1
|
Caradec T, Plé C, Sicoli G, Petrov R, Pradel E, Sobieski C, Antoine R, Orio M, Herledan A, Willand N, Hartkoorn RC. Small molecule MarR modulators potentiate metronidazole antibiotic activity in aerobic E. coli by inducing activation by the nitroreductase NfsA. J Biol Chem 2024; 300:107431. [PMID: 38825006 PMCID: PMC11259696 DOI: 10.1016/j.jbc.2024.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Antibiotic-resistant Enterobacterales pose a major threat to healthcare systems worldwide, necessitating the development of novel strategies to fight such hard-to-kill bacteria. One potential approach is to develop molecules that force bacteria to hyper-activate prodrug antibiotics, thus rendering them more effective. In the present work, we aimed to obtain proof-of-concept data to support that small molecules targeting transcriptional regulators can potentiate the antibiotic activity of the prodrug metronidazole (MTZ) against Escherichia coli under aerobic conditions. By screening a chemical library of small molecules, a series of structurally related molecules were identified that had little inherent antibiotic activity but showed substantial activity in combination with ineffective concentrations of MTZ. Transcriptome analyses, functional genetics, thermal shift assays, and electrophoretic mobility shift assays were then used to demonstrate that these MTZ boosters target the transcriptional repressor MarR, resulting in the upregulation of the marRAB operon and its downstream MarA regulon. The associated upregulation of the flavin-containing nitroreductase, NfsA, was then shown to be critical for the booster-mediated potentiation of MTZ antibiotic activity. Transcriptomic studies, biochemical assays, and electron paramagnetic resonance measurements were then used to show that under aerobic conditions, NfsA catalyzed 1-electron reduction of MTZ to the MTZ radical anion which in turn induced lethal DNA damage in E. coli. This work reports the first example of prodrug boosting in Enterobacterales by transcriptional modulators and highlights that MTZ antibiotic activity can be chemically induced under anaerobic growth conditions.
Collapse
Affiliation(s)
- Thibault Caradec
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Coline Plé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Giuseppe Sicoli
- CNRS UMR 8516, Univ. Lille, LASIRE - Laboratory of Advanced Spectroscopy on Interactions, Reactivity and Environment, Villeneuve d'Ascq, France
| | - Ravil Petrov
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Elizabeth Pradel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Cécilia Sobieski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Maylis Orio
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, Lille, France
| | - Ruben Christiaan Hartkoorn
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France.
| |
Collapse
|
2
|
Grosse C, Sigoillot M, Megalizzi V, Tanina A, Willand N, Baulard AR, Wintjens R. Crystal structure of the Mycobacterium tuberculosis VirS regulator reveals its interaction with the lead compound SMARt751. J Struct Biol 2024; 216:108090. [PMID: 38548139 DOI: 10.1016/j.jsb.2024.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Ethionamide (ETO) is a prodrug that is primarily used as a second-line agent in the treatment of tuberculosis. Among the bacterial ETO activators, the monooxygenase MymA has been recently identified, and its expression is regulated by the mycobacterial regulator VirS. The discovery of VirS ligands that can enhance mymA expression and thereby increase the antimycobacterial efficacy of ETO, has led to the development of a novel therapeutic strategy against tuberculosis. This strategy involves the selection of preclinical candidates, including SMARt751. We report the first crystal structure of the AraC-like regulator VirS, in complex with SMARt751, refined at 1.69 Å resolution. Crystals were obtained via an in situ proteolysis method in the requisite presence of SMARt751. The elucidated structure corresponds to the ligand-binding domain of VirS, adopting an α/β fold with structural similarities to H-NOX domains. Within the VirS structure, SMARt751 is situated in a completely enclosed hydrophobic cavity, where it forms hydrogen bonds with Asn11 and Asn149 as well as van der Waals contacts with various hydrophobic amino acids. Comprehensive structural comparisons within the AraC family of transcriptional regulators are conducted and analyzed to figure out the effects of the SMARt751 binding on the regulatory activity of VirS.
Collapse
Affiliation(s)
- Camille Grosse
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Maud Sigoillot
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Véronique Megalizzi
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Abdalkarim Tanina
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Alain R Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - René Wintjens
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
3
|
Gries R, Chhen J, van Gumpel E, Theobald SJ, Sonnenkalb L, Utpatel C, Metzen F, Koch M, Dallenga T, Djaout K, Baulard A, Dal Molin M, Rybniker J. Discovery of dual-active ethionamide boosters inhibiting the Mycobacterium tuberculosis ESX-1 secretion system. Cell Chem Biol 2024; 31:699-711.e6. [PMID: 38181799 DOI: 10.1016/j.chembiol.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Drug-resistant Mycobacterium tuberculosis (Mtb) remains a major public health concern requiring complementary approaches to standard anti-tuberculous regimens. Anti-virulence molecules or compounds that enhance the activity of antimicrobial prodrugs are promising alternatives to conventional antibiotics. Exploiting host cell-based drug discovery, we identified an oxadiazole compound (S3) that blocks the ESX-1 secretion system, a major virulence factor of Mtb. S3-treated mycobacteria showed impaired intracellular growth and a reduced ability to lyse macrophages. RNA sequencing experiments of drug-exposed bacteria revealed strong upregulation of a distinct set of genes including ethA, encoding a monooxygenase activating the anti-tuberculous prodrug ethionamide. Accordingly, we found a strong ethionamide boosting effect in S3-treated Mtb. Extensive structure-activity relationship experiments revealed that anti-virulence and ethionamide-boosting activity can be uncoupled by chemical modification of the primary hit molecule. To conclude, this series of dual-active oxadiazole compounds targets Mtb via two distinct mechanisms of action.
Collapse
Affiliation(s)
- Raphael Gries
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Jason Chhen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Edeltraud van Gumpel
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lindsay Sonnenkalb
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Christian Utpatel
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Fabian Metzen
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Tobias Dallenga
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany; Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Kamel Djaout
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Alain Baulard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Michael Dal Molin
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany.
| |
Collapse
|
4
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Villemagne B, Faion L, Tangara S, Willand N. Recent advances in Fragment-based strategies against tuberculosis. Eur J Med Chem 2023; 258:115569. [PMID: 37423127 DOI: 10.1016/j.ejmech.2023.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Tuberculosis remains one of the world's leading infectious disease killers, causing more than 1.5 million of deaths each year. It is therefore a priority to discover and develop new classes of anti-tuberculosis drugs to design new treatments in order to fight the increasing burden of resistant-tuberculosis. Fragment-based drug discovery (FBDD) relies on the identification of small molecule hits, further improved to high-affinity ligands through three main approaches: fragment growing, merging and linking. The aim of this review is to highlight the recent progresses made in fragment-based approaches for the discovery and development of Mycobacterium tuberculosis inhibitors in a wide range of pathways. Hit discovery, hit-to-lead optimization, SAR and binding mode when available are discussed.
Collapse
Affiliation(s)
- Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France.
| | - Léo Faion
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Salia Tangara
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| |
Collapse
|
6
|
Roubert C, Fontaine E, Upton AM. “Upcycling” known molecules and targets for drug-resistant TB. Front Cell Infect Microbiol 2022; 12:1029044. [PMID: 36275029 PMCID: PMC9582839 DOI: 10.3389/fcimb.2022.1029044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Despite reinvigorated efforts in Tuberculosis (TB) drug discovery over the past 20 years, relatively few new drugs and candidates have emerged with clear utility against drug resistant TB. Over the same period, significant technological advances and learnings around target value have taken place. This has offered opportunities to re-assess the potential for optimization of previously discovered chemical matter against Mycobacterium tuberculosis (M.tb) and for reconsideration of clinically validated targets encumbered by drug resistance. A re-assessment of discarded compounds and programs from the “golden age of antibiotics” has yielded new scaffolds and targets against TB and uncovered classes, for example beta-lactams, with previously unappreciated utility for TB. Leveraging validated classes and targets has also met with success: booster technologies and efforts to thwart efflux have improved the potential of ethionamide and spectinomycin classes. Multiple programs to rescue high value targets while avoiding cross-resistance are making progress. These attempts to make the most of known classes, drugs and targets complement efforts to discover new chemical matter against novel targets, enhancing the chances of success of discovering effective novel regimens against drug-resistant TB.
Collapse
|
7
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
8
|
Atmaram UA, Roopan SM. Biological activity of oxadiazole and thiadiazole derivatives. Appl Microbiol Biotechnol 2022; 106:3489-3505. [PMID: 35562490 PMCID: PMC9106569 DOI: 10.1007/s00253-022-11969-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The 5-membered oxadiazole and thiadiazole scaffolds are the most privileged and well-known heterocycles, being a common and essential feature of a variety of natural products and medicinal agents. These scaffolds take up the center position and are the core structural components of numerous drugs that belong to different categories. These include antimicrobial, anti-tubercular, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. In this review, we mostly talk about the isomers 1,2,4-oxadiazole and 1,3,4-thiadiazole because they have important pharmacological properties. This is partly because they are chemical and heat resistant, unlike other isomers, and they can be used as bio-isosteric replacements in drug design. We are reviewing the structural modifications of different oxadiazole and thiadiazole derivatives, more specifically, the anti-tubercular and anticancer pharmacological activities reported over the last 5 years, as we have undertaken this as a core area of research. This review article desires to do a thorough study and analysis of the recent progress made in the important biological isomers 1,2,4-oxadiazole and 1,3,4-thiadiazol. This will be a great place to start for future research. Key points • Five-membered heterocyclic compound chemistry and biological activity recent survey. • Synthesis and pharmacological evolution of 1,2,4-oxadiazole and 1,3,4-thiadiazole are discussed in detail. • The value and significance of heterocyclic compounds in the field of drug designing are highlighted. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11969-0.
Collapse
Affiliation(s)
- Upare Abhay Atmaram
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Flipo M, Frita R, Bourotte M, Martínez-Martínez MS, Boesche M, Boyle GW, Derimanov G, Drewes G, Gamallo P, Ghidelli-Disse S, Gresham S, Jiménez E, de Mercado J, Pérez-Herrán E, Porras-De Francisco E, Rullas J, Casado P, Leroux F, Piveteau C, Kiass M, Mathys V, Soetaert K, Megalizzi V, Tanina A, Wintjens R, Antoine R, Brodin P, Delorme V, Moune M, Djaout K, Slupek S, Kemmer C, Gitzinger M, Ballell L, Mendoza-Losana A, Lociuro S, Deprez B, Barros-Aguirre D, Remuiñán MJ, Willand N, Baulard AR. The small-molecule SMARt751 reverses Mycobacterium tuberculosis resistance to ethionamide in acute and chronic mouse models of tuberculosis. Sci Transl Med 2022; 14:eaaz6280. [PMID: 35507672 DOI: 10.1126/scitranslmed.aaz6280] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sensitivity of Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of M. tuberculosis have the potential to activate the prodrug ethionamide. Here, we used medicinal chemistry coupled with a phenotypic assay to select the N-acylated 4-phenylpiperidine compound series. The lead compound, SMARt751, interacted with the transcriptional regulator VirS of M. tuberculosis, which regulates the mymA operon encoding a monooxygenase that activates ethionamide. SMARt751 boosted the efficacy of ethionamide in vitro and in mouse models of acute and chronic TB. SMARt751 also restored full efficacy of ethionamide in mice infected with M. tuberculosis strains carrying mutations in the ethA gene, which cause ethionamide resistance in the clinic. SMARt751 was shown to be safe in tests conducted in vitro and in vivo. A model extrapolating animal pharmacokinetic and pharmacodynamic parameters to humans predicted that as little as 25 mg of SMARt751 daily would allow a fourfold reduction in the dose of ethionamide administered while retaining the same efficacy and reducing side effects.
Collapse
Affiliation(s)
- Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Rosangela Frita
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marilyne Bourotte
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France.,BioVersys SAS, Lille, France
| | | | - Markus Boesche
- Cellzome GmbH . A GSK Company, 69117 Heidelberg, Germany
| | - Gary W Boyle
- GSK, David Jack Centre for R&D, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - Geo Derimanov
- GSK, Clinical Pharmacology and Experimental Medicine, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Gerard Drewes
- Cellzome GmbH . A GSK Company, 69117 Heidelberg, Germany
| | - Pablo Gamallo
- GSK, Tres Cantos R&D, PTM, Tres Cantos, 28760 Madrid, Spain
| | | | - Stephanie Gresham
- GSK, David Jack Centre for R&D, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - Elena Jiménez
- GSK, Tres Cantos R&D, PTM, Tres Cantos, 28760 Madrid, Spain
| | | | | | | | - Joaquín Rullas
- GSK, Tres Cantos R&D, PTM, Tres Cantos, 28760 Madrid, Spain
| | | | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Mehdi Kiass
- National Reference Center for Tuberculosis and Mycobacteria, Sciensano, Brussels, Belgium
| | - Vanessa Mathys
- National Reference Center for Tuberculosis and Mycobacteria, Sciensano, Brussels, Belgium
| | - Karine Soetaert
- National Reference Center for Tuberculosis and Mycobacteria, Sciensano, Brussels, Belgium
| | - Véronique Megalizzi
- Microbiology, Bioorganic and Macromolecular Chemistry, Facult. de Pharmacie, Universit. Libre de Bruxelles, Brussels, Belgium
| | - Abdalkarim Tanina
- Microbiology, Bioorganic and Macromolecular Chemistry, Facult. de Pharmacie, Universit. Libre de Bruxelles, Brussels, Belgium
| | - René Wintjens
- Microbiology, Bioorganic and Macromolecular Chemistry, Facult. de Pharmacie, Universit. Libre de Bruxelles, Brussels, Belgium
| | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Vincent Delorme
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Martin Moune
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Kamel Djaout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Slupek
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | | | - Lluis Ballell
- GSK, Tres Cantos R&D, PTM, Tres Cantos, 28760 Madrid, Spain
| | | | | | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | | | | | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Alain R Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| |
Collapse
|
10
|
Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O’Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021; 14:ph14121278. [PMID: 34959677 PMCID: PMC8708472 DOI: 10.3390/ph14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 29th Annual GP2A (Group for the Promotion of Pharmaceutical chemistry in Academia) Conference was a virtual event this year due to the COVID-19 pandemic and spanned three days from Wednesday 25 to Friday 27 August 2021. The meeting brought together an international delegation of researchers with interests in medicinal chemistry and interfacing disciplines. Abstracts of keynote lectures given by the 10 invited speakers, along with those of the 8 young researcher talks and the 50 flash presentation posters, are included in this report. Like previous editions, the conference was a real success, with high-level scientific discussions on cutting-edge advances in the fields of pharmaceutical chemistry.
Collapse
Affiliation(s)
| | - Laura Carro
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Florence O. McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Vânia M. Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Niamh O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Susan E. Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOmer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., F-14032 Caen, France;
| | - Pascal Marchand
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-253-009-155
| |
Collapse
|
11
|
Deprez B, Bosc D, Charton J, Couturier C, Deprez-Poulain R, Flipo M, Leroux F, Villemagne B, Willand N. Molecular Design in Practice: A Review of Selected Projects in a French Research Institute That Illustrates the Link between Chemical Biology and Medicinal Chemistry. Molecules 2021; 26:6083. [PMID: 34641626 PMCID: PMC8512331 DOI: 10.3390/molecules26196083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical biology and drug discovery are two scientific activities that pursue different goals but complement each other. The former is an interventional science that aims at understanding living systems through the modulation of its molecular components with compounds designed for this purpose. The latter is the art of designing drug candidates, i.e., molecules that act on selected molecular components of human beings and display, as a candidate treatment, the best reachable risk benefit ratio. In chemical biology, the compound is the means to understand biology, whereas in drug discovery, the compound is the goal. The toolbox they share includes biological and chemical analytic technologies, cell and whole-body imaging, and exploring the chemical space through state-of-the-art design and synthesis tools. In this article, we examine several tools shared by drug discovery and chemical biology through selected examples taken from research projects conducted in our institute in the last decade. These examples illustrate the design of chemical probes and tools to identify and validate new targets, to quantify target engagement in vitro and in vivo, to discover hits and to optimize pharmacokinetic properties with the control of compound concentration both spatially and temporally in the various biophases of a biological system.
Collapse
Affiliation(s)
- Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Julie Charton
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Cyril Couturier
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| |
Collapse
|
12
|
Moureu S, Caradec T, Trivelli X, Drobecq H, Beury D, Bouquet P, Caboche S, Desmecht E, Maurier F, Muharram G, Villemagne B, Herledan A, Hot D, Willand N, Hartkoorn RC. Rubrolone production by Dactylosporangium vinaceum: biosynthesis, modulation and possible biological function. Appl Microbiol Biotechnol 2021; 105:5541-5551. [PMID: 34189614 DOI: 10.1007/s00253-021-11404-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Rare actinomycetes are likely treasure troves for bioactive natural products, and it is therefore important that we enrich our understanding of biosynthetic potential of these relatively understudied bacteria. Dactylosporangium are a genus of such rare Actinobacteria that are known to produce a number of important antibacterial compounds, but for which there are still no fully assembled reference genomes, and where the extent of encoded biosynthetic capacity is not defined. Dactylosporangium vinaceum (NRRL B-16297) is known to readily produce a deep wine red-coloured diffusible pigment of unknown origin, and it was decided to define the chemical identity of this natural product pigment, and in parallel use whole genome sequencing and transcriptional analysis to lay a foundation for understanding the biosynthetic capacity of these bacteria. Results show that the produced pigment is made of various rubrolone conjugates, the spontaneous product of the reactive pre-rubrolone, produced by the bacterium. Genome and transcriptome analysis identified the highly expressed biosynthetic gene cluster (BGC) for pre-rubrolone. Further analysis of the fully assembled genome found it to carry 24 additional BGCs, of which the majority were poorly transcribed, confirming the encoded capacity of this bacterium to produce natural products but also illustrating the main bottleneck to exploiting this capacity. Finally, analysis of the potential environmental role of pre-rubrolone found it to react with a number of amine containing antibiotics, antimicrobial peptides and siderophores pointing to its potential role as a "minesweeper" of xenobiotic molecules in the bacterial environment. KEY POINTS: • D. vinaceum encodes many BGC, but the majority are transcriptionally silent. • Chemical screening identifies molecules that modulate rubrolone production. • Pre-rubrolone is efficient at binding and inactivating many natural antibiotics.
Collapse
Affiliation(s)
- Sophie Moureu
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Thibault Caradec
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Xavier Trivelli
- Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000, Lille, France
| | - Hervé Drobecq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Segolene Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Eva Desmecht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florence Maurier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Ghaffar Muharram
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Ruben Christiaan Hartkoorn
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
13
|
Gupta P, Thomas SE, Zaidan SA, Pasillas MA, Cory-Wright J, Sebastián-Pérez V, Burgess A, Cattermole E, Meghir C, Abell C, Coyne AG, Jacobs WR, Blundell TL, Tiwari S, Mendes V. A fragment-based approach to assess the ligandability of ArgB, ArgC, ArgD and ArgF in the L-arginine biosynthetic pathway of Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:3491-3506. [PMID: 34194673 PMCID: PMC8220418 DOI: 10.1016/j.csbj.2021.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
The L-arginine biosynthesis pathway consists of eight enzymes that catalyse the conversion of L-glutamate to L-arginine. Arginine auxotrophs (argB/argF deletion mutants) of Mycobacterium tuberculosis are rapidly sterilised in mice, while inhibition of ArgJ with Pranlukast was found to clear chronic M. tuberculosis infection in a mouse model. Enzymes in the arginine biosynthetic pathway have therefore emerged as promising targets for anti-tuberculosis drug discovery. In this work, the ligandability of four enzymes of the pathway ArgB, ArgC, ArgD and ArgF is assessed using a fragment-based approach. We identify several hits against these enzymes validated with biochemical and biophysical assays, as well as X-ray crystallographic data, which in the case of ArgB were further confirmed to have on-target activity against M. tuberculosis. These results demonstrate the potential for more enzymes in this pathway to be targeted with dedicated drug discovery programmes.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sherine E. Thomas
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shaymaa A. Zaidan
- Department of Biological Sciences & Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Maria A. Pasillas
- Department of Biological Sciences & Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| | - James Cory-Wright
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Víctor Sebastián-Pérez
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ailidh Burgess
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Emma Cattermole
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Clio Meghir
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anthony G. Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sangeeta Tiwari
- Department of Biological Sciences & Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Vítor Mendes
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
14
|
Guieu B, Jourdan JP, Dreneau A, Willand N, Rochais C, Dallemagne P. Desirable drug-drug interactions or when a matter of concern becomes a renewed therapeutic strategy. Drug Discov Today 2020; 26:315-328. [PMID: 33253919 DOI: 10.1016/j.drudis.2020.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Drug-drug interactions are sometimes considered to be detrimental and responsible for adverse effects. In some cases, however, some are stakeholders of the efficiency of the treatment and this combinatorial strategy is exploited by some drug associations, including levodopa (L-Dopa) and dopadecarboxylase inhibitors, β-lactam antibiotics and clavulanic acid, 5-fluorouracil (5-FU) and folinic acid, and penicillin and probenecid. More recently, some drug-drug combinations have been integrated in modern drug design strategies, aiming to enhance the efficiency of already marketed drugs with new compounds acting not only as synergistic associations, but also as real boosters of activity. In this review, we provide an update of examples of such strategies, with a special focus on microbiology and oncology.
Collapse
Affiliation(s)
- Benjamin Guieu
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Jean-Pierre Jourdan
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France; Department of Pharmacy, Caen University Hospital, Caen, F-14000, France
| | - Aurore Dreneau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Christophe Rochais
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Patrick Dallemagne
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.
| |
Collapse
|
15
|
Structure-Based Drug Design for Tuberculosis: Challenges Still Ahead. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-based and computer-aided drug design approaches are commonly considered to have been successful in the fields of cancer and antiviral drug discovery but not as much for antibacterial drug development. The search for novel anti-tuberculosis agents is indeed an emblematic example of this trend. Although huge efforts, by consortiums and groups worldwide, dramatically increased the structural coverage of the Mycobacterium tuberculosis proteome, the vast majority of candidate drugs included in clinical trials during the last decade were issued from phenotypic screenings on whole mycobacterial cells. We developed here three selected case studies, i.e., the serine/threonine (Ser/Thr) kinases—protein kinase (Pkn) B and PknG, considered as very promising targets for a long time, and the DNA gyrase of M. tuberculosis, a well-known, pharmacologically validated target. We illustrated some of the challenges that rational, target-based drug discovery programs in tuberculosis (TB) still have to face, and, finally, discussed the perspectives opened by the recent, methodological developments in structural biology and integrative techniques.
Collapse
|