1
|
Ma Z, Pan S, Yang Y, Zeng Y, Wang B, Wei Y, Tao L. Heterocycle-based dynamic covalent chemistry for dynamic functional materials. Nat Commun 2025; 16:3679. [PMID: 40246860 PMCID: PMC12006384 DOI: 10.1038/s41467-025-59027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
Dynamic covalent chemistry, which renders reusable and degradable thermoset polymers, is a promising tool for solving the global problem of plastic pollution. Although dynamic covalent chemistry can construct dynamic polymer networks, it rarely introduces other functions into polymers, which limits the development of dynamic functional materials. Herein, we develop heterocycle-based dynamic covalent chemistry and demonstrate the reversibility of the aza-Michael addition reaction between functional heterocycle dihydropyrimidin-2(1H)-thione and electron-deficient olefins. Our method produces a degradable linear polymer and recyclable and self-healable crosslinked polymers similar to traditional dynamic covalent chemistry, but the heterocycles endow the polymer with excellent ultraviolet-blocking and high-energy blue light-blocking abilities, and tunable fluorescence and phosphorescence properties. These are difficult to create with ordinary dynamic covalent chemistry. This proof-of-concept study provides insights into heterocycle-based dynamic reactions, and may prompt the development of dynamic chemistry and dynamic functional materials.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
2
|
Crolais AE, Chen C, Gao J, Dolinski ND, Xu Y, de Pablo JJ, Snyder SA, Rowan SJ. A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions. J Org Chem 2025; 90:4037-4045. [PMID: 40053380 DOI: 10.1021/acs.joc.4c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The thia-Michael reaction, i.e., the addition of a thiol to an α,β-unsaturated carbonyl moiety, has recently gained significant attention within the field of dynamic covalent chemistry. Interestingly, including an additional electron-withdrawing group at the α-position of the Michael acceptor can result in room temperature (rt), catalyst-free dynamic thia-Michael reactions. Importantly, the electronic nature of the Michael acceptor can be used to tune the equilibrium constant (Keq) of these reactions. Herein we report how sterics can be used to enhance the Keq of these rt dynamic bonds. A series of benzalcyanoacetate, benzalcyanoacetamide, and benzalisoxazolone-based Michael acceptors with varying substituents in the ortho-position of their β-phenyl rings were investigated. By placing substituents in such a position, out-of-plane twisting was created between the β-phenyl ring and the α,β-unsaturated carbonyl, raising the overall energy of the reactants and leading to significant increases in Keq. By modulating the size of the ortho-substituent, the magnitude of Keq could be increased by 1.3 to 6.8 times relative to their para-substituted counterparts. The ortho-substituted acceptors could still be tuned electronically through the para-position, allowing access to r.t., dynamic covalent bonds whose Keq could be tuned from 10 to 1.8 × 106 M-1 across the three acceptor families.
Collapse
Affiliation(s)
- Alex E Crolais
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuqiao Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Junhao Gao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Yinan Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemical Engineering, Tandon School of Engineering, Department of Physics, and Courant Institute, New York University, Brooklyn, New York 11201, United States
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Severson SM, Ren BH, Cayzer M, Keresztes I, Johnson ML, Lu XB, Coates GW. Mechanism-Inspired Synthesis of Poly(alkyl malonates) via Alternating Copolymerization of Epoxides and Meldrum's Acid Derivatives. J Am Chem Soc 2025; 147:801-810. [PMID: 39694538 DOI: 10.1021/jacs.4c13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Direct incorporation of malonate units into polymer backbones is a synthetic challenge. Herein, we report the alternating and controlled anionic copolymerization of epoxides and Meldrum's acid (MA) derivatives to access poly(alkyl malonates) using (N,N'-bis(salicylidene)phenylenediamine)AlCl and a tris(dialkylamino)cyclopropenium chloride cocatalyst. This unique copolymerization yields a malonate-containing repeat unit while releasing a small molecule upon MA-derivative ring-opening. Mechanistic and computational studies reveal that the nature of the small molecule released influences overall polymerization kinetics, side reaction behavior, and molecular weight control. Controlled copolymerization of MA derivatives with a range of epoxides ultimately yields a library of new poly(alkyl malonates) with diverse and tunable thermal properties.
Collapse
Affiliation(s)
- Sarah M Severson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Bai-Hao Ren
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - May Cayzer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Mary L Johnson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
4
|
Menasce S, Libanori R, Coulter F, Studart AR. 3D Printing of Strong and Room-Temperature Reprocessable Silicone Vitrimers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69919-69928. [PMID: 39628294 DOI: 10.1021/acsami.4c16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Silicones find use in a myriad of applications from sealants and adhesives to cooking utensils and medical implants. However, state-of-the-art silicone parts fall short in terms of shape complexity and reprocessability. Advances in three-dimensional printing and the discovery of vitrimers have recently opened opportunities for shaping and recycling of silicone objects. Here, we report the 3D printing via direct ink writing of silicone vitrimers into complex-shaped parts with high strength and room-temperature reprocessability. The reprocessing properties of the printed objects result from the adaptive nature of the silicone vitrimer, which can deform under stress without losing its network connectivity. Rheological and mechanical experiments reveal that printable inks can be tuned to generate strong parts with high creep resistance and room-temperature reprocessability, two properties that are usually challenging to reconcile in vitrimers. By combining printability, high strength, and room-temperature reprocessability, the reported silicone vitrimers represent an attractive sustainable alternative to currently available elastomers in a broad range of established and prospective applications.
Collapse
Affiliation(s)
- Stefano Menasce
- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Rafael Libanori
- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Fergal Coulter
- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Zhang M, Chen S, Xu G, Lu W, Li J, Zhang J, Zhang Z, Zhu J, Pan X. Ultra-Fast Selenol-Yne Click (SYC) Reaction Enables Poly(selenoacetal) Covalent Adaptable Network Formation. Angew Chem Int Ed Engl 2024; 63:e202410245. [PMID: 38887146 DOI: 10.1002/anie.202410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The emergence of covalent adaptable networks (CANs) based on dynamic covalent bonds (DCBs) presents a promising avenue for achieving resource recovery and utilization. In this study, we discovered a dynamic covalent bond called selenacetal, which is obtained through a double click reaction between selenol and activated alkynes. Density functional theory (DFT) calculations demonstrated that the ΔG for the formation of selenoacetals ranges from 12 to 18 kJ mol-1, suggesting its potential for dynamic reversibility. Dynamic exchange experiments involving small molecules and polymers provide substantial evidence supporting the dynamic exchange properties of selenoacetals. By utilizing this highly efficient click reaction, we successfully synthesized dynamic materials based on selenoacetal with remarkable reprocessing capabilities without any catalysts. These materials exhibit chemical recycling under alkaline conditions, wherein selenoacetal (SA) can decompose into active enone selenide (ES) and diselenides. Reintroducing selenol initiates a renewed reaction with the enone selenide, facilitating material recycling and yielding a newly developed dynamic material exhibiting both photo- and thermal responsiveness. The results underscore the potential of selenoacetal polymers in terms of recyclability and selective degradation, making them a valuable addition to conventional covalent adaptable networks.
Collapse
Affiliation(s)
- Mengyao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sisi Chen
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guichuan Xu
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weihong Lu
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Li P, Jiang X, Gu R, Tian H, Qu DH. Catalyst-Free Dynamic Covalent C=C/C=N Metathesis Reaction for Associative Covalent Adaptable Networks. Angew Chem Int Ed Engl 2024; 63:e202406708. [PMID: 38828797 DOI: 10.1002/anie.202406708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds. The obtained plasticity enables recycle without altering the chemical structure or mechanical properties, and is also found to be vital for achieving shape memory functions with complex spatial structures. This metathesis reaction as a new dynamic crosslinker of polymer networks has the potential to accelerate the ongoing exploration of malleable and functional thermoset polymers.
Collapse
Affiliation(s)
- Pengyun Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xin Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
7
|
Zheng J, Feng H, Zhang X, Zheng J, Ng JKW, Wang S, Hadjichristidis N, Li Z. Advancing Recyclable Thermosets through C═C/C═N Dynamic Covalent Metathesis Chemistry. J Am Chem Soc 2024; 146:21612-21622. [PMID: 39046371 DOI: 10.1021/jacs.4c05346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Thermoset polymers have become integral to our daily lives due to their exceptional durability, making them feasible for a myriad of applications; however, this ubiquity also raises serious environmental concerns. Covalent adaptable networks (CANs) with dynamic covalent linkages that impart efficient reprocessability and recyclability to thermosets have garnered increasing attention. While various dynamic exchange reactions have been explored in CANs, many rely on the stimuli of active nucleophilic groups and/or catalysts, introducing performance instability and escalating the initial investment. Herein, we propose a new direct and catalyst-free C═C/C═N metathesis reaction between α-cyanocinnamate and aldimine as a novel dynamic covalent motif for constructing recyclable thermosets. This chemistry offers mild reaction conditions (room temperature and catalyst-free), ensuring high yields and simple isolation procedures. By incorporating dynamic C═C/C═N linkages into covalently cross-linked polymer networks, we obtained dynamic thermosets that exhibit both malleability and reconfigurability. The resulting tunable dynamic properties, coupled with the high thermal stability and recyclability of the C═C/C═N linkage-based networks, enrich the toolbox of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Hongzhi Feng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology, and Research (A*STAR), Singapore 138632, Republic of Singapore
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology, and Research (A*STAR), Singapore 138632, Republic of Singapore
| | - Jeffrey Kang Wai Ng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| |
Collapse
|
8
|
Chen J, Li L, Luo J, Meng L, Zhao X, Song S, Demchuk Z, Li P, He Y, Sokolov AP, Cao PF. Covalent adaptable polymer networks with CO 2-facilitated recyclability. Nat Commun 2024; 15:6605. [PMID: 39098918 PMCID: PMC11298553 DOI: 10.1038/s41467-024-50738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Cross-linked polymers with covalent adaptable networks (CANs) can be reprocessed under external stimuli owing to the exchangeability of dynamic covalent bonds. Optimization of reprocessing conditions is critical since increasing the reprocessing temperature costs more energy and even deteriorates the materials, while reducing the reprocessing temperature via molecular design usually narrows the service temperature range. Exploiting CO2 gas as an external trigger for lowering the reprocessing barrier shows great promise in low sample contamination and environmental friendliness. Herein, we develop a type of CANs incorporated with ionic clusters that achieve CO2-facilitated recyclability without sacrificing performance. The presence of CO2 can facilitate the rearrangement of ionic clusters, thus promoting the exchange of dynamic bonds. The effective stress relaxation and network rearrangement enable the system with rapid recycling under CO2 while retaining excellent mechanical performance in working conditions. This work opens avenues to design recyclable polymer materials with tunable dynamics and responsive recyclability.
Collapse
Affiliation(s)
- Jiayao Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiancheng Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Lingyao Meng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Xiao Zhao
- GCP Applied Technologies, Wilmington, MA, 01887, USA
| | - Shenghan Song
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zoriana Demchuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Pei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Su YL, Xiong W, Yue L, Paul MK, Otte KS, Bacsa J, Qi HJ, Gutekunst WR. Michael Addition-Elimination Ring-Opening Polymerization. J Am Chem Soc 2024; 146:18074-18082. [PMID: 38906845 PMCID: PMC11228986 DOI: 10.1021/jacs.4c05054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
A cyclic thioenone system capable of controlled ring-opening polymerization (ROP) is presented that leverages a reversible Michael addition-elimination (MAE) mechanism. The cyclic thioenone monomers are easy to access and modify and for the first time incorporate the dynamic reversibility of MAE with chain-growth polymerization. This strategy features mild polymerization conditions, tunable functionalities, controlled molecular weights (Mn), and narrow dispersities. The obtained polythioenones exhibit excellent optical transparency and good mechanical properties and can be depolymerized to recover the original monomers. Density functional theory (DFT) calculations of model reactions offer insights into the role of monomer conformation in the polymerization process, as well as explaining divergent reactivity observed in seven-membered thiepane (TP) and eight-membered thiocane (TC) ring systems. Collectively, these findings demonstrate the feasibility of MAE mechanisms in ring-opening polymerization and provide important guidelines toward future monomer designs.
Collapse
Affiliation(s)
- Yong-Liang Su
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Wei Xiong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Liang Yue
- School
of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Mckinley K. Paul
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Kaitlyn S. Otte
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - H. Jerry Qi
- School
of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Cooper JC, Paul JE, Ramlawi N, Saengow C, Sharma A, Suslick BA, Ewoldt RH, Sottos NR, Moore JS. Reprocessability in Engineering Thermosets Achieved Through Frontal Ring-Opening Metathesis Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402627. [PMID: 38652482 DOI: 10.1002/adma.202402627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Indexed: 04/25/2024]
Abstract
While valued for their durability and exceptional performance, crosslinked thermosets are challenging to recycle and reuse. Here, inherent reprocessability in industrially relevant polyolefin thermosets is unveiled. Unlike prior methods, this approach eliminates the need to introduce exchangeable functionality to regenerate the material, relying instead on preserving the activity of the metathesis catalyst employed in the curing reaction. Frontal ring-opening metathesis polymerization (FROMP) proves critical to preserving this activity. Conditions controlling catalytic viability are explored to successfully reclaim performance across multiple generations of material, thus demonstrating long-term reprocessability. This straightforward and scalable remolding strategy is poised for widespread adoption. Given the anticipated growth in polyolefin thermosets, these findings represent an important conceptual advance in the pursuit of a fully circular lifecycle for thermoset polymers.
Collapse
Affiliation(s)
- Julian C Cooper
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justine E Paul
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nabil Ramlawi
- Department of Mechanical Science and Engineering, University of Illinois Urban-Champaign, Urbana, IL, 61801, USA
| | - Chaimongkol Saengow
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urban-Champaign, Urbana, IL, 61801, USA
| | - Anisha Sharma
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Randy H Ewoldt
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urban-Champaign, Urbana, IL, 61801, USA
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
11
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Karatrantos AV, Couture O, Hesse C, Schmidt DF. Molecular Simulation of Covalent Adaptable Networks and Vitrimers: A Review. Polymers (Basel) 2024; 16:1373. [PMID: 38794566 PMCID: PMC11125108 DOI: 10.3390/polym16101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Covalent adaptable networks and vitrimers are novel polymers with dynamic reversible bond exchange reactions for crosslinks, enabling them to modulate their properties between those of thermoplastics and thermosets. They have been gathering interest as materials for their recycling and self-healing properties. In this review, we discuss different molecular simulation efforts that have been used over the last decade to investigate and understand the nanoscale and molecular behaviors of covalent adaptable networks and vitrimers. In particular, molecular dynamics, Monte Carlo, and a hybrid of molecular dynamics and Monte Carlo approaches have been used to model the dynamic bond exchange reaction, which is the main mechanism of interest since it controls both the mechanical and rheological behaviors. The molecular simulation techniques presented yield sufficient results to investigate the structure and dynamics as well as the mechanical and rheological responses of such dynamic networks. The benefits of each method have been highlighted. The use of other tools such as theoretical models and machine learning has been included. We noticed, amongst the most prominent results, that stress relaxes as the bond exchange reaction happens, and that at temperatures higher than the glass transition temperature, the self-healing properties are better since more bond BERs are observed. The lifetime of dynamic covalent crosslinks follows, at moderate to high temperatures, an Arrhenius-like temperature dependence. We note the modeling of certain properties like the melt viscosity with glass transition temperature and the topology freezing transition temperature according to a behavior ruled by either the Williams-Landel-Ferry equation or the Arrhenius equation. Discrepancies between the behavior in dissociative and associative covalent adaptable networks are discussed. We conclude by stating which material parameters and atomistic factors, at the nanoscale, have not yet been taken into account and are lacking in the current literature.
Collapse
Affiliation(s)
- Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
| | - Olivier Couture
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Channya Hesse
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Daniel F. Schmidt
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
| |
Collapse
|
13
|
Menasce S, Libanori R, Coulter FB, Studart AR. 3D-Printed Architectured Silicones with Autonomic Self-Healing and Creep-Resistant Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306494. [PMID: 38176686 DOI: 10.1002/adma.202306494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Self-healing silicones that are able to restore functionalities and extend the lifetime of soft devices hold great potential in many applications. However, currently available silicones need to be triggered to self-heal or suffer from creep-induced irreversible deformation during use. Here, a platform is proposed to design and print silicone objects that are programmed at the molecular and architecture levels to achieve self-healing at room temperature while simultaneously resisting creep. At the molecular scale, dioxaborolanes moieties are incorporated into silicones to synthesize self-healing vitrimers, whereas conventional covalent bonds are exploited to make creep-resistant elastomers. When combined into architectured printed parts at a coarser length scale, the layered materials exhibit fast healing at room temperature without compromising the elastic recovery obtained from covalent polymer networks. A patient-specific vascular phantom and fluidic chambers are printed to demonstrate the potential of architectured silicones in creating damage-resilient functional devices using molecularly designed elastomer materials.
Collapse
Affiliation(s)
- Stefano Menasce
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Rafael Libanori
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Fergal Brian Coulter
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
14
|
Boynton NR, Dennis JM, Dolinski ND, Lindberg CA, Kotula AP, Grocke GL, Vivod SL, Lenhart JL, Patel SN, Rowan SJ. Accessing pluripotent materials through tempering of dynamic covalent polymer networks. Science 2024; 383:545-551. [PMID: 38300995 DOI: 10.1126/science.adi5009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.
Collapse
Affiliation(s)
- Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Joseph M Dennis
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Anthony P Kotula
- Materials Science and Engineering Division, National Institutes of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Joseph L Lenhart
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Dolinski ND, Tao R, Boynton NR, Kotula AP, Lindberg CA, Petersen KJ, Forster AM, Rowan SJ. Connecting Molecular Exchange Dynamics to Stress Relaxation in Phase-Separated Dynamic Covalent Networks. ACS Macro Lett 2024:174-180. [PMID: 38251912 DOI: 10.1021/acsmacrolett.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A suite of phase separated dynamic covalent networks based on highly tunable dynamic benzalcyanoacetate (BCA) thia-Michael acceptors are investigated. In situ kinetic studies on small molecule model systems are used in conjunction with macroscopic characterization of phase stability and stress relaxation to understand how the molecular dynamics relate to relaxation modes. Electronic modification of the BCA unit strongly impacts the exchange dynamics (particularly the rate of dissociation) and the overall equilibrium constant (Keq) of the system, with electron-withdrawing groups leading to decreased dissociation rate and increased Keq. Critically, below a chemistry-defined temperature cutoff (related to the stability of the hard phase domains), the stress relaxation behavior of these phase separated materials is dominated by the molecular exchange dynamics, allowing for networks with a tailored thermomechanical response.
Collapse
Affiliation(s)
- Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ran Tao
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Anthony P Kotula
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Kyle J Petersen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron M Forster
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60434, United States
| |
Collapse
|
16
|
Meyersohn M, Haque FM, Hillmyer MA. Dynamic Aliphatic Polyester Elastomers Crosslinked with Aliphatic Dianhydrides. ACS POLYMERS AU 2023; 3:365-375. [PMID: 37841953 PMCID: PMC10571103 DOI: 10.1021/acspolymersau.3c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 10/17/2023]
Abstract
Chemically crosslinked elastomers are a class of polymeric materials with properties that render them useful as adhesives, sealants, and in other engineering applications. Poly(γ-methyl-ε-caprolactone) (PγMCL) is a hydrolytically degradable and compostable aliphatic polyester that can be biosourced and exhibits competitive mechanical properties to traditional elastomers when chemically crosslinked. A typical limitation of chemically crosslinked elastomers is that they cannot be reprocessed; however, the incorporation of dynamic covalent bonds can allow for bonds to reversibly break and reform under an external stimulus, usually heat. In this work, we study the dynamic behavior and mechanical properties of PγMCL elastomers synthesized from aliphatic dianhydride crosslinkers. The crosslinked elastomers in this work were synthesized using the commercially available crosslinkers, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride and three-arm hydroxy-telechelic PγMCL star polymers. Stress relaxation experiments on the crosslinked networks showed an Arrhenius dependence of viscosity with temperature with an activation energy of 118 ± 8 kJ/mol, which agrees well with the activation energy of transesterification exchange chemistry obtained from small molecule model studies. Dynamic mechanical thermal analysis and rheological experiments confirmed the dynamic nature of the networks and provided insight into the mechanism of exchange (i.e., associative or dissociative). Tensile testing showed that these materials can exhibit high strains at break and low Young's moduli, characteristic of soft and strong elastomers. By controlling the exchange chemistry and understanding the effect of macromolecular structure on mechanical properties, we prepared the high-performance elastomers that can be potentially reprocessed at moderately elevated temperatures.
Collapse
Affiliation(s)
- Marianne
S. Meyersohn
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Farihah M. Haque
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Stewart KA, Lessard JJ, Cantor AJ, Rynk JF, Bailey LS, Sumerlin BS. High-performance polyimine vitrimers from an aromatic bio-based scaffold. RSC APPLIED POLYMERS 2023; 1:10-18. [PMID: 38013907 PMCID: PMC10540462 DOI: 10.1039/d3lp00019b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 11/29/2023]
Abstract
Bio-based vitrimers represent a promising class of thermosetting polymer materials, pairing the recyclability of dynamic covalent networks with the renewability of non-fossil fuel feedstocks. Vanillin, a low-cost lignin derivative, enables facile construction of polyimine networks marked by rapid exchange and sensitivity to acid-catalyzed hydrolysis. Furthermore, the aromatic structure makes it a promising candidate for the design of highly aromatic networks capable of high-performance thermal and dimensional stability. Such properties are paramount in polymeric thermal protection systems. Here, we report on the fabrication of polyimine networks with particularly high aromatic content from a novel trifunctional vanillin monomer prepared from the nucleophilic aromatic substitution of perfluoropyridine (PFP) on a multi-gram scale (>20 g) in high yield (86%). The trifunctional aromatic scaffold was then crosslinked with various diamines to demonstrate tunable viscoelastic behavior and thermal properties, with glass transition temperatures (Tg) ranging from 9 to 147 °C, degradation temperatures (5% mass loss) up to approximately 370 °C, and excellent char yields up to 68% at 650 °C under nitrogen. Moreover, the vitrimers displayed mechanical reprocessability over five destruction/healing cycles and rapid chemical recyclability following acidic hydrolysis at mild temperatures. Our findings indicate that vitrimers possessing tunable properties and high-performance thermomechanical behavior can be easily constructed from vanillin and electrophilic aromatic scaffolds for applications in heat-shielding materials and ablative coatings.
Collapse
Affiliation(s)
- Kevin A Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Jacob J Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Alexander J Cantor
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - John F Rynk
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Laura S Bailey
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| |
Collapse
|
18
|
Zhang V, Accardo JV, Kevlishvili I, Woods EF, Chapman SJ, Eckdahl CT, Stern CL, Kulik HJ, Kalow JA. Tailoring Dynamic Hydrogels by Controlling Associative Exchange Rates. Chem 2023; 9:2298-3317. [PMID: 37790656 PMCID: PMC10545375 DOI: 10.1016/j.chempr.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dithioalkylidenes are a newly-developed class of conjugate acceptors that undergo thiol exchange via an associative mechanism, enabling decoupling of key material properties for sustainability, biomedical, and sensing applications. Here, we show that the exchange rate is highly sensitive to the structure of the acceptor and tunable over four orders of magnitude in aqueous environments. Cyclic acceptors exchange rapidly, from 0.95 to 15.6 M-1s-1, while acyclic acceptors exchange between 3.77x10-3 and 2.17x10-2 M-1s-1. Computational, spectroscopic, and structural data suggest that cyclic acceptors are more reactive than their acyclic counterparts because of resonance stabilization of the tetrahedral exchange intermediate. We parametrize molecular reactivity with respect to computed descriptors of the electrophilic site and leverage this insight to design a compound with intermediate characteristics. Lastly, we incorporate this dynamic bond into hydrogels and demonstrate that the characteristic stress relaxation time (τ) is directly proportional to molecular kex.
Collapse
Affiliation(s)
- Vivian Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Joseph. V Accardo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA, USA
| | - Eliot F. Woods
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Steven J. Chapman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | | | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA, USA
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
- Lead contact
| |
Collapse
|
19
|
Lu H, Ye H, Zhang M, Liu Z, Zou H, You L. Photoswitchable dynamic conjugate addition-elimination reactions as a tool for light-mediated click and clip chemistry. Nat Commun 2023; 14:4015. [PMID: 37419874 DOI: 10.1038/s41467-023-39669-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Phototriggered click and clip reactions can endow chemical processes with high spatiotemporal resolution and sustainability, but are challenging with a limited scope. Herein we report photoswitchable reversible covalent conjugate addition-elimination reactions toward light-addressed modular covalent connection and disconnection. By coupling between photochromic dithienylethene switch and Michael acceptors, the reactivity of Michael reactions was tuned through closed-ring and open-ring forms of dithienylethene, allowing switching on and off dynamic exchange of a wide scope of thiol and amine nucleophiles. The breaking of antiaromaticity in transition states and enol intermediates of addition-elimination reactions provides the driving force for photoinduced change in kinetic barriers. To showcase the versatile application, light-mediated modification of solid surfaces, regulation of amphiphilic assemblies, and creation/degradation of covalent polymers on demand were achieved. The manipulation of dynamic click/clip reactions with light should set the stage for future endeavors, including responsive assemblies, biological delivery, and intelligent materials.
Collapse
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Meilan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Zimu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350002, Fuzhou, Fujian, China.
| |
Collapse
|
20
|
Kariyawasam LS, Highmoore JF, Yang Y. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization. Angew Chem Int Ed Engl 2023; 62:e202303039. [PMID: 36988027 DOI: 10.1002/anie.202303039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
In a sustainable circular economy, polymers capable of chemical recycling to monomers are highly desirable. We report an efficient monomer-polymer recycling of polydithioacetal (PDTA). Pristine PDTAs were readily synthesized from 3,4,5-trimethoxybenzaldehyde and alkyl dithiols. They then exhibited depolymerizability via ring-closing depolymerization into macrocycles, followed by entropy-driven ring-opening polymerization (ED-ROP) to reform the virgin polymers. High conversions were obtained for both the forward and reverse reactions. Once crosslinked, the network exhibited thermal reprocessability enabled by acid-catalyzed dithioacetal exchange. The network retained the recyclability into macrocyclic monomers in solvent which can repolymerize to regenerate the crosslinked network. These results demonstrated PDTA as a new molecular platform for the design of recyclable polymers and the advantages of ED-ROP for which polymerization is favored at higher temperatures.
Collapse
Affiliation(s)
| | | | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
21
|
Khedaioui DZ, Tribout C, Bratasanu J, D'Agosto F, Boisson C, Montarnal D. Deciphering Siloxane Bond Exchanges: From a Molecular Study to Vitrimerization and Recycling of Silicone Elastomers. Angew Chem Int Ed Engl 2023; 62:e202300225. [PMID: 36695741 DOI: 10.1002/anie.202300225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
The activity of various additives promoting siloxane equilibration reactions is examined and quantified on model compounds. We found in particular that the "superbase" phosphazene derivative P4 -t Bu can promote very fast exchanges (a few seconds at 90 °C) even at low concentration (<0.1 wt %). We demonstrate that permanent silicone networks can be transformed into reprocessable and recyclable dynamic networks by mere introduction of such additives. Annealing at high temperature degrades the additives and deactivates the dynamic features of the silicone networks, reverting them back into permanent networks. A simple rheological experiment and the corresponding model allow to extract the critical kinetic parameters to predict and control such deactivations.
Collapse
Affiliation(s)
- Douriya Z Khedaioui
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Camille Tribout
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Julie Bratasanu
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Franck D'Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Christophe Boisson
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Damien Montarnal
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Chemistry, Polymerization, Processes and Materials (CP2M), 43 Bvd du 11 Novembre 1918, 69616, Villeurbanne, France
| |
Collapse
|
22
|
Choi G, Oh Y, Jeong S, Chang M, Kim H. Synthesis of Renewable, Recyclable, Degradable Thermosets Endowed with Highly Branched Polymeric Structures and Reinforced with Carbon Fibers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Geunyoung Choi
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Yuree Oh
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Mincheol Chang
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
23
|
Kuenstler AS, Hernandez JJ, Trujillo-Lemon M, Osterbaan A, Bowman CN. Vat Photopolymerization Additive Manufacturing of Tough, Fully Recyclable Thermosets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11111-11121. [PMID: 36795439 DOI: 10.1021/acsami.2c22081] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To advance the capabilities of additive manufacturing, novel resin formulations are needed that produce high-fidelity parts with desired mechanical properties that are also amenable to recycling. In this work, a thiol-ene-based system incorporating semicrystallinity and dynamic thioester bonds within polymer networks is presented. It is shown that these materials have ultimate toughness values >16 MJ cm-3, comparable to high-performance literature precedents. Significantly, the treatment of these networks with excess thiols facilitates thiol-thioester exchange that degrades polymerized networks into functional oligomers. These oligomers are shown to be amenable to repolymerization into constructs with varying thermomechanical properties, including elastomeric networks that recover their shape fully from >100% strain. Using a commercial stereolithographic printer, these resin formulations are printed into functional objects including both stiff (E ∼ 10-100 MPa) and soft (E ∼ 1-10 MPa) lattice structures. Finally, it is shown that the incorporation of both dynamic chemistry and crystallinity further enables advancement in the properties and characteristics of printed parts, including attributes such as self-healing and shape-memory.
Collapse
Affiliation(s)
- Alexa S Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Juan J Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marianela Trujillo-Lemon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexander Osterbaan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
24
|
Purwanto NS, Chen Y, Wang T, Torkelson JM. Rapidly synthesized, self-blowing, non-isocyanate Polyurethane network foams with reprocessing to bulk networks via hydroxyurethane dynamic chemistry. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
25
|
Azadi Namin P, Booth P, Treviño Silva J, Voigt LJ, Zelisko PM. Transparent and Thermoplastic Silicone Materials Based on Room-Temperature Diels–Alder Reactions. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Paria Azadi Namin
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
| | - Phoebe Booth
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Julio Treviño Silva
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
| | - Laura J. Voigt
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
| | - Paul M. Zelisko
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario Canada L2S 3A1
| |
Collapse
|
26
|
Zhang V, Kang B, Accardo JV, Kalow JA. Structure-Reactivity-Property Relationships in Covalent Adaptable Networks. J Am Chem Soc 2022; 144:22358-22377. [PMID: 36445040 PMCID: PMC9812368 DOI: 10.1021/jacs.2c08104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer networks built out of dynamic covalent bonds offer the potential to translate the control and tunability of chemical reactions to macroscopic physical properties. Under conditions at which these reactions occur, the topology of covalent adaptable networks (CANs) can rearrange, meaning that they can flow, self-heal, be remolded, and respond to stimuli. Materials with these properties are necessary to fields ranging from sustainability to tissue engineering; thus the conditions and time scale of network rearrangement must be compatible with the intended use. The mechanical properties of CANs are based on the thermodynamics and kinetics of their constituent bonds. Therefore, strategies are needed that connect the molecular and macroscopic worlds. In this Perspective, we analyze structure-reactivity-property relationships for several classes of CANs, illustrating both general design principles and the predictive potential of linear free energy relationships (LFERs) applied to CANs. We discuss opportunities in the field to develop quantitative structure-reactivity-property relationships and open challenges.
Collapse
Affiliation(s)
| | | | | | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
27
|
Boronic ester-based vitrimeric methylvinyl silicone elastomer with “solid-liquid” feature and rate-dependent mechanical performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Lessard JJ, Stewart KA, Sumerlin BS. Controlling Dynamics of Associative Networks through Primary Chain Length. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jacob J. Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A. Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
29
|
Van Lijsebetten F, De Bruycker K, Van Ruymbeke E, Winne JM, Du Prez FE. Characterising different molecular landscapes in dynamic covalent networks. Chem Sci 2022; 13:12865-12875. [PMID: 36519055 PMCID: PMC9645389 DOI: 10.1039/d2sc05528g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2023] Open
Abstract
Dynamic covalent networks present a unique opportunity to exert molecular-level control on macroscopic material properties, by linking their thermal behaviour to the thermodynamics and kinetics of the underlying chemistry. Yet, existing methods do not allow for the extraction and analysis of the influence of local differences in chemical reactivity caused by available reactants, catalysts, or additives. In this context, we present a rheological paradigm that allows us to correlate the composition of a reactive polymer segment to a faster or slower rate of network rearrangement. We discovered that a generalised Maxwell model could separate and quantify the dynamic behaviour of each type of reactive segment individually, which was crucial to fully comprehend the mechanics of the final material. More specifically, Eyring and Van 't Hoff analysis were used to relate possible bond catalysis and dissociation to structural changes by combining statistical modelling with rheology measurements. As a result, precise viscosity changes could be measured, allowing for accurate comparison of various dynamic covalent network materials, including vitrimers and dissociative networks. The herein reported method therefore facilitated the successful analysis of virtually any type of rate-enhancing effect and will allow for the design of functional and fast (re)processable materials, as well as improve our ability to predict and engineer their properties for future applications.
Collapse
Affiliation(s)
- Filip Van Lijsebetten
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Kevin De Bruycker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Evelyne Van Ruymbeke
- Bio and Soft Matter, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain Croix du Sud 1 Louvain-la-Neuve 1348 Belgium
| | - Johan M Winne
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| |
Collapse
|
30
|
Chen F, Gao F, Guo X, Shen L, Lin Y. Tuning the Dynamics of Enamine-One-Based Vitrimers through Substituent Modulation of Secondary Amine Substrates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengbiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Xinru Guo
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
31
|
Kölsch JC, Berač CM, Lossada F, Stach OS, Seiffert S, Walther A, Besenius P. Recyclable Vitrimers from Biogenic Poly(itaconate) Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas C. Kölsch
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christian M. Berač
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Francisco Lossada
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Oliver S. Stach
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Andreas Walther
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
32
|
Dugas LD, Walker WD, Shankar R, Hoppmeyer KS, Thornell TL, Morgan SE, Storey RF, Patton DL, Simon YC. Diketoenamine-based Vitrimers via Thiol-ene photopolymerization. Macromol Rapid Commun 2022; 43:e2200249. [PMID: 35856189 DOI: 10.1002/marc.202200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Likened to both thermosets and thermoplastics, vitrimers are a unique class of materials that combine remarkable stability, healability, and reprocessability. Herein, we describe a photopolymerized thiol-ene-based vitrimer that undergoes dynamic covalent exchanges through uncatalyzed transamination of enamines derived from cyclic β-triketones, whereby the low energy barrier for exchange facilitates reprocessing and enables rapid depolymerization. Accordingly, we devised an alkene-functionalized β-triketone, 5,5-dimethyl-2-(pent-4-enoyl)cyclohexane-1,3-dione, which was reacted with 1,6-diaminohexane in a stoichiometrically imbalanced fashion (∼1:0.85 primary amine:triketone). The resulting networks exhibited subambient glass transition temperature (Tg = 5.66°C) by differential scanning calorimetry (DSC). Using a Maxwell stress-relaxation fit, the topology freezing temperature (Tv ) was calculated to be -32°C. Small-amplitude oscillatory shear (SAOS) rheological analysis enabled us to identify a practical critical temperature above which the vitrimer could be successfully reprocessed (Tv,eff ). Via the introduction of excess primary amines, we could readily degrade the networks into monomeric precursors, which were in turn reacted with diamines to regenerate reprocessable networks. Photopolymerization provides unique spatiotemporal control over the network topology, thereby opening the path for further investigation of vitrimer properties. As such, this work expands the toolbox of chemical upcycling of networks and enables their wider implementation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Logan D Dugas
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - William D Walker
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Rahul Shankar
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Keely S Hoppmeyer
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Travis L Thornell
- US Army, Engineering Research & Development Center, Geotechnical and Structures Laboratory, Vicksburg, MS, 39180, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Robson F Storey
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Yoan C Simon
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| |
Collapse
|
33
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
34
|
Hu S, Chen X, Bin Rusayyis MA, Purwanto NS, Torkelson JM. Reprocessable polyhydroxyurethane networks reinforced with reactive polyhedral oligomeric silsesquioxanes (POSS) and exhibiting excellent elevated temperature creep resistance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Porath L, Huang J, Ramlawi N, Derkaloustian M, Ewoldt RH, Evans CM. Relaxation of Vitrimers with Kinetically Distinct Mixed Dynamic Bonds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Porath
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Junrou Huang
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Nabil Ramlawi
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Maryanne Derkaloustian
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Randy H. Ewoldt
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
37
|
Porath L, Soman B, Jing BB, Evans CM. Vitrimers: Using Dynamic Associative Bonds to Control Viscoelasticity, Assembly, and Functionality in Polymer Networks. ACS Macro Lett 2022; 11:475-483. [PMID: 35575320 DOI: 10.1021/acsmacrolett.2c00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vitrimers have been investigated in the past decade for their promise as recyclable, reprocessable, and self-healing materials. In this Viewpoint, we focus on some of the key open questions that remain regarding how the molecular-scale chemistry impacts macroscopic physical chemistry. The ability to design temperature-dependent complex viscoelastic spectra with independent control of viscosity and modulus based on knowledge of the dynamic bond and polymer chemistry is first discussed. Next, the role of dynamic covalent chemistry on self-assembly is highlighted in the context of crystallization and nanophase separation. Finally, the ability of dynamic bond exchange to manipulate molecular transport and viscoelasticity is discussed in the context of various applications. Future directions leveraging dynamic covalent chemistry to provide insights regarding fundamental polymer physics as well as imparting functionality into polymers are discussed in all three of these highlighted areas.
Collapse
Affiliation(s)
- Laura Porath
- Department of Materials Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
| | - Bhaskar Soman
- Department of Materials Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
| | - Brian B. Jing
- Department of Materials Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
- Beckman Institute, University of Illinois Urbana−Champaign, Urbana, Illinois, 61801, United States
| |
Collapse
|
38
|
Saed M, Gablier A, Terentjev EM. Exchangeable Liquid Crystalline Elastomers and Their Applications. Chem Rev 2022; 122:4927-4945. [PMID: 33596647 PMCID: PMC8915166 DOI: 10.1021/acs.chemrev.0c01057] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/30/2022]
Abstract
This Review presents and discusses the current state of the art in "exchangeable liquid crystalline elastomers", that is, LCE materials utilizing dynamically cross-linked networks capable of reprocessing, reprogramming, and recycling. The focus here is on the chemistry and the specific reaction mechanisms that enable the dynamic bond exchange, of which there is a variety. We compare and contrast these different chemical mechanisms and the key properties of their resulting elastomers. In the conclusion, we discuss the most promising applications that are enabled by dynamic cross-linking and present a summary table: a library of currently available materials and their main characteristics.
Collapse
Affiliation(s)
- Mohand
O. Saed
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Alexandra Gablier
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Eugene M. Terentjev
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
39
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Hernandez JJ, Dobson AL, Carberry BJ, Kuenstler AS, Shah PK, Anseth KS, White TJ, Bowman CN. Controlled Degradation of Cast and 3-D Printed Photocurable Thioester Networks via Thiol–Thioester Exchange. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan J. Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Adam L. Dobson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin J. Carberry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexa S. Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Parag K. Shah
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
41
|
Liu W, Yang S, Huang L, Xu J, Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Chem Commun (Camb) 2022; 58:12399-12417. [DOI: 10.1039/d2cc04747k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible isocyanate chemistry containing urethane, thiourethane, and urea bonds is valuable for designing dynamic covalent polymers to achieve promising applications in recycling, self-healing, shape morphing, 3D printing, and composites.
Collapse
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
42
|
Liu H, Lu HH, Zhuang J, Thayumanavan S. Three-Component Dynamic Covalent Chemistry: From Janus Small Molecules to Functional Polymers. J Am Chem Soc 2021; 143:20735-20746. [PMID: 34870962 DOI: 10.1021/jacs.1c08574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new multicomponent reaction involving 2-hydroxybenzaldehyde, amine, and 2-mercaptobenzaldehyde (HAM reaction) has been developed and applied to multicomponent polymerization and controlled radical polymerization for the construction of random and block copolymers. This chemistry features mild reaction conditions, high yield, simple isolation, and water as the only byproduct. With the advantages of the distinct nucleophilicity of thiol and hydroxyl groups, the chemistry could be used for stepwise labeling and modifications on primary amines. The Janus chemical joint formed from this reaction exhibits degradability in buffers and generates the corresponding starting reagents, allowing amine release. Interestingly, the chemical joint exhibits thermally activated reversibility with water as the catalyst. This multicomponent dynamic covalent feature has been applied to the metamorphosis of random and block copolymers, generating polymers with diverse architectures. This chemistry is expected to be broadly applicable to synthetic polymer chemistry and materials science.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
43
|
Weder C. ACS Macro Letters - Your Go-To Journal for Research on Stimuli-Responsive Polymers. ACS Macro Lett 2021; 10:1450-1453. [PMID: 35549013 DOI: 10.1021/acsmacrolett.1c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christoph Weder
- Polymer Chemistry and Materials, the Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
44
|
Wei X, Ge J, Gao F, Chen F, Zhang W, Zhong J, Lin C, Shen L. Bio-based self-healing coating material derived from renewable castor oil and multifunctional alamine. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Guo X, Gao F, Chen F, Zhong J, Shen L, Lin C, Lin Y. Dynamic Enamine-one Bond Based Vitrimer via Amino-yne Click Reaction. ACS Macro Lett 2021; 10:1186-1190. [PMID: 35549045 DOI: 10.1021/acsmacrolett.1c00550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we report the fabrication of a dynamic enamine-one bond based vitrimer through amino-yne click chemistry. In contrast to amine-acetoacetate condensation, the amino-yne click reaction yields a dynamic enamine-one motif that is composed of cis/trans (3:1) isomers and has a relatively lower activation energy (35 ± 3 kJ/mol vs 59 ± 6 kJ/mol), owing to the absence of a methyl substituent. The resulting vitrimer network has superior mechanical properties and faster dynamic exchange than that of a reference vitrimer derived from amine-acetoacetate condensation, and they are attributed to the fewer network defects and the less sterically hindered exchange reaction, respectively. Lastly, the efficient amino-yne click reaction is demonstrated to be compatible with the secondary-amine substrate, which has a low reactivity toward the amine-acetoacetate condensation. The efficient and side product-free amino-yne reaction offers a powerful chemical tool for vitrimer fabrication and is potentially desirable for sealing and adhesion applications.
Collapse
Affiliation(s)
- Xinru Guo
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Fengbiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Jiang Zhong
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Cong Lin
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
46
|
Zeng Y, Li J, Liu S, Yang B. Rosin-Based Epoxy Vitrimers with Dynamic Boronic Ester Bonds. Polymers (Basel) 2021; 13:3386. [PMID: 34641201 PMCID: PMC8512039 DOI: 10.3390/polym13193386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Rosin is an abundantly available natural product. In this paper, for the first time, a rosin derivative is employed as the main monomer for preparation of epoxy vitrimers to improve the mechanical properties of vitrimers. Novel epoxy vitrimer networks with dynamic reversible covalent boronic ester bonds are constructed by a reaction between thiols in 2,2'-(1,4-phenylene)-bis (4-mercaptan-1,3,2-dioxaborolane) (BDB) as a curing agent and epoxy groups in the rosin derivative. The rosin-based epoxy vitrimer networks are fully characterized by Fourier transform infrared spectroscopy (FTIR), an equilibrium swelling experiment, and dynamic mechanical analysis (DMA). The obtained rosin-based epoxy vitrimers possess superior thermostability and good mechanical properties. Due to transesterification of boronic ester bonds, rosin epoxy vitrimer network topologies can be altered, giving welding, recycle, self-healing, and shape memory abilities to the fabricated polymer. Besides, the effects of treating time and temperature on welding capability is investigated, and it is found that the welding efficiency of the 20% C-FPAE sample is >93% after treatment for 12 h at 160 °C. Moreover, through a hot press, the pulverized samples of 20% C-FPAE can be reshaped several times and most mechanical properties are restored after reprocessing at 200 °C for 60 min. Finally, chemical degradation is researched for the rosin-based epoxy vitrimers.
Collapse
Affiliation(s)
- Yanning Zeng
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials (Ministry of Education), College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.L.); (S.L.); (B.Y.)
| | | | | | | |
Collapse
|
47
|
Lee DH, Valenzuela SA, Dominguez MN, Otsuka M, Milliron DJ, Anslyn EV. A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100552. [PMID: 34632430 PMCID: PMC8500376 DOI: 10.1016/j.xcrp.2021.100552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nerve agents that irreversibly deactivate the enzyme acetylcholinesterase are extremely toxic weapons of mass destruction. Thus, developing methods to detect these lethal agents is important. To create an optical sensor for a surrogate of the nerve agent tabun, as well as a physical barrier that dissolves in response to this analyte, we devise a network hydrogel that decomposes via a self-propagating cascade. A Meldrums acid-derived linker is incorporated into a hydrogel that undergoes a declick reaction in response to thiols, thereby breaking network connections, which releases more thiols, propagating the response throughout the gel. A combination of chemical reactions triggered by the addition of the tabun mimic initiates the cascade. The dissolving barrier is used to release dyes, as well as nanocrystals that undergo a spontaneous aggregation. Thus, this sensing system for tabun generates a physical response and the delivery of chemical agents in response to an initial trigger.
Collapse
Affiliation(s)
- Doo-Hee Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Manuel N. Dominguez
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Mai Otsuka
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Delia J. Milliron
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Lead contact
| |
Collapse
|
48
|
Majumdar S, Mezari B, Zhang H, van Aart J, van Benthem RATM, Heuts JPA, Sijbesma RP. Efficient Exchange in a Bioinspired Dynamic Covalent Polymer Network via a Cyclic Phosphate Triester Intermediate. Macromolecules 2021; 54:7955-7962. [PMID: 34552277 PMCID: PMC8444552 DOI: 10.1021/acs.macromol.1c01504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Bond exchange via neighboring group-assisted reactions in dynamic covalent networks results in efficient mechanical relaxation. In Nature, the high reactivity of RNA toward nucleophilic substitution is largely attributed to the formation of a cyclic phosphate ester intermediate via neighboring group participation. We took inspiration from RNA to develop a dynamic covalent network based on β-hydroxyl-mediated transesterifications of hydroxyethyl phosphate triesters. A simple one-step synthetic strategy provided a network containing phosphate triesters with a pendant hydroxyethyl group. 31P solid-state NMR demonstrated that a cyclic phosphate triester is an intermediate in transesterification, leading to dissociative network rearrangement. Significant viscous flow at 60-100 °C makes the material suitable for fast processing via extrusion and compression molding.
Collapse
Affiliation(s)
- Soumabrata Majumdar
- Department
of Chemical Engineering & Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Brahim Mezari
- Department
of Chemical Engineering & Chemistry, Laboratory of Inorganic Materials
and Catalysis, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Huiyi Zhang
- Department
of Chemical Engineering & Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jeroen van Aart
- Department
of Chemical Engineering & Chemistry, Laboratory of Physical Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Rolf A. T. M. van Benthem
- Department
of Chemical Engineering & Chemistry, Laboratory of Physical Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- DSM
Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Johan P. A. Heuts
- Department
of Chemical Engineering & Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Rint P. Sijbesma
- Department
of Chemical Engineering & Chemistry and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
49
|
Zhang J, Shang C, Yu Z, Wang L, Tang J, Huang F. Effect of the Crosslinking Degree on Self-Healing Poly(1,2,3-Triazolium) Adhesive. Macromol Rapid Commun 2021; 43:e2100236. [PMID: 34418203 DOI: 10.1002/marc.202100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/25/2021] [Indexed: 11/09/2022]
Abstract
Dynamic covalent materials are a class of polymer that could be stress-relaxation, reprocessable, and self-healing due to dynamic crosslinks in network. Dynamic crosslinks play an important role in the typical characteristic of self-healing polymers. It is meaningful to understand the effect of crosslinking degree on the properties of poly(1,2,3-triazolium) (PTAM). In this article, the dynamic covalent network of PTAM adhesive has been used to study the effect of crosslinking degree. A series of PTAM adhesive with different crosslinking degrees have been obtained by changing the amount of crosslinker. Adhesion property can first rise then fall down with the increase of crosslinking degree and the best lap-shear strength is above 20 MPa. Creep resistance and solvent resistance can be enhanced with the increase of crosslinking degree. Self-healing studies have shown that crosslinking degree can enhance the ability of self-healing, but too high crosslinking degree raises the temperature of self-healing and causes side reaction which reduces the self-healing efficiency. These results provide some insights for the influence of the crosslinking degree on the self-healing and the structural design of dynamic covalent materials.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengyuan Shang
- Research and Application Center for Structural Composites, Aerospace Research Institute of Materials & Processing Technology, Beijing, 100076, China
| | - Zhuoer Yu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Linxiao Wang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junkun Tang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Farong Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
50
|
Spiesschaert Y, Danneels J, Van Herck N, Guerre M, Acke G, Winne J, Du Prez F. Polyaddition Synthesis Using Alkyne Esters for the Design of Vinylogous Urethane Vitrimers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yann Spiesschaert
- Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Jens Danneels
- Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Niels Van Herck
- Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Marc Guerre
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Cedex 9 Toulouse, France
| | - Guillaume Acke
- Ghent Quantum Chemistry Group, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium
| | - Johan Winne
- Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| |
Collapse
|