted surface, while 87% of the cells studied exhibited a permeabilized membrane after 3 h of treatment at 4 × minimum inhibitory concentration (MIC). Molecular dynamic (MD) simulations of the interaction of QacR with a representative candidate showed rapid dimer disruption, whereas this was not observed for QacR and QacR bound to the structural analog CPC. This might explain the lower bioactivity of our compounds, as they are likely to cause premature expression of efflux pumps and thus activation of resistance.
Collapse
Affiliation(s)
- Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (L.K.); (M.C.)
| | - Mislav Cvitković
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (L.K.); (M.C.)
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10 000 Zagreb, Croatia;
- Selvita Ltd., Prilaz Baruna Filipovića 29, 10 000 Zagreb, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia
| | - Elma Vuko
- Department of Biology, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia;
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia;
| | - Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Correspondence: (R.O.); (M.Š.)
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Correspondence: (R.O.); (M.Š.)
| |
Collapse
|
25
|
Voumard M, Breider F, von Gunten U. Effect of cetyltrimethylammonium chloride on various Escherichia coli strains and their inactivation kinetics by ozone and monochloramine. WATER RESEARCH 2022; 216:118278. [PMID: 35366494 DOI: 10.1016/j.watres.2022.118278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cethyltrimethylammonium chloride (CTMA) is one of the most used quaternary ammonium compounds (QACs) in consumer products. CTMA and other QACs are only partially eliminated in municipal wastewater treatment and they can interact with bacteria in biological processes. Currently, there is only limited information on the antimicrobial efficiency of CTMA in matrices other than standard growth media and if and how CTMA influences conventional chemical disinfection. The results obtained in this study showed that the susceptibility of E. coli to CTMA was significantly enhanced in phosphate-buffered saline, lake water and wastewater compared to broth. In broth, a minimum inhibitory concentration (MIC) of CTMA of 20 mgL-1 was observed for E. coli, whereas a 4-log inactivation occurred for CTMA concentrations of about 4 mgL-1 in buffered ultra-purified water, a lake water and wastewater effluent. The impacts of the pre-exposure and the presence of CTMA on inactivation by ozone and monochloramine were tested with three different E. coli strains: AG100 with the efflux pump acrAB intact, AG100A with it deleted and AG100tet with it overexpressed. Pre-exposure of E. coli AG100 to CTMA led to an increased susceptibility for ozone with second-order inactivation rate constants (∼ 106 M-1s-1) increasing by a factor of about 1.5. An opposite trend was observed for monochloramine with second-order inactivation rate constants (∼ 103 M-1s-1) decreasing by a factor of about 2. For E. coli AG100tet, the second-order inactivation rate constant decreased by a factor of almost 2 and increased by a factor of about 1.5 for ozone and monochloramine, respectively, relative to the strain AG100. The simultaneous presence of CTMA and ozone enhanced the second-order inactivation rate constants for CTMA concentrations of 2.5 mgL-1 by a factor of about 3. For monochloramine also an enhancement of the inactivation was observed, which was at least additive but might also be synergistic. Enhancement by factors from about 2 to 4.5 were observed for CTMA concentrations > 2.5 mgL-1.
Collapse
Affiliation(s)
- M Voumard
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland
| | - F Breider
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland
| | - U von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland; Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich 8092, Switzerland.
| |
Collapse
|
26
|
Wang S, Cong Z, Xu Z, Ban S, Song H. Fluorescent dyes with multiple quaternary ammonium centers for specific image discrimination and Gram-positive antibacterial activity. Org Biomol Chem 2022; 20:3980-3987. [PMID: 35502882 DOI: 10.1039/d2ob00399f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three quaternary ammonium compounds (QACs), TPQA, T2PQA, and T3PQA, were synthesized and employed in antimicrobial tests against E. coli and S. aureus. It was confirmed that they exhibit selective bacteriostasis against S. aureus. The antibacterial activities of the compounds were evaluated via determining their minimum inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) against S. aureus using the 2,3,5-triphenyltetrazolium chloride (TTC) coloration method. Notably, T2PQA exhibited far better properties than TPQA and T3PQA, with the activity found to be dependent on the structure of the QA and the exposed hydrophobic groups. All three compounds showed promising potential for killing Gram-positive bacteria, efficiently guided by fluorescence imaging.
Collapse
Affiliation(s)
- Siqi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| | - Zisong Cong
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| | - Zhiqin Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| |
Collapse
|
27
|
Wei X, Cai J, Wang C, Yang K, Ding S, Tian F, Lin S. Quaternized chitosan/cellulose composites as enhanced hemostatic and antibacterial sponges for wound healing. Int J Biol Macromol 2022; 210:271-281. [DOI: 10.1016/j.ijbiomac.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
|
28
|
Keum H, Kim D, Whang CH, Kang A, Lee S, Na W, Jon S. Impeding the Medical Protective Clothing Contamination by a Spray Coating of Trifunctional Polymers. ACS OMEGA 2022; 7:10526-10538. [PMID: 35382299 PMCID: PMC8973108 DOI: 10.1021/acsomega.1c04919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The risk of fomite-mediated transmission in the clinic is substantially increasing amid the recent COVID-19 pandemic as personal protective equipment (PPE) of hospital workers is easily contaminated by direct contact with infected patients. In this context, it is crucial to devise a means to reduce such transmission. Herein, we report an antimicrobial, antiviral, and antibiofouling trifunctional polymer that can be easily coated onto the surface of medical protective clothing to effectively prevent pathogen contamination on the PPE. The coating layer is formed on the surfaces of PPE by the simple spray coating of an aqueous solution of the trifunctional polymer, poly(dodecyl methacrylate (DMA)-poly(ethylene glycol) methacrylate (PEGMA)-quaternary ammonium (QA)). To establish an optimal ratio of antifouling and antimicrobial functional groups, we performed antifouling, antibacterial, and antiviral tests using four different ratios of the polymers. Antifouling and bactericidal results were assessed using Staphylococcus aureus, a typical pathogenic bacterium that induces an upper respiratory infection. Regardless of the molar ratio, polymer-coated PPE surfaces showed considerable antiadhesion (∼65-75%) and antibacterial (∼75-87%) efficacies soon after being in contact with pathogens and maintained their capability for at least 24 h, which is sufficient for disposable PPEs. Further antiviral tests using coronaviruses showed favorable results with PPE coated at two specific ratios (3.5:6:0.5 and 3.5:5.5:1) of poly(DMA-PEGMA-QA). Moreover, biocompatibility assessments using the two most effective polymer ratios showed no recognizable local or systemic inflammatory responses in mice, suggesting the potential of this polymer for immediate use in the field.
Collapse
Affiliation(s)
- Hyeongseop Keum
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dohyeon Kim
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Chang-Hee Whang
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Aram Kang
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Seojung Lee
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Woonsung Na
- College
of Veterinary Medicine, Chonnam University, 77 Yongbong-ro, Gwangju 61186, Republic
of Korea
| | - Sangyong Jon
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv Colloid Interface Sci 2022; 299:102581. [PMID: 34891074 DOI: 10.1016/j.cis.2021.102581] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Gemini surfactants consist of two cationic monomers of a surfactant linked together with a spacer. The specific structure of a cationic gemini surfactant is the reason for both its high surface activity and its ability to decrease the surface tension of water. The high surface activity and unique structure of gemini surfactants result in outstanding properties, including antibacterial and antifungal activity, anticorrosion properties, unique aggregation behaviour, the ability to form various structures reversibly in response to environmental conditions, and interactions with biomacromolecules such as DNA and proteins. These properties can be tailored by selecting the optimal structure of a gemini surfactant in terms of the nature and length of its alkyl substituents, spacer, and head group. Additionally, regarding their properties, comparison with their monomeric counterparts demonstrates that gemini surfactants have higher performance efficacy at lower concentrations. Hence, less material is needed, and the toxicity is lower. However, there are some limitations regarding their biocompatibility that have led researchers to develop amino acid-based and sugar-based gemini surfactants. Owing to their remarkable properties, cationic gemini surfactants are promising candidates for bioapplications such as drug delivery systems, gene carriers, and biomaterial surface modification.
Collapse
|
30
|
|
31
|
Asif I, Gilani SR, Shahzadi P. Contrived approach to novel antibacterial poly(vinyl acetate-co-[2-(methacryloyloxy)ethyl]trimethylammonium chloride) and poly(vinyl acetate-co-[vinylbenzyl]trimethylammonium chloride) via RAFT polymerization with multi-characterization. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
McConnell DL, Blades AM, Rodrigues DG, Keyes PV, Sonberg JC, Anthony CE, Rachad S, Simone OM, Sullivan CF, Shapiro JD, Williams CC, Schafer BC, Glanzer AM, Hutchinson HL, Thayaparan AB, Krevlin ZA, Bote IC, Haffary YA, Bhandari S, Goodman JA, Majireck MM. Synthesis of Bench-Stable N-Quaternized Ketene N, O-Acetals and Preliminary Evaluation as Reagents in Organic Synthesis. J Org Chem 2021; 86:13025-13040. [PMID: 34498466 DOI: 10.1021/acs.joc.1c01764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
N-Quaternized ketene N,O-acetals are typically an unstable, transient class of compounds most commonly observed as reactive intermediates. In this report, we describe a general synthetic approach to a variety of bench-stable N-quaternized ketene N,O-acetals via treatment of pyridine or aniline bases with acetylenic ethers and an appropriate Brønsted or Lewis acid (triflic acid, triflimide, or scandium(III) triflate). The resulting pyridinium and anilinium salts can be used as reagents or synthetic intermediates in multiple reaction types. For example, N-(1-ethoxyvinyl)pyridinium or anilinium salts can thermally release highly reactive O-ethyl ketenium ions for use in acid catalyst-free electrophilic aromatic substitutions. N-(1-Ethoxyvinyl)-2-halopyridinium salts can be employed in peptide couplings as a derivative of Mukaiyama reagents or react with amines in nucleophilic aromatic substitutions under mild conditions. These preliminary reactions illustrate the broad potential of these currently understudied compounds in organic synthesis.
Collapse
Affiliation(s)
- Danielle L McConnell
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Alisha M Blades
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Danielle Gomes Rodrigues
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Phoebe V Keyes
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Justin C Sonberg
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caitlin E Anthony
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sofia Rachad
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Olivia M Simone
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Caroline F Sullivan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jonathan D Shapiro
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Christopher C Williams
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Benjamin C Schafer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Amy M Glanzer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Holly L Hutchinson
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Ashley B Thayaparan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Zoe A Krevlin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Isabella C Bote
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Yasin A Haffary
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sambat Bhandari
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jack A Goodman
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Max M Majireck
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| |
Collapse
|
33
|
Guo Y, Hou E, Wen T, Yan X, Han M, Bai LP, Fu X, Liu J, Qin S. Development of Membrane-Active Honokiol/Magnolol Amphiphiles as Potent Antibacterial Agents against Methicillin-Resistant Staphylococcus aureus (MRSA). J Med Chem 2021; 64:12903-12916. [PMID: 34432450 DOI: 10.1021/acs.jmedchem.1c01073] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently, infections caused by drug-resistant bacteria have become a new challenge in anti-infective treatment, seriously endangering public health. In our continuous effort to develop new antimicrobials, a series of novel honokiol/magnolol amphiphiles were prepared by mimicking the chemical structures and antibacterial properties of cationic antimicrobial peptides. Among them, compound 5i showed excellent antibacterial activity against Gram-positive bacteria and clinical MRSA isolates (minimum inhibitory concentrations (MICs) = 0.5-2 μg/mL) with low hemolytic and cytotoxic activities and high membrane selectivity. Moreover, 5i exhibited rapid bactericidal properties, low resistance frequency, and good capabilities of disrupting bacterial biofilms. Mechanism studies revealed that 5i destroyed bacterial cell membranes, resulting in bacterial death. Additionally, 5i displayed high biosafety and potent in vivo anti-infective potency in a murine sepsis model. Our study indicates that these honokiol/magnolol amphiphiles shed light on developing novel antibacterial agents, and 5i is a potential antibacterial candidate for combating MRSA infections.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Enhua Hou
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tingyu Wen
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoting Yan
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Meiyue Han
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Xiangjing Fu
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jifeng Liu
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shangshang Qin
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
34
|
Kaplan AR, Schrank CL, Wuest WM. An Efficient Synthesis of 3-Alkylpyridine Alkaloids Enables Their Biological Evaluation. ChemMedChem 2021; 16:2487-2490. [PMID: 33755337 PMCID: PMC8895759 DOI: 10.1002/cmdc.202100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/09/2022]
Abstract
3-Alkylpyridine alkaloids (3-APAs) isolated from the arctic sponge Haliclona viscosa are a promising group of bioactive marine alkaloids. However, due to limited bioavailability, investigations of their bioactivity have been hampered. Additionally, synthesis of a common intermediate requires the use of protecting groups and harsh conditions. In this work, we developed a simple and concise two-step route to nine different natural and synthetic haliclocyclins. These compounds displayed modest antibiotic activity against several Gram-positive bacterial strains.
Collapse
Affiliation(s)
- Anna R Kaplan
- Chemistry Department, Emory University, Atlanta, GA 30322, USA
| | | | - William M Wuest
- Chemistry Department, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Morandini A, Spadati E, Leonetti B, Sole R, Gatto V, Rizzolio F, Beghetto V. Sustainable triazine-derived quaternary ammonium salts as antimicrobial agents. RSC Adv 2021; 11:28092-28096. [PMID: 35480717 PMCID: PMC9038131 DOI: 10.1039/d1ra03455c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
The first examples of highly efficient antimicrobial triazine-derived bis imidazolium quaternary ammonium salts (TQAS) are reported. TQAS have been prepared with an easy, atom efficient, economically sustainable strategy and tested as antimicrobial agents, reaching MIC values below 10 mg L-1. Distinctively, TQAS have low MIC and low cytotoxicity.
Collapse
Affiliation(s)
- Andrea Morandini
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Emanuele Spadati
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Benedetta Leonetti
- Brenta S.r.l. - Nine Trees Group. Viale Milano, 26 36075 Montecchio Maggiore Vicenza Italy
| | - Roberto Sole
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
- Consorzio Interuniversitario per le Reattività Chimiche e Catalisi (CIRCC) Via C. Ulpiani 27 70126 Bari Italy
| | - Vanessa Gatto
- Crossing S.r.l. Viale della Repubblica 193/b Treviso 31100 Italy
| | - Flavio Rizzolio
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Valentina Beghetto
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
- Crossing S.r.l. Viale della Repubblica 193/b Treviso 31100 Italy
| |
Collapse
|
36
|
Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22:6793. [PMID: 34202677 PMCID: PMC8268321 DOI: 10.3390/ijms22136793] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure-quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.
Collapse
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| | | | | | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| |
Collapse
|
37
|
Mahoney AR, Safaee MM, Wuest WM, Furst AL. The silent pandemic: Emergent antibiotic resistances following the global response to SARS-CoV-2. iScience 2021; 24:102304. [PMID: 33748695 PMCID: PMC7955580 DOI: 10.1016/j.isci.2021.102304] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has highlighted the importance of the rapid development of vaccines and antivirals. However, the potential for the emergence of antibiotic resistances due to the increased use of antibacterial cleaning products and therapeutics presents an additional, underreported threat. Most antibacterial cleaners contain simple quaternary ammonium compounds (QACs); however, these compounds are steadily becoming less effective as antibacterial agents. QACs are extensively used in SARS-CoV-2-related sanitization in clinical and household settings. Similarly, due to the danger of secondary infections, antibiotic therapeutics are increasingly used as a component of COVID-19 treatment regimens, even in the absence of a bacterial infection diagnosis. The increased use of antibacterial agents as cleaners and therapeutics is anticipated to lead to novel resistances in the coming years.
Collapse
Affiliation(s)
- Andrew R. Mahoney
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, USA 30322
| | - Mohammad Moein Safaee
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, USA 30322
- Emory Antibiotic Resistance Center, Emory School of Medicine, 201 Dowman Dr, Atlanta, GA, USA 30322
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
| |
Collapse
|
38
|
Crnčević D, Krce L, Mastelić L, Maravić A, Soldo B, Aviani I, Primožič I, Odžak R, Šprung M. The mode of antibacterial action of quaternary N-benzylimidazole salts against emerging opportunistic pathogens. Bioorg Chem 2021; 112:104938. [PMID: 33933803 DOI: 10.1016/j.bioorg.2021.104938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022]
Abstract
Quaternary ammonium compounds (QACs) are antimicrobial agents displaying a broad spectrum of activity due to their mechanism of action targeting the bacterial membrane. The emergence of bacterial resistance to QACs, especially in times of pandemics, requires the continuous search for new and potent QACs structures. Here we report the synthesis and biological evaluation of QACs based on imidazole derivative, N-benzylimidazole. The antimicrobial activity was tested against a range of pathogenic bacteria and fungi, both ATCC and clinical isolates, showing varying activities ranging in minimal inhibitory concentrations (MICs) from as low as 7 ng/mL. The most promising compound, N-tetradecyl derivative (BnI-14), proved to be very potent against bacterial biofilms, even at sub-MIC doses, suggesting interference with the bacterial growth and/or division process. The BnI-14 treatment induces bacterial membrane disruption, as observed by fluorescence spectroscopy and atomic force microscopy and it also binds to DNA indicating that bacterial membrane might not be the only cellular target of QACs. Most importantly, BnI-14 exhibits low toxicity to healthy human cell lines, suggesting that N-benzylimidazolium-based QACs may be promising new antimicrobial agents.
Collapse
Affiliation(s)
- Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia.
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia.
| | - Linda Mastelić
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia.
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia.
| | - Barbara Soldo
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia.
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia.
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| | - Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia.
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia.
| |
Collapse
|
39
|
Feliciano JA, Leitgeb AJ, Schrank CL, Allen RA, Minbiole KPC, Wuest WM, Carden RG. Trivalent sulfonium compounds (TSCs): Tetrahydrothiophene-based amphiphiles exhibit similar antimicrobial activity to analogous ammonium-based amphiphiles. Bioorg Med Chem Lett 2021; 37:127809. [PMID: 33516911 PMCID: PMC7965331 DOI: 10.1016/j.bmcl.2021.127809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Recent advances in the development of quaternary ammonium compounds (QACs) have focused on new structural motifs to increase bioactivity, but significantly less studied has been the change from ammonium- to sulfonium-based disinfectants. Herein, we report the synthesis of structurally analogous series of quaternary ammonium and trivalent sulfonium compounds (TSCs). The bioactivity profiles of these compounds generally mirror each other, and the antibacterial activity of sulfonium-based THT-18 was found to be comparable to the commercial disinfectant, BAC. The development of these compounds presents a new avenue for further study of disinfectants to combat the growing threat of bacterial resistance.
Collapse
Affiliation(s)
- Javier A Feliciano
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - Austin J Leitgeb
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | | | - Ryan A Allen
- Department of Chemistry, Emory University, Atlanta, GA 30322, Unites States
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, Unites States.
| | - Robert G Carden
- Department of Chemistry, Villanova University, Villanova, PA 19085, United States.
| |
Collapse
|
40
|
Kaizerman-Kane D, Hadar M, Joseph R, Logviniuk D, Zafrani Y, Fridman M, Cohen Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect Dis 2021; 7:579-585. [PMID: 33657813 PMCID: PMC8041275 DOI: 10.1021/acsinfecdis.0c00662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacterial biofilms are a major threat
to human health, causing
persistent infections that lead to millions of fatalities worldwide
every year. Biofilms also cause billions of dollars of damage annually
by interfering with industrial processes. Recently, cationic pillararenes
were found to be potent inhibitors of biofilm formation in Gram-positive
bacteria. To identify the structural features of pillararenes that
result in antibiofilm activity, we evaluated the activity of 16 cationic
pillar[5]arene derivatives including that of the first cationic water-soluble
pillar[5]arene-based rotaxane. Twelve of the derivatives were potent
inhibitors of biofilm formation by Gram-positive pathogens. Structure
activity analyses of our pillararene derivatives indicated that positively
charged head groups are critical for the observed antibiofilm activity.
Although certain changes in the lipophilicity of the substituents
on the positively charged head groups are tolerated, dramatic elevation
in the hydrophobicity of the substituents or an increase in steric
bulk on these positive charges abolishes the antibiofilm activity.
An increase in the overall positive charge from 10 to 20 did not affect
the activity significantly, but pillararenes with 5 positive charges
and 5 long alkyl chains had reduced activity. Surprisingly, the cavity
of the pillar[n]arene is not essential for the observed activity,
although the macrocyclic structure of the pillar[n]arene core, which
facilitates the clustering of the positive charges, appears important.
Interestingly, the compounds found to be efficient inhibitors of biofilm
formation were nonhemolytic at concentrations that are ∼100-fold
of their MBIC50 (the minimal concentration of a compound
at which at least 50% inhibition of biofilm formation was observed
compared to untreated cells). The structure–activity relationship
guidelines established here pave the way for a rational design of
potent cationic pillar[n]arene-based antibiofilm agents.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roymon Joseph
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dana Logviniuk
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Micha Fridman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Synthesis of Silver Nanoparticles with Gemini Surfactants as Efficient Capping and Stabilizing Agents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The scientific community has paid special attention to silver nanoparticles (AgNPs) in recent years due to their huge technological capacities, particularly in biomedical applications, such as antimicrobials, drug-delivery carriers, device coatings, imaging probes, diagnostic, and optoelectronic platforms. The most popular method of obtaining silver nanoparticles as a colloidal dispersion in aqueous solution is chemical reduction. The choice of the capping agent is particularly important in order to obtain the desired size distribution, shape, and dispersion rate of AgNPs. Gemini alkylammonium salts are named as multifunctional surfactants, and possess a wide variety of applications, which include their use as capping agents for metal nanoparticles synthesis. Because of the high antimicrobial activity of gemini surfactants, AgNPs stabilized by this kind of surfactant may possess unique and strengthened biocidal properties. The present paper presents the synthesis of AgNPs stabilized by gemini surfactants with hexadecyl substituent and variable structure of spacer, obtained via ecofriendly synthesis. UV-Vis spectroscopy and dynamic light scattering were used as analyzing tools in order to confirm physicochemical characterization of the AgNPs (characteristic UV-Vis bands, hydrodynamic diameter of NPs, polydispersity index (PDI)).
Collapse
|
42
|
Sommers KJ, Bentley BS, Carden RG, Post SJ, Allen RA, Kontos RC, Black JW, Wuest WM, Minbiole KPC. Metallocene QACs: The Incorporation of Ferrocene Moieties into monoQAC and bisQAC Structures. ChemMedChem 2020; 16:467-471. [PMID: 33197298 DOI: 10.1002/cmdc.202000605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Indexed: 01/12/2023]
Abstract
Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene-containing mono- and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram-negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single-digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.
Collapse
Affiliation(s)
- Kyle J Sommers
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Brian S Bentley
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Robert G Carden
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Savannah J Post
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Ryan A Allen
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Renee C Kontos
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Jacob W Black
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
43
|
Carden RG, Sommers KJ, Schrank CL, Leitgeb AJ, Feliciano JA, Wuest WM, Minbiole KPC. Advancements in the Development of Non-Nitrogen-Based Amphiphilic Antiseptics to Overcome Pathogenic Bacterial Resistance. ChemMedChem 2020; 15:1974-1984. [PMID: 32886856 PMCID: PMC8371456 DOI: 10.1002/cmdc.202000612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/23/2022]
Abstract
The prevalence of quaternary ammonium compounds (QACs) as common disinfecting agents for the past century has led bacteria to develop resistance to such compounds. Given the alarming increase in resistant strains, new strategies are required to combat this rise in resistance. Recent efforts to probe and combat bacterial resistance have focused on studies of multiQACs. Relatively unexplored, however, have been changes to the primary atom bearing positive charge in these antiseptics. Here we review the current state of the field of both phosphonium and sulfonium amphiphilic antiseptics, both of which hold promise as novel means to address bacterial resistance.
Collapse
Affiliation(s)
- Robert G Carden
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Kyle J Sommers
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | | | - Austin J Leitgeb
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Javier A Feliciano
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
44
|
Tunable Superhydrophobic Aluminum Surfaces with Anti-Biofouling and Antibacterial Properties. COATINGS 2020. [DOI: 10.3390/coatings10100982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Surfaces in a hygiene critical environment can become potential reservoirs for transmission of pathogenic infections. Engineering surfaces with the tunable anti-biofouling and antibacterial properties could reduce infections particularly in hospitals and public transport hubs. In the present work, a facile two-step process has been deployed to fabricate a superhydrophobic and antibacterial aluminum surface by chemical etching, followed by passivation with low surface energy octyltriethoxysilane (OTES) molecules. The wettability and antibacterial properties of the OTES passivated aluminum was monotonically tuned by adding quaternary ammonium (QUATs) molecules. An anti-biofouling property of 99.9% against Staphylococcus aureus, 99% against Pseudomonas aeruginosa and 99% against E. coli bacteria, was achieved.
Collapse
|
45
|
Schrank CL, Minbiole KPC, Wuest WM. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect Dis 2020; 6:1553-1557. [PMID: 32412231 PMCID: PMC10464937 DOI: 10.1021/acsinfecdis.0c00265] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel virus named Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) emerged from Wuhan, China in late 2019. Since then, the virus has quickly spread worldwide, leading the World Health Organization to declare it as a pandemic; by the end of April 2020, the number of cases exceeded 3 million. Due to the high infectivity rate, SARS-CoV-2 is difficult to contain, making disinfectant protocols vital, especially for essential, highly trafficked areas such as hospitals, grocery stores, and delivery centers. According to the Centers for Disease Control and Prevention, best practices to slow the spread rely on good hand hygiene, including proper handwashing practices as well as the use of alcohol-based hand sanitizers. However, they provide warning against sanitizing products containing benzalkonium chloride (BAC), which has sparked concern in both the scientific community as well as the general public as BAC, a common quaternary ammonium compound (QAC), is ubiquitous in soaps and cleaning wipes as well as hospital sanitation kits. This viewpoint aims to highlight the outdated and incongruous data in the evaluation of BAC against the family of known coronaviruses and points to the need for further evaluation of the efficacy of QACs against coronaviruses.
Collapse
Affiliation(s)
| | | | - William M. Wuest
- Department of Chemistry Emory University Atlanta, GA, 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine Atlanta, GA, 30322 USA
| |
Collapse
|
46
|
Ongwae GM, Morrison KR, Allen RA, Kim S, Im W, Wuest WM, Pires MM. Broadening Activity of Polymyxin by Quaternary Ammonium Grafting. ACS Infect Dis 2020; 6:1427-1435. [PMID: 32212668 DOI: 10.1021/acsinfecdis.0c00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens continue to impose a tremendous health burden across the globe. Here, we describe a novel series of polymyxin-based agents grafted with membrane-active quaternary ammonium warheads to combine two important classes of Gram-negative antimicrobial scaffolds. The goal was to deliver a targeted quaternary ammonium warhead onto the surface of bacterial pathogens using the outer membrane homing properties of polymyxin. The most potent agents resulted in new scaffolds that retained the ability to target Gram-negative bacteria and had limited toxicity toward mammalian cells. We showed, using a molecular dynamics approach, that the new agents retained their ability to engage in specific interactions with lipopolysaccharide molecules. Significantly, the combination of quaternary ammonium and polymyxin widens the activity to the pathogen Staphylococcus aureus. Our results serve as an example of how two membrane-active agents can be combined to produce a class of novel scaffolds with potent biological activity.
Collapse
Affiliation(s)
- George M. Ongwae
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly R. Morrison
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A. Allen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Seonghoon Kim
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
47
|
Alkhalifa S, Jennings MC, Granata D, Klein M, Wuest WM, Minbiole KPC, Carnevale V. Analysis of the Destabilization of Bacterial Membranes by Quaternary Ammonium Compounds: A Combined Experimental and Computational Study. Chembiochem 2020; 21:1510-1516. [PMID: 31859426 PMCID: PMC7237276 DOI: 10.1002/cbic.201900698] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/24/2022]
Abstract
The mechanism of action of quaternary ammonium compound (QAC) antiseptics has long been assumed to be straightforward membrane disruption, although the process of approaching and entering the membrane has little modeling precedent. Furthermore, questions have more recently arisen regarding bacterial resistance mechanisms, and why select classes of QACs (specifically, multicationic QACs) are less prone to resistance. In order to better understand such subtleties, a series of molecular dynamics simulations were utilized to help identify these molecular determinants, directly comparing mono-, bis-, and triscationic QACs in simulated membrane intercalation models. Three distinct membranes were simulated, mimicking the surfaces of Escherichia coli and Staphylococcus aureus, as well as a neutral phospholipid control. By analyzing the resulting trajectories in the form of a timeseries analysis, insight was gleaned regarding the significant steps and interactions involved in the destabilization of phospholipid bilayers within the bacterial membranes. Finally, to more specifically probe the effect of the hydrophobic section of the amphiphile that presumably penetrates the membrane, a series of alkyl- and ester-based biscationic quaternary ammonium compounds were prepared, tested for antimicrobial activity against both Gram-positive and Gram-negative bacteria, and modeled.
Collapse
Affiliation(s)
- Saleh Alkhalifa
- Department of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, PA, 19085, USA
| | - Megan C Jennings
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Daniele Granata
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - Michael Klein
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, PA, 19085, USA
| | - Vincenzo Carnevale
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
48
|
Leitgeb AJ, Feliciano JA, Sanchez HA, Allen RA, Morrison KR, Sommers KJ, Carden RG, Wuest WM, Minbiole KPC. Further Investigations into Rigidity-Activity Relationships in BisQAC Amphiphilic Antiseptics. ChemMedChem 2020; 15:667-670. [PMID: 32022457 PMCID: PMC8322965 DOI: 10.1002/cmdc.201900662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Thirty-six biscationic quaternary ammonium compounds were efficiently synthesized in one step to examine the effect of molecular geometry of two-carbon linkers on antimicrobial activity. The synthesized compounds showed strong antimicrobial activity against a panel of both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). While the linker geometry showed only a modest correlation with antimicrobial activity, several of the synthesized bisQACs are promising potential antiseptics due to good antimicrobial activity (MIC≤2 μM) and their higher therapeutic indices compared to previously reported QACs.
Collapse
Affiliation(s)
- Austin J. Leitgeb
- Department of Chemistry, Villanova University, Villanova, PA, 19085 (USA)
| | | | - Hugo A. Sanchez
- Department of Chemistry, Villanova University, Villanova, PA, 19085 (USA)
| | - Ryan A. Allen
- Department of Chemistry, Villanova University, Villanova, PA, 19085 (USA)
| | | | - Kyle J. Sommers
- Department of Chemistry, Emory University, Atlanta, GA, 30322 (USA)
| | - Robert G. Carden
- Department of Chemistry, Villanova University, Villanova, PA, 19085 (USA)
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322 (USA)
| | | |
Collapse
|
49
|
Systematic Analysis of Efflux Pump-Mediated Antiseptic Resistance in Staphylococcus aureus Suggests a Need for Greater Antiseptic Stewardship. mSphere 2020; 5:5/1/e00959-19. [PMID: 31941819 PMCID: PMC6968660 DOI: 10.1128/msphere.00959-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
S. aureus remains a significant cause of disease within hospitals and communities. To reduce the burden of S. aureus infections, antiseptics are ubiquitously used in our daily lives. Furthermore, many antiseptic compounds are dual purpose and are found in household products. The increased abundance of antiseptic compounds has selected for S. aureus strains that carry efflux pumps that increase resistance to antiseptic compounds; however, the effect of carrying multiple pumps within S. aureus is unclear. We demonstrated that an isogenic strain carrying multiple efflux pumps had an additive resistance phenotype to cetrimide. Moreover, in a strain carrying qacA and norA, increased chlorhexidine tolerance was observed after the strain was preexposed to subinhibitory concentrations of a different common-use antiseptic. Taken together, our findings demonstrate cooperation between antiseptic resistance efflux pumps and suggest that their protective phenotype may be exacerbated by priming with subinhibitory concentrations of household antiseptics. Staphylococcus aureus-associated infections can be difficult to treat due to multidrug resistance. Thus, infection prevention is critical. Cationic antiseptics, such as chlorhexidine (CHX) and benzalkonium chloride (BKC), are liberally used in health care and community settings to prevent infection. However, increased administration of antiseptics has selected for S. aureus strains that show reduced susceptibilities to cationic antiseptics. This increased resistance has been associated with carriage of specific efflux pumps (QacA, QacC, and NorA). Since prior published studies focused on different strains and on strains carrying only a single efflux gene, the relative importance of these various systems to antiseptic resistance is difficult to ascertain. To overcome this, we engineered a collection of isogenic S. aureus strains that harbored norA, qacA, and qacC, individually or in combination. MIC assays showed that qacA was associated with increased resistance to CHX, cetrimide (CT), and BKC, qacC was associated with resistance to CT and BKC, and norA was necessary for basal-level resistance to the majority of tested antiseptics. When all three pumps were present in a single strain, an additive effect was observed in the MIC for CT. Transcriptional analysis revealed that expression of qacA and norA was significantly induced following exposure to BKC. Alarmingly, in a strain carrying qacA and norA, preexposure to BKC increased CHX tolerance. Overall, our results reveal increased antiseptic resistance in strains carrying multiple efflux pumps and indicate that preexposure to BKC, which is found in numerous daily-use products, can increase CHX tolerance. IMPORTANCES. aureus remains a significant cause of disease within hospitals and communities. To reduce the burden of S. aureus infections, antiseptics are ubiquitously used in our daily lives. Furthermore, many antiseptic compounds are dual purpose and are found in household products. The increased abundance of antiseptic compounds has selected for S. aureus strains that carry efflux pumps that increase resistance to antiseptic compounds; however, the effect of carrying multiple pumps within S. aureus is unclear. We demonstrated that an isogenic strain carrying multiple efflux pumps had an additive resistance phenotype to cetrimide. Moreover, in a strain carrying qacA and norA, increased chlorhexidine tolerance was observed after the strain was preexposed to subinhibitory concentrations of a different common-use antiseptic. Taken together, our findings demonstrate cooperation between antiseptic resistance efflux pumps and suggest that their protective phenotype may be exacerbated by priming with subinhibitory concentrations of household antiseptics.
Collapse
|
50
|
Li L, Wang H, Jia D, Wang P. Synthesis of Gemini‐QA
N
‐Chloramine Biocides for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201903585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lingdong Li
- School of Petroleum and Chemical EngineeringDalian University of Technology, State Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Hande Wang
- School of Petroleum and Chemical EngineeringDalian University of Technology, State Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Dongxue Jia
- School of Petroleum and Chemical EngineeringDalian University of Technology, State Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Pengfei Wang
- School of Petroleum and Chemical EngineeringDalian University of Technology, State Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| |
Collapse
|