1
|
Fang B, Wang Y, Fan H, Gong Y, Guo J, Wang Z, Xu J, Wang S. Structuring 3D-printed polypropylene composites with vertically aligned mesophase pitch-based carbon fibers for enhanced through-plane thermal conductivity and mechanical properties. MATERIALS HORIZONS 2025. [PMID: 40130475 DOI: 10.1039/d4mh01521e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Vertically aligned structures in thermally conductive polymer-based composites (TPMCs) present an efficient tool for managing heat dissipation in battery packs and the central processing unit (CPU). Although there is significant progress in developing vertically aligned structures for thermal management using two-dimensional thermally conductive fillers (e.g., boron nitride and graphene) in TPMCs, their practical applications are limited by the compromised mechanical properties. In this study, carbon fiber (CF) reinforced polypropylene (PP) composites with vertically aligned structures were successfully fabricated using 3D printing. The CFs exhibited exceptional alignment along the printing direction in the PP matrix, attributed to the shear and compression effect during printing. Additionally, the incorporation of CFs and the use of a hot-pressed PP substrate instead of the original platform effectively mitigated shrinkage and warping of PP. The vertically printed samples achieved a superior through-plane thermal conductivity (TC) of 3.61 W m-1 K-1 at 21 vol% CF loading, representing an improvement of 5.56 and 15.41 times over that of horizontally printed parts and neat PP, respectively. Meanwhile, the as-printed vertically aligned parts also demonstrate excellent tensile strength (40.16 MPa) and impact strength (28.17 kJ m-2), which are around 1.70 and 11.45 times that of horizontally printed parts. Notably, the surface temperature of the vertically printed heat sink was comparable to commercial parts, underscoring the superior thermal dissipation performance of the composite material. Simulations verified the anisotropic design's effectiveness in enhancing thermal conductivity. This work provides a facile and cost-effective method to simultaneously enhance through-plane TC and mechanical properties, with promising application in electronic packaging and battery thermal management.
Collapse
Affiliation(s)
- Bowen Fang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yan Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Hongjia Fan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yumei Gong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Zhiguo Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiazhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shengfa Wang
- DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, 116620, China
| |
Collapse
|
2
|
Cao Z, Yao X, Park S, Deng K, Zhang C, Chen L, Fu K. Enhancing cathode composites with conductive alignment synergy for solid-state batteries. SCIENCE ADVANCES 2025; 11:eadr4292. [PMID: 39752495 PMCID: PMC11698086 DOI: 10.1126/sciadv.adr4292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure. This design not only mitigates recrystallization of the polymer electrolyte but also establishes a densified local electric field distribution and accelerates the migration of lithium ions. The FAST electrode showcases outstanding electrochemical performance with lithium iron phosphate as the active material, achieving a high capacity of 148.2 milliampere hours per gram at 0.2 C over 100 cycles with substantial material loading (49.3 milligrams per square centimeter). This innovative electrode design marks a remarkable stride in addressing the challenges of solid-state lithium metal batteries.
Collapse
Affiliation(s)
- Zhang Cao
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinxin Yao
- Department of Mechanical Engineering, University of Michigan, Dearborn, MI 48128, USA
| | - Soyeon Park
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kaiyue Deng
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Chunyan Zhang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lei Chen
- Department of Mechanical Engineering, University of Michigan, Dearborn, MI 48128, USA
| | - Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Gaitonde AU, Weibel JA, Marconnet AM. Range and accuracy of in-plane anisotropic thermal conductivity measurement using the laser-based Ångstrom method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:014903. [PMID: 39835944 DOI: 10.1063/5.0238285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials. This method uses non-contact infrared temperature mapping to measure the thermal response to periodic laser heating at the center of a suspended sample. The spatiotemporal temperature data are analyzed via an inverse fitting algorithm to extract thermal conductivities in the in-plane orthotropic directions that best adhere to the governing heat conduction equation. Using this algorithm, we present an approach to simultaneously fit data across multiple heating frequencies, which improves measurement sensitivity because the thermal penetration depth varies with frequency. The accuracy of this technique is assessed by tuning experimental parameters such as sample dimensions and heating frequency. A standardized workflow is proposed for measuring unknown materials and for processing the data, including filtering out regions influenced by laser absorption and heat sink boundary effects. Numerical simulations validate the method across a wide range of thermal conductivities (0.1-1000 W m-1 K-1) and material thicknesses (0.1-10 mm), with accuracy demonstrated for anisotropy ratios up to 1000:1. Experimental measurements on isotropic and anisotropic materials agree well with the benchmark values. Ultimately, standardization of this technique supports the development of engineered anisotropic heat-spreading materials for thermal management and packaging applications.
Collapse
Affiliation(s)
- Aalok U Gaitonde
- Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Justin A Weibel
- Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Amy M Marconnet
- Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
4
|
Kellersztein I, Tish D, Pederson J, Bechthold M, Daraio C. Multifunctional Biocomposite Materials from Chlorella vulgaris Microalgae. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413618. [PMID: 39558799 DOI: 10.1002/adma.202413618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Extrusion 3D-printing of biopolymers and natural fiber-based biocomposites enables the fabrication of complex structures, ranging from implants' scaffolds to eco-friendly structural materials. However, conventional polymer extrusion requires high energy consumption to reduce viscosity, and natural fiber reinforcement often requires harsh chemical treatments to improve adhesion. We address these challenges by introducing a sustainable framework to fabricate natural biocomposites using Chlorella vulgaris microalgae as the matrix. Through bioink optimization and process refinement, we produced lightweight, multifunctional materials with hierarchical architectures. Infrared spectroscopy analysis reveals that hydrogen bonding plays a critical role in the binding and reinforcement of Chlorella cells by hydroxyethyl cellulose (HEC). As water content decreases, the hydrogen bonding network evolves from water-mediated interactions to direct hydrogen bonds between HEC and Chlorella, enhancing the mechanical properties. A controlled dehydration process maintains continuous microalgae morphology, preventing cracking. The resulting biocomposites exhibit a bending stiffness of 1.6 GPa and isotropic heat transfer and thermal conductivity of 0.10 W/mK at room temperature, demonstrating effective thermal insulation. These characteristics make Chlorella biocomposites promising candidates for applications requiring both structural performance and thermal insulation, offering a sustainable alternative to conventional materials in response to growing environmental demands.
Collapse
Affiliation(s)
- Israel Kellersztein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Daniel Tish
- Material Processes and Systems Group, Graduate School of Design, Harvard University, Cambridge, MA, 02138, USA
| | - John Pederson
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Martin Bechthold
- Material Processes and Systems Group, Graduate School of Design, Harvard University, Cambridge, MA, 02138, USA
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
5
|
An L, An M, Yao B, Song J, Zhang X, Ma W. Unlocking the Trade-off Between Intrinsic and Interfacial Thermal Transport of Boron Nitride Nanosheets by Surface Functionalization for Advanced Thermal Interface Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412137. [PMID: 39499056 DOI: 10.1002/adma.202412137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Indexed: 11/07/2024]
Abstract
The increasing computing power of AI presents a major challenge for high-power chip solution and heat dissipation. Boron nitride nanosheet-based thermal interface materials (BNNS-based TIMs) exhibit excellent electrical insulation property, ensuring the secure and stable operation of chips. However, the efficiency of micro/nano interfacial thermal transport is limited, impeding further enhancements in the thermal conductivity (TC) of BNNS-based TIMs. Here, a strategy of surface functionalization is reported to unlock the trade-off between the intrinsic and interfacial thermal transport of BNNS within TIMs. These results suggest that the surface functionalization maintains the intrinsic high TC of BNNS while significantly increasing binding energy between micro/nano interfaces in BNNS-based TIMs, effectively reducing interfacial thermal resistance of BNNS joint interfaces and interfaces between BNNSs and the matrix by 50% and 26.1%, respectively. The BNNS-based TIMs exhibit excellent TC (≈21-25 W/(m·K)) and ultralow Young's modulus, which can promote the development of flexible high-performance chip cooling technology in the AI industry.
Collapse
Affiliation(s)
- Lulu An
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of, Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Meng An
- College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Bing Yao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Jiangnan Song
- College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xing Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of, Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of, Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Bashir A, Niu H, Maqbool M, Usman A, Lv R, Ashraf Z, Cheng M, Bai S. A Novel Thermal Interface Material Composed of Vertically Aligned Boron Nitride and Graphite Films for Ultrahigh Through-Plane Thermal Conductivity. SMALL METHODS 2024; 8:e2301788. [PMID: 38507731 DOI: 10.1002/smtd.202301788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/05/2024] [Indexed: 03/22/2024]
Abstract
The relentless drive toward miniaturization in microelectronic devices has sparked an urgent need for materials that offer both high thermal conductivity (TC) and excellent electrical insulation. Thermal interface materials (TIMs) possessing these dual attributes are highly sought after for modern electronics, but achieving such a combination has proven to be a formidable challenge. In this study, a cutting-edge solution is presented by developing boron nitride (BN) and graphite films layered silicone rubber composites with exceptional TC and electrical insulation properties. Through a carefully devised stacking-cutting method, the high orientation degree of both BN and graphite films is successfully preserved, resulting in an unprecedented through-plane TC of 23.7 Wm-1 K-1 and a remarkably low compressive modulus of 4.85 MPa. Furthermore, the exceptional properties of composites, including low thermal resistance and high resilience rate, make them a reliable and durable option for various applications. Practical tests demonstrate their outstanding heat dissipation performance, significantly reducing CPU temperatures in a computer cooling system. This research work unveils the possible upper limit of TC in BN-based TIMs and paves the way for their large-scale practical implementation, particularly in the thermal management of next-generation electronic devices.
Collapse
Affiliation(s)
- Akbar Bashir
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R. China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Hongyu Niu
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R. China
| | - Muhammad Maqbool
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R. China
| | - Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruicong Lv
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R. China
| | - Zubair Ashraf
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ming Cheng
- Peking University Nanchang Innovation Institute, 14#1-2 Floor, High-level Talent Industrial Park, High-tech District, Nanchang, Jiangxi Province, 330224, P. R. China
- College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shulin Bai
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Peking University, Beijing, 100871, P. R. China
- Peking University Nanchang Innovation Institute, 14#1-2 Floor, High-level Talent Industrial Park, High-tech District, Nanchang, Jiangxi Province, 330224, P. R. China
| |
Collapse
|
7
|
Lin H, Xu G, Chen Z, Wang L, Liu Z, Ma L. Thermally Conductive Polydimethylsiloxane-Based Composite with Vertically Aligned Hexagonal Boron Nitride. Polymers (Basel) 2024; 16:3126. [PMID: 39599217 PMCID: PMC11598570 DOI: 10.3390/polym16223126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The considerable heat generated in electronic devices, resulting from their high-power consumption and dense component integration, underscores the importance of developing effective thermal interface materials. While composite materials are ideal for this application, the random distribution of filling materials leads to numerous interfaces, limiting improvements in thermal transfer capabilities. An effective method to improve the thermal conductivity of composites is the alignment of anisotropic fillers, such as hexagonal boron nitride (BN). In this study, the repeat blade coating method was employed to horizontally align BN within a polydimethylsiloxane (PDMS) matrix, followed by flipping and cutting to prepare BN/PDMS composites with vertically aligned BN (V-BP). The V-BP composite with 30 wt.% BN exhibited an enhanced out-of-plane thermal conductivity of up to 1.24 W/mK. Compared to the PDMS, the V-BP composite exhibited outstanding heat dissipation capacities. In addition, its low density and exceptional electrical insulation properties showcase its potential for being used in electronic devices. The impact of coating velocity on the performance of the composites was further studied through computational fluid dynamics simulation. The results showed that increasing the coating velocity enhanced the out-of-plane thermal conductivity of the V-BP composite by approximately 40% compared to those prepared at slower coating velocities. This study provides a promising approach for producing thermal interface materials on a large scale to effectively dissipate the accumulated heat in densely integrated electronic devices.
Collapse
Affiliation(s)
- Haosen Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (H.L.); (G.X.); (Z.C.); (L.W.)
| | - Genghao Xu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (H.L.); (G.X.); (Z.C.); (L.W.)
| | - Zihao Chen
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (H.L.); (G.X.); (Z.C.); (L.W.)
| | - Luyang Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (H.L.); (G.X.); (Z.C.); (L.W.)
| | - Zhichun Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China;
| | - Lei Ma
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (H.L.); (G.X.); (Z.C.); (L.W.)
| |
Collapse
|
8
|
Pang K, Fang X, Ye C, Wang Y, Zhao L, Gong C, Zhou S, Zhao G, Zhu Y, Zhang J. Efficient Production of Graphene through a Partially Frozen Suspension Exfoliation Process: An Insight into the Enhanced Interaction Based on Solid-Solid Interfaces. NANO LETTERS 2024; 24:14102-14108. [PMID: 39453728 DOI: 10.1021/acs.nanolett.4c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Liquid phase exfoliation (LPE) offers a promising path for scalable graphene production, but struggles with high energy consumption and low yield, with over 99.99% of the input energy wasted. Here, we present an energy-efficient approach for producing graphene via partially frozen-suspension exfoliation (PFE). As opposed to traditional liquid-solid interfaces, the solid-solid interface enhances shear strength between the frozen solvent and graphite from about 40 N m-2 to 105 N m-2. Additionally, the suspension flow transitions from turbulent to laminar, aligning graphite parallel to the flow direction and conducive to the effective utilization of shear force. Compared to conventional liquid-phase exfoliation (LPE), PFE improves energy efficiency by 102∼103 times. Furthermore, a production rate of 5 g h-1 has been achieved in a 10 L tank at an ultralow shear rate of 3 × 102 s-1.
Collapse
Affiliation(s)
- Kaixiang Pang
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoke Fang
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Chuanren Ye
- Hefei National Research Center for Physical Sciences at the Microscale, & School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuanhui Wang
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Linlin Zhao
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Chunhong Gong
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Shuaishuai Zhou
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yanwu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, & School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jingwei Zhang
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
9
|
Liao P, Guo H, Niu H, Li R, Yin G, Kang L, Ren L, Lv R, Tian H, Liu S, Yao Z, Li Z, Wang Y, Yang Zhang L, Sasaki U, Li W, Luo Y, Guo J, Xu Z, Wang L, Zou R, Bai S, Liu L. Core-Shell Engineered Fillers Overcome the Electrical-Thermal Conductance Trade-Off. ACS NANO 2024; 18:30593-30604. [PMID: 39446081 DOI: 10.1021/acsnano.4c09346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The rapid development of modern electronic devices increasingly requires thermal management materials with controllable electrical properties, ranging from conductive and dielectric to insulating, to meet the needs of diverse applications. However, highly thermally conductive materials usually have a high electrical conductivity. Intrinsically highly thermally conductive, but electrically insulating materials are still limited to a few kinds of materials. To overcome the electrical-thermal conductance trade-off, here, we report a facile Pechini-based method to prepare multiple core (metal)/shell (metal oxide) engineered fillers, such as aluminum-oxide-coated and beryllium-oxide-coated Ag microspheres. In contrast to the previous in situ growth method which mainly focused on small-sized spheres with specific coating materials, our method combined with ultrafast joule heating treatment is more versatile and robust for varied-sized, especially large-sized core-shell fillers. Through size compounding, the as-synthesized core-shell-filled epoxy composites exhibit high isotropic thermal conductivity (∼3.8 W m-1 K-1) while maintaining high electrical resistivity (∼1012 Ω cm) and good flowability, showing better heat dissipation properties than commercial thermally conductive packaging materials. The successful preparation of these core-shell fillers endows thermally conductive composites with controlled electrical properties for emerging electronic package applications, as demonstrated in circuit board and battery thermal management.
Collapse
Affiliation(s)
- PeiChi Liao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Haichang Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Hongyu Niu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ruijie Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ge Yin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lei Kang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Liuchen Ren
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ruicong Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Huifeng Tian
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shizhuo Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhixin Yao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhenjiang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yihan Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lina Yang Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - U Sasaki
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Wenxi Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yijie Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhi Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Lifen Wang
- China Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shulin Bai
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Zandieh A, Buahom P, Baradaran Shokouhi E, Mark LH, Rahmati R, Aghababaei Tafreshi O, Hamidinejad M, Mandelis A, Kim KS, Park CB. Highly Anisotropic Thermally Conductive Dielectric Polymer/Boron Nitride Nanotube Composites for Directional Heat Dissipation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404189. [PMID: 39109567 DOI: 10.1002/smll.202404189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Indexed: 11/28/2024]
Abstract
An ideal dielectric material for microelectronic devices requires a combination of high anisotropic thermal conductivity and low dielectric constant (ɛ') and loss (tan δ). Polymer composites of boron nitride nanotubes (BNNTs), which offer excellent thermal and dielectric properties, show promise for developing these dielectric polymer composites. Herein, a simple method for fabricating polymer/BNNT composites with high directional thermal conductivity and excellent dielectric properties is presented. The nanocomposites with directionally aligned BNNTs are fabricated through melt-compounding and in situ fibrillation, followed by sintering the fibrous nanocomposites. The fabricated nanocomposites show a significant enhancement in thermal properties, with an in-plane thermal conductivity (K‖) of 1.8 Wm-1K-1-a 450% increase-yielding a high anisotropy ratio (K‖/K⊥) of 36, a 1700% improvement over isotropic samples containing only 7.2 vol% BNNT. These samples exhibit a 120% faster in-plane heat dissipation compared to the through-plane within 2 s. Additionally, they display low ɛ' of ≈3.2 and extremely low tan δ of ≈0.014 at 1 kHz. These results indicate that this method provides a new avenue for designing and creating polymer composites with enhanced directional heat dissipation properties along with high K‖, suitable for thermal management applications in electronic packaging, thermal interface materials, and passive cooling systems.
Collapse
Affiliation(s)
- Azadeh Zandieh
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Piyapong Buahom
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Elnaz Baradaran Shokouhi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Center for Advanced Diffusion-Wave and Photoacoustic Technologies and Institute for Advanced Non-Destructive and Non-Invasive Diagnostic Technologies, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Lun Howe Mark
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Reza Rahmati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Omid Aghababaei Tafreshi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Mahdi Hamidinejad
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G1H9, Canada
| | - Andreas Mandelis
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Center for Advanced Diffusion-Wave and Photoacoustic Technologies and Institute for Advanced Non-Destructive and Non-Invasive Diagnostic Technologies, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Keun Su Kim
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Chul B Park
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
11
|
Dai W, Wang Y, Li M, Chen L, Yan Q, Yu J, Jiang N, Lin CT. 2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311335. [PMID: 38847403 DOI: 10.1002/adma.202311335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/23/2024] [Indexed: 06/27/2024]
Abstract
The challenges associated with heat dissipation in high-power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high-performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal-plane thermal conductivity and the capacity to facilitate cross-scale, multi-morphic structural design, have found widespread use as thermal fillers in the production of high-performance TIMs. To deepen the understanding of 2D material-based TIMs, this review focuses primarily on graphene and boron nitride-based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials-based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high-performance TIMs.
Collapse
Affiliation(s)
- Wen Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yandong Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maohua Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lu Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingwei Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Gao Y, Hu Z, Zhang W, Lu Y, Li J, Liu L, Liu X, Zhao X, Zhang L. Thermal Conductivity of the Graphene/Polydimethylsiloxane Composite by Manipulating the Network Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39096500 DOI: 10.1021/acs.langmuir.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
In this work, a nonequilibrium molecular dynamics simulation is utilized to explore the effect of network structure of graphene (GE) on the thermal conductivity of the GE/polydimethylsiloxane (PDMS) composite. First, the thermal conductivity of composites rises with increasing volume fraction of GE. The heat transfer ability via the GE channel is found to be nearly the same by analyzing the GE-GE interfacial thermal resistance (ITR). More heat energy is transferred via the GE channel at the high volume fraction of GE by calculating the GE heat transfer ratio, which leads to the high thermal conductivity. Then, the thermal conductivity of composites rises with increasing stacking area between GE, which is attributed to both the strong heat transfer ability via the GE channel and the high GE heat transfer ratio. Following it, the thermal conductivity of composites first rises and then drops down with increasing defect density for a single vacancy defect while it continuously increases for a single void defect. The heat transfer ability between GE is enhanced due to the formation of interlayer covalent bonds. However, the intrinsic thermal conductivity of GE is significantly reduced for a single vacancy defect while it remains relatively well for a single void defect. As a result, the GE heat transfer ratio is maximum at the intermediate defect density for a single vacancy defect while it rises monotonically for a single void defect, which can rationalize the thermal conductivity. Meanwhile, the relationship between ITR and the number of covalent bonds can be described by an empirical equation. Finally, the thermal conductivity for the stacked structure is larger than that for the noncontact structure or the intersected structure. In summary, this work provides a clear and novel understanding of how the network structure of GE influences the thermal conductivity of the GE/PDMS composite.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
| | - Zoumeng Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
| | - Wenfeng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
| | - Yonglai Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
| | - Jingchao Li
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Li Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 10029, People's Republic of China
| |
Collapse
|
13
|
Tan J, Zhang Y. Thermal Conductive Polymer Composites: Recent Progress and Applications. Molecules 2024; 29:3572. [PMID: 39124984 PMCID: PMC11313829 DOI: 10.3390/molecules29153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
As microelectronics technology advances towards miniaturization and higher integration, the imperative for developing high-performance thermal management materials has escalated. Thermal conductive polymer composites (TCPCs), which leverage the benefits of polymer matrices and the unique effects of nano-enhancers, are gaining focus as solutions to overheating due to their low density, ease of processing, and cost-effectiveness. However, these materials often face challenges such as thermal conductivities that are lower than expected, limiting their application in high-performance electronic devices. Despite these issues, TCPCs continue to demonstrate broad potential across various industrial sectors. This review comprehensively presents the progress in this field, detailing the mechanisms of thermal conductivity (TC) in these composites and discussing factors that influence thermal performance, such as the intrinsic properties of polymers, interfacial thermal resistance, and the thermal properties of fillers. Additionally, it categorizes and summarizes methods to enhance the TC of polymer composites. The review also highlights the applications of these materials in emerging areas such as flexible electronic devices, personal thermal management, and aerospace. Ultimately, by analyzing current challenges and opportunities, this review provides clear directions for future research and development.
Collapse
Affiliation(s)
| | - Yuan Zhang
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
14
|
Zhang Y, Wang S, Wu H, Guo S. Constructing Heterostructured MWCNT-BN Hybrid Fillers in Electrospun TPU Films to Achieve Superior Thermal Conductivity and Electrical Insulation Properties. Polymers (Basel) 2024; 16:2139. [PMID: 39125165 PMCID: PMC11313851 DOI: 10.3390/polym16152139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The development of thermally conductive polymer/boron nitride (BN) composites with excellent electrically insulating properties is urgently demanded for electronic devices. However, the method of constructing an efficient thermally conductive network is still challenging. In the present work, heterostructured multi-walled carbon nanotube-boron nitride (MWCNT-BN) hybrids were easily prepared using an electrostatic self-assembly method. The thermally conductive network of the MWCNT-BN in the thermoplastic polyurethane (TPU) matrix was achieved by the electrospinning and stack-molding process. As a result, the in-plane thermal conductivity of TPU composite films reached 7.28 W m-1 K-1, an increase of 959.4% compared to pure TPU films. In addition, the Foygel model showed that the MWCNT-BN hybrid filler could largely decrease thermal resistance compared to that of BN filler and further reduce phonon scattering. Finally, the excellent electrically insulating properties (about 1012 Ω·cm) and superior flexibility of composite film make it a promising material in electronic equipment. This work offers a new idea for designing BN-based hybrids, which have broad prospects in preparing thermally conductive composites for further practical thermal management fields.
Collapse
Affiliation(s)
| | | | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (Y.Z.); (S.W.); (S.G.)
| | | |
Collapse
|
15
|
Xie J, Zhou G, Sun Y, Zhang F, Kang F, Li B, Zhao Y, Zhang Y, Feng W, Zheng Q. Multifunctional Liquid Metal-Bridged Graphite Nanoplatelets/Aramid Nanofiber Film for Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305163. [PMID: 38048535 DOI: 10.1002/smll.202305163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/02/2023] [Indexed: 12/06/2023]
Abstract
Miniaturization of modern micro-electronic devices urges the development of multi-functional thermal management materials. Traditional polymer composite-based thermal management materials are promising candidates, but they suffer from single functionality, high cost, and low fire-resistance. Herein, a multifunctional liquid metal (LM)-bridged graphite nanoplatelets (GNPs)/ aramid nanofibers (ANFs) film is fabricated via a facile vacuum-assisted self-assembly approach followed by compression. ANFs serve as interfacial binders to link LM and GNPs together via hydrogen bondings and π-π interactions, while LM bridges the adjacent layer of GNPs to endow a fast thermal transport by phonons and electrons. The resultant composite films exhibit a high bidirectional thermal conductivity (In-plane: 29.5 W m-1K-1 and through-plane: 5.3 W m-1K-1), offering a reliable and effective cooling. Moreover, the as-fabricated composite films exhibit superior flame-retardance (peak of heat release rate of 4000J g-1), outstanding Joule heating performance (200 °C at supplied voltage of 3.5 V), and excellent electromagnetic interference shielding effectiveness (EMI SE of 62 dB). This work provides an efficient avenue to fabricate multifuntional thermal management materials for micro-electronic devices, battery thermal management, and artificial intelligence.
Collapse
Affiliation(s)
- Junwen Xie
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Gang Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Feiyu Kang
- Testing Technology Center for Materials and Devices, Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, P. R. China
| | - Baohua Li
- Testing Technology Center for Materials and Devices, Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yun Zhao
- Testing Technology Center for Materials and Devices, Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yinhang Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Rui'an Graduate College of Wenzhou University, Wenzhou, Zhejiang, 325206, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
16
|
Lim J, Han W, Thang LTH, Lee YW, Shin JH. Customizable Nichrome Wire Heaters for Molecular Diagnostic Applications. BIOSENSORS 2024; 14:152. [PMID: 38534259 DOI: 10.3390/bios14030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Accurate sample heating is vital for nucleic acid extraction and amplification, requiring a sophisticated thermal cycling process in nucleic acid detection. Traditional molecular detection systems with heating capability are bulky, expensive, and primarily designed for lab settings. Consequently, their use is limited where lab systems are unavailable. This study introduces a technique for performing the heating process required in molecular diagnostics applicable for point-of-care testing (POCT), by presenting a method for crafting customized heaters using freely patterned nichrome (NiCr) wire. This technique, fabricating heaters by arranging protrusions on a carbon black-polydimethylsiloxane (PDMS) cast and patterning NiCr wire, utilizes cost-effective materials and is not constrained by shape, thereby enabling customized fabrication in both two-dimensional (2D) and three-dimensional (3D). To illustrate its versatility and practicality, a 2D heater with three temperature zones was developed for a portable device capable of automatic thermocycling for polymerase chain reaction (PCR) to detect Escherichia coli (E. coli) O157:H7 pathogen DNA. Furthermore, the detection of the same pathogen was demonstrated using a customized 3D heater surrounding a microtube for loop-mediated isothermal amplification (LAMP). Successful DNA amplification using the proposed heater suggests that the heating technique introduced in this study can be effectively applied to POCT.
Collapse
Affiliation(s)
- Juhee Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Won Han
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Le Tran Huy Thang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Yong Wook Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- School of Electrical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Joong Ho Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
17
|
Mumtaz N, Li Y, Artiaga R, Farooq Z, Mumtaz A, Guo Q, Nisa FU. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials - A review. Heliyon 2024; 10:e25381. [PMID: 38352797 PMCID: PMC10862693 DOI: 10.1016/j.heliyon.2024.e25381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The internet of things and growing demand for smaller and more advanced devices has created the problem of high heat production in electronic equipment, which greatly reduces the work performance and life of the electronic instruments. Thermal interface material (TIM) is placed in between heat generating micro-chip and the heat dissipater to conduct all the produced heat to the heat sink. The development of suitable TIM with excellent thermal conductivity (TC) in both in-plane and through-plane directions is a very important need at present. For efficient thermal management, polymer composites are potential candidates. But in general, their thermal conductivity is low compared to that of metals. The filler integration into the polymer matrix is one of the two approaches used to increase the thermal conductivity of polymer composites and is also easy to scale up for industrial production. Another way to achieve this is to change the structure of polymer chains, which fall out of the scope of this work. In this review, considering the first approach, the authors have summarized recent developments in many types of fillers with different scenarios by providing multiple cases with successful strategies to improve through-plane thermal conductivity (TPTC) (k⊥). For a better understanding of TC, a comprehensive background is presented. Several methods to improve the effective (out-plane) thermal conductivity of polymer composites and different theoretical models for the calculation of TC are also discussed. In the end, it is given a detailed conclusion that provides drawbacks of some fillers, multiple significant routes recommended by other researchers to build thermally conductive polymer composites, future aspects along with direction so that the researchers can get a guideline to design an effective polymer-based thermal interface material.
Collapse
Affiliation(s)
- Nighat Mumtaz
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanchun Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ramón Artiaga
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Centro de Investigación en Tecnologías Navales e Industriales. Campus Industrial de Ferrol, University of A Coruña, Avda. Mendizábal s/n, 15403 Ferrol, Spain
| | - Zunaira Farooq
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210094, China
| | - Amina Mumtaz
- Department of Physics, The Women University Multan, Multan 66000, Pakistan
| | - Qian Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fakhr-Un Nisa
- Department of Chemistry, The Women University Multan, Multan 66000, Pakistan
| |
Collapse
|
18
|
Lin Y, Li P, Liu W, Chen J, Liu X, Jiang P, Huang X. Application-Driven High-Thermal-Conductivity Polymer Nanocomposites. ACS NANO 2024; 18:3851-3870. [PMID: 38266182 DOI: 10.1021/acsnano.3c08467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Polymer nanocomposites combine the merits of polymer matrices and the unusual effects of nanoscale reinforcements and have been recognized as important members of the material family. Being a fundamental material property, thermal conductivity directly affects the molding and processing of materials as well as the design and performance of devices and systems. Polymer nanocomposites have been used in numerous industrial fields; thus, high demands are placed on the thermal conductivity feature of polymer nanocomposites. In this Perspective, we first provide roadmaps for the development of polymer nanocomposites with isotropic, in-plane, and through-plane high thermal conductivities, demonstrating the great effect of nanoscale reinforcements on thermal conductivity enhancement of polymer nanocomposites. Then the significance of the thermal conductivity of polymer nanocomposites in different application fields, including wearable electronics, thermal interface materials, battery thermal management, dielectric capacitors, electrical equipment, solar thermal energy storage, biomedical applications, carbon dioxide capture, and radiative cooling, are highlighted. In future research, we should continue to focus on methods that can further improve the thermal conductivity of polymer nanocomposites. On the other hand, we should pay more attention to the synergistic improvement of the thermal conductivity and other properties of polymer nanocomposites. Emerging polymer nanocomposites with high thermal conductivity should be based on application-oriented research.
Collapse
Affiliation(s)
- Ying Lin
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pengli Li
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenjie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jie Chen
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiangyu Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
19
|
Luo J, Yang X, Xue Y, Yang C, Yang Z, Cai Z, Liu Y, Ma Y, Zhang H, Yu J. High-Performance, Multifunctional, and Designable Carbon Fiber Felt Skeleton Epoxy Resin Composites EP/CF-(CNT/AgBNs)x for Thermal Conductivity and Electromagnetic Interference Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306828. [PMID: 37789504 DOI: 10.1002/smll.202306828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Indexed: 10/05/2023]
Abstract
In this work, high-performance epoxy resin (EP) composites with simultaneous excellent thermal conductivity (TC) and outstanding electromagnetic shielding properties are fabricated through the structural synergy of 1D carbon nanotubes and 2D silver-modified boron nitride nanoplates (CNT/AgBNs) to erect microscopic 3D networks on long-range carbon fiber (CF) felt skeletons. The line-plane combination of CNT/AgBNs improve the interfacical bonding involving EP and CF felts and alleviate the phonon scattering at the interface. Eventually, the TC of the EP composites is enhanced by 333% (up to 0.91 W m-1 K-1 ) with respect to EP due to the efficient and orderly transmission of phonons along the 3D pathway. Meanwhile, the unique anisotropic structure of CF felt and exceptional insulating BNs diminishes the electronic conduction between CNT and CFs, which protects the through-plane insulating properties of EP composites. Furthermore, the EP composites present favorable electromagnetic shielding properties (51.36 dB) attributed to the multiple reflection and adsorption promoted by the multiple interfaces of stacked AgBNs and heterointerface among CNT/AgBNs, CF felt and EP. Given these distinguishing features, the high-performance EP composites open a convenient avenue for electromagnetic wave (EMW) shielding and thermal management applications.
Collapse
Affiliation(s)
- Jiamei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Civil Aviation Composites, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Xueqin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Yi Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Civil Aviation Composites, Donghua University, Shanghai, 201620, China
| | - Chenxi Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zehao Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Civil Aviation Composites, Donghua University, Shanghai, 201620, China
| | - Zhixiang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Civil Aviation Composites, Donghua University, Shanghai, 201620, China
| | - Yong Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Civil Aviation Composites, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Center for Civil Aviation Composites, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
20
|
Dou Z, Zhang B, Xu P, Fu Q, Wu K. Dry-Contact Thermal Interface Material with the Desired Bond Line Thickness and Ultralow Applied Thermal Resistance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019643 DOI: 10.1021/acsami.3c13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Efforts to directly utilize thixotropic polymer composites for out-of-plane thermal transport applications, known as thermal interface materials (TIMs), have been impeded by their mediocre applied thermal resistance (Reff) in a sandwiched structure. Different from traditional attempts at enhancing thermal conductivity, this study proposes a low-bond line thickness (BLT) path for mitigating the sandwiched thermal impedance. Taking the most common TIM, polydimethylsiloxane/aluminum oxide/zinc oxide (PDMS/Al2O3/ZnO), as an example, liquid metal is designed to on-demand localize at the Al2O3-polymer and Al2O3-filler interface regions, breaking rheological challenges for lowering the BLT. Specifically, during the sandwiched compression process, interfacial LM is just like the lubricant, dexterously promoting the relaxation of immobilized PDMS chains and helping fillers to flow through mitigating the internal friction between Al2O3 and adjacent filler. As a result, this TIM first time exhibits a boundary BLT (4.28 μm) that almost approaches the diameter of the maximum filler and performs an ultralow dry-contact Reff of 4.05 mm2 K/W at 40 psi, outperforming most reported and commercial dry-contact TIMs. This study of the low-BLT direction is believed to point to a new path for future research on high-performance TIMs.
Collapse
Affiliation(s)
- Zhengli Dou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Pengfei Xu
- Nanjing Marine Radar Institute, Nanjing 210014, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Jia LC, Wang ZX, Wang L, Zeng JF, Du PY, Yue YF, Zhao LH, Jia SL. Self-standing boron nitride bulks enabled by liquid metals for thermal management. MATERIALS HORIZONS 2023; 10:5656-5665. [PMID: 37766462 DOI: 10.1039/d3mh01359f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Thermally conductive materials (TCMs) are highly desirable for thermal management applications to tackle the "overheating" concerns in the electronics industry. Despite recent progress, the development of high performance TCMs integrated with an in-plane thermal conductivity (TC) higher than 50.0 W (m K)-1 and a through-plane TC greater than 10.0 W (m K)-1 is still challenging. Herein, self-standing liquid metal@boron nitride (LM@BN) bulks with ultrahigh in-plane TC and through-plane TC were reported for the first time. In the LM@BN bulks, LM could serve as a bonding and thermal linker among the oriented BN platelets, thus remarkably accelerating heat transfer across the whole system. Benefiting from the formation of a unique structure, the LM@BN bulk achieved an ultrahigh in-plane TC of 82.2 W (m K)-1 and a through-plane TC of 20.6 W (m K)-1, which were among the highest values ever reported for TCMs. Furthermore, the LM@BN bulks exhibited superior compressive and leakage-free performances, with a high compressive strength (5.2 MPa) and without any LM leakage even after being crushed. It was also demonstrated that the excellent TCs of the LM@BN bulks made them effectively cool high-power light emitting diode modules. This work opens up one promising pathway for the development of high-performance TCMs for thermal management in the electronics industry.
Collapse
Affiliation(s)
- Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Xing Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jian-Feng Zeng
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Pei-Yao Du
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yun-Fei Yue
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Li-Hua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shen-Li Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
22
|
Espíndola SP, Zlopasa J, Picken SJ. Systematic Study of the Nanostructures of Exfoliated Polymer Nanocomposites. Macromolecules 2023; 56:7579-7586. [PMID: 37781216 PMCID: PMC10537450 DOI: 10.1021/acs.macromol.3c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023]
Abstract
High-performance bioinspired materials have shown rapid development over the last decade. Examples are brick-and-mortar hierarchical structures, which are often achieved via solvent evaporation. Although good properties are claimed, most systems are composed of stacked or intercalated platelets. Exfoliation is a crucial step to give ultimate anisotropic properties, e.g., thermal, mechanical, and barrier properties. We propose a general framework for all the various types of micro-scale structures that should be distinguished for 2D filler nanocomposites. In particular, the exfoliated state is systematically explored by the immobilization of montmorillonite platelets via (gelatin) hydrogelation. Scattering techniques were used to evaluate this strategy at the level of the particle dispersion and the regularity of spatial arrangement. The gelatin/montmorillonite exfoliated nanostructures are fully controlled by the filler volume fraction since the observed gallery d-spacings perfectly fall onto the predicted values. Surprisingly, X-ray analysis also revealed short- and quasi long-range arrangement of the montmorillonite clay at high loading.
Collapse
Affiliation(s)
- Suellen Pereira Espíndola
- Advanced
Soft Matter, Department of Chemical Engineering, Faculty of Applied
Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jure Zlopasa
- Environmental
Biotechnology, Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stephen J. Picken
- Advanced
Soft Matter, Department of Chemical Engineering, Faculty of Applied
Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
23
|
Zhang C, Shi B, He J, Zhou L, Park S, Doshi S, Shang Y, Deng K, Giordano M, Qi X, Cui S, Liu L, Ni C, Fu KK. Carbon Additive Manufacturing with a Near-Replica "Green-to-Brown" Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208230. [PMID: 37162379 DOI: 10.1002/adma.202208230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/22/2023] [Indexed: 05/11/2023]
Abstract
Nanocomposites containing nanoscale materials offer exciting opportunities to encode nanoscale features into macroscale dimensions, which produces unprecedented impact in material design and application. However, conventional methods cannot process nanocomposites with a high particle loading, as well as nanocomposites with the ability to be tailored at multiple scales. A composite architected mesoscale process strategy that brings particle loading nanoscale materials combined with multiscale features including nanoscale manipulation, mesoscale architecture, and macroscale formation to create spatially programmed nanocomposites with high particle loading and multiscale tailorability is reported. The process features a low-shrinking (<10%) "green-to-brown" transformation, making a near-geometric replica of the 3D design to produce a "brown" part with full nanomaterials to allow further matrix infill. This demonstration includes additively manufactured carbon nanocomposites containing carbon nanotubes (CNTs) and thermoset epoxy, leading to multiscale CNTs tailorability, performance improvement, and 3D complex geometry feasibility. The process can produce nanomaterial-assembled architectures with 3D geometry and multiscale features and can incorporate a wide range of matrix materials, such as polymers, metals, and ceramics, to fabricate nanocomposites for new device structures and applications.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Material Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Baohui Shi
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jinlong He
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Lyu Zhou
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Soyeon Park
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sagar Doshi
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| | - Yuanyuan Shang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Kaiyue Deng
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Marc Giordano
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xiangjun Qi
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cui
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ling Liu
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Chaoying Ni
- Department of Material Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| | - Kun Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
24
|
Xiao B, Zheng X, Zhao Y, Huang B, He P, Peng B, Chen G. Controlling Shear Rate for Designable Thermal Conductivity in Direct Ink Printing of Polydimethylsiloxane/Boron Nitride Composites. Polymers (Basel) 2023; 15:3489. [PMID: 37631546 PMCID: PMC10459169 DOI: 10.3390/polym15163489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient heat dissipation is vital for advancing device integration and high-frequency performance. Three-dimensional printing, famous for its convenience and structural controllability, facilitates complex parts with high thermal conductivity. Despite this, few studies have considered the influence of shear rate on the thermal conductivity of printed parts. Herein, polydimethylsiloxane/boron nitride (PDMS/BN) composites were prepared and printed by direct ink writing (DIW). In order to ensure the smooth extrusion of the printing process and the structural stability of the part, a system with 40 wt% BN was selected according to the rheological properties. In addition, the effect of printing speed on the morphology of BN particles during 3D printing was studied by XRD, SEM observation, as well as ANSYS Polyflow simulation. The results demonstrated that increasing the printing speed from 10 mm/s to 120 mm/s altered the orientation angle of BN particles from 78.3° to 35.7°, promoting their alignment along the printing direction due to the high shear rate experienced. The resulting printed parts accordingly exhibited an impressive thermal conductivity of 0.849 W∙m-1∙K-1, higher than the 0.454 W∙m-1∙K-1 of the control sample. This study provides valuable insights and an important reference for future developments in the fabrication of thermal management devices with customizable thermal conductivity.
Collapse
Affiliation(s)
- Bing Xiao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Xinmei Zheng
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Yang Zhao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Bingxue Huang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Pan He
- Sichuan Provincial Engineering Research Center of Functional Development and Application of High Performance Special Textile Materials, Chengdu Textile College, Chengdu 611731, China;
| | - Biyou Peng
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
| | - Gang Chen
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (B.X.); (X.Z.); (Y.Z.); (B.P.)
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
25
|
Wu Y, An C, Guo Y. 3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5681. [PMID: 37629973 PMCID: PMC10456874 DOI: 10.3390/ma16165681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Three-dimensional (3D) printing, alternatively known as additive manufacturing, is a transformative technology enabling precise, customized, and efficient manufacturing of components with complex structures. It revolutionizes traditional processes, allowing rapid prototyping, cost-effective production, and intricate designs. The 3D printed graphene-based materials combine graphene's exceptional properties with additive manufacturing's versatility, offering precise control over intricate structures with enhanced functionalities. To gain comprehensive insights into the development of 3D printed graphene and graphene/polymer composites, this review delves into their intricate fabrication methods, unique structural attributes, and multifaceted applications across various domains. Recent advances in printable materials, apparatus characteristics, and printed structures of typical 3D printing techniques for graphene and graphene/polymer composites are addressed, including extrusion methods (direct ink writing and fused deposition modeling), photopolymerization strategies (stereolithography and digital light processing) and powder-based techniques. Multifunctional applications in energy storage, physical sensor, stretchable conductor, electromagnetic interference shielding and wave absorption, as well as bio-applications are highlighted. Despite significant advancements in 3D printed graphene and its polymer composites, innovative studies are still necessary to fully unlock their inherent capabilities.
Collapse
Affiliation(s)
- Ying Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing 100083, China; (C.A.); (Y.G.)
| | | | | |
Collapse
|
26
|
Cao M, Li Z, Lu J, Wang B, Lai H, Li Z, Gao Y, Ming X, Luo S, Peng L, Xu Z, Liu S, Liu Y, Gao C. Vertical Array of Graphite Oxide Liquid Crystal by Microwire Shearing for Highly Thermally Conductive Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300077. [PMID: 36930178 DOI: 10.1002/adma.202300077] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Indexed: 06/02/2023]
Abstract
Excellent through-plane thermally conductive composites are highly demanded for efficient heat dissipation. Giant sheets have large crystalline domain and significantly reduce interface phonon scattering, making them promising to build highly thermally conductive composites. However, realizing vertical orientation of giant sheets remains challenging due to their enormous mass and huge hydrodynamic drag force. Here, we achieve highly vertically ordered liquid crystals of giant graphite oxide (more than 100 µm in lateral dimension) by microwire shearing, which endows the composite with a recorded through-plane thermal conductivity of 94 W m-1 K-1 . Microscale shearing fields induced by vertical motion of microwires conquer huge hydrodynamic energy barrier and vertically reorient giant sheets. The resulting liquid crystals exhibit extremely retarded relaxation and impart large-scale vertical array with bidirectional ordering degree as high as 0.82. The graphite array-based composites demonstrate an ultrahigh thermal enhancement efficiency of over 35 times per unit volume. Furthermore, the composites improve cooling efficiency by 93% for thermal management tests compared to commercial thermal interface materials. This work offers a novel methodology to precisely manipulate the orientation of giant particles and promote large-scale fabrication of vertical array with advanced functionalities.
Collapse
Affiliation(s)
- Min Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zheng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, P. R. China
| | - Jiahao Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Bo Wang
- Hangzhou Gaoxi Technol Co. Ltd., Hangzhou, 310027, P. R. China
| | - Haiwen Lai
- Hangzhou Gaoxi Technol Co. Ltd., Hangzhou, 310027, P. R. China
| | - Zeshen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yue Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Shiyu Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Li Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Senping Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| |
Collapse
|
27
|
Atinafu DG, Yun BY, Kim YU, Kim S. Nanopolyhybrids: Materials, Engineering Designs, and Advances in Thermal Management. SMALL METHODS 2023; 7:e2201515. [PMID: 36855164 DOI: 10.1002/smtd.202201515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/10/2023] [Indexed: 06/09/2023]
Abstract
The fundamental requirements for thermal comfort along with the unbalanced growth in the energy demand and consumption worldwide have triggered the development and innovation of advanced materials for high thermal-management capabilities. However, continuous development remains a significant challenge in designing thermally robust materials for the efficient thermal management of industrial devices and manufacturing technologies. The notable achievements thus far in nanopolyhybrid design technologies include multiresponsive energy harvesting/conversion (e.g., light, magnetic, and electric), thermoregulation (including microclimate), energy saving in construction, as well as the miniaturization, integration, and intelligentization of electronic systems. These are achieved by integrating nanomaterials and polymers with desired engineering strategies. Herein, fundamental design approaches that consider diverse nanomaterials and the properties of nanopolyhybrids are introduced, and the emerging applications of hybrid composites such as personal and electronic thermal management and advanced medical applications are highlighted. Finally, current challenges and outlook for future trends and prospects are summarized to develop nanopolyhybrid materials.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
28
|
Wu N, Che S, Shen P, Chen N, Chen F, Ma G, Liu H, Yang W, Wang X, Li Y. A binder-free ice template method for vertically aligned 3D boron nitride polymer composites towards thermal management. J Colloid Interface Sci 2023; 647:43-51. [PMID: 37244175 DOI: 10.1016/j.jcis.2023.05.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Hexagonal boron nitride (BN) is an attractive filler candidate for thermal interface materials, but the thermal conductivity enhancement is limited by the anisotropic thermal conductivity of BN and disordered thermal pathways in the polymer matrix. Herein, a facile and economic ice template method is proposed, wherein BN modified by tannic acid (BN-TA) directly self-assemble to form vertically aligned nacre-mimetic scaffold without additional binders and post-treatment. The effects of the BN slurry concentration and the ratio of BN/TA on three-dimensional (3D) skeleton morphology are fully investigated. The corresponding polydimethylsiloxane (PDMS) composite via vacuum-impregnation achieves a high through-plane thermal conductivity of 3.8 W/mK at a low filler loading of 18.7 vol%, which is 2433% and 100% higher than that of pristine PDMS and the PDMS composite with randomly distributed BN-TA, respectively. The finite element analysis results theoretically demonstrate the superiority of the highly longitudinally ordered 3D BN-TA skeleton in axial heat transfer. Additionally, 3D BN-TA/PDMS exhibits excellent practical heat dissipation capability, lower thermal expansion coefficient, and enhanced mechanical properties. This strategy offers an anticipated perspective for developing high-performance thermal interface materials to address the thermal challenges of modern electronics.
Collapse
Affiliation(s)
- Ni Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Sai Che
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Peidi Shen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Neng Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Fengjiang Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Guang Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Wang Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xiaobai Wang
- Department of Materials Application Research, AVIC Manufacturing Technology Institute, Beijing 100024, China.
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
29
|
Xu L, Zhan K, Ding S, Zhu J, Liu M, Fan W, Duan P, Luo K, Ding B, Liu B, Liu Y, Cheng HM, Qiu L. A Malleable Composite Dough with Well-Dispersed and High-Content Boron Nitride Nanosheets. ACS NANO 2023; 17:4886-4895. [PMID: 36802511 DOI: 10.1021/acsnano.2c11826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aggregation of two-dimensional (2D) nanosheet fillers in a polymer matrix is a prevalent problem when the filler loading is high, leading to degradation of physical and mechanical properties of the composite. To avoid aggregation, a low-weight fraction of the 2D material (<5 wt %) is usually used to fabricate the composite, limiting performance improvement. Here, we develop a mechanical interlocking strategy where well-dispersed high filling content (up to 20 wt %) of boron nitride nanosheets (BNNSs) can be incorporated into a polytetrafluoroethylene (PTFE) matrix, resulting in a malleable, easy-to-process and reusable BNNS/PTFE composite dough. Importantly, the well-dispersed BNNS fillers can be rearranged into a highly oriented direction due to the malleable nature of the dough. The resultant composite film has a high thermal conductivity (4408% increase), low dielectric constant/loss, and excellent mechanical properties (334%, 69%, 266%, and 302% increases for tensile modulus, strength, toughness, and elongation, respectively), making it suitable for thermal management applications in the high-frequency areas. The technique is useful for the large-scale production of other 2D material/polymer composites with a high filler content for different applications.
Collapse
Affiliation(s)
- Lanshu Xu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Ke Zhan
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Siyuan Ding
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Jiuyi Zhu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Minsu Liu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
- Monash Suzhou Research Institute (MSRI), Monash University, Suzhou 215000, China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - Weiren Fan
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - Pei Duan
- vivo Mobile Communication Co., Ltd., Dongguan 523860, China
| | - Kai Luo
- vivo Mobile Communication Co., Ltd., Dongguan 523860, China
| | - Baofu Ding
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ling Qiu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| |
Collapse
|
30
|
Xie W, Liang X, Wang H, Zhao X, Tang Y, Wu M, Yang H. Structurally Tailoring Clay Nanosheets to Design Emerging Macrofibers with Tunable Mechanical Properties and Thermal Behavior. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3141-3151. [PMID: 36598369 DOI: 10.1021/acsami.2c19295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bio-derived nanomaterials are promising candidates for spinning high-performance sustainable textiles, but the inherent flammability of biomass-based fibers seriously limits their applications. There is still an urgent need to improve fiber flame retardancy while maintaining excellent mechanical performance. Here, inspired by the structural properties of layered nanoclay, we report a novel and efficient strategy to synthesize the strong, super tough, and flame-retardant nanocellulose/clay/sodium alginate (CRS) macrofibers via wet-spinning and directional drying. Benefiting from the precise modulation of arrangement and orientation of nanoclay in macrofibers, the new inorganic structure exhibits excellent mechanical and thermal functional properties. The anisotropic structure contributes to high toughness: the tensile strength was 373.3 MPa and the toughness was 26.92 MJ·m-3. Remarkably, rectorite nanosheets as a thermal and qualitative insulator significantly improve the flame retardancy of the CRS fibers with a heat release rate as low as 6.07 W/g, thermal conductivity of 90.5 mW/(m·K), and good temperature tolerance (ranging from -196 to 100 °C). This facile and high-efficiency strategy may have great scalability in manufacturing high-strength, super tough, and flame-retardant fibers for emerging biodegradable next-generation artificial fibers.
Collapse
Affiliation(s)
- Weimin Xie
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Xiaozheng Liang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Xiaoguang Zhao
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Yili Tang
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Mingjie Wu
- Electrochemistry/Corrosion Laboratory, Department of Chemical Engineering, McGill University, Montréal, QuébecH3A 0C5, Canada
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| |
Collapse
|
31
|
Combined Additive and Laser-Induced Processing of Functional Structures for Monitoring under Deformation. Polymers (Basel) 2023; 15:polym15020443. [PMID: 36679324 PMCID: PMC9860559 DOI: 10.3390/polym15020443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
This research introduces a readily available and non-chemical combinatorial production approach, known as the laser-induced writing process, to achieve laser-processed conductive graphene traces. The laser-induced graphene (LIG) structure and properties can be improved by adjusting the laser conditions and printing parameters. This method demonstrates the ability of laser-induced graphene (LIG) to overcome the electrothermal issues encountered in electronic devices. To additively process the PEI structures and the laser-induced surface, a high-precision laser nScrypt printer with different power, speed, and printing parameters was used. Raman spectroscopy and scanning electron microscopy analysis revealed similar results for laser-induced graphene morphology and structural chemistry. Significantly, the 3.2 W laser-induced graphene crystalline size (La; 159 nm) is higher than the higher power (4 W; 29 nm) formation due to the surface temperature and oxidation. Under four-point probe electrical property measurements, at a laser power of 3.8 W, the resistivity of the co-processed structure was three orders of magnitude larger. The LIG structure and property improvement are possible by varying the laser conditions and the printing parameters. The lowest gauge factor (GF) found was 17 at 0.5% strain, and the highest GF found was 141.36 at 5%.
Collapse
|
32
|
Wu X, Liu W, Shi FG, Zhang C. Constructing Porous Alumina Frameworks by Sintering for Enhanced Thermal Conductivity of Polymer Composites. ACS OMEGA 2023; 8:502-508. [PMID: 36643517 PMCID: PMC9835650 DOI: 10.1021/acsomega.2c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Constructing continuous filler networks in a polymer matrix can significantly improve the thermal conductivity of the composite. In this study, we fabricated porous Al2O3 frameworks (f-AO) by decomposing the sacrificial material and sintering to serve as heat conduction pathways in the matrix. Then, epoxy/Al2O3 frameworks (EP/f-AO) composites with excellent thermal conductivity were obtained by vacuum infiltration. The pre-constructed Al2O3 frameworks and sintering reduce interfacial thermal resistance by 1 order of magnitude and result in a dramatically enhanced thermal conductivity of EP/f-AO composites. At the filler content of 49.5 vol %, the thermal conductivity of the EP/f-AO composite is 6.96 W m-1 K-1, which is 4.3 times that of the EP/AO composite (1.61 W m-1 K-1) with randomly dispersed fillers. The heat dissipation capability of the EP/f-AO composites was further confirmed by infrared thermal imaging. This study provides a promising approach for fabricating thermal conductive polymer composites as electronic package materials.
Collapse
Affiliation(s)
- Xian Wu
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang550003, China
| | - Wei Liu
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang550003, China
| | - Fa-guo Shi
- Guizhou
Yong Hong Aviation Machinery Co.LTD, Guiyang550003, China
| | - Chun Zhang
- School
of Materials and Energy Engineering, Guizhou
Institute of Technology, Guiyang550003, China
| |
Collapse
|
33
|
Zhang Z, Wang J, Shang J, Xu Y, Wan YJ, Lin Z, Sun R, Hu Y. A Through-Thickness Arrayed Carbon Fibers Elastomer with Horizontal Segregated Magnetic Network for Highly Efficient Thermal Management and Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205716. [PMID: 36437045 DOI: 10.1002/smll.202205716] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Multifunctional thermal management materials with highly efficient electromagnetic wave (EMW) absorption performance are urgently required to tackle the heat dissipation and electromagnetic interference issues of high integrated electronics. However, the high thermal conductivity (λ) and outstanding EMW absorption performance are often incompatible with each other in a single material. Herein, a through-thickness arrayed NiCo2 O4 /graphene oxide/carbon fibers (NiCO@CFs) elastomer with integrated functionalities of high thermal conductivity, highly efficient EMW absorption, and excellent compressibility is reported. The NiCO@CFs elastomer realizes a high out-of-plane thermal conductivity of 15.55 W m-1 K-1 , due to the through-thickness vertically aligned CFs framework. Moreover, the unique horizontal segregated magnetic network effectively reduces the electrical contact between the CFs, which significantly enhances impedance matching of NiCO@CFs elastomer. As a result, the vertically arrayed NiCO@CFs elastomer synchronously exhibits ultrabroad effective absorption bandwidth of 8.25 GHz (9.75-18 GHz) at a thickness of 2.4 mm, good impedance matching, and a minimum reflection loss (RLmin ) of -55.15 dB. Given these outstanding findings, the multifunctional arrayed NiCO@CFs elastomer opens an avenue for applications in EMW absorption and thermal management. This strategy of constructing thermal/electrical/mechanical pathways provides a promising way for the high-performance multifunctional materials in electronic devices.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianda Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jian Shang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yadong Xu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan-Jun Wan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiqiang Lin
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yougen Hu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
34
|
Ultrasonic-Assisted Method for the Preparation of Carbon Nanotube-Graphene/Polydimethylsiloxane Composites with Integrated Thermal Conductivity, Electromagnetic Interference Shielding, and Mechanical Performances. Int J Mol Sci 2022; 23:ijms232315007. [PMID: 36499333 PMCID: PMC9737757 DOI: 10.3390/ijms232315007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Due to the rapid development of the miniaturization and portability of electronic devices, the demand for polymer composites with high thermal conductivity and mechanical flexibility has significantly increased. A carbon nanotube (CNT)-graphene (Gr)/polydimethylsiloxane (PDMS) composite with excellent thermal conductivity and mechanical flexibility is prepared by ultrasonic-assisted forced infiltration (UAFI). When the mass ratio of CNT and Gr reaches 3:1, the thermal conductivity of the CNT-Gr(3:1)/PDMS composite is 4.641 W/(m·K), which is 1619% higher than that of a pure PDMS matrix. In addition, the CNT-Gr(3:1)/PDMS composite also has excellent mechanical properties. The tensile strength and elongation at break of CNT-Gr(3:1)/PDMS composites are 3.29 MPa and 29.40%, respectively. The CNT-Gr/PDMS composite also shows good performance in terms of electromagnetic shielding and thermal stability. The PDMS composites have great potential in the thermal management of electronic devices.
Collapse
|
35
|
Zhao N, Li J, Wang W, Gao W, Bai H. Isotropically Ultrahigh Thermal Conductive Polymer Composites by Assembling Anisotropic Boron Nitride Nanosheets into a Biaxially Oriented Network. ACS NANO 2022; 16:18959-18967. [PMID: 36342787 DOI: 10.1021/acsnano.2c07862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The demand for thermally conductive but electrically insulating materials has increased greatly in advanced electronic packaging. To this end, polymer-based composites filled with boron nitride (BN) nanosheets have been intensively studied as thermal interface material (TIM). However, it remains a great challenge to achieve isotropically ultrahigh thermal conductivity in BN/polymer composites due to the inherent thermal property anisotropy of BN nanosheets and/or the insufficient construction of the 3D thermal conductive network. Herein, we present a high-performance BN/polymer composite with a biaxially oriented thermal conductive network by a dendritic ice template. The composite exhibits both ultrahigh in-plane (∼39.0 W m-1 K-1) and through-plane thermal conductivity (∼11.5 W m-1 K-1) at 80 vol % BN loading, largely exceeding those of reported BN/polymer composites. In addition, our composite as a TIM shows higher cooling efficiency than that of commercial TIM with up to 15 °C reduction of the chip temperature and retains good thermal stability even after 1000 heating/cooling cycles. Our strategy represents an effective approach for developing advanced thermal interface materials, which are greatly demanded for advanced electronics and emerging areas like wearable electronics.
Collapse
Affiliation(s)
- Nifang Zhao
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jintao Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wanjie Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Bai
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Lv Q, Peng Z, Meng Y, Pei H, Chen Y, Ivanov E, Kotsilkova R. Three-Dimensional Printing to Fabricate Graphene-Modified Polyolefin Elastomer Flexible Composites with Tailorable Porous Structures for Electromagnetic Interference Shielding and Thermal Management Application. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qinniu Lv
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu610065, Sichuan, China
| | - Zilin Peng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu610065, Sichuan, China
| | - Yan Meng
- Institute of New Energy and Low-Carbon Technology of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu610065, Sichuan, China
| | - Haoran Pei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu610065, Sichuan, China
| | - Yinghong Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu610065, Sichuan, China
| | - Evgeni Ivanov
- Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, 1113Sofia, Bulgaria
| | - Rumiana Kotsilkova
- Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, 1113Sofia, Bulgaria
| |
Collapse
|
37
|
Progress of Polymer-Based Thermally Conductive Materials by Fused Filament Fabrication: A Comprehensive Review. Polymers (Basel) 2022; 14:polym14204297. [PMID: 36297876 PMCID: PMC9608148 DOI: 10.3390/polym14204297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
With the miniaturization and integration of electronic products, the heat dissipation efficiency of electronic equipment needs to be further improved. Notably, polymer materials are a choice for electronic equipment matrices because of their advantages of low cost and wide application availability. However, the thermal conductivity of polymers is insufficient to meet heat dissipation requirements, and their improvements remain challenging. For decades, as an efficient manufacturing technology, additive manufacturing has gradually attracted public attention, and researchers have also used this technology to produce new thermally conductive polymer materials. Here, we review the recent research progress of different 3D printing technologies in heat conduction and the thermal conduction mechanism of polymer matrix composites. Based on the classification of fillers, the research progress of thermally conductive materials prepared by fused filament fabrication (FFF) is discussed. It analyzes the internal relationship between FFF process parameters and the thermal conductivity of polymer matrix composites. Finally, this study summarizes the application and future development direction of thermally conductive composites by FFF.
Collapse
|
38
|
Guo C, He L, Yao Y, Lin W, Zhang Y, Zhang Q, Wu K, Fu Q. Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries. NANO-MICRO LETTERS 2022; 14:202. [PMID: 36214908 PMCID: PMC9551009 DOI: 10.1007/s40820-022-00947-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 06/01/2023]
Abstract
Phase change materials (PCMs) are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries (LIBs) according to real-time thermal conditions, guaranteeing the reliable operation of LIBs in both cold and hot environments. Herein, we report a liquid metal (LM) modified polyethylene glycol/LM/boron nitride PCM, capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction. Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB's structure and heat-conduction characteristic. Typically, soft and deformable LMs are modified on the boron nitride surface, serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m-1 K-1 in the vertical and in-plane directions, respectively. In addition, LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system. As a proof-of-concept, this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10 °C at high charging/discharging rate, opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.
Collapse
Affiliation(s)
- Cong Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Lu He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yihang Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weizhi Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Department of Polymer Science and Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
39
|
Lin W, Lai J, Xie K, Liu D, Wu K, Fu Q. D-Mannitol/Graphene Phase-Change Composites with Structured Conformation and Thermal Pathways Allow Durable Solar-Thermal-Electric Conversion and Electricity Output. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38981-38989. [PMID: 35989565 DOI: 10.1021/acsami.2c11843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Durable electricity generation from a phase-change material (PCM)-assisted solar thermoelectric generator (STEG) through photo-thermal-electric conversion is a promising way to take advantage of the clean solar energy. However, due to the deficient and mismatched thermal charging and discharging rates in the PCMs, the previous PCM-supported STEGs usually exhibit inefficient solar-thermal-electric conversion (<1%) and limited electricity output. In this work, we report a structured D-mannitol/graphene phase-change composite fabricated by a radial ice-template assembly and infiltration strategy, in which radially aligned graphene nanoplates are bridged by graphitized polyimide that offers multidirectional and interlaced thermal highways for rapid thermal charging, while the sample conformation is further regulated by the ice-template mold, promising the optimal charging and discharging balance in the PCM. After being integrated with a solar concentrator and a thermoelectric device, this powerful STEG outputs tremendous power density, with the solar-thermal-electric conversion approaching 2.40%. The plenteous electricity supply is demonstrated to reliably charge a mobile phone under normal sunlight. This elaborate STEG design opens up opportunities for providing sufficient power guarantees for the self-powering of electronic devices in the wild.
Collapse
Affiliation(s)
- Weizhi Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiacheng Lai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Keqing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dingyao Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
40
|
Niu H, Guo H, Kang L, Ren L, Lv R, Bai S. Vertical Alignment of Anisotropic Fillers Assisted by Expansion Flow in Polymer Composites. NANO-MICRO LETTERS 2022; 14:153. [PMID: 35916977 PMCID: PMC9346047 DOI: 10.1007/s40820-022-00909-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 05/08/2023]
Abstract
Orientation control of anisotropic one-dimensional (1D) and two-dimensional (2D) materials in solutions is of great importance in many fields ranging from structural materials design, the thermal management, to energy storage. Achieving fine control of vertical alignment of anisotropic fillers (such as graphene, boron nitride (BN), and carbon fiber) remains challenging. This work presents a universal and scalable method for constructing vertically aligned structures of anisotropic fillers in composites assisted by the expansion flow (using 2D BN platelets as a proof-of-concept). BN platelets in the silicone gel strip are oriented in a curved shape that includes vertical alignment in the central area and horizontal alignment close to strip surfaces. Due to the vertical orientation of BN in the central area of strips, a through-plane thermal conductivity as high as 5.65 W m-1 K-1 was obtained, which can be further improved to 6.54 W m-1 K-1 by combining BN and pitch-based carbon fibers. The expansion-flow-assisted alignment can be extended to the manufacture of a variety of polymer composites filled with 1D and 2D materials, which can find wide applications in batteries, electronics, and energy storage devices.
Collapse
Affiliation(s)
- Hongyu Niu
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Haichang Guo
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Lei Kang
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Liucheng Ren
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Ruicong Lv
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Shulin Bai
- School of Materials Science and Engineering, HEDPS/Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, People's Republic of China.
- Peking University Nanchang Innovation Institute, 14#1-2 Floor, High-level Talent Industrial Park, High-Tech District, Nanchang City, 330224, Jiangxi Province, People's Republic of China.
| |
Collapse
|
41
|
Du Q, Guo M, Zhang H, Liu Y, Wu D, Ru Y, Gao D, Chen N, Sun J. Preparation of
PP
/
SCF
thermally conductive composites with forced‐assembled networks by multiple injection compression molding. J Appl Polym Sci 2022. [DOI: 10.1002/app.52826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qingyuan Du
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Mengli Guo
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Ying Liu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Daming Wu
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yue Ru
- SINOPEC Beijing Research Institute of Chemical Industry Beijing China
| | - Dali Gao
- SINOPEC Beijing Research Institute of Chemical Industry Beijing China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
42
|
Zhuang HT, Zhang L, Bao JB. Enhanced foaming behaviors and compression properties of thermoplastic polyurethane via constructing micro-crosslinking structure assisted by chain extender. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Guo C, Li Y, Xu J, Zhang Q, Wu K, Fu Q. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. MATERIALS HORIZONS 2022; 9:1690-1699. [PMID: 35393993 DOI: 10.1039/d2mh00276k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dramatic miniaturization and integration of electronic devices call for next-generation thermally conductive interface materials with higher service performance and long-term stability. In addition to enhancing the inherent thermal conductivity of materials, it is noteworthy to pay attention to the thermal contact resistance. Herein, we synthesized a polyurethane with hierarchical hydrogen bonding to realize high surface adhesion with substrates; another key was incorporating aluminum oxide modified by a deformable liquid metal to improve the thermo-conductive capability and offer the freedom of polymeric segmental motions. These molecular and structural designs endow the composite with high isotropic thermal conductivity, electrical insulation and temperature-responsive reversible adhesion, which enable low thermal resistance and durable thermal contact with substrates without the need for external pressure.
Collapse
Affiliation(s)
- Cong Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuhan Li
- College of Chemistry and Green Catalysis Center, Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou University, Zhengzhou 450001, China
| | - JianHua Xu
- Joint Laboratory of Advanced Biomedical Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
44
|
Yu S, Huang M, Hao R, He S, Liu H, Liu W, Zhu C. Recent advances in thermally conductive polymer composites. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polymer matrix composites (PMCs) with high thermal conductivity (TC) play an important role in improving the heat dissipation capacity of a new generation of electronic devices, particularly for 5G and aviation applications. Over the last few decades, considerable efforts have been made in the fabrication of highly thermally conductive PMCs. Advances in the thermal conduction mechanism of polymer composites are induced to, and then commonly used thermally conductive fillers are presented. In the following, the factors affecting the TC of polymer composites are discussed in detail, including fillers, interfaces, polymer matrices and processing technologies. Special attention is paid to the thermally conductive fillers. Then, some application areas of thermally conductive polymer composites are introduced. Finally, the deficiencies and future development trends in this research field are put forward. It is expected that this review will provide some beneficial inspiration in improving the TC of PMCs.
Collapse
Affiliation(s)
- Shuaiqiang Yu
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Rui Hao
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, P.R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, P.R. China
| |
Collapse
|
45
|
3D printing of NiZn ferrite architectures with high magnetic performance for efficient magnetic separation. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2021.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Guo H, Niu H, Zhao H, Kang L, Ren Y, Lv R, Ren L, Maqbool M, Bashir A, Bai S. Highly Anisotropic Thermal Conductivity of Three-Dimensional Printed Boron Nitride-Filled Thermoplastic Polyurethane Composites: Effects of Size, Orientation, Viscosity, and Voids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14568-14578. [PMID: 35302747 DOI: 10.1021/acsami.1c23944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extrusion-based three-dimensional (3D) printing techniques usually exhibit anisotropic thermal, mechanical, and electric properties due to the shearing-induced alignment during extrusion. However, the transformation from the extrusion to stacking process is always neglected and its influence on the final properties remains ambiguous. In this work, we adopt two different sized boron nitride (BN) sheets, namely, small-sized BN (S-BN) and large-sized BN (L-BN), to explore their impact on the orientation degree, morphology, and final anisotropic thermal conductivity (TC) of thermoplastic polyurethane (TPU) composites by fused deposition modeling. The transformation from one-dimensional axial alignment in the extruded filament to two-dimensional alignment (horizontal and vertical alignment) in the stacking filament of BN sheets is observed, and its impact on anisotropic TC in three directions is clarified. It is found that L-BN/TPU composites show a high TC of 6.45 W m-1 K-1 at 60 wt % BN content along the printing direction, while at a lower content (<40 wt %), S-BN/TPU composites exhibit a higher TC than L-BN/TPU composites. Effects of orientation, viscosity, and voids are comprehensively considered to elucidate such differences. Finally, heat dissipation tests demonstrate the great potential of 3D printed BN/TPU composites to be used in thermal management applications.
Collapse
Affiliation(s)
- Haichang Guo
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Hongyu Niu
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Haoyuan Zhao
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Kang
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Yanjuan Ren
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Ruicong Lv
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Liucheng Ren
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Muhammad Maqbool
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Akbar Bashir
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Shulin Bai
- School of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Sun DX, Gu T, Mao YT, Huang CH, Qi XD, Yang JH, Wang Y. Fabricating High-Thermal-Conductivity, High-Strength, and High-Toughness Polylactic Acid-Based Blend Composites via Constructing Multioriented Microstructures. Biomacromolecules 2022; 23:1789-1802. [PMID: 35344361 DOI: 10.1021/acs.biomac.2c00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The massive accumulation of plastic waste has caused a serious negative impact on the human living environment. Replacing traditional petroleum-based polymers with biobased and biodegradable poly(l-lactic acid) (PLLA) is considered an effective way to solve this problem. However, it is still a great challenge to manufacture PLLA-based composites with high thermal conductivity and excellent mechanical properties via tailoring the microstructures of the blend composites. In the present work, a melt extrusion-stretching method is utilized to fabricate biodegradable PLLA/poly(butylene adipate-co-butylene terephthalate)/carbon nanofiber (PLLA/PBAT/CNF) blend composites. It is found that the incorporation of the extensional flow field induces the formation of multioriented microstructures in the composites, including the oriented PLLA molecular chains, elongated PBAT dispersed phase, and oriented CNFs, which synergistically improve the thermal conductivity and mechanical properties of the blend composites. At a CNF content of 10 wt %, the in-plane thermal conductivity, tensile strength, and elongation at break of the blend composite reach 1.53 Wm-1 K-1, 66.8 MPa, and 56.5%, respectively, which increased by 31.9, 73.5, and 874.1% compared with those of the conventionally hot-compressed sample (1.16 Wm-1 K-1, 38.5 MPa, and 5.8%, respectively). The main mechanism for the improved thermal conductivity is that the multioriented structure promotes the formation of a CNF thermal conductive network in the composites. The strengthening mechanism is attributed to the orientation of both PLLA molecular chains and CNFs in the stretching direction, restricting the movement of PLLA molecular segments around CNFs, and the toughening mechanism is due to the transformation of PLLA molecular chains from low-energy gt conformers to high-energy gg conformers induced by extensional flow field. More interestingly, after the extrusion-stretched samples are annealed, the oriented PLLA molecular chains form oriented crystal structures such as extended-chain lamellae, common "Shish-kebabs," and hybrid Shish-kebabs, which further enhance the thermal conductivity and heat resistance of the samples. This work reveals the effects of the orientation of the matrix molecular chains and crystallites on the thermal conductivity and mechanical properties of composites and provides a new way to prepare high-performance PLLA-based composites with high thermal conductivity, excellent mechanical properties, and high heat resistance.
Collapse
Affiliation(s)
- De-Xiang Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Gu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Tong Mao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chen-Hui Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao-Dong Qi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jing-Hui Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
48
|
Maldonado MP, Pinto GM, Costa LC, Fechine GJM. Enhanced thermally conductive TPU/graphene filaments for 3D printing produced by melt compounding. J Appl Polym Sci 2022. [DOI: 10.1002/app.52405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mário P. Maldonado
- Mackenzie Institute for Research in Graphene and Nanotechnologies‐MackGraphe Mackenzie Presbyterian University São Paulo Brazil
| | - Gabriel M. Pinto
- Mackenzie Institute for Research in Graphene and Nanotechnologies‐MackGraphe Mackenzie Presbyterian University São Paulo Brazil
| | - Lidiane Cristina Costa
- Department of Materials Engineering at UFSCar, PPGCEM/UFSCar and CCDM/UFSCar São Carlos Brazil
| | - Guilhermino J. M. Fechine
- Mackenzie Institute for Research in Graphene and Nanotechnologies‐MackGraphe Mackenzie Presbyterian University São Paulo Brazil
| |
Collapse
|
49
|
Wu H, Zhou W, Liu Q, Cai X, Qu Z, Li P, Hu D, Jia X. High pressure homogenization of graphene and carbon nanotube for thermal conductive polyethylene composite with a low filler content. J Appl Polym Sci 2022. [DOI: 10.1002/app.51838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huacheng Wu
- Jibei Electric Power Research Institute State Grid Jibei Electric Power Co., Ltd., North China Electric Power Research Institute Company Limited Beijing People's Republic of China
| | - Weiqing Zhou
- Jibei Electric Power Research Institute State Grid Jibei Electric Power Co., Ltd., North China Electric Power Research Institute Company Limited Beijing People's Republic of China
| | - Qian Liu
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing People's Republic of China
| | - Xuan Cai
- State Grid Hubei Electric Power Research Institute Wuhan People's Republic of China
| | - Zihan Qu
- State Grid Hubei Electric Power Research Institute Wuhan People's Republic of China
| | - Peng Li
- Jibei Electric Power Research Institute State Grid Jibei Electric Power Co., Ltd., North China Electric Power Research Institute Company Limited Beijing People's Republic of China
| | - Die Hu
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing People's Republic of China
| | - Xilai Jia
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing People's Republic of China
| |
Collapse
|
50
|
Zhang H, Shi T, Ma A. Recent Advances in Design and Preparation of Polymer-Based Thermal Management Material. Polymers (Basel) 2021; 13:2797. [PMID: 34451339 PMCID: PMC8400957 DOI: 10.3390/polym13162797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
The boosting of consumer electronics and 5G technology cause the continuous increment of the power density of electronic devices and lead to inevitable overheating problems, which reduces the operation efficiency and shortens the service life of electronic devices. Therefore, it is the primary task and a prerequisite to explore innovative material for meeting the requirement of high heat dissipation performance. In comparison with traditional thermal management material (e.g., ceramics and metals), the polymer-based thermal management material exhibit excellent mechanical, electrical insulation, chemical resistance and processing properties, and therefore is considered to be the most promising candidate to solve the heat dissipation problem. In this review, we summarized the recent advances of two typical polymer-based thermal management material including thermal-conduction thermal management material and thermal-storage thermal management material. Furtherly, the structural design, processing strategies and typical applications for two polymer-based thermal management materials were discussed. Finally, we proposed the challenges and prospects of the polymer-based thermal management material. This work presents new perspectives to develop advanced processing approaches and construction high-performance polymer-based thermal management material.
Collapse
Affiliation(s)
| | | | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China; (H.Z.); (T.S.)
| |
Collapse
|