1
|
Lucena V, Rodriguez JB, Szajnman SH, Bonesi SM. Effect of Confined and Micellar Media on the Photo-Fries Reaction of 4-Phenoxyphenol Esters: A Valuable Key Step Toward the Preparation of Aryloxyethyl Selenocyanates. J Org Chem 2025; 90:2735-2748. [PMID: 39930561 DOI: 10.1021/acs.joc.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The irradiation of a series of 4-phenoxyphenol esters in a sustainable micellar environment has been studied from both preparative and mechanistic viewpoints, and the results were compared with those obtained in cyclohexane solutions. These esters underwent the photo-Fries rearrangement reaction, and the microheterogeneous media induced a noticeable selectivity in favor of the ortho-regioisomer formation with yields up to 96% yield. UV-visible and 1D and 2D NMR (DCS, NOESY, and DOSY) spectroscopies have been employed to determine the binding constant (Kb) and the location of the esters within the hydrophobic core of the spherical micelles. Furthermore, the diffusion coefficient (D) and hydrodynamic radius (rs) were also measured. Application of the photo-Fries reaction of esters in microheterogeneous media as a key step in a multistep sequence has been carried out, leading to the preparation of (4-phenoxy)-(2-n-pentylcarbonyl)-phenoxyethyl selenocyanate (10), an interesting target molecule showing potential biological activity against Trypanosoma cruzi.
Collapse
Affiliation(s)
- Valentín Lucena
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET, Buenos Aires C1428EGA, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos aplicados a Química Orgánica (UMYMFOR), CONICET, Buenos Aires C1428EGA, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos aplicados a Química Orgánica (UMYMFOR), CONICET, Buenos Aires C1428EGA, Argentina
| | - Sergio M Bonesi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
2
|
Pal N, Banerjee K, Sarkar S, Mandal TK, Bhabak KP. Synthesis of Thiazolidinedione- and Triazole-Linked Organoselenocyanates and Evaluation of Anticancer Activities Against Breast Cancer with Mechanistic Investigations. Chemistry 2025; 31:e202403026. [PMID: 39630055 DOI: 10.1002/chem.202403026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/13/2024]
Abstract
Organoselenocyanates are important classes of organoselenium compounds having potential pharmaceutical applications in cancer biology. In the present study, two different series of organoselenocyanates (15 a-15 c and 16 a-16 c) incorporating crucial heterocyclic pharmacophores such as 2,4-thiazolidine-1,3-dione and 1,2,3-triazole were rationally designed. The organoselenocyanates were synthesized using multi-step organic synthesis and investigated for their anticancer activities against triple-negative breast cancer cells. Based on the preliminary anti-proliferative activities and the selectivity index towards cancer cells over the normal cells, 2,4-thiazolidine-1,3-dione-based selenocyanate 15 a was identified as the lead analogue for detailed investigations. In addition to the anti-migratory activity, compound 15 a induced G1-phase arrest of the cell cycle and led to early apoptosis. Further studies on the redox balance of MDA-MB-231 cells indicated the antioxidant nature of 15 a with the quenching of ROS level and upregulation of TrxR1 expression. Detailed mechanistic investigations with the expression levels of key-cancer marker proteins revealed that the selenocyanate 15 a induced the activation of ERK pathway by upregulating p-ERK expression with the subsequent downregulation of p-Akt and c-Myc levels leading to the inhibition of cellular proliferation. Therefore, the primary outcomes of the study would be valuable in the development of chemotherapeutic agents towards the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Nikita Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Kaustav Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Shilpi Sarkar
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Tapas K Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| |
Collapse
|
3
|
Astrain-Redin N, Raza A, Encío I, Sharma AK, Plano D, Sanmartín C. Novel Acylselenourea Derivatives: Dual Molecules with Anticancer and Radical Scavenging Activity. Antioxidants (Basel) 2023; 12:1331. [PMID: 37507871 PMCID: PMC10376326 DOI: 10.3390/antiox12071331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress surrounding cancer cells provides them with certain growth and survival advantages necessary for disease progression. In this context, Se-containing molecules have gained attention due to their anticancer and antioxidant activity. In our previous work, we synthesized a library of 39 selenoesters containing functional groups commonly present in natural products (NP), which showed potent anticancer activity, but did not demonstrate high radical scavenger activity. Thus, 20 novel Se derivatives resembling NP have been synthesized presenting acylselenourea functionality in their structures. Radical scavenger activity was tested using DPPH assay and in vitro protective effects against ROS-induced cell death caused by H2O2. Additionally, antiproliferative activity was evaluated in prostate, colon, lung, and breast cancer cell lines, along with their ability to induce apoptosis. Compounds 1.I and 5.I showed potent cytotoxicity against the tested cancer cell lines, along with high selectivity indexes and induction of caspase-mediated apoptosis. These compounds exhibited potent and concentration-dependent radical scavenging activity achieving DPPH inhibition similar to ascorbic acid and trolox. To conclude, we have demonstrated that the introduction of Se in the form of acylselenourea into small molecules provides strong radical scavengers in vitro and antiproliferative activity, which may lead to the development of promising dual compounds.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
| |
Collapse
|
4
|
Badirujjaman M, Pal N, Bhabak KP. Small-molecule organoselenocyanates: Recent developments toward synthesis, anticancer, and antioxidant activities. Curr Opin Chem Biol 2023; 75:102337. [PMID: 37276751 DOI: 10.1016/j.cbpa.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
Cellular redox homeostasis is very important for the overall cellular development, function, and oxidative stress often disrupts the process. Small-molecule organoselenium compounds exert key roles in maintaining the redox homeostasis during oxidative stress and cancer owing to their notable antioxidant activities. Among different organoselenium compounds, small-molecule organoselenocyanates have attracted much research attention due to their synthetic utilities and therapeutic potentials. Therefore, the development of convenient synthetic methodologies to different classes of organoselenocyanates from various precursors was explored over the years as useful synthetic building blocks. Additionally, considering their inherent redox and antioxidant properties, the development of biologically relevant organoselenocyanates upon their conjugation with the existing drugs and natural products has been chosen for enhancing the drug potencies and in ameliorating the drug-induced side-effects. In the present report, we have discussed some of the very recent and relevant developments on these aspects in a very concise manner.
Collapse
Affiliation(s)
- Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikita Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Xu Z, Yao J, Zhong K, Lin S, Hu X, Ruan Z. Electrochemical Selenylation of Sulfoxonium Ylides for the Synthesis of gem-Diselenides as Antimicrobials against Fungi. J Org Chem 2023; 88:5572-5585. [PMID: 37083436 DOI: 10.1021/acs.joc.3c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Organoselenium compounds are important scaffolds in pharmaceutical molecules. Herein, we report metal-free, electrochemical, highly chemo- and regioselective synthesis of gem-diselenides through the coupling of α-keto sulfoxonium ylides with diselenides. The versatility of the electrochemical manifold enabled the selenylation with ample scope and broad functional group tolerance, as well as setting the stage for modification of complex bioactive molecules. Detailed mechanistic studies revealed that the key C-Se bond was constructed using n-Bu4NI as an electrolyte and catalyst through the electrosynthetic protocol. Finally, the desired α-keto gem-diselenides showed excellent antimicrobial activity against Candida albicans, which can be identified as the lead compounds for further exploration.
Collapse
Affiliation(s)
- Zhongnan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiwen Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Kaihui Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shuimu Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
6
|
Astrain-Redin N, Talavera I, Moreno E, Ramírez MJ, Martínez-Sáez N, Encío I, Sharma AK, Sanmartín C, Plano D. Seleno-Analogs of Scaffolds Resembling Natural Products a Novel Warhead toward Dual Compounds. Antioxidants (Basel) 2023; 12:139. [PMID: 36671001 PMCID: PMC9854712 DOI: 10.3390/antiox12010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, oxidative cell damage is one of the common features of cancer and Alzheimer's disease (AD), and Se-containing molecules, such as ebselen, which has demonstrated strong antioxidant activity, have demonstrated well-established preventive effects against both diseases. In this study, a total of 39 Se-derivatives were synthesized, purified, and spectroscopically characterized by NMR. Antioxidant ability was tested using the DPPH assay, while antiproliferative activity was screened in breast, lung, prostate, and colorectal cancer cell lines. In addition, as a first approach to evaluate their potential anti-Alzheimer activity, the in vitro acetylcholinesterase inhibition (AChEI) was tested. Regarding antioxidant properties, compound 13a showed concentration- and time-dependent radical scavenging activity. Additionally, compounds 14a and 17a showed high activity in the melanoma and ovarian cancer cell lines, with LD50 values below 9.2 µM. Interestingly, in the AChEI test, compound 14a showed almost identical inhibitory activity to galantamine along with a 3-fold higher in vitro BBB permeation (Pe = 36.92 × 10-6 cm/s). Molecular dynamics simulations of the aspirin derivatives (14a and 14b) confirm the importance of the allylic group instead of the propargyl one. Altogether, it is concluded that some of these newly synthesized Se-derivatives, such as 14a, might become very promising candidates to treat both cancer and AD.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Irene Talavera
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Esther Moreno
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - María J. Ramírez
- Departamento de Farmacología y Toxicología, Facultad de Farmacia y Nutrición, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Nuria Martínez-Sáez
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Ignacio Encío
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
7
|
Huang Y, Wei M, Peng Z, Cheng Y, Zhang Y, Li J, Xiao J, Gan C, Cui J. Synthesis of estrone selenocyanate Compounds, anti-tumor activity evaluation and Structure-activity relationship analysis. Bioorg Med Chem 2022; 76:117086. [PMID: 36455509 DOI: 10.1016/j.bmc.2022.117086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Introducing different functional groups into steroid can bring unexpected changes in biological activity of the steroid. Using estrone as a raw material, through the functional group conversion and modification of the 17-carbonyl, the structural fragments with selenocyano groups were instilled in the form of amide, ester, and oxime ester, respectively, and various 17-substituted estrone selenocyanate derivatives were synthesized. In addition, different 3-substituted estrone selenocyanate derivatives were synthesized by introducing different selenocyanoalkoxy fragments into the 3-position of estrone in the form of alkyl ether. Furthermore, the selenocyano-containing moieties were embedded into the 2-position of estrone by means of amide, affording diverse 2-selenocyanoamide-estrone derivatives. The antiproliferative activities of the target compounds were screened by selecting tumor cell lines related to the expression of human hormones. The results showed that the introduction of selenocyano group into estrone could endow estrone with significant biological activity of inhibiting the proliferation of tumor cells. Structure-activity relationship research showed that the cytotoxicity of 3-selenocyanoalkoxy-estrone was further increased with the extension of alkyl carbon-chain within 8 carbon chain lengths. In addition, the cytotoxicity of the products with selenocyano via the form of amide was stronger than that of ester or ether. Selenocyano moiety instilled at the 2-position of estrone in the form of amide was more cytotoxic than that of 17- or 3-position. Among them, compound 21a has better inhibitory activity on tested tumor cells than positive controls Abiraterone and 2-methoxyestradiol. Research showed that the compound 21c induced programmed apoptosis in Sk-Ov-3 cancer cells, and compound 17d inhibited significantly the growth of human cervical cancer zebrafish xenografts in vivo, offering useful insights into the synthesis of steroid antitumor drugs.
Collapse
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Meizhen Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Zining Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yang Cheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Junyan Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Junan Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
8
|
Chemoselective Preparation of New Families of Phenolic-Organoselenium Hybrids-A Biological Assessment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041315. [PMID: 35209105 PMCID: PMC8875169 DOI: 10.3390/molecules27041315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/02/2022]
Abstract
Being aware of the enormous biological potential of organoselenium and polyphenolic compounds, we have accomplished the preparation of novel hybrids, combining both pharmacophores in order to obtain new antioxidant and antiproliferative agents. Three different families have been accessed in a straightforward and chemoselective fashion: carbohydrate-containing N-acylisoselenoureas, N-arylisoselenocarbamates and N-arylselenocarbamates. The nature of the organoselenium framework, number and position of phenolic hydroxyl groups and substituents on the aromatic scaffolds afforded valuable structure–activity relationships for the biological assays accomplished: antioxidant properties (antiradical activity, DNA-protective effects, Glutathione peroxidase (GPx) mimicry) and antiproliferative activity. Regarding the antioxidant activity, selenocarbamates 24–27 behaved as excellent mimetics of GPx in the substoichiometric elimination of H2O2 as a Reactive Oxygen Species (ROS) model. Isoselenocarbamates and particularly their selenocarbamate isomers exhibited potent antiproliferative activity against non-small lung cell lines (A549, SW1573) in the low micromolar range, with similar potency to that shown by the chemotherapeutic agent cisplatin (cis-diaminodichloroplatin, CDDP) and occasionally with more potency than etoposide (VP-16).
Collapse
|
9
|
Banerjee K, Bhattacherjee D, Raina K, Thummer RP, Bhabak KP. Benzimidazole-based ionic and non-ionic organoselenium compounds: innovative synthetic strategies, structural characterization and preliminary anti-proliferative activities. NEW J CHEM 2022. [DOI: 10.1039/d2nj01322c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational design of and efficient synthesis of innovative benzimidazole-based ionic and non-ionic organoselenium compounds is described. The compounds were studied for their anti-proliferative activities against triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Kaustav Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Debojit Bhattacherjee
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Khyati Raina
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rajkumar P. Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Krishna Pada Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
10
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
11
|
Calvo-Martín G, Plano D, Encío I, Sanmartín C. Novel N, N'-Disubstituted Selenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2021; 10:antiox10050777. [PMID: 34068900 PMCID: PMC8156206 DOI: 10.3390/antiox10050777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
A series of 30 novel N,N disubstituted selenoureas were synthesized, characterized, and their antioxidant ability was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays. Additionally, their cytotoxic activity was tested in vitro in a panel of three different cancer (breast, lung and colon) and two normal cell lines. Each selenourea entity contains a para-substituted phenyl ring with different electron-withdrawing and electron-donating groups, and different aliphatic and aromatic nuclei. All of the synthesized selenoureas present antioxidant capacity at high concentrations in the DPPH assay, and three of them (2b, 2c and 2d) showed greater radical scavenging capacity than ascorbic acid at lower concentrations. These results were confirmed by the ABTS assay, where these novel selenoureas present even higher antioxidant capacity than the reference compound Trolox. On the other hand, 10 selenoureas present IC50 values below 10 µM in at least one cancer cell line, resulting in the adamantyl nucleus (6a–6e), the most interesting in terms of activity and selectivity. Outstanding results were found for selenourea 6c, tested in the NCI60 cell line panel and showing an average GI50 of 1.49 µM for the 60 cell lines, and LC50 values ranging from 9.33 µM to 4.27 µM against 10 of these cancer cell lines. To gain insight into its anticancer activity mechanism, we investigated the cell cycle progression of the promising compound 6c, as well as the type of programmed-cell death in a colon cancer cell line it provokes (HT-29). Compound 6c provoked S phase cell cycle arrest and the induction of cell death was independent of caspase activation, suggesting autophagy, though this assertion requires additional studies. Overall, we envision that this compound can be further developed for the potential treatment of colon cancer.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|
12
|
Etxebeste-Mitxeltorena M, Plano D, Astrain-Redín N, Morán-Serradilla C, Aydillo C, Encío I, Moreno E, Espuelas S, Sanmartín C. New Amides and Phosphoramidates Containing Selenium: Studies on Their Cytotoxicity and Antioxidant Activities in Breast Cancer. Antioxidants (Basel) 2021; 10:590. [PMID: 33920484 PMCID: PMC8069832 DOI: 10.3390/antiox10040590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is a multifactor disease, and many drug combination therapies are applied for its treatment. Selenium derivatives represent a promising potential anti-breast cancer treatment. This study reports the cytotoxic activity of forty-one amides and phosphoramidates containing selenium against five cancer cell lines (MCF-7, CCRF-CEM, HT-29, HTB-54 and PC-3) and two nonmalignant cell lines (184B5 and BEAS-2B). MCF-7 cells were the most sensitive and the selenoamides I.1f and I.2f and the selenium phosphoramidate II.2d, with GI50 values ranging from 0.08 to 0.93 µM, were chosen for further studies. Additionally, radical scavenging activity for all the compounds was determined using DPPH and ABTS colorimetric assays. Phosphoramidates turned out to be inactive as radical scavengers. No correlation was observed for the antioxidant activity and the cytotoxic effect, except for compounds I.1e and I.2f, which showed dual antioxidant and antitumor activity. The type of programmed cell death and cell cycle arrest were determined, and the results provided evidence that I.1f and I.2f induced cell death via autophagy, while the derivative II.2d provoked apoptosis. In addition, Western blot analysis corroborated these mechanisms with an increase in Beclin1 and LC3-IIB and reduced SQSTM1/p62 levels for I.1f and I.2f, as well as an increase in BAX, p21 and p53 accompanied by a decrease in BCL-2 levels for derivative II.2d.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Nora Astrain-Redín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
| | - Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
| | - Carlos Aydillo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Ignacio Encío
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Socorro Espuelas
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| |
Collapse
|
13
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
14
|
Kostić MD, Divac VM. Diselenides and Selenocyanates as Versatile Precursors for the Synthesis of Pharmaceutically Relevant Compounds. Curr Org Synth 2021; 19:317-330. [PMID: 33655868 DOI: 10.2174/1570179418666210303113723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has undergone extensive development during the past decades, mostly due to the unique chemical properties of organoselenium compounds that have been widely explored in a number of synthetic transformations, as well as due to the interesting biological properties of these compounds. Diselenides and selenocyanates constitute the promising classes of organoselenium compounds that possess interesting biological effects and that can be used in the preparation of other selenium compounds. The combination of diselenide and selenocyanate moieties with other biologically relevant molecules (such as heterocycles, steroids, etc.) is a way for the development of compounds with promising pharmaceutical potential. Therefore, the aim of this review is to highlight the recent achievements in the use of diselenides or selenocyanates as precursors for the synthesis of pharmaceutically relevant compounds, preferentially compounds with antitumor and antimicrobial activities.
Collapse
Affiliation(s)
- Marina D Kostić
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Vera M Divac
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| |
Collapse
|
15
|
Abstract
An efficient and practical method for the straightforward construction of unsymmetrical selenoureas and cycloselenoureas via the combination of selenium powder, chloroform, and two different amines was comprehensively achieved in one-pot with only the assistance of a base under mild conditions. Thirty-three new structures of unsymmetrical selenoureas including three chiral examples and eight cycloselenoureas were achieved. 1,1-Dimethyl-3-phenylselenourea II, which shows good fungicidal activity, was practically synthesized through this protocol in gram-scale. Isoselenocyanate was further confirmed as a key intermediate by control experiment.
Collapse
Affiliation(s)
- Lai Li
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China
| | - Jiaqi Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China
| | - Linsha Wei
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China
| | - Jianmei Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
16
|
Garnica P, Etxebeste-Mitxeltorena M, Plano D, Moreno E, Espuelas S, Antonio Palop J, Jiménez-Ruiz A, Sanmartín C. Pre-clinical evidences of the antileishmanial effects of diselenides and selenocyanates. Bioorg Med Chem Lett 2020; 30:127371. [DOI: 10.1016/j.bmcl.2020.127371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023]
|
17
|
Pedreira JGB, Nahidino P, Kudolo M, Pantsar T, Berger BT, Forster M, Knapp S, Laufer S, Barreiro EJ. Bioisosteric Replacement of Arylamide-Linked Spine Residues with N-Acylhydrazones and Selenophenes as a Design Strategy to Novel Dibenzosuberone Derivatives as Type I 1/2 p38α MAP Kinase Inhibitors. J Med Chem 2020; 63:7347-7354. [DOI: 10.1021/acs.jmedchem.0c00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Júlia G. B. Pedreira
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Federal University of Rio de Janeiro (UFRJ), 21944-971 Rio de Janeiro, Brazil
- Graduate Program of Chemistry (PGQu), Chemistry Institute, UFRJ, 21941-909 Rio de Janeiro, Brazil
| | - Philipp Nahidino
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mark Kudolo
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Michael Forster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Federal University of Rio de Janeiro (UFRJ), 21944-971 Rio de Janeiro, Brazil
- Graduate Program of Chemistry (PGQu), Chemistry Institute, UFRJ, 21941-909 Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Oxidative umpolung selenocyanation of ketones and arenes: An efficient protocol to the synthesis of selenocyanates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Ruberte AC, Ramos-Inza S, Aydillo C, Talavera I, Encío I, Plano D, Sanmartín C. Novel N, N'-Disubstituted Acylselenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2020; 9:antiox9010055. [PMID: 31936213 PMCID: PMC7023466 DOI: 10.3390/antiox9010055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Selenium compounds are pivotal in medicinal chemistry for their antitumoral and antioxidant properties. Forty seven acylselenoureas have been designed and synthesized following a fragment-based approach. Different scaffolds, including carbo- and hetero-cycles, along with mono- and bi-cyclic moieties, have been linked to the selenium containing skeleton. The dose- and time-dependent radical scavenging activity for all of the compounds were assessed using the in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays. Some of them showed a greater radical scavenging capacity at low doses and shorter times than ascorbic acid. Therefore, four compounds were evaluated to test their protective effects against H2O2-induced oxidative stress. One derivative protected cells against H2O2-induced damage, increasing cell survival by up to 3.6-fold. Additionally, in vitro cytotoxic activity of all compounds was screened against several cancer cells. Eight compounds were selected to determine their half maximal inhibitory concentration (IC50) values towards breast and lung cancer cells, along with their selectivity indexes. The breast cancer cells turned out to be much more sensitive than the lung. Two compounds (5d and 10a) stood out with IC50 values between 4.2 μM and 8.0 μM towards MCF-7 and T47D cells, with selectivity indexes greater than 22.9. In addition, compound 10b exhibited dual antioxidant and cytotoxic activities. Although further evidence is needed, the acylselenourea scaffold could be a feasible frame to develop new dual agents.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Sandra Ramos-Inza
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Irene Talavera
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (A.C.R.); (S.R.-I.); (C.A.); (I.T.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|
20
|
Paucar R, Martín-Escolano R, Moreno-Viguri E, Azqueta A, Cirauqui N, Marín C, Sánchez-Moreno M, Pérez-Silanes S. Rational modification of Mannich base-type derivatives as novel antichagasic compounds: Synthesis, in vitro and in vivo evaluation. Bioorg Med Chem 2019; 27:3902-3917. [DOI: 10.1016/j.bmc.2019.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
|
21
|
Garnica P, Encío I, Plano D, Palop JA, Sanmartín C. Organoseleno cytostatic derivatives: Autophagic cell death with AMPK and JNK activation. Eur J Med Chem 2019; 175:234-246. [PMID: 31082766 DOI: 10.1016/j.ejmech.2019.04.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
Selenocyanates and diselenides are potential antitumor agents. Here we report two series of selenium derivatives related to selenocyanates and diselenides containing carboxylic, amide and imide moieties. These compounds were screened for their potency and selectivity against seven tumor cell lines and two non-malignant cell lines. Results showed that MCF-7 cells were especially sensitive to the treatment, with seven compounds presenting GI50 values below 10 μM. Notably, the carboxylic selenocyanate 8b and the cyclic imide 10a also displayed high selectivity for tumor cells. Treatment of MCF-7 cells with these compounds resulted in cell cycle arrest at S phase, increased levels of pJNK and pAMPK and caspase independent cell death. Autophagy inhibitors wortmannin and chloroquine partially prevented 8b and 10a induced cell death. Consistent with autophagy, increased Beclin1 and LC3-IIB and reduced SQSTM1/p62 levels were detected. Our results point to 8b and 10a as autophagic cell death inducers.
Collapse
Affiliation(s)
- Pablo Garnica
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Campus Universitario, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain; Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, E-31008, Pamplona, Spain
| | - Daniel Plano
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Campus Universitario, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain
| | - Juan A Palop
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Campus Universitario, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain
| | - Carmen Sanmartín
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Campus Universitario, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008, Pamplona, Spain.
| |
Collapse
|
22
|
Synthesis, crystal structure, DFT study, in vitro and in silico molecular docking of novel bis (aroyl selenourea) derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Paucar R, Martín-Escolano R, Moreno-Viguri E, Cirauqui N, Rodrigues CR, Marín C, Sánchez-Moreno M, Pérez-Silanes S, Ravera M, Gabano E. A step towards development of promising trypanocidal agents: Synthesis, characterization and in vitro biological evaluation of ferrocenyl Mannich base-type derivatives. Eur J Med Chem 2019; 163:569-582. [DOI: 10.1016/j.ejmech.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
|
24
|
The rhenium(I)-diselenoether anticancer drug targets ROS, TGF-β1, VEGF-A, and IGF-1 in an in vitro experimental model of triple-negative breast cancers. Invest New Drugs 2019; 37:973-983. [PMID: 30632005 DOI: 10.1007/s10637-019-00727-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
Abstract
The rhenium(I)-diselenoether complex (Re-diSe) is a rhenium tricarbonyl-based drug chelated by a diselenoether ligand. In this work, we compared its inhibitory effects on the hormone-independent MDA-MB231cancer line and other different cancer cell lines after an exposure time of 72 h by MTT assays. The sensitivity of MDA-MB231 was in the same range than the hormone-dependent MCF-7 breast cancer, the PC-3 prostate and HT-29 colon cancer cells, while the A549 lung and the HeLa uterine cancer cells were less sensitive. We compared the inhibitory effects of Re-diSe and of its diselenide ligand (di-Se) on MDA-MB231 and a normal HEK-293 human embryonic cell line, after 72 h and 120 h of exposure. The cytotoxicity was also studied by flow cytometry using ethidium bromide assays, as well as the effects on the ROS production by DFCA-test, while the levels of TGF-β1, VEGF-A, IGF-1 were addressed by ELISA tests. The dose required to inhibit 50% of the proliferation (IC50) of MDA-MB231 breast cancer cells decreased with the time of exposure to 120 h, while the free ligand (di-Se) was found poorly active, demonstrating the important role of Re in this Re-diSe combination. The cytotoxic effects of Re-diSe were highly selective for cancer cells, with a significant increase of the number of dead cancer cells at 5 μM for an exposure time of 120 h, while normal cells were not affected. A remarkable and significant decrease of the production of ROS together with a decrease of VEGF-A, TGF-β1, and IGF-1 by the cancer cells were also observed when cancer cells were exposed to Re-diSe.
Collapse
|