1
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
2
|
Llopis-Lorente A, Shao J, Ventura J, Buddingh′ BC, Martínez-Máñez R, van Hest JCM, Abdelmohsen LKEA. Spatiotemporal Communication in Artificial Cell Consortia for Dynamic Control of DNA Nanostructures. ACS CENTRAL SCIENCE 2024; 10:1619-1628. [PMID: 39220708 PMCID: PMC11363350 DOI: 10.1021/acscentsci.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
The spatiotemporal orchestration of cellular processes is a ubiquitous phenomenon in pluricellular organisms and bacterial communities, where sender cells secrete chemical signals that activate specific pathways in distant receivers. Despite its importance, the engineering and investigation of spatiotemporal communication in artificial cell consortia remains underexplored. In this study, we present spatiotemporal communication between cellular-scale entities acting as both senders and receivers. The transmitted signals are leveraged to elicit conformational alterations within compartmentalized DNA structures. Specifically, sender entities control and generate diffusive chemical signals, namely, variations in pH, through the conversion of biomolecular inputs. In the receiver population, compartmentalized DNA nanostructures exhibit changes in conformation, transitioning between triplex and duplex assemblies, in response to this pH variation. We demonstrate the temporal regulation of activated DNA nanostructures through the coordinated action of two antagonistic sender populations. Furthermore, we illustrate the transient distance-dependent activation of the receivers, facilitated by sender populations situated at defined spatial locations. Collectively, our findings provide novel avenues for the design of artificial cell consortia endowed with programmable spatiotemporal dynamics through chemical communication.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jingxin Shao
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jordi Ventura
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
| | - Bastiaan C. Buddingh′
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jan C. M. van Hest
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
van Veldhuisen TW, Verwiel MAM, Novosedlik S, Brunsveld L, van Hest JCM. Competitive protein recruitment in artificial cells. Commun Chem 2024; 7:148. [PMID: 38942913 PMCID: PMC11213860 DOI: 10.1038/s42004-024-01229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Living cells can modulate their response to environmental cues by changing their sensitivities for molecular signals. Artificial cells are promising model platforms to study intercellular communication, but populations with such differentiated behavior remain underexplored. Here, we show the affinity-regulated exchange of proteins in distinct populations of coacervate-based artificial cells via protein-protein interactions (PPI) of the hub protein 14-3-3. By loading different coacervates with different isoforms of 14-3-3, featuring varying PPI affinities, a client peptide is directed to the more strongly recruiting coacervates. By switching affinity of client proteins through phosphorylation, weaker binding partners can be outcompeted for their 14-3-3 binding, inducing their release from artificial cells. Combined, a communication system between coacervates is constructed, which leads to the transport of client proteins from strongly recruiting coacervates to weakly recruiting ones. The results demonstrate that affinity engineering and competitive binding can provide directed protein uptake and exchange between artificial cells.
Collapse
Affiliation(s)
- Thijs W van Veldhuisen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Madelief A M Verwiel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sebastian Novosedlik
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
4
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Rubanov M, Cole J, Lee HJ, Soto Cordova LG, Chen Z, Gonzalez E, Schulman R. Multi-domain automated patterning of DNA-functionalized hydrogels. PLoS One 2024; 19:e0295923. [PMID: 38306330 PMCID: PMC10836684 DOI: 10.1371/journal.pone.0295923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/04/2023] [Indexed: 02/04/2024] Open
Abstract
DNA-functionalized hydrogels are capable of sensing oligonucleotides, proteins, and small molecules, and specific DNA sequences sensed in the hydrogels' environment can induce changes in these hydrogels' shape and fluorescence. Fabricating DNA-functionalized hydrogel architectures with multiple domains could make it possible to sense multiple molecules and undergo more complicated macroscopic changes, such as changing fluorescence or changing the shapes of regions of the hydrogel architecture. However, automatically fabricating multi-domain DNA-functionalized hydrogel architectures, capable of enabling the construction of hydrogel architectures with tens to hundreds of different domains, presents a significant challenge. We describe a platform for fabricating multi-domain DNA-functionalized hydrogels automatically at the micron scale, where reaction and diffusion processes can be coupled to program material behavior. Using this platform, the hydrogels' material properties, such as shape and fluorescence, can be programmed, and the fabricated hydrogels can sense their environment. DNA-functionalized hydrogel architectures with domain sizes as small as 10 microns and with up to 4 different types of domains can be automatically fabricated using ink volumes as low as 50 μL. We also demonstrate that hydrogels fabricated using this platform exhibit responses similar to those of DNA-functionalized hydrogels fabricated using other methods by demonstrating that DNA sequences can hybridize within them and that they can undergo DNA sequence-induced shape change.
Collapse
Affiliation(s)
- Moshe Rubanov
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joshua Cole
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Heon-Joon Lee
- Department of Biomedical Engineering, Whiting School of Engineering and the School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Leandro G. Soto Cordova
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zachary Chen
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elia Gonzalez
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
6
|
Yu X, Mukwaya V, Mann S, Dou H. Signal Transduction in Artificial Cells. SMALL METHODS 2023; 7:e2300231. [PMID: 37116092 DOI: 10.1002/smtd.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In recent years, significant progress has been made in the emerging field of constructing biomimetic soft compartments with life-like behaviors. Given that biological activities occur under a flux of energy and matter exchange, the implementation of rudimentary signaling pathways in artificial cells (protocells) is a prerequisite for the development of adaptive sense-response phenotypes in cytomimetic models. Herein, recent approaches to the integration of signal transduction modules in model protocells prepared by bottom-up construction are discussed. The approaches are classified into two categories involving invasive biochemical signals or non-invasive physical stimuli. In the former mechanism, transducers with intrinsic recognition capability respond with high specificity, while in the latter, artificial cells respond through intra-protocellular energy transduction. Although major challenges remain in the pursuit of a sophisticated artificial signaling network for the orchestration of higher-order cytomimetic models, significant advances have been made in establishing rudimentary protocell communication networks, providing novel organizational models for the development of life-like microsystems and new avenues in protoliving technologies.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
- Max Planck Bristol Centre for Minimal Biology and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
7
|
Grimes PJ, Jenkinson‐Finch M, Symons HE, Briscoe WH, Rochat S, Mann S, Gobbo P. A Photo-degradable Crosslinker for the Development of Light-responsive Protocell Membranes. Chemistry 2023; 29:e202302058. [PMID: 37497813 PMCID: PMC10946628 DOI: 10.1002/chem.202302058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
The achievement of light-responsive behaviours is an important target for protocell engineering to allow control of fundamental protocellular processes such as communication via diffusible chemical signals, shape changes or even motility at the flick of a switch. As a step towards this ambitious goal, here we describe the synthesis of a novel poly(ethylene glycol)-based crosslinker, reactive towards nucleophiles, that effectively degrades with UV light (405 nm). We demonstrate its utility for the fabrication of the first protocell membranes capable of light-induced disassembly, for the photo-generation of patterns of protocells, and for the modulation of protocell membrane permeability. Overall, our results not only open up new avenues towards the engineering of spatially organised, communicating networks of protocells, and of micro-compartmentalised systems for information storage and release, but also have important implications for other research fields such as drug delivery and soft materials chemistry.
Collapse
Affiliation(s)
- Patrick J. Grimes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Henry E. Symons
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Wuge H. Briscoe
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Sebastien Rochat
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of Engineering Mathematics and TechnologyUniversity of BristolAda Lovelace BuildingTankard's CloseBristolBS8 1TWUK
| | - Stephen Mann
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 1Trieste34127Italy
- National Interuniversity Consortium of Materials Science and Technology Unit of TriesteVia G. Giusti 9Firenze50121Italy
| |
Collapse
|
8
|
Yang H, Tel J. Engineering global and local signal generators for probing temporal and spatial cellular signaling dynamics. Front Bioeng Biotechnol 2023; 11:1239026. [PMID: 37790255 PMCID: PMC10543096 DOI: 10.3389/fbioe.2023.1239026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Cells constantly encounter a wide range of environmental signals and rely on their signaling pathways to initiate reliable responses. Understanding the underlying signaling mechanisms and cellular behaviors requires signal generators capable of providing diverse input signals to deliver to cell systems. Current research efforts are primarily focused on exploring cellular responses to global or local signals, which enable us to understand cellular signaling and behavior in distinct dimensions. This review presents recent advancements in global and local signal generators, highlighting their applications in studying temporal and spatial signaling activity. Global signals can be generated using microfluidic or photochemical approaches. Local signal sources can be created using living or artificial cells in combination with different control methods. We also address the strengths and limitations of each signal generator type, discussing challenges and potential extensions for future research. These approaches are expected to continue to facilitate on-going research to discover novel and intriguing cellular signaling mechanisms.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
9
|
Bögels BWA, Nguyen BH, Ward D, Gascoigne L, Schrijver DP, Makri Pistikou AM, Joesaar A, Yang S, Voets IK, Mulder WJM, Phillips A, Mann S, Seelig G, Strauss K, Chen YJ, de Greef TFA. DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access. NATURE NANOTECHNOLOGY 2023; 18:912-921. [PMID: 37142708 PMCID: PMC10427423 DOI: 10.1038/s41565-023-01377-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/19/2023] [Indexed: 05/06/2023]
Abstract
DNA has emerged as an attractive medium for archival data storage due to its durability and high information density. Scalable parallel random access to information is a desirable property of any storage system. For DNA-based storage systems, however, this still needs to be robustly established. Here we report on a thermoconfined polymerase chain reaction, which enables multiplexed, repeated random access to compartmentalized DNA files. The strategy is based on localizing biotin-functionalized oligonucleotides inside thermoresponsive, semipermeable microcapsules. At low temperatures, microcapsules are permeable to enzymes, primers and amplified products, whereas at high temperatures, membrane collapse prevents molecular crosstalk during amplification. Our data show that the platform outperforms non-compartmentalized DNA storage compared with repeated random access and reduces amplification bias tenfold during multiplex polymerase chain reaction. Using fluorescent sorting, we also demonstrate sample pooling and data retrieval by microcapsule barcoding. Therefore, the thermoresponsive microcapsule technology offers a scalable, sequence-agnostic approach for repeated random access to archival DNA files.
Collapse
Affiliation(s)
- Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bichlien H Nguyen
- Microsoft, Redmond, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - David Ward
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Levena Gascoigne
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - David P Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna-Maria Makri Pistikou
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alex Joesaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Shuo Yang
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ilja K Voets
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Karin Strauss
- Microsoft, Redmond, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Yuan-Jyue Chen
- Microsoft, Redmond, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
11
|
Yin Z, Gao N, Xu C, Li M, Mann S. Autonomic Integration in Nested Protocell Communities. J Am Chem Soc 2023. [PMID: 37369121 DOI: 10.1021/jacs.3c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The self-driven organization of model protocells into higher-order nested cytomimetic systems with coordinated structural and functional relationships offers a step toward the autonomic implementation of artificial multicellularity. Here, we describe an endosymbiotic-like pathway in which proteinosomes are captured within membranized alginate/silk fibroin coacervate vesicles by guest-mediated reconfiguration of the host protocells. We demonstrate that interchange of coacervate vesicle and droplet morphologies through proteinosome-mediated urease/glucose oxidase activity produces discrete nested communities capable of integrated catalytic activity and selective disintegration. The self-driving capacity is modulated by an internalized fuel-driven process using starch hydrolases sequestered within the host coacervate phase, and structural stabilization of the integrated protocell populations can be achieved by on-site enzyme-mediated matrix reinforcement involving dipeptide supramolecular assembly or tyramine-alginate covalent cross-linking. Our work highlights a semi-autonomous mechanism for constructing symbiotic cell-like nested communities and provides opportunities for the development of reconfigurable cytomimetic materials with structural, functional, and organizational complexity.
Collapse
Affiliation(s)
- Zhuping Yin
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ning Gao
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Can Xu
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Stephen Mann
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, P. R. China
| |
Collapse
|
12
|
Ji Y, Chakraborty T, Wegner SV. Self-Regulated and Bidirectional Communication in Synthetic Cell Communities. ACS NANO 2023; 17:8992-9002. [PMID: 37156507 PMCID: PMC10210537 DOI: 10.1021/acsnano.2c09908] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Cell-to-cell communication is not limited to a sender releasing a signaling molecule and a receiver perceiving it but is often self-regulated and bidirectional. Yet, in communities of synthetic cells, such features that render communication efficient and adaptive are missing. Here, we report the design and implementation of adaptive two-way signaling with lipid-vesicle-based synthetic cells. The first layer of self-regulation derives from coupling the temporal dynamics of the signal, H2O2, production in the sender to adhesions between sender and receiver cells. This way the receiver stays within the signaling range for the duration sender produces the signal and detaches once the signal fades. Specifically, H2O2 acts as both a forward signal and a regulator of the adhesions by activating photoswitchable proteins at the surface for the duration of the chemiluminescence. The second layer of self-regulation arises when the adhesions render the receiver permeable and trigger the release of a backward signal, resulting in bidirectional exchange. These design rules provide a concept for engineering multicellular systems with adaptive communication.
Collapse
Affiliation(s)
- Yuhao Ji
- Institute of Physiological Chemistry
and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Taniya Chakraborty
- Institute of Physiological Chemistry
and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry
and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
13
|
Liu Q, Yang S, Seitz I, Pistikou AMM, de Greef TFA, Kostiainen MA. A Synthetic Protocell-Based Heparin Scavenger. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201790. [PMID: 35570377 DOI: 10.1002/smll.202201790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Heparin is a commonly applied blood anticoagulant agent in clinical use. After treatment, excess heparin needs to be removed to circumvent side effects and recover the blood-clotting cascade. Most existing heparin antidotes rely on direct heparin binding and complexation, yet selective compartmentalization and sequestration of heparin would be beneficial for safety and efficiency. However, such systems have remained elusive. Herein, a semipermeable protein-based microcompartment (proteinosome) is loaded with a highly positively charged chitosan derivative, which can induce electrostatics-driven internalization of anionic guest molecules inside the compartment. Chitosan-loaded proteinosomes are subsequently employed to capture heparin, and an excellent heparin-scavenging performance is demonstrated under physiologically relevant conditions. Both the highly positive scavenger and the polyelectrolyte complex are confined and shielded by the protein compartment in a time-dependent manner. Moreover, selective heparin-scavenging behavior over serum albumin is realized through adjusting the localized scavenger or surrounding salt concentrations at application-relevant circumstances. In vitro studies reveal that the cytotoxicity of the cationic scavenger and the produced polyelectrolyte complex is reduced by protocell shielding. Therefore, the proteinosome-based systems may present a novel polyelectrolyte-scavenging method for biomedical applications.
Collapse
Affiliation(s)
- Qing Liu
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou, Zhejiang, 325001, China
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Espoo, 02150, Finland
| | - Shuo Yang
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Computational Biology Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
| | - Iris Seitz
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Espoo, 02150, Finland
| | - Anna-Maria Makri Pistikou
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Computational Biology Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Computational Biology Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
- Institute for Molecules and Materials, Radboud University, Nijmegen, MB, 6525, The Netherlands
- Center for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, CB 3584, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
14
|
Heidari A, Sentürk OI, Yang S, Joesaar A, Gobbo P, Mann S, de Greef TFA, Wegner SV. Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206474. [PMID: 36599623 DOI: 10.1002/smll.202206474] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.
Collapse
Affiliation(s)
- Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Oya I Sentürk
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shuo Yang
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Alex Joesaar
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Tom F A de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
15
|
Périllat VJ, Del Grosso E, Berton C, Ricci F, Pezzato C. Controlling DNA nanodevices with light-switchable buffers. Chem Commun (Camb) 2023; 59:2146-2149. [PMID: 36727426 PMCID: PMC9933455 DOI: 10.1039/d2cc06525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 02/03/2023]
Abstract
Control over synthetic DNA-based nanodevices can be achieved with a variety of physical and chemical stimuli. Actuation with light, however, is as advantageous as difficult to implement without modifying DNA strands with photo-switchable groups. Herein, we show that DNA nanodevices can be controlled using visible light in photo-switchable aqueous buffer solutions in a reversible and highly programmable fashion. The strategy presented here is non-invasive and allows the remote control with visible light of complex operations of DNA-based nanodevices such as the reversible release/loading of cargo molecules.
Collapse
Affiliation(s)
- Valentin Jean Périllat
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Erica Del Grosso
- Department of Chemistry, University of Rome Tor Vergata Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Cesare Berton
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Cristian Pezzato
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Department of Chemical Sciences, University of Padua Via Marzolo 1, 35131 Padua, Italy.
| |
Collapse
|
16
|
López‐Cuevas P, Xu C, Severn CE, Oates TCL, Cross SJ, Toye AM, Mann S, Martin P. Macrophage Reprogramming with Anti-miR223-Loaded Artificial Protocells Enhances In Vivo Cancer Therapeutic Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202717. [PMID: 36314048 PMCID: PMC9762313 DOI: 10.1002/advs.202202717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Several immune cell-expressed miRNAs (miRs) are associated with altered prognostic outcome in cancer patients, suggesting that they may be potential targets for development of cancer therapies. Here, translucent zebrafish (Danio rerio) is utilized to demonstrate that genetic knockout or knockdown of one such miR, microRNA-223 (miR223), globally or specifically in leukocytes, does indeed lead to reduced cancer progression. As a first step toward potential translation to a clinical therapy, a novel strategy is described for reprogramming neutrophils and macrophages utilizing miniature artificial protocells (PCs) to deliver anti-miRs against the anti-inflammatory miR223. Using genetic and live imaging approaches, it is shown that phagocytic uptake of anti-miR223-loaded PCs by leukocytes in zebrafish (and by human macrophages in vitro) effectively prolongs their pro-inflammatory state by blocking the suppression of pro-inflammatory cytokines, which, in turn, drives altered immune cell-cancer cell interactions and ultimately leads to a reduced cancer burden by driving reduced proliferation and increased cell death of tumor cells. This PC cargo delivery strategy for reprogramming leukocytes toward beneficial phenotypes has implications also for treating other systemic or local immune-mediated pathologies.
Collapse
Affiliation(s)
- Paco López‐Cuevas
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| | - Can Xu
- Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Charlotte E. Severn
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Tiah C. L. Oates
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Stephen J. Cross
- Wolfson Bioimaging FacilityBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| | - Ashley M. Toye
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Stephen Mann
- Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
- Max Planck Bristol Centre for Minimal BiologySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Paul Martin
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
17
|
Gispert I, Hindley JW, Pilkington CP, Shree H, Barter LMC, Ces O, Elani Y. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc Natl Acad Sci U S A 2022; 119:e2206563119. [PMID: 36223394 PMCID: PMC9586261 DOI: 10.1073/pnas.2206563119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
Collapse
Affiliation(s)
- Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - James W. Hindley
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Colin P. Pilkington
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Hansa Shree
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Laura M. C. Barter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Oscar Ces
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| |
Collapse
|
18
|
Dorsey PJ, Scalise D, Schulman R. A model of spatio-temporal regulation within biomaterials using DNA reaction-diffusion waveguides. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220200. [PMID: 36016917 PMCID: PMC9399693 DOI: 10.1098/rsos.220200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
In multi-cellular organisms, cells and tissues coordinate biochemical signal propagation across length scales spanning micrometres to metres. Designing synthetic materials with similar capacities for coordinated signal propagation could allow these systems to adaptively regulate themselves across space and over time. Here, we combine ideas from cell signalling and electronic circuitry to propose a biochemical waveguide that transmits information in the form of a concentration of a DNA species on a directed path. The waveguide could be seamlessly integrated into a soft material because there is virtually no difference between the chemical or physical properties of the waveguide and the material it is embedded within. We propose the design of DNA strand displacement reactions to construct the system and, using reaction-diffusion models, identify kinetic and diffusive parameters that enable super-diffusive transport of DNA species via autocatalysis. Finally, to support experimental waveguide implementation, we propose a sink reaction and spatially inhomogeneous DNA concentrations that could mitigate the spurious amplification of an autocatalyst within the waveguide, allowing for controlled waveguide triggering. Chemical waveguides could facilitate the design of synthetic biomaterials with distributed sensing machinery integrated throughout their structure and enable coordinated self-regulating programmes triggered by changing environmental conditions.
Collapse
Affiliation(s)
- Phillip J. Dorsey
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Dominic Scalise
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
19
|
Programmable synthetic cell networks regulated by tuneable reaction rates. Nat Commun 2022; 13:3885. [PMID: 35794089 PMCID: PMC9259615 DOI: 10.1038/s41467-022-31471-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/15/2022] [Indexed: 11/08/2022] Open
Abstract
Coupled compartmentalised information processing and communication via molecular diffusion underpin network based population dynamics as observed in biological systems. Understanding how both compartmentalisation and communication can regulate information processes is key to rational design and control of compartmentalised reaction networks. Here, we integrate PEN DNA reactions into semi-permeable proteinosomes and characterise the effect of compartmentalisation on autocatalytic PEN DNA reactions. We observe unique behaviours in the compartmentalised systems which are not accessible under bulk conditions; for example, rates of reaction increase by an order of magnitude and reaction kinetics are more readily tuneable by enzyme concentrations in proteinosomes compared to buffer solution. We exploit these properties to regulate the reaction kinetics in two node compartmentalised reaction networks comprised of linear and autocatalytic reactions which we establish by bottom-up synthetic biology approaches.
Collapse
|
20
|
Yang S, Joesaar A, Bögels BWA, Mann S, de Greef TFA. Protocellular CRISPR/Cas‐Based Diffusive Communication Using Transcriptional RNA Signaling. Angew Chem Int Ed Engl 2022; 61:e202202436. [PMID: 35385207 PMCID: PMC9320857 DOI: 10.1002/anie.202202436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Protocells containing enzyme‐driven biomolecular circuits that can process and exchange information offer a promising approach for mimicking cellular features and developing molecular information platforms. Here, we employ synthetic transcriptional circuits together with CRISPR/Cas‐based DNA processing inside semipermeable protein‐polymer microcompartments. We first establish a transcriptional protocell that can be activated by external DNA strands and produce functional RNA aptamers. Subsequently, we engineer a transcriptional module to generate RNA strands functioning as diffusive signals that can be sensed by neighboring protocells and trigger the activation of internalized DNA probes or localization of Cas nucleases. Our results highlight the opportunities to combine CRISPR/Cas machinery and DNA nanotechnology for protocellular communication and provide a step towards the development of protocells capable of distributed molecular information processing.
Collapse
Affiliation(s)
- Shuo Yang
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Alex Joesaar
- Department of Bionanoscience Kavli Institute of Nanoscience Delft University of Technology 2629 HZ Delft The Netherlands
| | - Bas W. A. Bögels
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry and Max Planck-Bristol Centre for Minimal Biology School of Chemistry, University of Bristol Bristol BS8 1TS UK
- School of Materials Science and Engineering Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Tom F. A. de Greef
- Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Computational Biology group Department of Biomedical Engineering Eindhoven University of Technology The Netherlands
- Institute for Molecules and Materials Faculty of Science Radboud University Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Center for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht Princetonlaan 6 3584 CB Utrecht The Netherlands
| |
Collapse
|
21
|
Karoui H, Patwal PS, Pavan Kumar BVVS, Martin N. Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges. Front Mol Biosci 2022; 9:880525. [PMID: 35720123 PMCID: PMC9199989 DOI: 10.3389/fmolb.2022.880525] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, the focus of bottom-up synthetic biology has shifted from the design of complex artificial cell architectures to the design of interactions between artificial cells mediated by physical and chemical cues. Engineering communication between artificial cells is crucial for the realization of coordinated dynamic behaviours in artificial cell populations, which would have implications for biotechnology, advanced colloidal materials and regenerative medicine. In this review, we focus our discussion on molecular communication between artificial cells. We cover basic concepts such as the importance of compartmentalization, the metabolic machinery driving signaling across cell boundaries and the different modes of communication used. The various studies in artificial cell signaling have been classified based on the distance between sender and receiver cells, just like in biology into autocrine, juxtacrine, paracrine and endocrine signaling. Emerging tools available for the design of dynamic and adaptive signaling are highlighted and some recent advances of signaling-enabled collective behaviours, such as quorum sensing, travelling pulses and predator-prey behaviour, are also discussed.
Collapse
Affiliation(s)
- Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| | - Pankaj Singh Patwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | | | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| |
Collapse
|
22
|
Yu X, Zhou L, Wang G, Wang L, Dou H. Hierarchical Structures in Macromolecule-assembled Synthetic Cells. Macromol Rapid Commun 2022; 43:e2100926. [PMID: 35445490 DOI: 10.1002/marc.202100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Various models of synthetic cells have been developed as researchers have sought to explore the origin of life. Based on the fact that structural complexity is the foundation of higher-order functions, this review will focus on hierarchical structures in synthetic cell models that are inspired by living systems, in which macromolecules are the dominant participants. We discuss the underlying advantages and functions provided by biomimetic higher-order structures from four perspectives, including hierarchical structures in membranes, in the composite construction of membrane-coated artificial cytoplasm, in organelle-like subcellular compartments, as well as in synthetic cell-cell assembled synthetic tissues. In parallel, various feasible driving forces and approaches for the fabrication of such higher-order structures are showcased. Furthermore, we highlight both the implemented and potential applications of biomimetic systems, bottom-up biosynthesis, biomedical tissue engineering, and disease therapy. This thriving field is gradually narrowing the gap between fundamental research and applied science. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Long Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Gangyang Wang
- Gangyang Wang, Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Lei Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
23
|
Di Iorio D, Wegner SV. Towards applications of synthetic cells in nanotechnology. Curr Opin Chem Biol 2022; 68:102145. [PMID: 35461027 DOI: 10.1016/j.cbpa.2022.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
Synthetic cells, which are assembled anew from well-defined molecular parts, open-up new possibilities for nanotechnological applications due to their reduced complexity and high functionality. In this review, we discuss how synthetic cells are being implemented in different fields ranging from biomedicine to material science. On one hand, synthetic cells can serve as microreactors that house metabolic networks and as therapeutic carriers that directly communicate with living cells. On the other hand, synthetic cells can become active components in a new-generation of materials that process inputs and result in autonomous and adaptive behavior. These early examples highlight the potential impact that synthetic cells will have in future applications.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| |
Collapse
|
24
|
Yang S, Joesaar A, Bögels BWA, Mann S, Greef T. Protocellular CRISPR/Cas‐based Diffusive Communication Using Transcriptional RNA Signaling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuo Yang
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Alex Joesaar
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Bas W. A. Bögels
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Stephen Mann
- Bristol University School of Chemistry UNITED KINGDOM
| | - Tom Greef
- Eindhoven University of Technology Den Dolech 2CE 1.44B 5612 AZ Eindhoven NETHERLANDS
| |
Collapse
|
25
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022; 61:e202117500. [PMID: 35090078 DOI: 10.1002/anie.202117500] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/26/2023]
Abstract
Spatiotemporal organization of distinct biological processes in cytomimetic compartments is a crucial step towards engineering functional artificial cells. Mimicking controlled bi-directional molecular communication inside artificial cells remains a considerable challenge. Here we present photoswitchable molecular transport between programmable membraneless organelle-like DNA coacervates in a synthetic microcompartment. We use droplet microfluidics to fabricate membraneless non-fusing DNA coacervates by liquid-liquid phase separation in a water-in-oil droplet, and employ the interior DNA coacervates as artificial organelles to imitate intracellular communication via photo-regulated uni- and bi-directional transfer of biomolecules. Our results highlight a promising new route to assembly of multicompartment artificial cells with functional networks.
Collapse
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fang-Hao Cao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wilhelm T S Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Nan-Nan Deng
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
26
|
de Luis B, Morellá-Aucejo Á, Llopis-Lorente A, Martínez-Latorre J, Sancenón F, López C, Murguía JR, Martínez-Máñez R. Nanoprogrammed Cross-Kingdom Communication Between Living Microorganisms. NANO LETTERS 2022; 22:1836-1844. [PMID: 35171622 PMCID: PMC9940291 DOI: 10.1021/acs.nanolett.1c02435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The engineering of chemical communication at the micro/nanoscale is a key emergent topic in micro/nanotechnology, synthetic biology, and related areas. However, the field is still in its infancy; previous advances, although scarce, have mainly focused on communication between abiotic micro/nanosystems or between microvesicles and living cells. Here, we have implemented a nanoprogrammed cross-kingdom communication involving two different microorganisms and tailor-made nanodevices acting as "nanotranslators". Information flows from the sender cells (bacteria) to the nanodevice and from the nanodevice to receiver cells (yeasts) in a hierarchical way, allowing communication between two microorganisms that otherwise would not interact.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ángela Morellá-Aucejo
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
| | - Antoni Llopis-Lorente
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Javier Martínez-Latorre
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Carmelo López
- Instituto
Universitario de Conservación y Mejora de la Agrodiversidad
Valenciana, Universitat Politècnica
de València (COMAV-UPV), 46022 Valencia, Spain
| | - José Ramón Murguía
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Instituto
de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46026 Valencia, Spain
| |
Collapse
|
27
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA‐based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Fang-Hao Cao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wilhelm T. S. Huck
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Institue for Molecules and Materials NETHERLANDS
| | - Nan-Nan Deng
- Shanghai Jiao Tong University Chemistry and Chemical Engineering 800 Dongchuan RD. Minhang District 200240 Shanghai CHINA
| |
Collapse
|
28
|
Gonzales D, Yandrapalli N, Robinson T, Zechner C, Tang TYD. Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS Synth Biol 2022; 11:205-215. [PMID: 35057626 PMCID: PMC8787815 DOI: 10.1021/acssynbio.1c00376] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/29/2022]
Abstract
The ability to build synthetic cellular populations from the bottom-up provides the groundwork to realize minimal living tissues comprising single cells which can communicate and bridge scales into multicellular systems. Engineered systems made of synthetic micron-sized compartments and integrated reaction networks coupled with mathematical modeling can facilitate the design and construction of complex and multiscale chemical systems from the bottom-up. Toward this goal, we generated populations of monodisperse liposomes encapsulating cell-free expression systems (CFESs) using double-emulsion microfluidics and quantified transcription and translation dynamics within individual synthetic cells of the population using a fluorescent Broccoli RNA aptamer and mCherry protein reporter. CFE dynamics in bulk reactions were used to test different coarse-grained resource-limited gene expression models using model selection to obtain transcription and translation rate parameters by likelihood-based parameter estimation. The selected model was then applied to quantify cell-free gene expression dynamics in populations of synthetic cells. In combination, our experimental and theoretical approaches provide a statistically robust analysis of CFE dynamics in bulk and monodisperse synthetic cell populations. We demonstrate that compartmentalization of CFESs leads to different transcription and translation rates compared to bulk CFE and show that this is due to the semipermeable lipid membrane that allows the exchange of materials between the synthetic cells and the external environment.
Collapse
Affiliation(s)
- David
T. Gonzales
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
| | | | - Tom Robinson
- Max
Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Christoph Zechner
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
- Physics
of Life, Cluster of Excellence, TU Dresden, 01603 Dresden, Germany
| | - T-Y. Dora Tang
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
- Physics
of Life, Cluster of Excellence, TU Dresden, 01603 Dresden, Germany
| |
Collapse
|
29
|
Cho CJ, Niederholtmeyer H, Seo H, Bhattacharya A, Devaraj NK. Functionalizing lipid sponge droplets with DNA. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christy J. Cho
- University of California San Diego Chemistry and Biochemistry UNITED STATES
| | - Henrike Niederholtmeyer
- Max-Planck-Institut für terrestrische Mikrobiologie: Max-Planck-Institut fur terrestrische Mikrobiologie Cell-free Synthetic Biology Group Karl-von-Frisch-Str. 10 35043 Marburg GERMANY
| | - Hyeonglim Seo
- University of California San Diego Chemistry and Biochemistry UNITED STATES
| | | | - Neal K. Devaraj
- University of California San Diego Chemistry and Biochemistry UNITED STATES
| |
Collapse
|
30
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Grimes PJ, Galanti A, Gobbo P. Bioinspired Networks of Communicating Synthetic Protocells. Front Mol Biosci 2021; 8:804717. [PMID: 35004855 PMCID: PMC8740067 DOI: 10.3389/fmolb.2021.804717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bottom-up synthesis of cell-like entities or protocells from inanimate molecules and materials is one of the grand challenges of our time. In the past decade, researchers in the emerging field of bottom-up synthetic biology have developed different protocell models and engineered them to mimic one or more abilities of biological cells, such as information transcription and translation, adhesion, and enzyme-mediated metabolism. Whilst thus far efforts have focused on increasing the biochemical complexity of individual protocells, an emerging challenge in bottom-up synthetic biology is the development of networks of communicating synthetic protocells. The possibility of engineering multi-protocellular systems capable of sending and receiving chemical signals to trigger individual or collective programmed cell-like behaviours or for communicating with living cells and tissues would lead to major scientific breakthroughs with important applications in biotechnology, tissue engineering and regenerative medicine. This mini-review will discuss this new, emerging area of bottom-up synthetic biology and will introduce three types of bioinspired networks of communicating synthetic protocells that have recently emerged.
Collapse
Affiliation(s)
- Patrick J. Grimes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
| | - Agostino Galanti
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Pierangelo Gobbo
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
32
|
Chemical communication at the synthetic cell/living cell interface. Commun Chem 2021; 4:161. [PMID: 36697795 PMCID: PMC9814394 DOI: 10.1038/s42004-021-00597-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Although the complexity of synthetic cells has continued to increase in recent years, chemical communication between protocell models and living organisms remains a key challenge in bottom-up synthetic biology and bioengineering. In this Review, we discuss how communication channels and modes of signal processing can be established between living cells and cytomimetic agents such as giant unilamellar lipid vesicles, proteinosomes, polysaccharidosomes, polymer-based giant vesicles and membrane-less coacervate micro-droplets. We describe three potential modes of chemical communication in consortia of synthetic and living cells based on mechanisms of distributed communication and signal processing, physical embodiment and nested communication, and network-based contact-dependent communication. We survey the potential for applying synthetic cell/living cell communication systems in biomedicine, including the in situ production of therapeutics and development of new bioreactors. Finally, we present a short summary of our findings.
Collapse
|
33
|
Yeast cell segmentation in microstructured environments with deep learning. Biosystems 2021; 211:104557. [PMID: 34634444 DOI: 10.1016/j.biosystems.2021.104557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/09/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022]
Abstract
Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, previously available segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. An U-Net based semantic segmentaiton approach, as well as a direct instance segmentation approach with a Mask R-CNN are demonstrated. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical use-case. We showcase the methods' contribution to segmenting yeast in microstructured environments with a typical systems or synthetic biology application. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective. Code is and data samples are available at https://git.rwth-aachen.de/bcs/projects/tp/multiclass-yeast-seg.
Collapse
|
34
|
de Luis B, Llopis-Lorente A, Sancenón F, Martínez-Máñez R. Engineering chemical communication between micro/nanosystems. Chem Soc Rev 2021; 50:8829-8856. [PMID: 34109333 DOI: 10.1039/d0cs01048k] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical communication, based on the exchange of molecules as messengers, allows different entities to share information, cooperate and orchestrate collective behaviors. In recent years, the development of strategies of chemical communication between micro/nanosystems is becoming a key emergent topic in micro/nanotechnology, biomimicry and related areas. In this tutorial review, we provide a general perspective of the concepts used on the topic of chemical communication, and the advances made using different approaches that include nanomaterials, synthetic biology and information-processing tools. Although studies in this direction are very recent, they can be divided in two main categories: (i) communication between abiotic systems and (ii) communication between living and abiotic systems. Using illustrative examples, we give an overview of the ongoing progress, potential applications in different areas and current challenges. The engineering of chemical communication between micro/nanosystems represents a paradigm shift and may open a myriad of new concepts, applications and new technological possibilities in the near future in a number of research fields.
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain.
| | | | | | | |
Collapse
|
35
|
Chakraborty T, Wegner SV. Cell to Cell Signaling through Light in Artificial Cell Communities: Glowing Predator Lures Prey. ACS NANO 2021; 15:9434-9444. [PMID: 34152740 DOI: 10.1021/acsnano.1c01600] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells commonly communicate with each other through diffusible molecules but nonchemical communication remains elusive. While bioluminescent organisms communicate through light to find prey or attract mates, it is still under debate if signaling through light is possible at the cellular level. Here, we demonstrate that cell to cell signaling through light is possible in artificial cell communities derived from biomimetic vesicles. In our design, artificial sender cells produce an intracellular light signal, which triggers the adhesion to receiver cells. Unlike soluble molecules, the light signal propagates fast, independent of diffusion and without the need for a transporter across membranes. To obtain a predator-prey relationship, the luminescence predator cells is loaded with a secondary diffusible poison, which is transferred to the prey cell upon adhesion and leads to its lysis. This design provides a blueprint for light based intercellular communication, which can be used for programing artificial and natural cell communities.
Collapse
Affiliation(s)
- Taniya Chakraborty
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
36
|
Ivanov I, Castellanos SL, Balasbas S, Otrin L, Marušič N, Vidaković-Koch T, Sundmacher K. Bottom-Up Synthesis of Artificial Cells: Recent Highlights and Future Challenges. Annu Rev Chem Biomol Eng 2021; 12:287-308. [PMID: 34097845 DOI: 10.1146/annurev-chembioeng-092220-085918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bottom-up approach in synthetic biology aims to create molecular ensembles that reproduce the organization and functions of living organisms and strives to integrate them in a modular and hierarchical fashion toward the basic unit of life-the cell-and beyond. This young field stands on the shoulders of fundamental research in molecular biology and biochemistry, next to synthetic chemistry, and, augmented by an engineering framework, has seen tremendous progress in recent years thanks to multiple technological and scientific advancements. In this timely review of the research over the past decade, we focus on three essential features of living cells: the ability to self-reproduce via recursive cycles of growth and division, the harnessing of energy to drive cellular processes, and the assembly of metabolic pathways. In addition, we cover the increasing efforts to establish multicellular systems via different communication strategies and critically evaluate the potential applications.
Collapse
Affiliation(s)
- Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Sebastián López Castellanos
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Severo Balasbas
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Lado Otrin
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ,
| | - Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Tanja Vidaković-Koch
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ,
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , , .,Department of Process Systems Engineering, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
37
|
Luo T, Fan S, Liu Y, Song J. Information processing based on DNA toehold-mediated strand displacement (TMSD) reaction. NANOSCALE 2021; 13:2100-2112. [PMID: 33475669 DOI: 10.1039/d0nr07865d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
SemiSynBio is an emerging topic toward the construction of platforms for next-generation information processing. Recent research has indicated its promising prospect toward information processing including algorithm design and pattern manipulation with the DNA TMSD reaction, which is one of the cores of the SemiSynBio technology route. The DNA TMSD reaction is the process in which an invader strand displaces the incumbent strand from the gate strand through initiation at the exposed toehold domain. Also, the DNA TMSD reaction generally involves three processes: toehold association, branch migration and strand disassociation. Herein, we review the recent progress on information processing with the DNA TMSD reaction. We highlight the diverse developments on information processing with the logic circuit, analog circuit, combinational circuit and information relay with the DNA origami structure. Additionally, we explore the current challenges and various trends toward the design and application of the DNA TMSD reaction in future information processing.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|