1
|
Mondal S, Sarkar O, Mandal SM, Chattopadhyay A, Sahoo P. Monitoring CO as a plant signaling molecule under heavy metal stress using carbon nanodots. Dalton Trans 2025. [PMID: 39829111 DOI: 10.1039/d4dt03101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Carbon monoxide (CO) is widely recognized as a significant environmental pollutant and is associated with numerous instances of accidental poisoning in humans. However, it also serves a pivotal role as a signaling molecule in plants, exhibiting functions analogous to those of other gaseous signaling molecules, including nitric oxide (NO) and hydrogen sulfide (H2S). In plant physiology, CO is synthesized as an integral component of the defense mechanism against oxidative damage, particularly under abiotic stress conditions such as drought, salinity, and exposure to heavy metals. Current research methodologies have demonstrated a lack of effective tools for monitoring CO dynamics in plants during stress conditions, particularly in relation to heavy metal accumulation across various developmental stages. Therefore, development of a sensor capable of detecting CO in living plant tissues is essential, as it would enable a deeper understanding of its biological functions, underlying mechanisms, and metabolic pathways. In response to this gap, the present study introduces a novel technique for monitoring CO production and activity in plants using nitrogen-doped carbon quantum dots (N-CQDs). These nanodots exhibited exceptional biocompatibility, low toxicity, and environmentally sustainable characteristics, rendering them an optimal tool for CO detection via fluorescence quenching mechanism, with a detection limit (LOD) of 0.102 μM. This innovative nanomarker facilitated the detection of trace quantities of CO within plant cells, providing new insights into plant stress responses to heavy metals such as Cu, Zn, Pb, Ru, Cr, Cd, and Hg, as well as the processes involved in seed germination. Additionally, confocal microscopy validated the interaction between CO and N-CQDs, yielding visual evidence of CO binding within plant cells, further enhancing the understanding of CO's role in plant biology.
Collapse
Affiliation(s)
- Shrodha Mondal
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati University, Santiniketan-731235, India
| | - Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | | | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| |
Collapse
|
2
|
Zhao W, Obeso JL, López‐Cervantes VB, Bahri M, Sánchez‐González E, Amador‐Sánchez YA, Ren J, Browning ND, Peralta RA, Barcaro G, Monti S, Solis‐Ibarra D, Ibarra IA, Zhao D. Achieving Sub-ppm Sensitivity in SO 2 Detection with a Chemically Stable Covalent Organic Framework. Angew Chem Int Ed Engl 2025; 64:e202415088. [PMID: 39297429 PMCID: PMC11735898 DOI: 10.1002/anie.202415088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 11/07/2024]
Abstract
We report the inaugural experimental investigation of covalent organic frameworks (COFs) to address the formidable challenge of SO2 detection. Specifically, an imine-functionalized COF (SonoCOF-9) demonstrated a modest and reversible SO2 sorption of 3.5 mmol g-1 at 1 bar and 298 K. At 0.1 bar (and 298 K), the total SO2 uptake reached 0.91 mmol g-1 with excellent reversibility for at least 50 adsorption-desorption cycles. An isosteric enthalpy of adsorption (ΔHads) for SO2 equaled -42.3 kJ mol-1, indicating a relatively strong interaction of SO2 molecules with the COF material. Also, molecular dynamics simulations and Møller-Plesset perturbation theory calculations showed the interaction of SO2 with π density of the rings and lone pairs of the N atoms of SonoCOF-9. The combination of experimental data and theoretical calculations corroborated the potential use of this COF for the selective detection and sensing of SO2 at the sub-ppm level (0.0064 ppm of SO2).
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Juan L. Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CUCoyoacán04510Ciudad de MéxicoMexico
- Instituto Politécnico Nacional, CICATA U. Legaria11500Miguel HidalgoCDMXMexico
| | - Valeria B. López‐Cervantes
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CUCoyoacán04510Ciudad de MéxicoMexico
| | - Mounib Bahri
- Albert Crewe Centre for Electron MicroscopyUniversity of LiverpoolLiverpoolL69 3GLUnited Kingdom
| | - Elí Sánchez‐González
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CUCoyoacán04510Ciudad de MéxicoMexico
| | - Yoarhy A. Amador‐Sánchez
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CUCoyoacán04510Ciudad de MéxicoMexico
| | - Junyu Ren
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Nigel D. Browning
- Albert Crewe Centre for Electron MicroscopyUniversity of LiverpoolLiverpoolL69 3GLUnited Kingdom
| | - Ricardo A. Peralta
- Departamento de QuímicaDivisión de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaAv. San Rafael Atlixco,186Col. Vicentina09340Ciudad de MéxicoMexico
| | - Giovanni Barcaro
- CNR-IPCFInstitute for Chemical and Physical ProcessesCNR Research AreaVia Moruzzi 156124PisaItaly
| | - Susanna Monti
- CNR-ICCOMInstitute of Chemistry of Organometallic CompoundsCNR Research AreaVia Moruzzi 156124PisaItaly
| | - Diego Solis‐Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CUCoyoacán04510Ciudad de MéxicoMexico
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS)Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CUCoyoacán04510Ciudad de MéxicoMexico
- Sabbatical as “Catedra Dr. Douglas Hugh Everett” at Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaAvenida San Rafael Atlixco 186, Leyes de Reforma 1ra SecciónIztapalapaCiudad de México09310Mexico
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| |
Collapse
|
3
|
Chandran M, Chellasamy G, Veerapandian M, Dhanasekaran B, Govindaraju S, Yun K. Instant synthesis of nitrogen-doped Ti 3C 2 MXene quantum dots for fluorescence and electrochemical dual-mode detection of norepinephrine with a portable smartphone assay. J Mater Chem B 2025; 13:642-655. [PMID: 39611331 DOI: 10.1039/d4tb01818d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Next-generation 2D materials, such as transition metal carbides and nitrides (MXenes), have received increasing attention owing to their physicochemical properties. In this study, we synthesized highly intense fluorescent materials, nitrogen-doped MXene quantum dots (N-MQDs) using an easy and less time-consuming microwave-assisted method. These N-MQDs are spherical, fluorescent, and highly sensitive materials, as confirmed by high-resolution transmission electron microscopy, atomic force microscopy, UV-visible, fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, zeta potential, and contact angle measurements. The N-MQDs were used as dual probes for the fluorescence and electrochemical sensing of neurotransmitter norepinephrine (NE-0.1 to 500 μM). The sensing strategy is based on the Förster resonance energy transfer acquired by the N-MQDs, leading to fluorescence quenching at 400 nm. A new emission peak at 500 nm with color changes and NE-to-NE quinone conversion in an electrochemical reaction. Fluorescence and electrochemical analyses were revealed using the human serum sample limit of detection (LOD) values of 40 and 33 nM, respectively. For point-of-care analysis, we developed a smartphone-integrated sensor array to calculate intensity changes, and the relative red/green/blue (RGB) values were measured at different concentrations of NE. The synthesized fluorescent probe is a promising candidate for detecting NE in biofluids. It is highly selective toward NE and is suitable for the early diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Murugesan Chandran
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Mekala Veerapandian
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Barkavi Dhanasekaran
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
4
|
Mahapatra M, Bourguignon M, Grignard B, Vandevenne M, Galleni M, Detrembleur C. Nonconventional Fluorescent Non-Isocyanate Polyurethane Foams for Multipurpose Sensing Applications. Angew Chem Int Ed Engl 2025; 64:e202413605. [PMID: 39297731 DOI: 10.1002/anie.202413605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Indexed: 11/03/2024]
Abstract
Fluorescent foams with interconnected pores are attractive for the detection and quantification of various products. However, many fluorescent probes are suffering from aggregation-caused fluorescence quenching in their solid/aggregated state, are costly, and/or not straightforward to incorporate in foams, limiting their utility for this application. Herein, non-isocyanate polyurethane foams, prepared by the simple water-induced self-blowing process, present a nonconventional fluorescence behaviour, i.e. they are intrinsically fluorescent with a multicolor emission without requiring ex situ traditional fluorescent probes. These foams demonstrate utility for capturing-sensing gaseous formaldehyde (an emblematic indoor air pollutant), as well as for detecting and quantifying various metal ions (Fe2+, Cu2+, Fe3+, Hg2+). They are also able to selectively sense tetracycline antibiotic in a ratiometric way with a high sensitivity. By exploiting the unique multicolor photoluminescent foam properties, a smartphone-compatible device is used for the facile antibiotic quantification. This nonconventional fluorescence behaviour is discussed experimentally and theoretically, and is mainly based on clusteroluminescence originating from multiple hydrogen bonding and hetero-atomic sub-luminophores, thus from aggregation-induced emission luminogens that are naturally present in the foams. This work illustrates that easily accessible non-conventional fluorescent NIPU foams characterized by a modular emission wavelength have an enormous potential for multiple substrates detection and quantification.
Collapse
Affiliation(s)
- Manas Mahapatra
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
| | - Maxime Bourguignon
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
- FRITCO2T Platform, CESAM Research Unit, University of Liege, Liege, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| | - Moreno Galleni
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
- WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| |
Collapse
|
5
|
Melendreras C, Ortiz-Gómez I, Álvarez-García P, Lastra E, García Alonso FJ, Costa-Fernandez JM, Soldado A. Copper nano metal-organic framework paper-based sensor for dual optical detection of biogenic amines to evaluate the food freshness. Talanta 2025; 282:127026. [PMID: 39406099 DOI: 10.1016/j.talanta.2024.127026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
The improvement of food safety and the reduction of food loss and waste require the development of new bioanalytical tools that provide chemical information about the composition of food that is of great value for improving traceability and extending the shelf life of food. Herein, a Cu-based metal-organic framework has been synthesized and immobilized onto cellulose paper disks for colorimetric and fluorescent detection and quantification of biogenic amines in food. The color of the nano metal-organic framework changes from green to brown in the presence of low amounts of biogenic amine vapors. Also, the fluorescence emission of the nano metal-organic framework greatly decreases after exposing the cellulose disks to amine vapors. The developed sensing paper disk exhibits a quick response to the presence of volatile biogenic amines, very low detection limits, and great selectivity. Also, the paper sensor was used for real-time monitoring of biogenic amines in bass samples at different temperature conditions, being a highly valuable method for evaluating food freshness and safeguarding food safety.
Collapse
Affiliation(s)
- Candela Melendreras
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | - Inmaculada Ortiz-Gómez
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain.
| | - Pablo Álvarez-García
- Department of Organic and Inorganic Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | - Elena Lastra
- Department of Organic and Inorganic Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | | | - José M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
6
|
Nath P, Dey A, Kundu T, Chatterjee M, Roy P, Liu Z, Satapathi S. Development of a smartphone integrated 3D-printed point of care platform for sensitive detection of bilirubin. Talanta 2024; 286:127430. [PMID: 39742847 DOI: 10.1016/j.talanta.2024.127430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Strategic design and development of nanomaterials-based detection platforms specific to critical biomarkers like bilirubin holds immense promise for revolutionizing early disease detection. Bilirubin (BR) plays a pivotal role as a biomarker for liver function, making accurate and timely detection of BR crucial for diagnosing and monitoring of liver diseases. In this work, we synthesized blue light emitting graphene quantum dots (GQDs) via a single step pyrolysis method, which exhibited excellent photostability and biocompatibility. Under optimal conditions, the fluorescence of GQDs was significantly quenched with the successive addition of BR achieving an ultra-low detection limit (38.96 nM) over a concentration range of 0.18 μM-14.29 μM with high selectivity, and rapid response towards free BR. The sensing mechanism was identified as the inner filter effect after extensive investigations. Thereafter, the sensor system was directly applied to human serum and urine samples and was further compared with the conventional Jendrassik and Grof method, yielding satisfactory recoveries. To demonstrate the sensor system's potential for real world applications, we designed and fabricated a prototype point-of-care device (POC) through 3D printing, incorporating paper microfluidic devices and fluorescence image analysis-based android application through smartphone. The compact 3D-printed POC device achieved a detection limit of 114.66 nM for BR detection, proving to be a promising platform for affordable, efficient and rapid BR detection.
Collapse
Affiliation(s)
- Prathul Nath
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Ankan Dey
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Tathagata Kundu
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Manisha Chatterjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Partha Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Zhiyi Liu
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing, 314000, China
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India.
| |
Collapse
|
7
|
Basu S, Hendler-Neumark A, Bisker G. Role of Oxygen Defects in Eliciting a Divergent Fluorescence Response of Single-Walled Carbon Nanotubes to Dopamine and Serotonin. ACS NANO 2024; 18:34134-34146. [PMID: 39632591 DOI: 10.1021/acsnano.4c10360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Modulating the optical response of fluorescent nanoparticles through rational modification of their surface chemistry can yield distinct optical signatures upon the interaction with structurally related molecules. Herein, we present a method for tuning the fluorescence response of single-walled carbon nanotubes (SWCNTs) toward dopamine (DA) and serotonin, two structurally related monoamine-hydroxylated aromatic neurotransmitters, by introducing oxygen defects into (6,5) chirality-enriched SWCNTs suspended by sodium cholate (SC). This modification facilitated opposite optical responses toward these neurotransmitters, where DA distinctly increased the fluorescence of the defect-induced emission of SWCNTs (D-SWCNTs) 6-fold, while serotonin notably decreased it. In contrast, pristine, defect-free SWCNTs exhibited similar optical responses to both neurotransmitters. The underlying mechanisms for the divergent fluorescence response were found to be polydopamine (PDA) surface adsorption in the case of the fluorescence enhancement in response to DA, while the fluorescence decrease in response to serotonin was attributed to enhanced solvent relaxation effects in the presence of defects. Importantly, the divergent optical response of D-SWCNTs to DA and serotonin, via the introduction of defects, was validated in complex biological environments such as serum. Further, the generality of our approach was confirmed by the demonstrations of a divergent fluorescence response of D-SWCNTs suspended by an additional dispersant, namely lipid-polyethylene glycol (PEG). This study offers promising avenues for the broad applicability of surface functionalization of SWCNTs to achieve divergent responses toward structurally related molecules and advance applications in sensing, imaging, and diagnostic technologies.
Collapse
Affiliation(s)
- Srestha Basu
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Aldakhil F, Alarfaj NA, Al-Tamimi SA, El-Tohamy MF. Development of silver-doped carbon dots sensor derived from lignin for dual-mode fluorometric and spectrophotometric determination of valsartan in a bulk powder and a commercial product. Heliyon 2024; 10:e40848. [PMID: 39687104 PMCID: PMC11648884 DOI: 10.1016/j.heliyon.2024.e40848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Doping of carbon dots (CDs) with heteroatoms has garnered growing attention in recent years as a useful method of controlling their physicochemical properties. In this study, a new dual-mode sensor based on silver-doped CDs (AgCDs) derived from lignin was developed for fluorometric and spectrophotometric determination of valsartan (VAL). The analysis of AgCDs revealed a structure that closely resembled graphene oxide, with the successful doping of Ag. The mean particle size of AgCDs was 3.50 ± 0.89 nm and it exhibited a reasonable fluorescence quantum yield of 28.1 %. The emission at 612 nm of AgCDs is quenched by VAL after being excited at 275 nm due to a combination of dynamic and static quenching mechanisms. The enhancement in the absorbance of AgCDs upon the addition of the medication was measured at 275 nm. The most favorable circumstances for the dual-mode sensing were achieved with a pH of 8 and a volume of 0.10 mL of AgCDs. The measurements were conducted using fluorometry after 3 min at 10 °C, followed by spectrophotometry after 7 min at 20 °C. The fluorometric data indicated a linear response within the range of 2.0-50.0 μg/mL, while the spectrophotometric results showed a dynamic range of 5.0-100.0 μg/mL. The limits of detection (LODs) were 0.57 and 1.38 μg/mL for the fluorometric and spectrophotometric methods, respectively. The limits of quantification (LOQs) were 1.72 and 4.19 μg/mL for the fluorometric and spectrophotometric methods, respectively. The nano sensor efficiently assessed the presence of VAL in pharmaceutical tablets and produced a favorable outcome with the mean of recovery of 98.91 % and 99.76 % with relative standard deviation (RSD%) of 0.79 and 0.78 for the fluorometric and spectrophotometric methods, respectively.
Collapse
Affiliation(s)
- Fatemah Aldakhil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Salma A. Al-Tamimi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
9
|
Chibac-Scutaru AL, Roman G. Fluorescence sensing of metal ions in solution using a morpholine-containing phenolic Mannich base of 1'-hydroxy-2'-acetonaphthone. RSC Adv 2024; 14:38590-38604. [PMID: 39650841 PMCID: PMC11622784 DOI: 10.1039/d4ra07200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
A phenolic Mannich base derived from 1'-hydroxy-2'-acetonaphthone (HAN) as a substrate and morpholine as an amine reagent was synthesized and structurally characterized. The sensing ability toward various metal ions of the s-, p- and d-block of this molecule that has the binding site for metal ions in the starting ortho-hydroxyphenone preserved was examined. Interaction between this phenolic Mannich base and Al3+, Cr3+, Cu2+ and Co2+ leads to modifications of the sensing molecule's absorption spectrum. Fluorescence spectroscopy showed that Al3+ acts as a fluorescence enhancer, whereas Cu2+ functions as a fluorescence quencher for the aminomethylated derivative. The phenolic Mannich base may be employed either as a sensitive "turn-on" chemosensor for Al3+ or as a sensitive "turn-off" chemosensor for Cu2+. However, in the presence of these ions at identical concentrations, the Mannich base becomes a selective chemosensor for Al3+. The sensing ability of this phenolic Mannich base toward rare earth ions showed that Eu3+, Dy3+ and Gd3+ induce changes in the absorption spectrum of the Mannich base. Fluorescence spectroscopy showed that the response of the sensing molecule toward Eu3+ and Dy3+ is weak, and this phenolic Mannich base may be used as a "turn-off" chemosensor for these two lanthanide ions only in a narrow concentration range (1-16 × 10-5 M).
Collapse
Affiliation(s)
- Andreea Laura Chibac-Scutaru
- Petru Poni Institute of Macromolecular Chemistry, Department of Polyaddition and Photochemistry Iaşi 700487 Romania
| | - Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic Polymers Iaşi 700487 Romania
| |
Collapse
|
10
|
Limburg B. An Extension of the Stern-Volmer Equation for Thermally Activated Delayed Fluorescence (TADF) Photocatalysts. J Phys Chem Lett 2024; 15:10495-10499. [PMID: 39392726 PMCID: PMC11548733 DOI: 10.1021/acs.jpclett.4c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Fluorescence quenching experiments are essential mechanistic tools in photoredox catalysis, allowing one to elucidate the first step in the catalytic cycle that occurs after photon absorption. Thermally activated delayed fluorescence (TADF) photocatalysts, however, yield nonlinear Stern-Volmer plots, thus requiring an adjustment to this widely used method to determine the efficiency of excited state quenching. Here, we derive an extension of the Stern-Volmer equation for TADF fluorophores that considers quenching from both the singlet and triplet excited states and experimentally verify it with fluorescence quenching experiments using the commonly employed TADF-photocatalyst 4CzIPN, and multiple-resonance TADF-photocatalyst QAO with three different quenchers in four solvents. The experimental data are perfectly described by this new equation, which in addition to the Stern-Volmer quenching constants allows for the determination of the product of intersystem and reverse intersystem crossing quantum yields, a quantity that is independent of the quencher.
Collapse
Affiliation(s)
- Bart Limburg
- Secció
de Química Orgànica, Facultat de Química, Universitat de Barcelona, Carrer Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut
de Química Teòrica i Computacional (IQTC), Carrer Martí i Franquès
1-11, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Pachpatil PK, Kanojia SV, Raut V, Potnis A, Goswami D. N-rich carbon nanosphere as fluorescent nanoprobe for intracellular iron. Talanta 2024; 278:126454. [PMID: 38924992 DOI: 10.1016/j.talanta.2024.126454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Nitrogen rich carbon nanoparticles are known to provide higher fluorescence stokes shift, and thereby are potential candidates for fluorescent sensors. Herein, a facile one-step hydrothermal synthesis is reported for N-rich carbon nanospheres (G-CNS) from caffeine and o-phenylenediamine as precursors. The as-synthesized G-CNS showed high fluorescence with λem at 509 nm, with a highly selective fluorescence turn-off response towards Fe2+/Fe3+, rendering these carbon nanospheres as potential candidates to detect intracellular labile iron pool in live cells. The intracellular labile iron pool in iron-overloaded cells was sensed using the synthesized G-CNS. Mechanistically, the fluorescence quenching via dynamic pathway involves the formation of an excited state charge transfer process, which undergoes non-radiative decay.
Collapse
Affiliation(s)
- Pradnya K Pachpatil
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Seema V Kanojia
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Vaidehi Raut
- SVKM's NMIMS Sunandan Divatia School of Science, Mumbai, 400056, India
| | - Akhilesh Potnis
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
12
|
Khatun R, Dolai M, Sasmal M, Katarkar A, Islam ASM, Yasmin N, Maryum S, Haribabu J, Ali M. Small molecule interactions with biomacromolecules: selective sensing of human serum albumin by a hexanuclear manganese complex - photophysical and biological studies. J Mater Chem B 2024; 12:9408-9419. [PMID: 39192836 DOI: 10.1039/d4tb00712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A covalently bonded hexanuclear neutral complex, [Mn6(μ3-O)2(3-MeO-salox)6(OAc)2(H2O)4] (1), has been synthesized and characterized by single crystal X-ray diffraction analysis along with IR and HRMS studies. Complex 1 has been found to selectively interact with human serum albumin (HSA), a model transport protein. The interaction of 1 with HSA was investigated by monitoring the change in the absorbance value of HSA at λ = 280 nm with increasing concentration of 1. Likewise, fluorescence titrations were carried out under two conditions: (i) titration of a 5 μM solution of complex 1 with the gradual addition of HSA, showing a ∼9-fold fluorescence intensity enhancement at 424 nm, upon excitation at 300 nm; and (ii) upon excitation at 295 nm, titration of 5 μM HSA solution with the incremental addition of complex 1, showing a quenching of fluorescence intensity at 334 nm, with simultaneous development of a new emission band at 424 nm. A linear form of the Stern-Volmer equation gives KSV = 9.77 × 104 M-1 and the Benesi-Hildebrand plot yields the binding constant as KBH = 1.98 × 105 M-1 at 298 K. The thermodynamic parameters, ΔS°, ΔH°, and ΔG°, were estimated by using the van't Hoff relationship which infer the major contribution of hydrophobic interactions between HSA and 1. It was observed that quenching of HSA emission arises mainly through a dynamic quenching mechanism as indicated by the dependence of average lifetime 〈τ〉 on the concentration of 1. The changes in the CD (circular dichroism) spectral pattern of HSA in the presence of 1 clearly establish the variation of HSA secondary structure on interaction with 1. The most probable interaction region in HSA for 1 was determined from molecular docking studies which establish the preferential trapping of 1 in the subdomain IIA of site I in HSA and substantiated by the results of site-specific marker studies. Complex 1 was further evaluated for its antiproliferative effects in lung cancer A549 cells, which strictly inhibits the growth of the cells in both 2D and 3D mammospheres, indicating its potential application as an anticancer drug.
Collapse
Affiliation(s)
- Rousunara Khatun
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700 032, India.
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur 721404, India
| | - Mihir Sasmal
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700 032, India.
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Nasima Yasmin
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Sana Maryum
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700 032, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
- Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
13
|
Schmitz M, Bertrams MS, Sell AC, Glaser F, Kerzig C. Efficient Energy and Electron Transfer Photocatalysis with a Coulombic Dyad. J Am Chem Soc 2024; 146:25799-25812. [PMID: 39227057 DOI: 10.1021/jacs.4c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photocatalysis holds great promise for changing the way value-added molecules are currently prepared. However, many photocatalytic reactions suffer from quantum yields well below 10%, hampering the transition from lab-scale reactions to large-scale or even industrial applications. Molecular dyads can be designed such that the beneficial properties of inorganic and organic chromophores are combined, resulting in milder reaction conditions and improved reaction quantum yields of photocatalytic reactions. We have developed a novel approach for obtaining the advantages of molecular dyads without the time- and resource-consuming synthesis of these tailored photocatalysts. Simply by mixing a cationic ruthenium complex with an anionic pyrene derivative in water a salt bichromophore is produced owing to electrostatic interactions. The long-lived organic triplet state is obtained by static and quantitative energy transfer from the preorganized ruthenium complex. We exploited this so-called Coulombic dyad for energy transfer catalysis with similar reactivity and even higher photostability compared to a molecular dyad and reference photosensitizers in several photooxygenations. In addition, it was shown that this system can also be used to maximize the quantum yield of photoredox reactions. This is due to an intrinsically higher cage escape quantum yield after photoinduced electron transfer for purely organic compounds compared to heavy atom-containing molecules. The combination of laboratory-scale as well as mechanistic irradiation experiments with detailed spectroscopic investigations provided deep mechanistic insights into this easy-to-use photocatalyst class.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Arne C Sell
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
14
|
Jaswal V, Pachisia S, Chaudhary J, Rangan K, Sarkar M. Selective sensing of picric acid using a Zn(II)-metallacycle: experimental and theoretical validation of the sensing mechanism and quantitative analysis of sensitivity in contact mode detection. Dalton Trans 2024; 53:14710-14724. [PMID: 39158052 DOI: 10.1039/d4dt01771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A combination of N,N',N''-tris(3-pyridyl)-1,3,5-benzenetricarboxamide (L1) and p-chlorobenzoic acid (HL2) with Zn(NO3)2·6H2O resulted in the formation of a dinuclear metallacycle [ZnL1(L2)2(DMF)2]2 (1(DMF)4). In 1(DMF)4, the Zn(II) centre adopts a square pyramidal geometry, while one of the pyridyl N out of the three pyridyl groups in L1 remained uncoordinated. Solvated DMF molecules are present in 1(DMF)4. The structural and chemical nature of 1(DMF)4 is effective for it to act as a potential fluorescent probe for the detection of nitroaromatic compounds. It is observed that the probe, 1(DMF)4, could selectively detect picric acid (PA) among various aromatic compounds in solution (DMSO), while the solid state (contact mode) detection showed a positive sensing response for the nitrophenols (PA: 87% quenching efficiency, 2,4-dinitrophenol (2,4-DNP): 57% quenching efficiency and 4-nitrophenol (4-NP): 40% quenching efficiency). The limit of detection (LOD) of PA by the probe in DMSO was found to be 6.8 × 10-11 M while the LOD in contact mode detection was estimated to be 0.49 ng cm-2. The mechanism of selective detection of PA by 1(DMF)4 in DMSO was analyzed through photophysical studies, 1H-NMR experiments and also by density functional theory (DFT) calculations. The effective overlap of the absorption spectrum of 1(DMF)4 and emission spectrum of PA in DMSO suggests that the Förster resonance energy transfer (FRET) is responsible for quenching phenomena in DMSO. The DFT calculations and molecular docking studies showed the adduct formation due to the favorable interactions between 1(DMF)4 and PA in DMSO, while negligible interactions were observed between 1(DMF)4 with other aromatic compounds. The experimental and DFT studies showed that the efficient sensing ability of PA by 1(DMF)4 in the solid-state was due to photoelectron transfer (PET) and FRET phenomena described herein.
Collapse
Affiliation(s)
- Vishakha Jaswal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| | - Sanya Pachisia
- Department of Chemistry, University of Delhi, India
- Department of Chemistry, University of California, Irvine, California, USA
| | - Jagrity Chaudhary
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Krishnan Rangan
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Jawahar Nagar Shameerpet Mandal, Ranga Reddy District, Hyderabad 500078, India
| | - Madhushree Sarkar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
15
|
Sreelaya V, Rohman SS, Parameswaran P, Chakkumkumarath L. An investigation of the Excitation Wavelength-Dependent Dynamic Changes in the Mechanism of Detection of Picric Acid using Pyrene-Based Donor-Acceptor Systems. Chemphyschem 2024; 25:e202400264. [PMID: 38776018 DOI: 10.1002/cphc.202400264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024]
Abstract
Picric acid (PA) is an important industrial feedstock and hence the release of industrial effluents without proper remediation results in its buildup in soil and water bodies. The adverse effects of PA accumulation in living beings necessitate the development of efficient methods for its detection and quantification. Herein, we describe pyrene-based fluorescent sensors for PA, where pyrene is appended with electron-withdrawing groups, malononitrile, and 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene) malononitrile (DCDHF). These molecules displayed the typical emission of pyrene monomers, as well as a broad red-shifted emission resulting from an intramolecular charge transfer (ICT) in the excited state. Both the emissions displayed a turn-off response to PA with high selectivity and sensitivity and the lowest limit of detection was estimated as 27 nM. To prove the feasibility of on-site detection, test paper strips were prepared, which could detect PA up to 4.58 picograms. Using a combination of experimental and theoretical studies the mechanism of the detection was identified as primary/secondary inner filter effect, oxidative photoinduced electron transfer, or a combination of both depending on the excitation wavelength. Interestingly, the contribution of each of these mechanisms to the total quenching process varied with a change in the excitation wavelength.
Collapse
Affiliation(s)
- V Sreelaya
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India
| | - Shahnaz S Rohman
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India
| | - Pattiyil Parameswaran
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India
| | | |
Collapse
|
16
|
Singh Chauhan S, Mohan Murari B. Fluorescence Spectroscopic Studies to Evaluate Binding Interaction between Hoechst 33258 and Bilirubin. J Fluoresc 2024; 34:2229-2237. [PMID: 37728846 DOI: 10.1007/s10895-023-03440-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
A detailed spectroscopic study (fluorescence, absorption, and lifetime) was conducted to gain insight into the nature of the binding interaction between fluorophore Hoechst33258 (H258) and jaundice marker Bilirubin (Br). The fluorescence emission of the H258 (Ex/Em = 340-502nm) showed a conc. dependent quenching in the presence of Br (1.25 μ M to 10 μ M). The Stern-Volmer constant demonstrated an upward curve depicting the occurrence of both static and dynamic quenching with an acquired value of KSV = 3.1x 103 M- 1 and biomolecular quenching rate constant Kq = 8.6 x 1011 M- 1 S- 1 . The static quenching was evaluated using the sphere of action model and a sphere radius of 0.3nm indicated the presence of a static component in the quenching. The FRET analysis with overlap integral (J) = 1.4x1014 M- 1 cm- 1 nm4 and Foster Radius(R0 ) = 26.82 Å with 59% efficiency suggested occurrence of dynamic quenching. Further studies with the time-resolved fluorescence also indicated the presence of dynamic quenching. The lifetime values of H258 reduced from 3.9ns to 0.5ns. Molecular docking studies further support both static and dynamic components in quenching. A non-covalent interaction of H258 with Br in the presence of HSA is predominantly characterized by H-bonding with residues Lys, Asn, Glu, Gln, and Br. The H258 and Br interaction was within the distance of 3.04 Å, which is in coherence with the sphere of action model (0.3nm) and Van-der-Waals along with hydrophobic interactions, which suggested both static and dynamic quenching. Thus, H258 can serve as an efficient fluorophore to monitor binding interactions and can be further exploited as a suitable probe for investigating conformational changes and detection of Br in subsequent studies.
Collapse
Affiliation(s)
- Srishti Singh Chauhan
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Bhaskar Mohan Murari
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
17
|
Xu J, Zhang X, Zhong J, Huang S, Wang S, Zhai H. Surface-active agent enhanced FRET effect Cu-doped NH 2-MIL-88(Fe) for highly sensitive detection of 3-nitro-L-tyrosine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124315. [PMID: 38688213 DOI: 10.1016/j.saa.2024.124315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
In this study, Cu-doped NH2-MIL-88(Fe) metal-organic frameworks (MOF) were synthesized via a one-step method. Characterization techniques such as XPS, XRD and FTIR confirmed the successful incorporation of Cu2+ into NH2-MIL-88(Fe), naming this MOF as NH2-MIL-88(Fe)@Cu2+. This MOF was employed to develop a highly sensitive fluorescence sensing platform for detecting 3-nitro-L-tyrosine(3-NT). The potential for fluorescence resonance energy transfer (FRET) was suggested by the spectral overlap between NH2-MIL-88(Fe)@Cu2+'s emission and 3-NT's UV absorption. To augment this effect, cationic surfactant hexadecyltrimethylammonium bromide (CTAB), which self-assembled into nanostructured microspheres above its critical micelle concentration, was utilized. The charged surface of these microspheres, formed by the self-assembly of CTAB, is bound to the MOF surface through electrostatic force and simultaneously attracts 3-NT. Adjusting the solution's pH strengthened the interaction between NH2-MIL-88(Fe)@Cu2+ and 3-NT, thereby enhancing their mutual FRET interaction. Experimental results indicated that CTAB's introduction markedly improved the FRET effects, potentially converting a weak FRET into a strong one and enhancing detection sensitivity and accuracy. Under optimal conditions, NH2-MIL-88(Fe)@Cu2+ detected 3-NT within 0-30 μM range, with a limit of detection (LOD, S/N = 3) of 41.1 nM. Finally, the applicability of the sensor is tested by calibrating measurements in fetal bovine serum samples, achieving good performance in terms of sensitivity, selectivity and reproducibility. This research provides a method for efficient and highly sensitive 3-NT detection and insights into the FRET effect between MOF and target molecules, likely advancing related fields and inspiring future fluorescence sensor designs.
Collapse
Affiliation(s)
- Jin Xu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohui Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiapeng Zhong
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siying Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Elenkova D, Dimitrova Y, Tsvetkov M, Morgenstern B, Milanova M, Todorovsky D, Zaharieva J. Investigation of the Sensing Properties of Lanthanoid Metal-Organic Frameworks (Ln-MOFs) with Terephthalic Acid. Molecules 2024; 29:3713. [PMID: 39125117 PMCID: PMC11314416 DOI: 10.3390/molecules29153713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The solvothermal synthesis of LnCl3.nH2O with terephthalic acid (benzene-1,4-dicarboxylic acid, H2BDC) produced metal-organic frameworks (LnBDC), [Ln2(BDC)3(H2O)4]∞, where Ln = Sm, Eu, Tb, and Dy. The materials obtained were characterized by a number of physico-chemical techniques. The influence of the ionic radius of the lanthanides on the microstructural characteristics of the Ln-MOFs was evaluated by performing Rietveld refinement. The MOFs obtained were tested as fluorescent sensors for numerous cations and anions in water. The highly luminescent EuBDC and TbBDC demonstrated multi-responsive luminescence sensing functions to detect Ag(I), Fe(III), Cr(III), and Cr(VI), which are essential for their environmental applications. By applying the non-linear Stern-Volmer equation, the fluorescent quenching mechanism was determined. The stability of the obtained materials in water in a wide pH range (acidity pH = 4 and alkalinity pH = 9 solutions) was confirmed.
Collapse
Affiliation(s)
- Denitsa Elenkova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Yana Dimitrova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Martin Tsvetkov
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Bernd Morgenstern
- Inorganic Solid State Chemistry, Saarland University, Campus Geb. C4 1, 66123 Saarbrücken, Germany;
| | - Maria Milanova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Dimitar Todorovsky
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Joana Zaharieva
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| |
Collapse
|
19
|
Bika P, Tzitzios VK, Sakellis E, Orfanoudakis S, Boukos N, Alhassan SM, Tsipas P, Psycharis V, Stergiopoulos T, Dallas P. Electron transfer and energy exchange between a covalent organic framework and CuFeS 2 nanoparticles. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:10475-10486. [PMID: 39035222 PMCID: PMC11257035 DOI: 10.1039/d4tc01989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024]
Abstract
CuFeS2 is a prominent chalcogenide that possesses similar optical properties and a significantly lower cost, compared to gold. Additionally, covalent organic frameworks are a class of materials at the forefront of current research, mainly used as photoactive components and porous absorbers. Hence, in this work, hydrophilic CuFeS2 particles are coupled with multi-functional covalent organic frameworks through ionic bonding to produce a hybrid material with unique and optimized properties. To render the CuFeS2 particles negatively charged and dispersible in water, we coated them with sodium dodecyl sulfonate, shifting the surface plasmon resonance of the nanoparticles from 472 to 492 nm. When they are electrostatically assembled with the positively charged COFs, an S-scheme is formed and the fluorescence of the hybrid materials is highly quenched, with the electron transfer happening from the networks to the nanoparticles and a simultaneous energy exchange which is dependent on the emission wavelength. Through detailed fluorescence spectroscopy, time-resolved measurements and Stern-Volmer analysis, we identified an efficient emission quenching that differs from the bulk to the exfoliated hybrid system, while detailed electron microscopy studies demonstrated the strong interaction between the two components. The quenching mechanisms and the on or off surface resonance dependent lifetime could be applied to photocatalytic and photovoltaic applications.
Collapse
Affiliation(s)
- Panagiota Bika
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
| | - Vasileios K Tzitzios
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
| | - Spyros Orfanoudakis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
- School of Applied Mathematical and Physical Sciences, National Technical University Athens 15780 Zografou Athens Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
| | - Saeed M Alhassan
- Department of Chemical Engineering, Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
| | - Polychronis Tsipas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
- National Institute of Materials Physics Atomistilor 405A Magurele Romania
| | - Vasileios Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
| | - Thomas Stergiopoulos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
| | - Panagiotis Dallas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos 15341 Athens Greece +302106503394 +302106503311
| |
Collapse
|
20
|
Mondal S, Sarkar O, Raut J, Mandal SM, Chattopadhyay A, Sahoo P. Development of a Nanomarker for In Vivo Monitoring of Dopamine in Plants. ACS APPLIED BIO MATERIALS 2024; 7:4690-4701. [PMID: 38952293 DOI: 10.1021/acsabm.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Dopamine, alongside norepinephrine and epinephrine, belongs to the catecholamine group, widely distributed across both plant and animal kingdoms. In mammals, these compounds serve as neurotransmitters with roles in glycogen mobilization. In plants, their synthesis is modulated in response to stress conditions aiding plant survival by emitting these chemicals, especially dopamine that relieves their resilience against stress caused by both abiotic and biotic factors. In present studies, there is a lack of robust methods to monitor the operations of dopamine under stress conditions or any adverse situations across the plant's developmental stages from cell to cell. In our study, we have introduced a groundbreaking approach to track dopamine generation and activity in various metabolic pathways by using the simple nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs). These CQDs exhibit dominant biocompatibility, negligible toxicity, and environmentally friendly characteristics using a quenching process for fluorometric dopamine detection. This innovative nanomarker can detect even small amounts of dopamine within plant cells, providing insights into plant responses to strain and anxiety. Confocal microscopy has been used to corroborate this occurrence and to provide visual proof of the process of binding dopamine with these N, S-CQDs inside the cells.
Collapse
Affiliation(s)
- Shrodha Mondal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Jiko Raut
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
21
|
Soltani-Shahrivar M, Afkhami A, Madrakian T. Design and optimization of a cost-effective paper-based voltammetric sensor for the determination of trinitrotoluene (TNT) utilizing cysteamine-linked Fe 3O 4 @Au nanocomposite. Talanta 2024; 274:126041. [PMID: 38581854 DOI: 10.1016/j.talanta.2024.126041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
This paper presents the development and optimization of a cost-effective paper electrochemical sensor for the detection of TNT using Fe3O4-Au core-shell nanoparticles modified with cysteamine (Fe3O4@Au/CA). The sensor was constructed by modifying a graphite paste with the aforementioned nanoparticles, which facilitated the formation of a Meisenheimer complex between cysteamine and TNT as an electron donor and an electron acceptor, respectively. The central composite design was employed to optimize four key parameters pH, modifier percentage, contact time, and buffer type to enhance the performance of the sensor. The detection limit was found to be 0.5 nM of TNT, while the linear range of the electrode response spanned from 0.002 μM to 10 μM. The simplicity and low cost of the sensor make it highly attractive for practical applications, particularly in scenarios where rapid and on-site TNT detection is required.
Collapse
Affiliation(s)
- Morteza Soltani-Shahrivar
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran; D-8 International University, Hamedan, Iran.
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Science, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
22
|
Aldakhil F, Alarfaj NA, Al-Tamimi SA, El-Tohamy MF. Hydrothermal synthesis of modified lignin-based carbon dots derived from biomass waste for fluorescence determination of valsartan. RSC Adv 2024; 14:19969-19982. [PMID: 38911833 PMCID: PMC11190890 DOI: 10.1039/d4ra02398f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Recently, carbon dots (CDs) have been extensively investigated as potential tools for numerous applications. Modified lignin-based CDs have been synthesized and used in the field of drug detection. They were found to be highly selective and sensitive to valsartan (VAL). Using a simple hydrothermal method, phosphorus and chlorine co-doped CDs were synthesized using lignin extracted from date seeds. The fluorescence properties of the synthesized CDs are influenced by several factors, which were investigated in detail. The optimal synthesis conditions were 1.50 g of lignin, 18 mL of 2 M NaOH, 1 mM H3PO4, 3 mM HCl and the mixture was heated at 220 °C for 16 hours. The synthesized lignin-based CDs have excellent FL properties and are well soluble in water with reasonable stability. Characterization of the prepared CDs revealed that they have various functional groups with a graphene oxide-like structure. The developed CDs show a good quantum yield of 37.7%. The FL of the CDs is quenched by VAL at λ em 313 nm after λ ex at 275 nm by a combination of static and dynamic quenching mechanisms. The response of VAL was linear in the range of 4.0-100.0 μg mL-1. The detection and quantification limits of VAL were 1.23 and 3.71 μg mL-1, respectively. The nanoprobe was successfully used to analyze VAL in drug samples and provided satisfactory results.
Collapse
Affiliation(s)
- Fatemah Aldakhil
- Department of Chemistry, College of Science, King Saud University P.O. Box 22452 Riyadh 11495 Saudi Arabia
| | - Nawal A Alarfaj
- Department of Chemistry, College of Science, King Saud University P.O. Box 22452 Riyadh 11495 Saudi Arabia
| | - Salma A Al-Tamimi
- Department of Chemistry, College of Science, King Saud University P.O. Box 22452 Riyadh 11495 Saudi Arabia
| | - Maha F El-Tohamy
- Department of Chemistry, College of Science, King Saud University P.O. Box 22452 Riyadh 11495 Saudi Arabia
| |
Collapse
|
23
|
Aldakhil F, Alarfaj NA, Al-Tamimi SA, El-Tohamy MF. A Dual-Mode Spectrophotometric and Fluorescent Probe Based on Lignin-Derived Carbon Dots for the Detection of Atorvastatin Calcium in a Bulk Powder and a Commercial Product. J Fluoresc 2024:10.1007/s10895-024-03745-2. [PMID: 38814526 DOI: 10.1007/s10895-024-03745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Recently, dual-mode techniques have garnered considerable attention and have been shown to be effective approaches for biomedical analysis and environmental monitoring. A novel and simple dual-mode spectrophotometric and fluorometric probe based on lignin-derived carbon dots (LCDs) was developed to detect atorvastatin calcium (ATS) in a bulk powder and its commercial product. The synthesized LCDs exhibit exceptional fluorescence characteristics and are highly soluble in water while maintaining reasonable stability. The average particle size of the LCDs was 3.42 ± 1.03 nm. The characterization of the produced LCDs indicated a structure resembling graphene oxide with the presence of several functional groups. The developed LCDs show a good fluorescence quantum yield of 32.2%. The fluorescence of the LCDs is quenched by ATS at an emission wavelength of 315 nm after excitation at 275 nm through dynamic and static quenching mechanisms. The optimal reaction conditions for the dual-mode reaction were a pH of 9 and 0.05 mL of the LCDs, which were measured after 3 min at 30 °C by spectrophotometry, followed by 7 min at 20 °C by fluorometric methods. According to the spectrophotometric results, the response of ATS was linear in the range of 4.0-100.0 µg/mL, while according to the fluorometric results, the dynamic range was 3.0-50.0 µg/mL. The limits of detection (LODs) and the limits of quantification (LOQs) were 0.97 µg/mL and 2.95 µg/mL for the fluorometric method, respectively. The nanoprobe effectively analyzed ATS in medication samples and yielded good results.
Collapse
Affiliation(s)
- Fatemah Aldakhil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Nawal A Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Salma A Al-Tamimi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maha F El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| |
Collapse
|
24
|
Shkhair AI, Madanan AS, Varghese S, Abraham MK, Indongo G, Rajeevan G, K AB, Abbas SM, George S. Mo(IV) Ion-Modulated BSA-Protected Gold Nanocluster Probe for Fluorescence Turn-On Detection of Trimethylamine N-Oxide (TMAO). ACS APPLIED BIO MATERIALS 2024; 7:3460-3468. [PMID: 38703374 DOI: 10.1021/acsabm.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Trimethylamine N-oxide (TMAO), a molecule produced by the microbiota, has been associated with human health and illness. Its early discovery in body fluids may affect our understanding of the pathophysiology and treatment of many illnesses. Therefore, our knowledge of the pathophysiology and diagnostics of disorders associated with TMAO might be enhanced by the creation of dependable and fast methods for TMAO detection. Therefore, we developed a fluorescent probe for detecting TMAO utilizing an on-off-on strategy. Bovine serum albumin (BSA)@AuNCs luminescence is effectively quenched by Mo4+ because BSA@AuNCs and Mo4+ have a strong binding relationship. Mo4+ ions can substantially decrease the emission intensity of gold nanoclusters by establishing a BSA@AuNCs-Mo system. Then, the luminescence of BSA@AuNCs was restored due to the interaction between Mo4+ and TMAO. A significant linear relationship was seen between the emission intensity and TMAO concentration within the 0-201 μM range, with a detection limit of 1.532 μM. Additionally, the method can measure TMAO in blood and urine samples.
Collapse
Affiliation(s)
- Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
- College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Arathy B K
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Sara Muneer Abbas
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
- College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Sony George
- Associate Professor, Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- Coordinator, International Inter-University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| |
Collapse
|
25
|
Mousavi Z, Ghasemi JB, Mohammadi Ziarani G, Rahimi S, Badiei A. Coumarin derivative-functionalized nanoporous silica as an on-off fluorescent sensor for detecting Fe 3+ and Hg 2+ ions: a circuit logic gate. DISCOVER NANO 2024; 19:70. [PMID: 38647707 PMCID: PMC11035537 DOI: 10.1186/s11671-024-04013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
A highly efficient fluorescent sensor (S-DAC) was easily created by functionalizing the SBA-15 surface with N-(2-Aminoethyl)-3-Aminopropyltrimethoxysilane followed by the covalent attachment of 7-diethylamino 3-acetyl coumarin (DAC). This chemosensor (S-DAC) demonstrates selective and sensitive recognition of Fe3+ and Hg2+ in water-based solutions, with detection limits of 0.28 × 10-9 M and 0.2 × 10-9 M for Hg2+ and Fe3+, respectively. The sensor's fluorescence characteristics were examined in the presence of various metal ions, revealing a decrease in fluorescence intensity upon adding Fe3+ or Hg2+ ions at an emission wavelength of 400 nm. This sensor was also able to detect ferric and mercury ions in spinach and tuna fish. The quenching mechanism of S-DAC was investigated using UV-vis spectroscopy, which confirmed a static-type mechanism for fluorescence quenching. Moreovre, the decrease in fluorescence intensity caused by mercury and ferric ions can be reversed using trisodium citrate dihydrate and EDTA as masking agents, respectively. As a result, a circuit logic gate was designed using Hg2+, Fe3+, trisodium citrate dihydrate, and EDTA as inputs and the quenched fluorescence emission as the output.
Collapse
Affiliation(s)
- Zahra Mousavi
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran
| | - Jahan B Ghasemi
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box: 1993893973, Tehran, Iran.
| | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran.
| |
Collapse
|
26
|
Khalid Zia M, Siddiqui T, Ansari S, Muaz M, Ahsan H, Halim Khan F. Insight into the molecular interaction between the anticancer drug, enzalutamide and human alpha-2-macroglobulin: Biochemical and biophysical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123957. [PMID: 38310741 DOI: 10.1016/j.saa.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
The drug pharmacokinetics is affected upon binding with proteins, thus making drug-protein interactions crucial. This study investigated the interaction between enzalutamide and human major antiproteinase alpha-2-macroglobulin (α2M) by using multi spectroscopic and calorimetric techniques. The spectroscopic techniques such as circular dichroism (CD), intrinsic fluorescence, and UV-visible absorption were used to determine the mechanism of enzalutamide-α2M interaction. Studies on the quenching of fluorescence at three different temperatures showed that the enzalutamide-α2M complex is formed through static quenching mechanism. The change in microenvironment around tyrosine residues in protein was detected through synchronised fluorescence. The secondary structure of α2M was slightly altered by enzalutamide according to far UV-CD spectral analysis. Changes in position of amide I band in FTIR spectra further confirm the secondary structural alteration in α2M. According to thermodynamic characteristics such as fluorescence quenching and isothermal titration calorimetry (ITC), hydrogen bonds and hydrophobic interactions were involved in the interaction machanism. The ITC reiterated the exothermic and spontaneous nature of the interaction. The lower proteinase inhibitory activity of the α2M-enzalutamide conjugate as reflects the disruption of the native α2M structure upon interaction with enzalutamide.
Collapse
Affiliation(s)
- Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Muaz
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
27
|
Raj R, Mradula, Samanta P, Singh R, Sachdev A, Mishra S. Evaluation of AgNCs@PEI and their integrated hydrogel for colorimetric and fluorometric detection of ascorbic acid. Anal Biochem 2024; 687:115433. [PMID: 38128809 DOI: 10.1016/j.ab.2023.115433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
A dual-mode colorimetric and fluorometric sensor based on water soluble silver nanoclusters (AgNCs@PEI) is developed for quantitative and visual detection of ascorbic acid (Asc A). The detection method relies on the Asc A induced aggregation of AgNCs@PEI, which resulted in fluorecsence quenching of the sensor. The clusters exhibited a unique combination of static and collisional quenching with a wide range of dynamic detection (1-105 µM) Linear relationship was observed in the concentration range 102-103 µM using fluorescence and 0.2 × 102-5 × 103 μM using absorbance spectroscopy with respective detection limits of 10.65 μM and 2.49 μM. The corresponding colorimetric and fluorometric changes can be easily monitored by the naked eye with a visual detection limit of 103 μM. AgNCs@PEI were further integrated within a hydrogel for developing a solid-state visual detection platform. Notably, the sensing response of the clusters towards Asc A remained unaltered even after hydrogel integration. Additionally, digital image analysis was adopted, which improved the sensitivity of instrument-free fluorescence detection of Asc A. Analysis by the developed sensor showed excellent recovery percentages of Asc A in spiked urine samples, which further underscores the practical applicability of the sensor.
Collapse
Affiliation(s)
- Rocky Raj
- Department of Material Science and Sensors Applications, CSIR-Central Scientific Instrumentation Organization, Chandigarh, 160030, India; Academy Council of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Mradula
- Department of Material Science and Sensors Applications, CSIR-Central Scientific Instrumentation Organization, Chandigarh, 160030, India; Academy Council of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Pradipta Samanta
- Department of Material Science and Sensors Applications, CSIR-Central Scientific Instrumentation Organization, Chandigarh, 160030, India; Academy Council of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Ravinderjit Singh
- Department of Material Science and Sensors Applications, CSIR-Central Scientific Instrumentation Organization, Chandigarh, 160030, India
| | - Abhay Sachdev
- Department of Material Science and Sensors Applications, CSIR-Central Scientific Instrumentation Organization, Chandigarh, 160030, India; Academy Council of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Sunita Mishra
- Department of Material Science and Sensors Applications, CSIR-Central Scientific Instrumentation Organization, Chandigarh, 160030, India; Academy Council of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
28
|
Kshirsagar AS, Koch KA, Srimath Kandada AR, Gangishetty MK. Unraveling the Luminescence Quenching Mechanism in Strong and Weak Quantum-Confined CsPbBr 3 Triggered by Triarylamine-Based Hole Transport Layers. JACS AU 2024; 4:1229-1242. [PMID: 38559743 PMCID: PMC10976578 DOI: 10.1021/jacsau.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Luminescence quenching by hole transport layers (HTLs) is one of the major issues in developing efficient perovskite light-emitting diodes (PeLEDs), which is particularly prominent in blue-emitting devices. While a variety of material systems have been used as interfacial layers, the origin of such quenching and the type of interactions between perovskites and HTLs are still ambiguous. Here, we present a systematic investigation of the luminescence quenching of CsPbBr3 by a commonly employed hole transport polymer, poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine)] (TFB), in LEDs. Strong and weak quantum-confined CsPbBr3 (nanoplatelets (NPLs)/nanocrystals (NCs)) are rationally selected to study the quenching mechanism by considering the differences in their morphology, energy level alignments, and quantum confinement. The steady-state and time-resolved Stern-Volmer plots unravel the dominance of dynamic and static quenching at lower and higher concentrations of TFB, respectively, with a maximum quenching efficiency of 98%. The quenching rate in NCs is faster than that in NPLs owing to their longer PL lifetimes and weak quantum confinement. The ultrafast transient absorption results support these dynamics and rule out the involvement of Forster or Dexter energy transfer. Finally, the 1D 1H and 2D nuclear overhauser effect spectroscopy nuclear magnetic resonance (NOESY NMR) study confirms the exchange of native ligands at the NCs surface with TFB, leading to dark CsPbBr3-TFB ensemble formation accountable for luminescence quenching. This highlights the critical role of the triarylamine functional group on TFB (also the backbone of many HTLs) in the quenching process. These results shed light on the underlying reasons for the luminescence quenching in PeLEDs and will help to rationally choose the interfacial layers for developing efficient LEDs.
Collapse
Affiliation(s)
- Anuraj S. Kshirsagar
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Katherine A. Koch
- Department
of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston Salem, North Carolina 27109, United
States
| | - Ajay Ram Srimath Kandada
- Department
of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston Salem, North Carolina 27109, United
States
| | - Mahesh K. Gangishetty
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
- Department
of Physics and Astronomy, Mississippi State
University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
29
|
Chettri B, Fernandes RS, Jha S, Dey N. Label-free multimodal analysis of copper ions at below permissible exposure limit in the aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123620. [PMID: 38039638 DOI: 10.1016/j.saa.2023.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
An anthraimidazoledione based amphiphilic dye molecule was synthesized that shows formation of tuneable charge-transfer state in solution, susceptible to change in pH, polarity and hydrogen bonding ability of the medium. The compound also showed formation of nanoscopic self-assembled structure in water medium. The probe molecule can achieve multimodal detection (colorimetric, fluorimetric and electrochemical) of copper ions as low as 0.3 ppm in the aqueous medium. Addition of copper leads to dose-dependent ratiometric change in solution color from yellow to purple. The mechanistic investigation indicates that the coordination of copper ions was possible via simultaneous engagement of both imidazole nitrogen ends and neighbouring hydroxyl unit. Not only optical property, the changes in microenvironment also influence the selectivity as well as sensitivity of the probe molecule towards Cu2+ ions. Further, the optical probe is used for detection as well as quantification of copper ions in natural water samples without any sample pretreatment. Low-cost, reusable paper strips are developed for rapid, on-location detection of residual Cu2+ in real-life samples.
Collapse
Affiliation(s)
- Bimal Chettri
- Department of Chemistry, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Sikkim 737136, India
| | - Rikitha S Fernandes
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India
| | - Satadru Jha
- Department of Chemistry, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Sikkim 737136, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India.
| |
Collapse
|
30
|
Sharma V, Sahu M, De D, Patra GK. Synthesis, Crystal Structure, DFT and Fluorescence Quenching Study of Novel syringe aldehyde-derived hydrazinyl-imidazole Based Schiff base Chemosensor. J Fluoresc 2024; 34:865-877. [PMID: 37395980 DOI: 10.1007/s10895-023-03319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
In this study, we report a new syringe aldehyde-derived hydrazinyl-imidazole based fluorescent sensor (L) for sensitive detection of different inorganic quenchers (halide ions, bicarbonate ion, sulphide ion and transition metal ions). The chromophore (L) was obtained in good yield by the 1:1 condensation reaction of 2-hydrazino-4,5-dihydroimidazole hydrobromide and 4-hydroxy-3,5-dimethoxy benzaldehyde. L exhibited strong fluorescence in the visible region (around 380 nm) and its interaction with different quenchers was studied in details via fluorescence technique. For the halide ions series, its sensitivity is higher for NaF (Climit = 4 × 10- 4 M) than for NaCl while the fluorescence quenching occurred mainly through a dynamic process. Similar considerations were observed for HCO3- and S2- quencher too, when static and dynamic quenching take place simultaneously. Regarding transition metal ions, at a fixed ion concentration (4 × 10- 6 M), best performance was achieved for Cu2+ and Fe2+ (fluorescence intensity was reduced by 79% and 84.9% respectively), while for other metal ions, the sensor performance was evaluated and found to be very less (< 40%). Thus, minimum detection limits (10- 6 - 10- 5 M range) recommended the use of such derivatives as highly sensitive sensors capable to monitor delicate changes in varied environments.
Collapse
Affiliation(s)
- Vanshika Sharma
- Department of Chemistry, Guru GhasidasVishwavidyalaya, C.G, Bilaspur, India
| | - Meman Sahu
- Department of Chemistry, Guru GhasidasVishwavidyalaya, C.G, Bilaspur, India
| | - Dinesh De
- Department of Chemistry, Guru GhasidasVishwavidyalaya, C.G, Bilaspur, India
| | - Goutam Kumar Patra
- Department of Chemistry, Guru GhasidasVishwavidyalaya, C.G, Bilaspur, India.
| |
Collapse
|
31
|
Rajendran P, Murugaperumal P, Nallathambi S, Perdih F, Ayyanar S, Chellappan S. Performance of 4,5-diphenyl-1H-imidazole derived highly selective 'Turn-Off' fluorescent chemosensor for iron(III) ions detection and biological applications. LUMINESCENCE 2024; 39:e4694. [PMID: 38414310 DOI: 10.1002/bio.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2, were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1 H)- and carbon-13 (13 C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+ ) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi-Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M-1 , respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+ , the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.
Collapse
Affiliation(s)
- Praveena Rajendran
- Department of Industrial Chemistry, Alagappa University, Karaikudi, India
| | | | - Sengottuvelan Nallathambi
- Department of Chemistry, Directorate of Distance Education (DDE), Alagappa University, Karaikudi, India
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Siva Ayyanar
- Department of Inorganic Chemistry, Madurai Kamaraj University, Madurai, India
| | - Selvaraju Chellappan
- National Center for Ultrafast Process, University of Madras, Tarmani Campus, Chennai, India
| |
Collapse
|
32
|
Sedighi V, Faridbod F. Synthesis of polymer dots as fluorescent nanoprobe for the detection of Ponceau 4R, an additive color abuse in food. Food Chem 2024; 434:137402. [PMID: 37741238 DOI: 10.1016/j.foodchem.2023.137402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/25/2023]
Abstract
Abusing organic dyes in industrial food products is an important issue in many countries. Rapid chemical sensing of these compounds can be of great importance during the industrial life of humans. In this work, we synthesized a new fluorescent polymer dot and successfully applied it as an optical probe for the detection of red color abuse in foodstuffs. Ponceau 4R is a red organic dye additive that is used in some foodstuffs such as tomato sauces or pastes. It is too hazardous to human health. Detection of such abusage is challenging. The development of π-conjugated polymer dots having a bright emission band at visible can be a promising probe for the detection of food color additives. A variety of methods and monomers were previously used for their synthesis. Here, the Suzuki Coupling method was employed. The limit of detection (LOD) of the method was obtained 16 nmol L-1 for the detection of Ponceau 4R.
Collapse
Affiliation(s)
- Vida Sedighi
- Department of Chemistry, Kish International Campus, University of Tehran, Iran.
| | - Farnoush Faridbod
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
33
|
Jana G, Sing S, Das A, Basu A. Interaction of food colorant indigo carmine with human and bovine serum albumins: A multispectroscopic, calorimetric, and theoretical investigation. Int J Biol Macromol 2024; 259:129143. [PMID: 38176484 DOI: 10.1016/j.ijbiomac.2023.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this work we have studied the interaction of the food dye Indigo-Carmine (IndC) with the most studied model transport proteins i.e. human and bovine serum albumin (HSA & BSA). A multispectroscopic approach was used to analyze the details of the binding process. The intrinsic fluorescence of both the albumins was significantly quenched by IndC and the quenching was both static and dynamic in nature with the former being dominant. The HSA-lndC and BSA-IndC distance after complexation was determined by Förster resonance energy transfer (FRET) method which suggested efficient energy transfer from the albumins to IndC. Thermodynamics of serum protein-IndC complexation was estimated by isothermal titration calorimetry (ITC) which revealed that the binding was enthalpy driven. Circular dichroism (CD) and FTIR spectroscopy revealed that the binding of IndC induced secondary structural changes in both the serum proteins. Synchronous and 3D fluorescence spectroscopy revealed that the binding interaction caused microenvironmental changes of protein fluorophores. Molecular docking analysis suggested that hydrogen bonding and hydrophobic interactions are the major forces involved in the complexation process.
Collapse
Affiliation(s)
- Gouranga Jana
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Arindam Das
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
34
|
Barboza-Ramos I, Karuk Elmas SN, Schanze KS. Fluorogenic sensors. SENSORY POLYMERS 2024:181-223. [DOI: 10.1016/b978-0-443-13394-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
35
|
Ghosh S, Katiyar JD, Chattopadhyay S. Stimuli-directed selective detection of Cu 2+ and Cr 2O 72- ions using a pH-responsive chitosan-poly(aminoamide) fluorescent microgel in aqueous media. SOFT MATTER 2023; 20:79-88. [PMID: 37999681 DOI: 10.1039/d3sm01319g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In this work, the preparation of a pH-responsive fluorescent microgel, (NANO-PAMAM-CHT), is presented for the selective detection of Cu2+ and Cr2O72- ions. The NANO-PAMAM-CHT (nanosized polyaminoamide-chitosan microgel) is synthesized via aza-Michael addition reactions in a controlled and stepwise manner in water, using easily affordable starting materials like 1,4-diaminobutane, N,N'-methylene-bis-acrylamide, NIPAM and chitosan. NANO-PAMAM-CHT shows pH-responsive fluorescent properties, whereas the fluorescence intensity shows a pH-responsive change. Due to the selective fluorescence quenching, the microgel can detect both Cu2+ ions and Cr2O72- ions selectively at ambient pH in aqueous medium. Moreover, it can selectively differentiate between Cu2+ ion and Cr2O72- ions at pH ∼3 in water. The limits of detection for Cu2+ ions and Cr2O72- ions are reported as 16.9 μM and 2.62 μM, respectively (lower than the minimum allowed level in drinking water) at pH ∼7. Mechanistic study further reveals the dynamic quenching phenomenon in the presence of Cu2+ ions and static quenching in the presence of Cr2O72- ions.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| | - Jyoti Devi Katiyar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| | - Subrata Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| |
Collapse
|
36
|
Al-Sharifi HKR, Deepthi A. Study on the mechanistic classes of fluorescence quenching of tryptanthrin-malononitrile adduct by aniline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123261. [PMID: 37597355 DOI: 10.1016/j.saa.2023.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Mechanistic studies of the fluorescence quenching of 2-(2-chloro-12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)malononitrile (2CTMA) with aniline, using solvent mixtures of acetonitrile and 1,4-dioxane at room temperature, by steady-state and time-resolved methods is reported here. It was confirmed that, with the use of the sphere of action static quenching model and finite sink approximation model, that the bimolecular quenching reactions are due to the presence of both dynamic and static quenching processes.
Collapse
Affiliation(s)
- Haitham K R Al-Sharifi
- Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581, India; College of Food Sciences, Al-Qasim Green University, Babylon, Iraq
| | - Ani Deepthi
- Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581, India.
| |
Collapse
|
37
|
Sharma C, Verma M, Abidi SMS, Shukla AK, Acharya A. Functional fluorescent nanomaterials for the detection, diagnosis and control of bacterial infection and biofilm formation: Insight towards mechanistic aspects and advanced applications. Colloids Surf B Biointerfaces 2023; 232:113583. [PMID: 37844474 DOI: 10.1016/j.colsurfb.2023.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Infectious diseases resulting from the high pathogenic potential of several bacteria possesses a major threat to human health and safety. Traditional methods used for screening of these microorganisms face major issues with respect to detection time, selectivity and specificity which may delay treatment for critically ill patients past the optimal time. Thus, a convincing and essential need exists to upgrade the existing methodologies for the fast detection of bacteria. In this context, increasing number of newly emerging nanomaterials (NMs) have been discovered for their effective use and applications in the area of diagnosis in bacterial infections. Recently, functional fluorescent nanomaterials (FNMs) are extensively explored in the field of biomedical research, particularly in developing new diagnostic tools, nanosensors, specific imaging modalities and targeted drug delivery systems for bacterial infection. It is interesting to note that organic fluorophores and fluorescent proteins have played vital role for imaging and sensing technologies for long, however, off lately fluorescent nanomaterials are increasingly replacing these due to the latter's unprecedented fluorescence brightness, stability in the biological environment, high quantum yield along with high sensitivity due to enhanced surface property etc. Again, taking advantage of their photo-excitation property, these can also be used for either photothermal and photodynamic therapy to eradicate bacterial infection and biofilm formation. Here, in this review, we have paid particular attention on summarizing literature reports on FNMs which includes studies detailing fluorescence-based bacterial detection methodologies, antibacterial and antibiofilm applications of the same. It is expected that the present review will attract the attention of the researchers working in this field to develop new engineered FNMs for the comprehensive diagnosis and treatment of bacterial infection and biofilm formation.
Collapse
Affiliation(s)
- Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
38
|
Azeem K, Ahmed M, Uddin A, Singh S, Patel R, Abid M. Comparative investigation on interaction between potent antimalarials and human serum albumin using multispectroscopic and computational approaches. LUMINESCENCE 2023; 38:2018-2033. [PMID: 37654050 DOI: 10.1002/bio.4590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study performed a comparative investigation to explore the interaction mechanisms between two potential antimalarial compounds, JMI 346 and JMI 105, and human serum albumin (HSA), a vital carrier protein responsible for maintaining important biological functions. Our aim was to assess the pharmacological efficiency of these compounds while comprehensively analyzing their impact on the dynamic behavior and overall stability of the protein. A comprehensive array of multispectroscopic techniques, including UV-Vis. spectroscopy, steady-state fluorescence analysis, synchronous fluorescence spectroscopy, three-dimensional fluorescence and circular dichroism spectroscopy, docking studies, and molecular dynamics simulations, were performed to probe the intricate details of the interaction between the compounds and HSA. Our results revealed that both JMI 346 and JMI 105 exhibited promising pharmacological effectiveness within the context of malaria therapy. However, JMI 346 was found to exhibit a significantly higher affinity and only minor altered impact on HSA, suggesting a more favorable interaction with the protein on the dynamic behavior and overall stability of the protein in comparison to JMI 105. Further studies can build on these results to optimize the drug-protein interaction and enable the development of more potent and targeted antimalarial treatments.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mofieed Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
39
|
Katrahalli U, Shanker G, Pal D, Hadagali MD. Molecular spectroscopic and docking analysis of the interaction of fluorescent thiadicarbocyanine dye with biomolecule bovine serum albumin. J Biomol Struct Dyn 2023; 41:10702-10712. [PMID: 36546697 DOI: 10.1080/07391102.2022.2158135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Binding studies of the water-soluble thiadicarbocyanine dye 3,3'-diethylthiadicarbocyanine acetate (DTC) with bovine serum albumin (BSA) were examined under physiological conditions using spectroscopic techniques like fluorescence, UV-Visible, circular dichroism (CD), FT-IR and molecular docking methods. Compiled experimental results envisage that DTC quench the fluorescence intensity of BSA. The increasing binding constants (K) were found to be in the order of 103 Mol-1 as a function of temperature, as calculated from the fluorescence quenching data. The quenching mechanism, thermodynamic parameters (ΔH0, ΔS0 and ΔG0) and the number of binding sites have been explored. CD values showed that the secondary structure of the BSA has been altered upon binding to DTC. Displacement experiments were carried out with different site probes to find out the binding site of DTC on BSA and it was found that binding interaction at site II of sub-domain IIIA. The interference of common metal ions on the interaction of DTC with BSA has also been studied. The experimental data exhibit that DTC interacts with BSA by hydrophobic forces. The experimental findings from BSA binding studies were validated by using in silico molecular docking technique. The results of the investigations were accurately supported by studies on molecular docking. The optimal shape of the molecular probe demonstrated the affinity as a free binding energy release of -7.37 Kcal/mol. The present research report endeavors to the approachable nature of water-soluble DTC dye and paves way for targeted biological interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Govindaswamy Shanker
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Manjunatha Devagondanahalli Hadagali
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
- Department of Studies in Chemistry, Davangere University, Davangere, India
| |
Collapse
|
40
|
Tanwar AS, Khatun MN, Chanu MA, Sarmah T, Im YH, Iyer PK. A water-soluble conjugated polyelectrolyte for selective and sensitive detection of carcinogenic chromium(VI). Analyst 2023; 148:6011-6019. [PMID: 37882495 DOI: 10.1039/d3an01387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Environmental water pollution caused by hexavalent chromium (Cr(VI)) is a threat to living beings due to its carcinogenic nature. Herein, we report the synthesis of a highly fluorescent water-soluble conjugated polyelectrolyte PPMI and its application as a fluorescence sensor to monitor traces of carcinogenic Cr(VI) ions in water. PPMI was synthesized via the oxidative polymerization method followed by post-polymer functionalization. Fluorescent PPMI exhibited a photoluminescence quantum yield of 23.87 and displayed a rapid, very selective, and sensitive turn-off fluorescence signal in response to Cr(VI), with a significantly high quenching constant of 1.32 × 106 M-1. The mechanism of sensing was found to be static quenching. The limit of detection of this highly accessible analytical method was found to be in nanomolar ranges, i.e. 0.85 nM. Additionally, sensing on solid platforms such as economical paper strips was successfully achieved, which is very challenging and highly recommended for any reliable, portable, and economical analytical method.
Collapse
Affiliation(s)
- Arvin Sain Tanwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India
- School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Mst Nasima Khatun
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | | | - Tapashi Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Yeon-Ho Im
- School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India
- Centre of Nanotechnology and School for Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781 039, India.
| |
Collapse
|
41
|
Dashtian K, Binabaji F, Zare-Dorabei R. Enhancing On-Skin Analysis: A Microfluidic Device and Smartphone Imaging Module for Real-Time Quantitative Detection of Multianalytes in Sweat. Anal Chem 2023; 95:16315-16326. [PMID: 37897415 DOI: 10.1021/acs.analchem.3c03516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Wearable sweat sensors present exciting opportunities for advancing personal health monitoring and noninvasive biomarker measurements. However, existing sensors often fall short in accurate detection of low analyte volumes and concentrations and lack multimodal sensing capabilities. Herein, we present a highly portable four-channel microfluidic device capable of conducting simultaneous sweat sampling and fluorometric sensing of potential biomarkers, such as l-Tyr, l-Trp, Crt, and NH4+, specifically designed for kidney disease monitoring. Our microfluidic device seamlessly integrates with smartphones, facilitating easy data retrieval and analysis. The core of the sensing array is a novel fluorometric solid-state mechanism utilizing carbon polymer dots derived from dopamine, catechol, and o-phenylenediamine monomers embedded in gelatin hydrogels. The sensors exhibit exceptional performance, offering linear ranges of 5-275, 6-170, 4-220, and 5-170 μM, with impressively low detection limits of 1.5, 1.2, 1.3, and 1.4 μM for l-Tyr, l-Trp, Crt, and NH4+, respectively. Through meticulous optimization of operational variables, comprising the temperature, sample volume, and assay time, we achieved the best performance of the device. Furthermore, the sensors exhibited remarkable selectivity, effectively distinguishing between biologically similar species and other potential biological compounds found in sweat. Our evaluation also extended to monitoring kidney diseases in patients and healthy individuals, showcasing the device's utility in world scenarios. Promising results showcase the potential of low-cost, multidiagnostic microfluidic sensor arrays, especially with synthetic skin integration, for enhanced disease detection and healthcare outcomes.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Binabaji
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
42
|
Kim KR, Oh J, Hong JI. A photoluminescent and electrochemiluminescent probe based on an iridium(III) complex with a boronic acid-functionalised ancillary ligand for the selective detection of mercury(II) ions. Analyst 2023; 148:5619-5626. [PMID: 37840468 DOI: 10.1039/d3an01266b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exposure to mercury(II) ions (Hg2+) can cause various diseases such as Minamata disease, acrodynia, Alzheimer's disease, and Hunter-Russell syndrome, and even organ damage. Therefore, real-time and accurate monitoring of Hg2+ in environmental samples is crucial. In this study, we report a photoluminescent (PL) and electrochemiluminescent (ECL) probe based on a cyclometalated Ir(III) complex for the selective detection of Hg2+. The introduction of a reaction site, o-aminomethylphenylboronic acid, on the ancillary ligands allowed a prompt transmetalation reaction to take place between Hg2+ and boronic acid. This reaction resulted in significant decreases of the PL and ECL signals due to the photo-induced electron transfer from the Ir(III) complex to the Hg2+ ions. The probe was applied to the selective detection of Hg2+, and the signal changes revealed a linear correlation with Hg2+ concentrations in the range of 0-10 μM (LOD = 0.72 μM for PL, 8.03 nM for ECL). The designed probe allowed the successful quantification of Hg2+ in tap water samples, which proves its potential for the selective detection of Hg2+ in environmental samples.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Jinrok Oh
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| |
Collapse
|
43
|
Mia AK, Bora A, Hossain MT, Sinha S, Giri PK. Fast detection of Staphylococcus aureus using thiol-functionalized WS 2 quantum dots and Bi 2O 2Se nanosheets hybrid through a fluorescence recovery mechanism. J Mater Chem B 2023; 11:10206-10217. [PMID: 37853818 DOI: 10.1039/d3tb01465g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Ultrafast and sensitive detection of Staphylococcus aureus (S. aureus), a harmful Gram-positive human pathogenic bacterium, by two-dimensional layered materials continues to be a challenge. Herein, we have studied the sensing of S. aureus using a tungsten disulfide (WS2) quantum dot (QD) and bismuth oxyselenide (Bi2O2Se) nanosheet (NS) hybrid through their unique optical functionalities. The WS2 QDs of a mean diameter of 2.5 nm were synthesized by liquid exfoliation. Due to the quantum confinement and functional groups, the WS2 QDs exhibit high fluorescence (FL) yield under UV excitation. The addition of Bi2O2Se NSs resulted in the adsorption of WS2 QDs on their surface, resulting in quenching of the FL emission due to nonfluorescent complex formation between the WS2 QDs and Bi2O2Se NSs. A specific sequencing single-standard DNA (ssDNA) aptamer, which identifies and explicitly binds with S. aureus, was attached to the defect sites of the WS2 QDs for selective detection. The thiol-modified ssDNA aptamers attach covalently to the WS2 QD defect sites, which was confirmed by Raman and X-ray photoelectron spectroscopy (XPS). The interaction of S. aureus with the aptamer functionalized WS2 QDs weakens the van der Waals interaction between the WS2 QDs and Bi2O2Se NSs, which results in the detachment of the WS2 QDs from the Bi2O2Se NS surface and restores the FL intensity of the WS2 QDs, thus allowing the efficient detection of S. aureus. Similar measurements with non-targeted bacteria show that the system is quite selective towards S. aureus. Our FL-based biosensor has a linear response in the range of 103-107 CFU mL-1 (colony formation unit mL-1) with a detection limit of 580 CFU mL-1. We have observed a fast response time of 15 minutes for sensing, which is superior to the previous reports. The proposed system was tested in human urine and can detect S. aureus in human urine samples selectively, proving its potential in real-life applications. The reported approach is versatile enough for sensing other biomolecules and metal ions by choosing suitable receptors.
Collapse
Affiliation(s)
- Abdul Kaium Mia
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, 781039, India.
| | - Abhilasha Bora
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, 781039, India.
| | - Md Tarik Hossain
- Department of Physics, Indian Institute of Technology Guwahati, 781039, India
| | - Swapnil Sinha
- IITG TIDF BioNEST, Indian Institute of Technology Guwahati, 781039, India
| | - P K Giri
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, 781039, India.
- Department of Physics, Indian Institute of Technology Guwahati, 781039, India
| |
Collapse
|
44
|
Agarwal A, Bhatta RP, Kachwal V, Laskar IR. Controlling the sensitivity and selectivity for the detection of nitro-based explosives by modulating the electronic substituents on the ligand of AIPE-active cyclometalated iridium(III) complexes. Dalton Trans 2023; 52:14182-14193. [PMID: 37755119 DOI: 10.1039/d3dt02198j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Nitroaromatic compounds are extremely explosive materials that pose a national security risk and raise environmental concerns. The design and development of sensitive and selective compounds for explosive materials are highly desirable. 'Aggregation-Induced Emission' (AIE) active materials are best suited for sensing purposes because of their sensitivity, fast detection time, and easy operation. By rationally incorporating substituents on the cyclometalated (C^N) ligand, four different AIE active iridium(III) based monocyclometalated complexes with the general formula [Ir(PPh3)2(H)(Cl)(C^N)] were synthesized. The phenyl ring of the phenyl pyridine cyclometalated portion of an iridium(III) complex was substituted with the right substituents to adjust the FMO levels thus, leading to appropriate alignment of the energy levels. Each of the resulting complexes displayed a significant property known as 'Aggregation-Induced Phosphorescent Emission' (AIPE). The complexes were subjected to structural characterization, electrochemical analysis, and photophysical property studies. The synthesized complexes were employed for the detection of aromatic nitro explosive compounds such as trinitrophenol (TNP) and trinitrotoluene (TNT) in the aqueous phase with a high degree of sensitivity. The sensing capabilities of each complex were assessed for these nitro explosive compounds and compared to those of the unsubstituted iridium(III) complex (M). Notably, the best limits of detection for TNP and TNT have been achieved with iridium(III) complexes [M1 (489 pM) and M3 (3.6 nM)] within the literature reported until now. For detecting picric acid with M1, FRET was found to be the potential mechanism, and for TNT, PET was found to be the cause of emission quenching by M3. Furthermore, for low-cost detection, filter paper-based sensing was also found effective for each complex. Real-field sensing of PA in soil samples was also performed.
Collapse
Affiliation(s)
- Annu Agarwal
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Ram Prasad Bhatta
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Vishal Kachwal
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, India.
- Department of Engineering Science, University of Oxford, Oxford, UK
| | | |
Collapse
|
45
|
Korram J, Koyande P, Mehetre S, Sawant SN. Biomass-Derived Carbon Dots as Nanoprobes for Smartphone-Paper-Based Assay of Iron and Bioimaging Application. ACS OMEGA 2023; 8:31410-31418. [PMID: 37663469 PMCID: PMC10468929 DOI: 10.1021/acsomega.3c03969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
A facile one-step carbonization approach is reported herein for the sustainable hydrothermal synthesis of fluorescent blue nitrogen-doped carbon quantum dots (NCQDs) using banana petioles obtained as biomass waste. These NCQDs were used to design a "turn-off" fluorescent probe, which exhibited excellent sensing capability toward the selective detection of micronutrient, Fe3+ ion, with a limit of detection (LOD) of 0.21 nM. The turn-off process involves the formation of a nonradiative charge transfer complex via a photoinduced electron transfer process. The sensor showed a linear range from 5 to 200 nM and was used for the estimation of Fe3+ ions in real plant samples. Further, a paper-based assay was developed for the quantitative estimation of Fe3+ with LOD values of 0.47 nM for solution-based assay and 0.94 nM for paper-based assay using a smartphone-based readout for potential on-field applications in precision agriculture. Bioimaging studies on banana leaf cells using NCQDs revealed the selective staining of stomata openings on leaf lamella. Therefore, this work provides a way for the valorization of biomass waste into functional nanomaterials without using any extra chemicals.
Collapse
Affiliation(s)
- Jyoti Korram
- Chemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Pallavi Koyande
- Chemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sayaji Mehetre
- Nuclear
Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- HomiBhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Shilpa N. Sawant
- Chemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- HomiBhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
46
|
Goswami K, Sen Sarma N. "Click" Reaction-Mediated Silk Fibroin-Functionalized Thiol-Branched Graphene Oxide Quantum Dots for Smart Sensing of Tetracycline. ACS OMEGA 2023; 8:21914-21928. [PMID: 37360495 PMCID: PMC10286249 DOI: 10.1021/acsomega.3c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The abuse of tetracycline (TC) antibiotics causes the accumulation of their residue in the environment, which has an irreversible impact on food safety and human health. In light of this, it is vital to offer a portable, quick, efficient, and selective sensing platform to detect TC instantly. Herein, we have successfully developed a sensor using silk fibroin-decorated thiol-branched graphene oxide quantum dots through a well-known thiol-ene click reaction. It is applied to ratiometric fluorescence sensing of TC in real samples in the linear range of 0-90 nM, with the detection limit of 49.69, 47.76, 55.25, 47.90, and 45.78 nM for deionized water, chicken sample, fish sample, human blood serum, and honey sample, respectively. With the gradual addition of TC to the liquid media, the sensor develops a synergetic luminous effect in which the fluorescence intensity of the nanoprobe steadily declines at 413 nm, while the intensity of a newly emerging peak increases at 528 nm, maintaining a ratio that is dependent on the analyte concentration. The increase of luminescence properties in the liquid media is clearly visible by naked eyes in the presence of 365 nm UV light. The result helps us in building a filter paper strip-based portable smart sensor using an electric circuit comprising a 365 nm LED (light-emitting diode) powered by a mobile phone battery which is attached just below the rear camera of a smartphone. The camera of the smartphone captures the color changes that occur throughout the sensing process and translates into readable RGB data. The dependency of color intensity with respect to the concentration of TC was evaluated by deducing a calibration curve from where the limit of detection was calculated and found to be 0.125 μM. These kinds of gadgets are important for the possible real-time, on-the-spot, quick detection of analytes in situations where high-end approaches are not easily accessible.
Collapse
Affiliation(s)
- Kangkan
Jyoti Goswami
- Advanced
Materials Laboratory, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelotpal Sen Sarma
- Advanced
Materials Laboratory, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
47
|
Eslami Moghadam M, Rezaeisadat M, Mansouri-Torshizi H, Hosseinzadeh S, Daneshyar H. New anticancer potential Pt complex with tertamyl dithiocarbamate ligand: Synthesis, DNA targeting behavior, molecular dynamic, and biological activity. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
48
|
Mondal S, Karar M, Dey N. Dye-surfactant co-assembly as the chromogenic indicator for nanomolar level detection of Cu(I) ions via a color-changing response. J Mater Chem B 2023; 11:4111-4120. [PMID: 37165919 DOI: 10.1039/d3tb00115f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Polyaromatic amphiphilic probes have been developed, that can be involved in chromogenic detection of Cu+ ions in anionic micelles. A rapid change in solution color from yellow to orange was observed in the presence of Cu+ ions. The detection limit was found at the nanomolar range. To the best of our knowledge, this is the first report of the visible detection of Cu+ ions in aqueous medium using anionic micelles as a stabilizing agent. Interestingly, the compound can also detect Cu+ ions, generated in situ from physiological redox processes. The mechanistic investigation suggests that the probe molecule forms a diamagnetic tetrahedral complex with the Cu+ ion, coordinating through a pyridyl ketone unit. In addition, we have also followed the interaction with Cu+ on a bilayer surface made of anionic phospholipids. Further, a Cu2+-probe ensemble is used to assay the reducing ability of different biogenic thiols depending upon the pKa of their sulfhydryl (-SH) group. This allows us to determine the amount of reducing thiols present in human urine samples. Considering the high sensitivity of the present system, we screened water samples collected from different natural sources for Cu+ ions. Nearly 100% recovery values with considerably small relative standard deviations (<5%) indicate that the present system is indeed suitable for real-life sample analysis. Finally, low-cost, reusable, chemically-modified paper strips have been developed for rapid, on-location detection of Cu+ ions.
Collapse
Affiliation(s)
- Sourav Mondal
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad-500078, India.
| | - Monaj Karar
- Department of Science and Humanities, MLR Institute of Technology, Hyderabad, Telangana-500043, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad-500078, India.
| |
Collapse
|
49
|
Sathyan B, Tomy AM, Pm N, Cyriac J. A facile strategy of using MoS 2 quantum dots for fluorescence-based targeted detection of nitrobenzene. RSC Adv 2023; 13:14614-14624. [PMID: 37188249 PMCID: PMC10177963 DOI: 10.1039/d3ra00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
We present a simple approach for producing photoluminescent MoS2 quantum dots (QDs) using commercial MoS2 powder as a precursor along with NaOH and isopropanol. The synthesis method is particularly easy and environmentally friendly. The successful intercalation of Na+ ions into MoS2 layers and subsequent oxidative cutting reaction leads to the formation of luminescent MoS2 QDs. The present work, for the first time, shows the formation of MoS2 QDs without any additional energy source. The as-synthesized MoS2 QDs were characterized using microscopy and spectroscopy. The QDs have a few layer thicknesses and a narrow size distribution with an average diameter of ∼3.8 nm. Nitrobenzene (NB), an industrial chemical, is both toxic to human health and dangerously explosive. The present MoS2 QDs can be used as an effective photoluminescent probe, and a new turn-off sensor for NB detection. The selective quenching was operated via multiple mechanisms; electron transfer between the nitro group and MoS2 QDs through dynamic quenching and the primary inner filter effect (IFE). The quenching has a linear relationship with NB concentrations from 0.5 μM to 11 μM, with a calculated detection limit of 50 nM.
Collapse
Affiliation(s)
- Bhasha Sathyan
- Department of Chemistry, Indian Institute of Space Science and Technology Thiruvananthapuram Kerala 695 547 India
| | - Ann Mary Tomy
- Department of Chemistry, Indian Institute of Space Science and Technology Thiruvananthapuram Kerala 695 547 India
| | - Neema Pm
- Department of Chemistry, Indian Institute of Space Science and Technology Thiruvananthapuram Kerala 695 547 India
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram India
| | - Jobin Cyriac
- Department of Chemistry, Indian Institute of Space Science and Technology Thiruvananthapuram Kerala 695 547 India
| |
Collapse
|
50
|
Gupta AK, Krasnoslobodtsev AV. DNA-Templated Silver Nanoclusters as Dual-Mode Sensitive Probes for Self-Powered Biosensor Fueled by Glucose. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1299. [PMID: 37110883 PMCID: PMC10145323 DOI: 10.3390/nano13081299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials have been extensively explored in developing sensors due to their unique properties, contributing to the development of reliable sensor designs with improved sensitivity and specificity. Herein, we propose the construction of a fluorescent/electrochemical dual-mode self-powered biosensor for advanced biosensing using DNA-templated silver nanoclusters (AgNCs@DNA). AgNC@DNA, due to its small size, exhibits advantageous characteristics as an optical probe. We investigated the sensing efficacy of AgNCs@DNA as a fluorescent probe for glucose detection. Fluorescence emitted by AgNCs@DNA served as the readout signal as a response to more H2O2 being generated by glucose oxidase for increasing glucose levels. The second readout signal of this dual-mode biosensor was utilized via the electrochemical route, where AgNCs served as charge mediators between the glucose oxidase (GOx) enzyme and carbon working electrode during the oxidation process of glucose catalyzed by GOx. The developed biosensor features low-level limits of detection (LODs), ~23 μM for optical and ~29 μM for electrochemical readout, which are much lower than the typical glucose concentrations found in body fluids, including blood, urine, tears, and sweat. The low LODs, simultaneous utilization of different readout strategies, and self-powered design demonstrated in this study open new prospects for developing next-generation biosensor devices.
Collapse
|