1
|
Mishra S, Sannigrahi A, Ruidas S, Chatterjee S, Roy K, Misra D, Maity BK, Paul R, Ghosh CK, Saha KD, Bhaumik A, Chattopadhyay K. Conformational Switch of a Peptide Provides a Novel Strategy to Design Peptide Loaded Porous Organic Polymer for Pyroptosis Pathway Mediated Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402953. [PMID: 38923392 DOI: 10.1002/smll.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/24/2024] [Indexed: 06/28/2024]
Abstract
While peptide-based drug development is extensively explored, this strategy has limitations due to rapid excretion from the body (or shorter half-life in the body) and vulnerability to protease-mediated degradation. To overcome these limitations, a novel strategy for the development of a peptide-based anticancer agent is introduced, utilizing the conformation switch property of a chameleon sequence stretch (PEP1) derived from a mycobacterium secretory protein, MPT63. The selected peptide is then loaded into a new porous organic polymer (PG-DFC-POP) synthesized using phloroglucinol and a cresol derivative via a condensation reaction to deliver the peptide selectively to cancer cells. Utilizing ensemble and single-molecule approaches, this peptide undergoes a transition from a disordered to an alpha-helical conformation, triggered by the acidic environment within cancer cells that is demonstrated. This adopted alpha-helical conformation resulted in the formation of proteolysis-resistant oligomers, which showed efficient membrane pore-forming activity selectively for negatively charged phospholipids accumulated in cancer cell membranes. The experimental results demonstrated that the peptide-loaded PG-DFC-POP-PEP1 exhibited significant cytotoxicity in cancer cells, leading to cell death through the Pyroptosis pathway, which is established by monitoring numerous associated events starting from lysosome membrane damage to GSDMD-induced cell membrane demolition. This novel conformational switch-based drug design strategy is believed to have great potential in endogenous environment-responsive cancer therapy and the development of future drug candidates to mitigate cancers.
Collapse
Affiliation(s)
- Snehasis Mishra
- Department of Cell, Developmental, & Integrative Biology, University of Alabama, Birmingham, AL, 35233, USA
| | - Achinta Sannigrahi
- Molecular genetics department, University of Texas Southwestern Medical center, Dallas, TX, 75390, USA
| | - Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sujan Chatterjee
- NIPM and SoLs, University of Nevada Las Vegas, Nevada, NV, 89154, USA
| | - Kamalesh Roy
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Deblina Misra
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Barun Kumar Maity
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rabindranath Paul
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
2
|
Rühling M, Kersting L, Wagner F, Schumacher F, Wigger D, Helmerich DA, Pfeuffer T, Elflein R, Kappe C, Sauer M, Arenz C, Kleuser B, Rudel T, Fraunholz M, Seibel J. Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy. Nat Commun 2024; 15:7456. [PMID: 39198435 PMCID: PMC11358447 DOI: 10.1038/s41467-024-51874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Sphingomyelin is a key molecule of sphingolipid metabolism, and its enzymatic breakdown is associated with various infectious diseases. Here, we introduce trifunctional sphingomyelin derivatives that enable the visualization of sphingomyelin distribution and sphingomyelinase activity in infection processes. We demonstrate this by determining the activity of a bacterial sphingomyelinase on the plasma membrane of host cells using a combination of Förster resonance energy transfer and expansion microscopy. We further use our trifunctional sphingomyelin probes to visualize their metabolic state during infections with Chlamydia trachomatis and thereby show that chlamydial inclusions primarily contain the cleaved forms of the molecules. Using expansion microscopy, we observe that the proportion of metabolized molecules increases during maturation from reticulate to elementary bodies, indicating different membrane compositions between the two chlamydial developmental forms. Expansion microscopy of trifunctional sphingomyelins thus provides a powerful microscopy tool to analyze sphingomyelin metabolism in cells at nanoscale resolution.
Collapse
Affiliation(s)
- Marcel Rühling
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Louise Kersting
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Fabienne Wagner
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dominic A Helmerich
- Chair of Biotechnology & Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Tom Pfeuffer
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Robin Elflein
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christian Kappe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str 2, Berlin, Germany
| | - Markus Sauer
- Chair of Biotechnology & Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str 2, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Thomas Rudel
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Chang TJ, Yang TT. Multiplexed Nanoscopy via Buffer Exchange. ACS NANO 2024; 18:23445-23456. [PMID: 39143924 PMCID: PMC11363122 DOI: 10.1021/acsnano.4c06829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Understanding cellular functions, particularly in their intricate complexity, can greatly benefit from the spatial mapping of diverse molecules through multitarget single-molecule localization microscopy (SMLM). Existing methodologies, primarily restricting the encoding dimensions to color and lifetime or requiring cyclic staining, often involve broad chromatic detection, specialized optical configurations, or sophisticated labeling techniques. Here, we propose a simple approach called buffer-exchange stochastic optical reconstruction microscopy (beSTORM), which introduces an additional dimension to differentiate between single molecules irrespective of their spectral properties. This method leverages the distinguishable photoblinking responses to distinct buffer conditions, offering a straightforward yet effective means of fluorophore discrimination. Through buffer exchanges, beSTORM achieves multitarget SMLM imaging with minimal crosstalk. Direct integration with expansion microscopy (ExM) demonstrates its capability to resolve up to six proteins at the molecular level within a single emission color without chromatic aberration. Overall, beSTORM presents a highly compatible imaging platform, promising significant advancements in highly multiplexed nanoscopy for exploring multiple targets in biological systems with nanoscale precision.
Collapse
Affiliation(s)
- Ting-Jui
Ben Chang
- Department
of Electrical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
- Department
of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - T. Tony Yang
- Department
of Electrical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Maillard J, Grassin E, Bestsennaia E, Silaghi M, Straková K, García-Calvo J, Sakai N, Matile S, Fürstenberg A. Single-Molecule Localization Microscopy and Tracking with a Fluorescent Mechanosensitive Probe. J Phys Chem B 2024; 128:7997-8006. [PMID: 39119910 DOI: 10.1021/acs.jpcb.4c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A milestone in optical imaging of mechanical forces in cells has been the development of the family of flipper fluorescent probes able to report membrane tension noninvasively in living cells through their fluorescence lifetime. The specifically designed Flipper-CF3 probe with an engineered inherent blinking mechanism was recently introduced for super-resolution fluorescence microscopy of lipid ordered membranes but was too dim to be detected in lipid disordered membranes at the single-molecule level (García-Calvo, J. J. Am. Chem. Soc. 2020, 142(28), 12034-12038). We show here that the original and commercially available probe Flipper-TR is compatible with single-molecule based super-resolution imaging and resolves both liquid ordered and liquid disordered membranes of giant unilamellar vesicles below the diffraction limit. Single probe molecules were additionally tracked in lipid bilayers, enabling to distinguish membranes of varying composition from the diffusion coefficient of the probe. Differences in brightness between Flipper-CF3 and Flipper-TR originate in their steady-state absorption and fluorescence properties. The general compatibility of the Flipper-TR scaffold with single-molecule detection is further shown in super-resolution experiments with targetable Flipper-TR derivatives.
Collapse
Affiliation(s)
- Jimmy Maillard
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Ewa Grassin
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Ekaterina Bestsennaia
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Melinda Silaghi
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Karolina Straková
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - José García-Calvo
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
5
|
Dey AK, Das S, Jose SM, Sreedharan S, Kandoth N, Barman S, Patra A, Das A, Pramanik SK. Surface functionalized perovskite nanocrystals: a design strategy for organelle-specific fluorescence lifetime multiplexing. Chem Sci 2024; 15:10935-10944. [PMID: 39027267 PMCID: PMC11253202 DOI: 10.1039/d4sc01447b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Fluorescent molecules or materials with high photoluminescence quantum yields and stability towards photobleaching are ideally suited for multiplex imaging. Despite complying with such properties, perovskite nanocrystals (Pv-NCs) are rarely used for bioimaging owing to their toxicity and limited stability in aqueous media and towards human physiology. We aim to address these deficiencies by designing core-shell structures with Pv-NCs as the core and surface-engineered silica as the shell (SiO2@Pv-NCs) since silica is recognized as a biologically benign carrier material and is known to be excreted through urine. The post-grafting methodology is adopted for developing [SiO2@Pv-NCs]tpm and [SiO2@Pv-NCs]tsy (tpm: triphenylphosphonium ion, tsy: tosylsulfonamide) for specific imaging of mitochondria and endoplasmic reticulum (ER) of the live HeLa cell, respectively. A subtle difference in their average fluorescence decay times ([SiO2@Pv-NCs]tpm: tpm τ av = 3.1 ns and [SiO2@Pv-NCs]tsy: tsy τ av = 2.1 ns) is used for demonstrating a rare example of perovskite nanocrystals in fluorescence lifetime multiplex imaging.
Collapse
Affiliation(s)
- Anik Kumar Dey
- CSIR - Central Salt and Marine Chemicals Research Institute Gijubhai Badheka Marg Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Ghaziabad Uttar Pradesh 201 002 India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal India
| | - Sharon Mary Jose
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur West Bengal India
| | - Sreejesh Sreedharan
- Human Science Research Centre, University of Derby Kedleston Road DE22 1GB UK
| | - Noufal Kandoth
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Surajit Barman
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal India
| | - Amitava Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Sumit Kumar Pramanik
- CSIR - Central Salt and Marine Chemicals Research Institute Gijubhai Badheka Marg Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Ghaziabad Uttar Pradesh 201 002 India
| |
Collapse
|
6
|
Ma J, Luo F, Hsiung CH, Dai J, Tan Z, Ye S, Ding L, Shen B, Zhang X. Chemical Control of Fluorescence Lifetime towards Multiplexing Imaging. Angew Chem Int Ed Engl 2024; 63:e202403029. [PMID: 38641550 DOI: 10.1002/anie.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Fluorescence lifetime imaging has been a powerful tool for biomedical research. Recently, fluorescence lifetime-based multiplexing imaging has expanded imaging channels by using probes that harbor the same spectral channels and distinct excited state lifetime. While it is desirable to control the excited state lifetime of any given fluorescent probes, the rational control of fluorescence lifetimes remains a challenge. Herein, we chose boron dipyrromethene (BODIPY) as a model system and provided chemical strategies to regulate the fluorescence lifetime of its derivatives with varying spectral features. We find electronegativity of structural substituents at the 8' and 5' positions is important to control the lifetime for the green-emitting and red-emitting BODIPY scaffolds. Mechanistically, such influences are exerted via the photo-induced electron transfer and the intramolecular charge transfer processes for the 8' and 5' positions of BODIPY, respectively. Based on these principles, we have generated a group of BODIPY probes that enable imaging experiments to separate multiple targets using fluorescence lifetime as a signal. In addition to BODIPY, we envision modulation of electronegativity of chemical substituents could serve as a feasible strategy to achieve rational control of fluorescence lifetime for a variety of small molecule fluorophores.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Feng Luo
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Chia-Heng Hsiung
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jianan Dai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Zizhu Tan
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Songtao Ye
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Lina Ding
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
7
|
Steves MA, He C, Xu K. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells. Annu Rev Phys Chem 2024; 75:163-183. [PMID: 38360526 DOI: 10.1146/annurev-physchem-070623-034225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Changdong He
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
8
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
9
|
Clark BS, Silvernail I, Gordon K, Castaneda JF, Morgan AN, Rolband LA, LeBlanc SJ. A practical guide to time-resolved fluorescence microscopy and spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577300. [PMID: 38586000 PMCID: PMC10996486 DOI: 10.1101/2024.01.25.577300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Time-correlated single photon counting (TCSPC) coupled with confocal microscopy is a versatile biophysical tool that enables real-time monitoring of biomolecular dynamics across many timescales. With TCSPC, Fluorescence correlation spectroscopy (FCS) and pulsed interleaved excitation-Förster resonance energy transfer (PIE-FRET) are collected simultaneously on diffusing molecules to extract diffusion characteristics and proximity information. This article is a guide to calibrating FCS and PIE-FRET measurements with several biological samples including liposomes, streptavidin-coated quantum dots, proteins, and nucleic acids for reliable determination of diffusion coefficients and FRET efficiency. The FRET efficiency results are also compared to surface-attached single molecules using fluorescence lifetime imaging microscopy (FLIM-FRET). Combining the methods is a powerful approach to revealing mechanistic details of biological processes and pathways.
Collapse
|
10
|
Jana S, Nevskyi O, Höche H, Trottenberg L, Siemes E, Enderlein J, Fürstenberg A, Wöll D. Local Water Content in Polymer Gels Measured with Super-Resolved Fluorescence Lifetime Imaging. Angew Chem Int Ed Engl 2024; 63:e202318421. [PMID: 38165135 DOI: 10.1002/anie.202318421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Water molecules play an important role in the structure, function, and dynamics of (bio-) materials. A direct access to the number of water molecules in nanoscopic volumes can thus give new molecular insights into materials and allow for fine-tuning their properties in sophisticated applications. The determination of the local water content has become possible by the finding that H2 O quenches the fluorescence of red-emitting dyes. Since deuterated water, D2 O, does not induce significant fluorescence quenching, fluorescence lifetime measurements performed in different H2 O/D2 O-ratios yield the local water concentration. We combined this effect with the recently developed fluorescence lifetime single molecule localization microscopy imaging (FL-SMLM) in order to nanoscopically determine the local water content in microgels, i.e. soft hydrogel particles consisting of a cross-linked polymer swollen in water. The change in water content of thermo-responsive microgels when changing from their swollen state at room temperature to a collapsed state at elevated temperature could be analyzed. A clear decrease in water content was found that was, to our surprise, rather uniform throughout the entire microgel volume. Only a slightly higher water content around the dye was found in the periphery with respect to the center of the swollen microgels.
Collapse
Affiliation(s)
- Sankar Jana
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Oleksii Nevskyi
- Third Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Hannah Höche
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Leon Trottenberg
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Eric Siemes
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, 37077, Göttingen, Germany
| | - Alexandre Fürstenberg
- Department of Physical Chemistry and Department of Inorganic and Analytical Chemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| |
Collapse
|
11
|
Chen T, Karedla N, Enderlein J. Measuring sub-nanometer undulations at microsecond temporal resolution with metal- and graphene-induced energy transfer spectroscopy. Nat Commun 2024; 15:1789. [PMID: 38413608 PMCID: PMC10899616 DOI: 10.1038/s41467-024-45822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Out-of-plane fluctuations, also known as stochastic displacements, of biological membranes play a crucial role in regulating many essential life processes within cells and organelles. Despite the availability of various methods for quantifying membrane dynamics, accurately quantifying complex membrane systems with rapid and tiny fluctuations, such as mitochondria, remains a challenge. In this work, we present a methodology that combines metal/graphene-induced energy transfer (MIET/GIET) with fluorescence correlation spectroscopy (FCS) to quantify out-of-plane fluctuations of membranes with simultaneous spatiotemporal resolution of approximately one nanometer and one microsecond. To validate the technique and spatiotemporal resolution, we measure bending undulations of model membranes. Furthermore, we demonstrate the versatility and applicability of MIET/GIET-FCS for studying diverse membrane systems, including the widely studied fluctuating membrane system of human red blood cells, as well as two unexplored membrane systems with tiny fluctuations, a pore-spanning membrane, and mitochondrial inner/outer membranes.
Collapse
Affiliation(s)
- Tao Chen
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| | - Narain Karedla
- The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 OFA, UK
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.
| |
Collapse
|
12
|
Wang DX, Liu B, Han GM, Li Q, Kong DM, Enderlein J, Chen T. Metal-Induced Energy Transfer (MIET) Imaging of Cell Surface Engineering with Multivalent DNA Nanobrushes. ACS NANO 2024. [PMID: 38231016 PMCID: PMC10883130 DOI: 10.1021/acsnano.3c10162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The spacing between cells has a significant impact on cell-cell interactions, which are critical to the fate and function of both individual cells and multicellular organisms. However, accurately measuring the distance between cell membranes and the variations between different membranes has proven to be a challenging task. In this study, we employ metal-induced energy transfer (MIET) imaging/spectroscopy to determine and track the intermembrane distance and variations with nanometer precision. We have developed a DNA-based molecular adhesive called the DNA nanobrush, which serves as a cellular adhesive for connecting the plasma membranes of different cells. By manipulating the number of base pairs within the DNA nanobrush, we can modify various aspects of membrane-membrane interactions such as adhesive directionality, distance, and forces. We demonstrate that such nanometer-level changes can be detected with MIET imaging/spectroscopy. Moreover, we successfully employed MIET to measure distance variations between a cellular plasma membrane and a model membrane. This experiment not only showcases the effectiveness of MIET as a powerful tool for accurately quantifying membrane-membrane interactions but also validates the potential of DNA nanobrushes as cellular adhesives. This innovative method holds significant implications for advancing the study of multicellular interactions.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Bo Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingnan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Tao Chen
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Barulin A, Kim Y, Oh DK, Jang J, Park H, Rho J, Kim I. Dual-wavelength metalens enables Epi-fluorescence detection from single molecules. Nat Commun 2024; 15:26. [PMID: 38167868 PMCID: PMC10761847 DOI: 10.1038/s41467-023-44407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Single molecule fluorescence spectroscopy is at the heart of molecular biophysics research and the most sensitive biosensing assays. The growing demand for precision medicine and environmental monitoring requires the creation of miniaturized and portable sensing platforms. However, the need for highly sophisticated objective lenses has precluded the development of single molecule detection systems for truly portable devices. Here, we propose a dielectric metalens device of submicrometer thickness to excite and collect light from fluorescent molecules instead of an objective lens. The high numerical aperture, high focusing efficiency, and dual-wavelength operation of the metalens enable the implementation of fluorescence correlation spectroscopy with a single Alexa 647 molecule in the focal volume. Moreover, the metalens enables real-time monitoring of individual fluorescent nanoparticle transitions and identification of hydrodynamic diameters ranging from a few to hundreds of nanometers. This advancement in sensitivity extends the application of the metalens technology to ultracompact single-molecule sensors.
Collapse
Affiliation(s)
- Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| | - Hyemi Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea.
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
14
|
Nikolaev VV, Kistenev YV, Kröger M, Zuhayri H, Darvin ME. Review of optical methods for noninvasive imaging of skin fibroblasts-From in vitro to ex vivo and in vivo visualization. JOURNAL OF BIOPHOTONICS 2024; 17:e202300223. [PMID: 38018868 DOI: 10.1002/jbio.202300223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Fibroblasts are among the most common cell types in the stroma responsible for creating and maintaining the structural organization of the extracellular matrix in the dermis, skin regeneration, and a range of immune responses. Until now, the processes of fibroblast adaptation and functioning in a varying environment have not been fully understood. Modern laser microscopes are capable of studying fibroblasts in vitro and ex vivo. One-photon- and two-photon-excited fluorescence microscopy, Raman spectroscopy/microspectroscopy are well-suited noninvasive optical methods for fibroblast imaging in vitro and ex vivo. In vivo staining-free fibroblast imaging is not still implemented. The exception is fibroblast imaging in tattooed skin. Although in vivo noninvasive staining-free imaging of fibroblasts in the skin has not yet been implemented, it is expected in the future. This review summarizes the state-of-the-art in fibroblast visualization using optical methods and discusses the advantages, limitations, and prospects for future noninvasive imaging.
Collapse
Affiliation(s)
- Viktor V Nikolaev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Yury V Kistenev
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Marius Kröger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | - Hala Zuhayri
- Tomsk State University, Laboratory of Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
15
|
Samanta S, Lai K, Wu F, Liu Y, Cai S, Yang X, Qu J, Yang Z. Xanthene, cyanine, oxazine and BODIPY: the four pillars of the fluorophore empire for super-resolution bioimaging. Chem Soc Rev 2023; 52:7197-7261. [PMID: 37743716 DOI: 10.1039/d2cs00905f] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the realm of biological research, the invention of super-resolution microscopy (SRM) has enabled the visualization of ultrafine sub-cellular structures and their functions in live cells at the nano-scale level, beyond the diffraction limit, which has opened up a new window for advanced biomedical studies to unravel the complex unknown details of physiological disorders at the sub-cellular level with unprecedented resolution and clarity. However, most of the SRM techniques are highly reliant on the personalized special photophysical features of the fluorophores. In recent times, there has been an unprecedented surge in the development of robust new fluorophore systems with personalized features for various super-resolution imaging techniques. To date, xanthene, cyanine, oxazine and BODIPY cores have been authoritatively utilized as the basic fluorophore units in most of the small-molecule-based organic fluorescent probe designing strategies for SRM owing to their excellent photophysical characteristics and easy synthetic acquiescence. Since the future of next-generation SRM studies will be decided by the availability of advanced fluorescent probes and these four fluorescent building blocks will play an important role in progressive new fluorophore design, there is an urgent need to review the recent advancements in designing fluorophores for different SRM methods based on these fluorescent dye cores. This review article not only includes a comprehensive discussion about the recent developments in designing fluorescent probes for various SRM techniques based on these four important fluorophore building blocks with special emphasis on their effective integration into live cell super-resolution bio-imaging applications but also critically evaluates the background of each of the fluorescent dye cores to highlight their merits and demerits towards developing newer fluorescent probes for SRM.
Collapse
Affiliation(s)
- Soham Samanta
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Kaitao Lai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Feihu Wu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yingchao Liu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Songtao Cai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xusan Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhigang Yang
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
16
|
Queiroz Zetune Villa Real K, Mougios N, Rehm R, Sograte-Idrissi S, Albert L, Rahimi AM, Maidorn M, Hentze J, Martínez-Carranza M, Hosseini H, Saal KA, Oleksiievets N, Prigge M, Tsukanov R, Stenmark P, Fornasiero EF, Opazo F. A Versatile Synaptotagmin-1 Nanobody Provides Perturbation-Free Live Synaptic Imaging And Low Linkage-Error in Super-Resolution Microscopy. SMALL METHODS 2023; 7:e2300218. [PMID: 37421204 DOI: 10.1002/smtd.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Indexed: 07/10/2023]
Abstract
Imaging of living synapses has relied for over two decades on the overexpression of synaptic proteins fused to fluorescent reporters. This strategy alters the stoichiometry of synaptic components and ultimately affects synapse physiology. To overcome these limitations, here a nanobody is presented that binds the calcium sensor synaptotagmin-1 (NbSyt1). This nanobody functions as an intrabody (iNbSyt1) in living neurons and is minimally invasive, leaving synaptic transmission almost unaffected, as suggested by the crystal structure of the NbSyt1 bound to Synaptotagmin-1 and by the physiological data. Its single-domain nature enables the generation of protein-based fluorescent reporters, as showcased here by measuring spatially localized presynaptic Ca2+ with a NbSyt1- jGCaMP8 chimera. Moreover, the small size of NbSyt1 makes it ideal for various super-resolution imaging methods. Overall, NbSyt1 is a versatile binder that will enable imaging in cellular and molecular neuroscience with unprecedented precision across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Karine Queiroz Zetune Villa Real
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ronja Rehm
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - László Albert
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Amir Mohammad Rahimi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Manuel Maidorn
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jannik Hentze
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Markel Martínez-Carranza
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Hassan Hosseini
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Kim-Ann Saal
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Nazar Oleksiievets
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39118, Magdeburg, Germany
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| |
Collapse
|
17
|
Liu Y, Shahid MA, Mao H, Chen J, Waddington M, Song KH, Zhang Y. Switchable and Functional Fluorophores for Multidimensional Single-Molecule Localization Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:403-413. [PMID: 37655169 PMCID: PMC10466381 DOI: 10.1021/cbmi.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Multidimensional single-molecule localization microscopy (mSMLM) represents a paradigm shift in the realm of super-resolution microscopy techniques. It affords the simultaneous detection of single-molecule spatial locations at the nanoscale and functional information by interrogating the emission properties of switchable fluorophores. The latter is finely tuned to report its local environment through carefully manipulated laser illumination and single-molecule detection strategies. This Perspective highlights recent strides in mSMLM with a focus on fluorophore designs and their integration into mSMLM imaging systems. Particular interests are the accomplishments in simultaneous multiplexed super-resolution imaging, nanoscale polarity and hydrophobicity mapping, and single-molecule orientational imaging. Challenges and prospects in mSMLM are also discussed, which include the development of more vibrant and functional fluorescent probes, the optimization of optical implementation to judiciously utilize the photon budget, and the advancement of imaging analysis and machine learning techniques.
Collapse
Affiliation(s)
- Yunshu Liu
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Md Abul Shahid
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Hongjing Mao
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Jiahui Chen
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Michael Waddington
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| | - Ki-Hee Song
- Quantum
Optics Research Division, Korea Atomic Energy
Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Yang Zhang
- Molecular
Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering,
Chemistry and Science, North Carolina State
University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
18
|
Singha PK, Kistwal T, Datta A. Single-Particle Dynamics of ZnS Shelling Induced Replenishment of Carrier Diffusion for Individual Emission Centers in CuInS 2 Quantum Dots. J Phys Chem Lett 2023; 14:4289-4296. [PMID: 37126796 DOI: 10.1021/acs.jpclett.3c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Insights into blinking and photoactivation of aqueous copper indium sulfide (CIS) quantum dots have been obtained using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime correlation spectroscopy (FLCS). An unusual excitation wavelength-dependence of photoactivation/photocorrosion is manifested in an increase in the initial correlation amplitude G(0) for λex = 532 nm, but a decrease for λex = 405 nm. This has been rationalized in terms of different contributions from surface-assisted recombination in the two cases. Blinking times obtained from the autocorrelation functions (ACFs) of the 100-200 ns lifetime component (core Cu-mediated recombination) are almost unaffected by shelling, but those from the ACF for the 10-30 ns lifetime (surface states) increase significantly. Absence of cross-correlation between the two recombinative states of bare CIS QDs and the emergence of an anticorrelation with the introduction of the ZnS shell are observed, indicating the diffusive nature of the two states for CIS-ZnS. The diffusion is inhibited in bare CIS QDs due to the preponderance of surface states.
Collapse
Affiliation(s)
- Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tanuja Kistwal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Dunlap MK, Ryan DP, Goodwin PM, Sheehan CJ, Werner JH, Majumder S, Hollingsworth JA, Gelfand MP, Van Orden A. Nanoscale imaging of quantum dot dimers using time-resolved super-resolution microscopy combined with scanning electron microscopy. NANOTECHNOLOGY 2023; 34:275202. [PMID: 37011598 DOI: 10.1088/1361-6528/acc9c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Time-resolved super-resolution microscopy was used in conjunction with scanning electron microscopy to image individual colloidal CdSe/CdS semiconductor quantum dots (QD) and QD dimers. The photoluminescence (PL) lifetimes, intensities, and structural parameters were acquired with nanometer scale spatial resolution and sub-nanosecond time resolution. The combination of these two techniques was more powerful than either alone, enabling us to resolve the PL properties of individual QDs within QD dimers as they blinked on and off, measure interparticle distances, and identify QDs that may be participating in energy transfer. The localization precision of our optical imaging technique was ∼3 nm, low enough that the emission from individual QDs within the dimers could be spatially resolved. While the majority of QDs within dimers acted as independent emitters, at least one pair of QDs in our study exhibited lifetime and intensity behaviors consistent with resonance energy transfer from a shorter lifetime and lower intensity donor QD to a longer lifetime and higher intensity acceptor QD. For this case, we demonstrate how the combined super-resolution optical imaging and scanning electron microscopy data can be used to characterize the energy transfer rate.
Collapse
Affiliation(s)
- Megan K Dunlap
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Duncan P Ryan
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Peter M Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Chris J Sheehan
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - James H Werner
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Somak Majumder
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Jennifer A Hollingsworth
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Martin P Gelfand
- Department of Physics, Colorado State University, Fort Collins, CO 80523-1872, United States of America
| | - Alan Van Orden
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States of America
| |
Collapse
|
20
|
Zang Z, Xiao D, Wang Q, Jiao Z, Chen Y, Li DDU. Compact and robust deep learning architecture for fluorescence lifetime imaging and FPGA implementation. Methods Appl Fluoresc 2023; 11. [PMID: 36863024 DOI: 10.1088/2050-6120/acc0d9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
This paper reports a bespoke adder-based deep learning network for time-domain fluorescence lifetime imaging (FLIM). By leveraging thel1-norm extraction method, we propose a 1D Fluorescence Lifetime AdderNet (FLAN) without multiplication-based convolutions to reduce the computational complexity. Further, we compressed fluorescence decays in temporal dimension using a log-scale merging technique to discard redundant temporal information derived as log-scaling FLAN (FLAN+LS). FLAN+LS achieves 0.11 and 0.23 compression ratios compared with FLAN and a conventional 1D convolutional neural network (1D CNN) while maintaining high accuracy in retrieving lifetimes. We extensively evaluated FLAN and FLAN+LS using synthetic and real data. A traditional fitting method and other non-fitting, high-accuracy algorithms were compared with our networks for synthetic data. Our networks attained a minor reconstruction error in different photon-count scenarios. For real data, we used fluorescent beads' data acquired by a confocal microscope to validate the effectiveness of real fluorophores, and our networks can differentiate beads with different lifetimes. Additionally, we implemented the network architecture on a field-programmable gate array (FPGA) with a post-quantization technique to shorten the bit-width, thereby improving computing efficiency. FLAN+LS on hardware achieves the highest computing efficiency compared to 1D CNN and FLAN. We also discussed the applicability of our network and hardware architecture for other time-resolved biomedical applications using photon-efficient, time-resolved sensors.
Collapse
Affiliation(s)
- Zhenya Zang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Dong Xiao
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Quan Wang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Ziao Jiao
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Yu Chen
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - David Day Uei Li
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| |
Collapse
|
21
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
22
|
Galiani S, Eggeling C, Reglinski K. Super-resolution microscopy and studies of peroxisomes. Biol Chem 2023; 404:87-106. [PMID: 36698322 DOI: 10.1515/hsz-2022-0314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
Fluorescence microscopy is an important tool for studying cellular structures such as organelles. Unfortunately, many details in the corresponding images are hidden due to the resolution limit of conventional lens-based far-field microscopy. An example is the study of peroxisomes, where important processes such as molecular organization during protein important can simply not be studied with conventional far-field microscopy methods. A remedy is super-resolution fluorescence microscopy, which is nowadays a well-established technique for the investigation of inner-cellular structures but has so far to a lesser extent been applied to the study of peroxisomes. To help advancing the latter, we here give an overview over the different super-resolution microscopy approaches and their potentials and challenges in cell-biological research, including labelling issues and a focus on studies on peroxisomes. Here, we also highlight experiments beyond simple imaging such as observations of diffusion dynamics of peroxisomal proteins.
Collapse
Affiliation(s)
- Silvia Galiani
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, D-07745 Jena, Germany, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.,Jena Center for Soft Matter, Philosophenweg 7, D-07743 Jena, Germany
| | - Katharina Reglinski
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, D-07745 Jena, Germany, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.,University Clinics Jena, Bachstraße 18, D-07743 Jena, Germany
| |
Collapse
|
23
|
Lee H, Kim K, Kang CM, Choo A, Han D, Kim J. In Situ Confocal Fluorescence Lifetime Imaging of Nanopore Electrode Arrays with Redox Active Fluorogenic Amplex Red. Anal Chem 2023; 95:1038-1046. [PMID: 36577440 DOI: 10.1021/acs.analchem.2c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Direct imaging of electrochemical processes on electrode surfaces is a central part of understanding spatially heterogeneous electrochemical processes on the surfaces. Herein, we report a strategy for the spatially resolved imaging of local faradaic processes on nanoscale electrochemical interfaces. This strategy is based on fluorescence lifetime imaging microscopy (FLIM) with the use of Amplex Red as a fluorogenic redox probe. After verifying the capability of Amplex Red for fluorescence lifetime imaging, we demonstrated the turn-on FLIM-based imaging of faradaic processes on the electrochemical interfaces of different dimensions. In particular, we achieved spatially resolved visualization of the local electrochemical processes occurring on even nanopore electrode arrays as well as conventional microelectrodes, including disk-shaped ultramicroelectrodes and interdigitated array microelectrodes.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea
| | - Kyoungsoo Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon14662, Gyeonggi-do, Republic of Korea
| | - Chung Mu Kang
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, Suwon16229, Gyeonggi-do, Republic of Korea
| | - Aeri Choo
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea
| | - Donghoon Han
- Department of Chemistry, The Catholic University of Korea, Bucheon14662, Gyeonggi-do, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul02447, Republic of Korea
| |
Collapse
|
24
|
Reinhard S, Helmerich DA, Boras D, Sauer M, Kollmannsberger P. ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy. BMC Bioinformatics 2022; 23:530. [PMID: 36482307 PMCID: PMC9732995 DOI: 10.1186/s12859-022-05071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Localization-based super-resolution microscopy resolves macromolecular structures down to a few nanometers by computationally reconstructing fluorescent emitter coordinates from diffraction-limited spots. The most commonly used algorithms are based on fitting parametric models of the point spread function (PSF) to a measured photon distribution. These algorithms make assumptions about the symmetry of the PSF and thus, do not work well with irregular, non-linear PSFs that occur for example in confocal lifetime imaging, where a laser is scanned across the sample. An alternative method for reconstructing sparse emitter sets from noisy, diffraction-limited images is compressed sensing, but due to its high computational cost it has not yet been widely adopted. Deep neural network fitters have recently emerged as a new competitive method for localization microscopy. They can learn to fit arbitrary PSFs, but require extensive simulated training data and do not generalize well. A method to efficiently fit the irregular PSFs from confocal lifetime localization microscopy combining the advantages of deep learning and compressed sensing would greatly improve the acquisition speed and throughput of this method. RESULTS Here we introduce ReCSAI, a compressed sensing neural network to reconstruct localizations for confocal dSTORM, together with a simulation tool to generate training data. We implemented and compared different artificial network architectures, aiming to combine the advantages of compressed sensing and deep learning. We found that a U-Net with a recursive structure inspired by iterative compressed sensing showed the best results on realistic simulated datasets with noise, as well as on real experimentally measured confocal lifetime scanning data. Adding a trainable wavelet denoising layer as prior step further improved the reconstruction quality. CONCLUSIONS Our deep learning approach can reach a similar reconstruction accuracy for confocal dSTORM as frame binning with traditional fitting without requiring the acquisition of multiple frames. In addition, our work offers generic insights on the reconstruction of sparse measurements from noisy experimental data by combining compressed sensing and deep learning. We provide the trained networks, the code for network training and inference as well as the simulation tool as python code and Jupyter notebooks for easy reproducibility.
Collapse
Affiliation(s)
- Sebastian Reinhard
- Department of Biotechnology and Biophysics, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Dominik Boras
- Department of Biotechnology and Biophysics, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Wuerzburg, Klara-Oppenheimer-Weg 32, 97074, Wuerzburg, Germany.
| |
Collapse
|
25
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
26
|
Oleksiievets N, Mathew C, Thiele JC, Gallea JI, Nevskyi O, Gregor I, Weber A, Tsukanov R, Enderlein J. Single-Molecule Fluorescence Lifetime Imaging Using Wide-Field and Confocal-Laser Scanning Microscopy: A Comparative Analysis. NANO LETTERS 2022; 22:6454-6461. [PMID: 35792810 PMCID: PMC9373986 DOI: 10.1021/acs.nanolett.2c01586] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A recent addition to the toolbox of super-resolution microscopy methods is fluorescence-lifetime single-molecule localization microscopy (FL-SMLM). The synergy of SMLM and fluorescence-lifetime imaging microscopy (FLIM) combines superior image resolution with lifetime information and can be realized using two complementary experimental approaches: confocal-laser scanning microscopy (CLSM) or wide-field microscopy. Here, we systematically and comprehensively compare these two novel FL-SMLM approaches in different spectral regions. For wide-field FL-SMLM, we use a commercial lifetime camera, and for CLSM-based FL-SMLM we employ a home-built system equipped with a rapid scan unit and a single-photon detector. We characterize the performances of the two systems in localizing single emitters in 3D by combining FL-SMLM with metal-induced energy transfer (MIET) for localization along the third dimension and in the lifetime-based multiplexed bioimaging using DNA-PAINT. Finally, we discuss advantages and disadvantages of wide-field and confocal FL-SMLM and provide practical advice on rational FL-SMLM experiment design.
Collapse
Affiliation(s)
- Nazar Oleksiievets
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Christeena Mathew
- Laboratory
of Supramolecular Chemistry, EPFL SB ISIC
LCS, BCH 3307, CH-1015 Lausanne, Switzerland
| | - Jan Christoph Thiele
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - José Ignacio Gallea
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Oleksii Nevskyi
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Ingo Gregor
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - André Weber
- Combinatorial
NeuroImaging Core Facility, Leibniz Institute
for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Roman Tsukanov
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
- Cluster
of Excellence “Multiscale Bioimaging: from Molecular Machines
to Networks of Excitable Cells” (MBExC), Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Bhusana Palai B, Kumari S, Dixit M, Sharma NK. Nonbenzenoid BODIPY Analogues: Synthesis, Structural Organization, Photophysical Studies, and Cell Internalization of Biocompatible N- Alkyl-Aminotroponyl Difluoroboron ( Alkyl-ATB) Complexes. ACS OMEGA 2022; 7:27347-27358. [PMID: 35967069 PMCID: PMC9366977 DOI: 10.1021/acsomega.2c02379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The alkyl-BODIPY derivatives are lipid types of fluorescent molecules that exhibit a unique structure and functions including sensing of hydrophobic microenvironments in living cells. Their synthesis involves multisteps from the core structure dipyrromethene scaffold. The alkyl-BODIPY analogues are sought to derivatize with minimal synthetic steps even by altering the core structures derived from benzenoid aromatic moiety. Recently, the nonbenzenoid scaffold (aminotropone) has been explored to synthesize troponyl-BODIPY analogues, which are fluorescent. In the repertoire of nonbenzenoid analogue, N-alkyl-aminotroponyl difluoroboron (alkyl-ATB) is rationally designed comprising long-chain hydrocarbons to explore the lipid type of fluorescent molecules. This report describes the synthesis, photophysical studies, structural organization, and biocompatibilities of ATB derivatives containing different lengths of alkyl chain at 2-aminotropone scaffold. The photophysical studies of ATB derivatives reveal their fluorescence behaviors in organic solvents (CH3OH/CH3CN) with a quantum yield of ∼10 to 15%. These ATB derivatives also exhibit fluorescence characters in the solid state though their quantum yield is relatively low. Cell permeability and cytotoxicity studies reveal that alkyl-ATB derivatives are permeable to HeLa/HEK293T cell lines and show negligible cytotoxicity. The biocompatibility of alkyl-ATB derivatives is studied and confirmed by cell viability (MTT) assay to the HeLa/HEK293T cell lines. Importantly, the cell internalization studies of the representative alkyl-ATB molecule by fluorescence microscopy show that octyl-ATB is efficiently detectable at the cytoplasmic membrane and cellular nucleus in HeLa cells. Hence, alkyl-ATB derivatives are potential fluorescent molecules for developing probes to visualize cellular components under a fluorescence microscope.
Collapse
Affiliation(s)
- Bibhuti Bhusana Palai
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER) Bhubaneswar, Jatni 752050, Odisha, India
- Homi
Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Supriya Kumari
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER) Bhubaneswar, Jatni 752050, Odisha, India
- School
of Biological Sciences, National Institute
of Science Education and Research (NISER) Bhubaneswar, Jatni 752050, Odisha, India
| | - Manjusha Dixit
- School
of Biological Sciences, National Institute
of Science Education and Research (NISER) Bhubaneswar, Jatni 752050, Odisha, India
- Homi
Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nagendra K. Sharma
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER) Bhubaneswar, Jatni 752050, Odisha, India
- Homi
Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
28
|
Helmerich DA, Beliu G, Taban D, Meub M, Streit M, Kuhlemann A, Doose S, Sauer M. Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier. Nat Methods 2022; 19:986-994. [PMID: 35915194 PMCID: PMC9349044 DOI: 10.1038/s41592-022-01548-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
Advances in super-resolution microscopy have demonstrated single-molecule localization precisions of a few nanometers. However, translation of such high localization precisions into sub-10-nm spatial resolution in biological samples remains challenging. Here we show that resonance energy transfer between fluorophores separated by less than 10 nm results in accelerated fluorescence blinking and consequently lower localization probabilities impeding sub-10-nm fluorescence imaging. We demonstrate that time-resolved fluorescence detection in combination with photoswitching fingerprint analysis can be used to determine the number and distance even of spatially unresolvable fluorophores in the sub-10-nm range. In combination with genetic code expansion with unnatural amino acids and bioorthogonal click labeling with small fluorophores, photoswitching fingerprint analysis can be used advantageously to reveal information about the number of fluorophores present and their distances in the sub-10-nm range in cells.
Collapse
Affiliation(s)
- Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Danush Taban
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Alexander Kuhlemann
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
29
|
Kundu S, Das S, Jaiswal S, Patra A. Molecular to Supramolecular Self-Assembled Luminogens for Tracking the Intracellular Organelle Dynamics. ACS APPLIED BIO MATERIALS 2022; 5:3623-3648. [PMID: 35834795 DOI: 10.1021/acsabm.2c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the dynamics of intracellular organelles has gained immense attention due to their subtle control over diverse, complex biological processes such as cellular metabolism, energy homeostasis, and autophagy. In this context, molecular materials, including small-organic fluorescent probes and their supramolecular self-assembled nano-/microarchitectures, have been employed to explore the diverse intracellular biological events. However, only a handful of fluorescent probes and self-assembled emissive structures have been successfully used to track different organelle's movements, circumventing the issues related to water solubility and long-term photostability. Thus, the water-soluble molecular fluorescent probes and the water-dispersible supramolecular self-assemblies have emerged as promising candidates to explore the trafficking of the organelles under diverse physiological conditions. In this review, we have delineated the recent progress of fluorescent probes and their supramolecular self-assemblies for the elucidation of the dynamics of diverse cellular organelles with a special emphasis on lysosomes, lipid droplets, and mitochondria. Recent advancement in fluorescence lifetime and super-resolution microscopy imaging has also been discussed to investigate the dynamics of organelles. In addition, the fabrication of the next-generation molecular to supramolecular self-assembled luminogens for probing the variation of microenvironments during the trafficking process has been outlined.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
30
|
Masullo LA, Szalai AM, Lopez LF, Pilo-Pais M, Acuna GP, Stefani FD. An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. LIGHT, SCIENCE & APPLICATIONS 2022; 11:199. [PMID: 35773265 PMCID: PMC9247048 DOI: 10.1038/s41377-022-00896-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 05/31/2023]
Abstract
Localization of single fluorescent emitters is key for physicochemical and biophysical measurements at the nanoscale and beyond ensemble averaging. Examples include single-molecule tracking and super-resolution imaging by single-molecule localization microscopy. Among the numerous localization methods available, MINFLUX outstands for achieving a ~10-fold improvement in resolution over wide-field camera-based approaches, reaching the molecular scale at moderate photon counts. Widespread application of MINFLUX and related methods has been hindered by the technical complexity of the setups. Here, we present RASTMIN, a single-molecule localization method based on raster scanning a light pattern comprising a minimum of intensity. RASTMIN delivers ~1-2 nm localization precision with usual fluorophores and is easily implementable on a standard confocal microscope with few modifications. We demonstrate the performance of RASTMIN in localization of single molecules and super-resolution imaging of DNA origami structures.
Collapse
Affiliation(s)
- Luciano A Masullo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Lucía F Lopez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH-1700, Switzerland
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH-1700, Switzerland
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Thiele JC, Jungblut M, Helmerich DA, Tsukanov R, Chizhik A, Chizhik AI, Schnermann MJ, Sauer M, Nevskyi O, Enderlein J. Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. SCIENCE ADVANCES 2022; 8:eabo2506. [PMID: 35675401 PMCID: PMC9176750 DOI: 10.1126/sciadv.abo2506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/25/2022] [Indexed: 05/25/2023]
Abstract
Over the past two decades, super-resolution microscopy has seen a tremendous development in speed and resolution, but for most of its methods, there exists a remarkable gap between lateral and axial resolution, which is by a factor of 2 to 3 worse. One recently developed method to close this gap is metal-induced energy transfer (MIET) imaging, which achieves an axial resolution down to nanometers. It exploits the distance-dependent quenching of fluorescence when a fluorescent molecule is brought close to a metal surface. In the present manuscript, we combine the extreme axial resolution of MIET imaging with the extraordinary lateral resolution of single-molecule localization microscopy, in particular with direct stochastic optical reconstruction microscopy (dSTORM). This combination allows us to achieve isotropic three-dimensional super-resolution imaging of subcellular structures. Moreover, we used spectral demixing for implementing dual-color MIET-dSTORM that allows us to image and colocalize, in three dimensions, two different cellular structures simultaneously.
Collapse
Affiliation(s)
- Jan Christoph Thiele
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Marvin Jungblut
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominic A. Helmerich
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roman Tsukanov
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Anna Chizhik
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Alexey I. Chizhik
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Oleksii Nevskyi
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), Georg August University, Göttingen, Germany
| |
Collapse
|
32
|
Masullo LA, Lopez LF, Stefani FD. A common framework for single-molecule localization using sequential structured illumination. BIOPHYSICAL REPORTS 2022; 2:100036. [PMID: 36425082 PMCID: PMC9680809 DOI: 10.1016/j.bpr.2021.100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/22/2021] [Indexed: 06/16/2023]
Abstract
Localization of single fluorescent molecules is key for physicochemical and biophysical measurements, such as single-molecule tracking and super-resolution imaging by single-molecule localization microscopy. Over the last two decades, several methods have been developed in which the position of a single emitter is interrogated with a sequence of spatially modulated patterns of light. Among them, the recent MINFLUX technique outstands for achieving a ∼10-fold improvement compared with wide-field camera-based single-molecule localization, reaching ∼1-2 nm localization precision at moderate photon counts. Here, we present a common framework for this type of measurement. Using the Cramér-Rao bound as a limit for the achievable localization precision, we benchmark reported methods, including recent developments, such as MINFLUX and MINSTED, and long-established methods, such as orbital tracking. In addition, we characterize two new proposed schemes, orbital tracking and raster scanning, with a minimum of intensity. Overall, we found that approaches using an intensity minimum have a similar performance in the central region of the excitation pattern, independent of the geometry of the excitation pattern, and that they outperform methods featuring an intensity maximum.
Collapse
Affiliation(s)
- Luciano A. Masullo
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía F. Lopez
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando D. Stefani
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
33
|
Oleksiievets N, Sargsyan Y, Thiele JC, Mougios N, Sograte-Idrissi S, Nevskyi O, Gregor I, Opazo F, Thoms S, Enderlein J, Tsukanov R. Fluorescence lifetime DNA-PAINT for multiplexed super-resolution imaging of cells. Commun Biol 2022; 5:38. [PMID: 35017652 PMCID: PMC8752799 DOI: 10.1038/s42003-021-02976-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution technique highly suitable for multi-target (multiplexing) bio-imaging. However, multiplexed imaging of cells is still challenging due to the dense and sticky environment inside a cell. Here, we combine fluorescence lifetime imaging microscopy (FLIM) with DNA-PAINT and use the lifetime information as a multiplexing parameter for targets identification. In contrast to Exchange-PAINT, fluorescence lifetime PAINT (FL-PAINT) can image multiple targets simultaneously and does not require any fluid exchange, thus leaving the sample undisturbed and making the use of flow chambers/microfluidic systems unnecessary. We demonstrate the potential of FL-PAINT by simultaneous imaging of up to three targets in a cell using both wide-field FLIM and 3D time-resolved confocal laser scanning microscopy (CLSM). FL-PAINT can be readily combined with other existing techniques of multiplexed imaging and is therefore a perfect candidate for high-throughput multi-target bio-imaging.
Collapse
Affiliation(s)
- Nazar Oleksiievets
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Yelena Sargsyan
- Department of Child and Adolescent Health, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Jan Christoph Thiele
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Oleksii Nevskyi
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Ingo Gregor
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center Göttingen, 37073, Göttingen, Germany
- Biochemistry and Molecular Medicine, Medical School, Bielefeld University, 33615, Bielefeld, Germany
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Göttingen, Germany.
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany.
| |
Collapse
|
34
|
Thiele JC, Nevskyi O, Helmerich DA, Sauer M, Enderlein J. Advanced Data Analysis for Fluorescence-Lifetime Single-Molecule Localization Microscopy. FRONTIERS IN BIOINFORMATICS 2021; 1:740281. [PMID: 36303750 PMCID: PMC9581058 DOI: 10.3389/fbinf.2021.740281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Fluorescence-lifetime single molecule localization microscopy (FL-SMLM) adds the lifetime dimension to the spatial super-resolution provided by SMLM. Independent of intensity and spectrum, this lifetime information can be used, for example, to quantify the energy transfer efficiency in Förster Resonance Energy Transfer (FRET) imaging, to probe the local environment with dyes that change their lifetime in an environment-sensitive manner, or to achieve image multiplexing by using dyes with different lifetimes. We present a thorough theoretical analysis of fluorescence-lifetime determination in the context of FL-SMLM and compare different lifetime-fitting approaches. In particular, we investigate the impact of background and noise, and give clear guidelines for procedures that are optimized for FL-SMLM. We do also present and discuss our public-domain software package “Fluorescence-Lifetime TrackNTrace,” which converts recorded fluorescence microscopy movies into super-resolved FL-SMLM images.
Collapse
Affiliation(s)
- Jan Christoph Thiele
- Third Institute of Physics—Biophysics, Georg August University, Göttingen, Germany
- *Correspondence: Jan Christoph Thiele, ; Jörg Enderlein,
| | - Oleksii Nevskyi
- Third Institute of Physics—Biophysics, Georg August University, Göttingen, Germany
| | - Dominic A. Helmerich
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jörg Enderlein
- Third Institute of Physics—Biophysics, Georg August University, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg August University, Göttingen, Germany
- *Correspondence: Jan Christoph Thiele, ; Jörg Enderlein,
| |
Collapse
|
35
|
Bowman AJ, Kasevich MA. Resonant Electro-Optic Imaging for Microscopy at Nanosecond Resolution. ACS NANO 2021; 15:16043-16054. [PMID: 34546704 DOI: 10.1021/acsnano.1c04470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate an electro-optic wide-field method to enable fluorescence lifetime microscopy (FLIM) with high throughput and single-molecule sensitivity. Resonantly driven Pockels cells are used to efficiently gate images at 39 MHz, allowing fluorescence lifetime to be captured on standard camera sensors. Lifetime imaging of single molecules is enabled in wide field with exposure times of less than 100 ms. This capability allows combination of wide-field FLIM with single-molecule super-resolution localization microscopy. Fast single-molecule dynamics such as FRET and molecular binding events are captured from wide-field images without prior spatial knowledge. A lifetime sensitivity of 1.9 times the photon shot-noise limit is achieved, and high throughput is shown by acquiring wide-field FLIM images with millisecond exposure and >108 photons per frame. Resonant electro-optic FLIM allows lifetime contrast in any wide-field microscopy method.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, United States
| | - Mark A Kasevich
- Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, United States
| |
Collapse
|
36
|
Plant Sterol Clustering Correlates with Membrane Microdomains as Revealed by Optical and Computational Microscopy. MEMBRANES 2021; 11:membranes11100747. [PMID: 34677513 PMCID: PMC8539253 DOI: 10.3390/membranes11100747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
Local inhomogeneities in lipid composition play a crucial role in the regulation of signal transduction and membrane traffic. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids. Nevertheless, most evidence for microdomains in cells remains indirect, and the nature of membrane inhomogeneities has been difficult to characterize. We used a new push–pull pyrene probe and fluorescence lifetime imaging microscopy (FLIM) combined with all-atom multiscale molecular dynamics simulations to provide a detailed view on the interaction between phospholipids and phytosterol and the effect of modulating cellular phytosterols on membrane-associated microdomains and phase separation formation. Our understanding of the organization principles of biomembranes is limited mainly by the challenge to measure distributions and interactions of lipids and proteins within the complex environment of living cells. Comparing phospholipids/phytosterol compositions typical of liquid-disordered (Ld) and liquid-ordered (Lo) domains, we furthermore show that phytosterols play crucial roles in membrane homeostasis. The simulation work highlights how state-of-the-art modeling alleviates some of the prior concerns and how unrefuted discoveries can be made through a computational microscope. Altogether, our results support the role of phytosterols in the lateral structuring of the PM of plant cells and suggest that they are key compounds for the formation of plant PM microdomains and the lipid-ordered phase.
Collapse
|
37
|
Maillard J, Rumble CA, Fürstenberg A. Red-Emitting Fluorophores as Local Water-Sensing Probes. J Phys Chem B 2021; 125:9727-9737. [PMID: 34406003 DOI: 10.1021/acs.jpcb.1c05773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent probes are known for their ability to sense changes in their direct environment. We introduce here the idea that common red-emitting fluorophores recommended for biological labeling and typically used for simple visualization of biomolecules can also act as reporters of the water content in their first solvent sphere by a simple measurement of their fluorescence lifetime. Using fluorescence spectroscopy, we investigated the excited-state dynamics of seven commercially available fluorophores emitting between 650 and 800 nm that are efficiently quenched by H2O. The amount of H2O in their direct surrounding was modulated in homogeneous H2O-D2O mixtures or, in heterogeneous systems, by confining them into reverse micelles, by encapsulating them into host-guest complexes with cyclodextrins, or by attaching them to peptides and proteins. We found that their fluorescence properties can be rationalized in terms of the amount of H2O in their direct surroundings, which provides a general mechanism for protein-induced fluorescence enhancements of red-emitting dyes and opens perspectives for directly counting water molecules in key biological environments or in polymers.
Collapse
Affiliation(s)
| | - Christopher A Rumble
- Department of Chemistry, The Pennsylvania State University, Altoona College, 3000 Ivyside Park, Altoona, Pennsylvania 16601, United States
| | | |
Collapse
|
38
|
Xiang L, Chen K, Xu K. Single Molecules Are Your Quanta: A Bottom-Up Approach toward Multidimensional Super-resolution Microscopy. ACS NANO 2021; 15:12483-12496. [PMID: 34304562 PMCID: PMC8789943 DOI: 10.1021/acsnano.1c04708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The rise of single-molecule localization microscopy (SMLM) and related super-resolution methods over the past 15 years has revolutionized how we study biological and materials systems. In this Perspective, we reflect on the underlying philosophy of how diffraction-unlimited pictures containing rich spatial and functional information may gradually emerge through the local accumulation of single-molecule measurements. Starting with the basic concepts, we analyze the uniqueness of and opportunities in building up the final picture one molecule at a time. After brief introductions to the more established multicolor and three-dimensional measurements, we highlight emerging efforts to extend SMLM to new dimensions and functionalities as fluorescence polarization, emission spectra, and molecular motions, and discuss rising opportunities and future directions. With single molecules as our quanta, the bottom-up accumulation approach provides a powerful conduit for multidimensional microscopy at the nanoscale.
Collapse
|
39
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
40
|
Datta R, Gillette A, Stefely M, Skala MC. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210093-PER. [PMID: 34247457 PMCID: PMC8271181 DOI: 10.1117/1.jbo.26.7.070603] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) measures the decay rate of fluorophores, thus providing insights into molecular interactions. FLIM is a powerful molecular imaging technique that is widely used in biology and medicine. AIM This perspective highlights some of the major advances in FLIM instrumentation, analysis, and biological and clinical applications that we have found impactful over the last year. APPROACH Innovations in FLIM instrumentation resulted in faster acquisition speeds, rapid imaging over large fields of view, and integration with complementary modalities such as single-molecule microscopy or light-sheet microscopy. There were significant developments in FLIM analysis with machine learning approaches to enhance processing speeds, fit-free techniques to analyze images without a priori knowledge, and open-source analysis resources. The advantages and limitations of these recent instrumentation and analysis techniques are summarized. Finally, applications of FLIM in the last year include label-free imaging in biology, ophthalmology, and intraoperative imaging, FLIM of new fluorescent probes, and lifetime-based Förster resonance energy transfer measurements. CONCLUSIONS A large number of high-quality publications over the last year signifies the growing interest in FLIM and ensures continued technological improvements and expanding applications in biomedical research.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Matthew Stefely
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Address all correspondence to Melissa C. Skala,
| |
Collapse
|
41
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
42
|
Masullo LA, Steiner F, Zähringer J, Lopez LF, Bohlen J, Richter L, Cole F, Tinnefeld P, Stefani FD. Pulsed Interleaved MINFLUX. NANO LETTERS 2021; 21:840-846. [PMID: 33336573 DOI: 10.1021/acs.nanolett.0c04600] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We introduce p-MINFLUX, a new implementation of the highly photon-efficient single-molecule localization method with a simplified experimental setup and additional fluorescence lifetime information. In contrast to the original MINFLUX implementation, p-MINFLUX uses interleaved laser pulses to deliver the doughnut-shaped excitation foci at a maximum repetition rate. Using both static and dynamic DNA origami model systems, we demonstrate the performance of p-MINFLUX for single-molecule localization nanoscopy and tracking, respectively. p-MINFLUX delivers 1-2 nm localization precision with 2000-1000 photon counts. In addition, p-MINFLUX gives access to the fluorescence lifetime enabling multiplexing and super-resolved lifetime imaging. p-MINFLUX should help to unlock the full potential of innovative single-molecule localization schemes.
Collapse
Affiliation(s)
- Luciano A Masullo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Florian Steiner
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
| | - Jonas Zähringer
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
| | - Lucía F Lopez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Johann Bohlen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
| | - Lars Richter
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
| | - Fiona Cole
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|