1
|
Jiang K, You Q, Zheng Y, Fang F, Xie Z, Li H, Wan Y, Han C, Shi Y. Oriented Epitaxial Growth of Mixed-Dimensional van der Waals Heterostructures with One-Dimensional (1D) Bi 2S 3 Nanowires and Two-Dimensional (2D) WS 2 Monolayers for Performance-Enhanced Photodetectors. NANO LETTERS 2024; 24:14437-14444. [PMID: 39475182 DOI: 10.1021/acs.nanolett.4c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
The synthesis of mixed-dimensional van der Waals heterostructures with controlled alignment by chemical vapor deposition (CVD) technique remains a big challenge due to the complex epitaxial growth mechanism. Herein, we report the epitaxial growth of mixed-dimensional Bi2S3/WS2 heterostructures by a two-step CVD method. Bi2S3 crystals grown on 2D WS2 monolayers exhibit 1D feature with the preferred orientation, indicating a strong epitaxial growth behavior at the 1D/2D interface. Furthermore, the heterostructure was carefully characterized by transmission electron microscopy, which reveals the preferential growth of Bi2S3 nanowires along the zigzag edge of WS2 monolayers. The experimental results are also consistent with the theoretical calculations by DFT, where the preferred orientation possesses minimal surface energy. The strong interaction between Bi2S3 and WS2 enables efficient charge transfer of photogenerated carriers at the heterointerface, which leads to a largely improved light harvesting capability with the highest responsivity of ∼48.1 AW-1 and detectivity of ∼5.9 × 1012 Jones.
Collapse
Affiliation(s)
- Ke Jiang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Qi You
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yue Zheng
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Feier Fang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Zihao Xie
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yi Wan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Cheng Han
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yumeng Shi
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
2
|
Liu A, Ding J, Tan Q, Yang P, Liu Y, Wang Q. Ultrahigh-performance photodetectors based on low-dimensional Cs 2AgBiBr 6/CdS heterojunction. J Colloid Interface Sci 2024; 679:316-323. [PMID: 39366261 DOI: 10.1016/j.jcis.2024.09.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Lead-free double perovskite Cs2AgBiBr6 has garnered increasing attention in photoelectric applications owing to its good stability and excellent photoelectric properties. However, the poor carrier transport in Cs2AgBiBr6 thin films constraints their further application in photodetection. To overcome this issue, we have developed an innovative low-dimensional Cs2AgBiBr6/CdS heterojunction photodetector with substantially improved performance. The device achieved a high responsivity of 6.66 × 103 A/W, an outstanding specific detectivity of 2.10 × 1014 Jones, and an impressive external quantum efficiency of 1.88 × 106 %. Additionally, the on/off current ratio of the heterojunction device reached an impressive 6.18 × 107. These key parameters are significantly better than those of most previously reported Cs2AgBiBr6-based photodetectors. Furthermore, scanning photocurrent mapping and band arrangement analysis were performed to elucidate the mechanism of photocurrent generation and transport in the low-dimensional Cs2AgBiBr6/CdS heterojunction photodetectors. This study highlights the outstanding performance of Cs2AgBiBr6/CdS heterojunction and provides a simple and effective strategy for developing high-performance Cs2AgBiBr6-based photodetectors.
Collapse
Affiliation(s)
- Aimin Liu
- College of Physics and Electronic Information, Yunnan Normal University, Yunnan, Kunming 650500, China
| | - Jun Ding
- College of Physics and Electronic Information, Yunnan Normal University, Yunnan, Kunming 650500, China
| | - Qiuhong Tan
- College of Physics and Electronic Information, Yunnan Normal University, Yunnan, Kunming 650500, China; Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Yunnan, Kunming 650500, China; Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China.
| | - Peizhi Yang
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Yingkai Liu
- College of Physics and Electronic Information, Yunnan Normal University, Yunnan, Kunming 650500, China; Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Yunnan, Kunming 650500, China; Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Qianjin Wang
- College of Physics and Electronic Information, Yunnan Normal University, Yunnan, Kunming 650500, China; Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Yunnan, Kunming 650500, China; Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
3
|
Xie P, Xu Y, Wang J, Li D, Zhang Y, Zeng Z, Gao B, Quan Q, Li B, Meng Y, Wang W, Li Y, Yan Y, Shen Y, Sun J, Ho JC. Birdlike broadband neuromorphic visual sensor arrays for fusion imaging. Nat Commun 2024; 15:8298. [PMID: 39333067 PMCID: PMC11437102 DOI: 10.1038/s41467-024-52563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Wearable visual bionic devices, fueled by advancements in artificial intelligence, are making remarkable progress. However, traditional silicon vision chips often grapple with high energy losses and challenges in emulating complex biological behaviors. In this study, we constructed a van der Waals P3HT/GaAs nanowires P-N junction by carefully directing the arrangement of organic molecules. Combined with a Schottky junction, this facilitated multi-faceted birdlike visual enhancement, including broadband non-volatile storage, low-light perception, and a near-zero power consumption operating mode in both individual devices and 5 × 5 arrays on arbitrary substrates. Specifically, we realized over 5 bits of in-memory sensing and computing with both negative and positive photoconductivity. When paired with two imaging modes (visible and UV), our reservoir computing system demonstrated up to 94% accuracy for color recognition. It achieved motion and UV grayscale information extraction (displayed with sunscreen), leading to fusion visual imaging. This work provides a promising co-design of material and device for a broadband and highly biomimetic optoelectronic neuromorphic system.
Collapse
Affiliation(s)
- Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yunchao Xu
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Shanghai, China
| | - Jingwen Wang
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Shanghai, China
| | - Dengji Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zixin Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Boxiang Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Quan Quan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Bowen Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yezhan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yan Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yi Shen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jia Sun
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan, China.
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Shanghai, China.
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China.
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Yue Y, Chai N, Li M, Zeng Z, Li S, Chen X, Zhou J, Wang H, Wang X. Ultrafast Photoexcitation Induced Passivation for Quasi-2D Perovskite Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407347. [PMID: 38857569 DOI: 10.1002/adma.202407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Quasi-2D perovskites exhibit great potential in photodetectors due to their exceptional optoelectronic responsivity and stability, compared to their 3D counterparts. However, the defects are detrimental to the responsivity, response speed, and stability of perovskite photodetectors. Herein, an ultrafast photoexcitation-induced passivation technique is proposed to synergistically reduce the dimensionality at the surface and induce oxygen doping in the bulk, via tuning the photoexcitation intensity. At the optimal photoexcitation level, the excited electrons and holes generate stretching force on the Pb─I bonds at the interlayered [PbI6]-, resulting in low dimensional perovskite formation, and the absorptive oxygen is combined with I vacancies at the same time. These two induced processes synergistically boost the carrier transport and interface contact performance. The most outstanding device exhibits a fast response speed with rise/decay time of 201/627 ns, with a peak responsivity/detectivity of 163 mA W-1/4.52 × 1010 Jones at 325 nm and the enhanced cycling stability. This work suggests the possibility of a new passivation technique for high performance 2D perovskite optoelectronics.
Collapse
Affiliation(s)
- Yunfan Yue
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - NianYao Chai
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mingyu Li
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zhongle Zeng
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sheng Li
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiangyu Chen
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiakang Zhou
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Huan Wang
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuewen Wang
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Zheng X, Du Q, Yu C, Liu Q, Wang W, Wang F, Qin S. Organic-Inorganic Rubrene/WS 2 Heterostructure for Broadband Detection and Polarization Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39737-39744. [PMID: 39012264 DOI: 10.1021/acsami.4c08895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Organic single crystals exhibit improved carrier mobility, longer exciton diffusion length, anisotropic charge transport, and unique linear dichroism, while its high exciton binding energy seriously limits the free-carrier generation and photoelectric conversion efficiency. Layered van der Waals heterostructures, which integrate organic crystals with high mobility two-dimensional (2D) inorganic semiconductors, are promising for promoting exciton dissociation and boosting sensitivity by utilizing the interfacial potential and photogating effect. In this work, organic single-crystal rubrene is integrated with a few-layer WS2 to design the high-performance photodetector. The device exhibits an excellent responsivity of 1000 A W-1, and a fast speed of 180 μs, which is far superior to the individual WS2 device. Equally importantly, this device provides excellent polarization detection performance by virtue of the anisotropic properties of rubrene, and the dichroic ratios are 1.56, 1.5, and 1.7 for 375, 405, and 658 nm irradiation, respectively. Finally, several high-resolution single-pixel broadband polarization imaging was demonstrated. Our work shows that organic-inorganic heterostructure is an essential candidate for improving optoelectronics performance and has potential for polarization imaging.
Collapse
Affiliation(s)
- Xialian Zheng
- School of Physical Science and Information Engineering, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252059, China
| | - Qianqian Du
- School of Physical Science and Information Engineering, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252059, China
| | - Chunshuai Yu
- School of Physical Science and Information Engineering, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252059, China
| | - Qing Liu
- School of Physical Science and Information Engineering, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252059, China
| | - Wenjun Wang
- School of Physical Science and Information Engineering, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252059, China
| | - Fengqiu Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Shuchao Qin
- School of Physical Science and Information Engineering, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
6
|
Han S, Liu J, Pérez-Jiménez AI, Lei Z, Yan P, Zhang Y, Guo X, Bai R, Hu S, Wu X, Zhang DW, Sun Q, Akinwande D, Yu ET, Ji L. Visualizing and Controlling of Photogenerated Electron-Hole Pair Separation in Monolayer WS 2 Nanobubbles under Piezoelectric Field. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36735-36744. [PMID: 38952105 DOI: 10.1021/acsami.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The piezoelectric properties of two-dimensional semiconductor nanobubbles present remarkable potential for application in flexible optoelectronic devices, and the piezoelectric field has emerged as an efficacious pathway for both the separation and migration of photogenerated electron-hole pairs, along with inhibition of recombination. However, the comprehension and control of photogenerated carrier dynamics within nanobubbles still remain inadequate. Hence, this study is dedicated to underscore the importance of in situ detection and detailed characterization of photogenerated electron-hole pairs in nanobubbles to enrich understanding and strategic manipulation in two-dimensional semiconductor materials. Utilizing frequency modulation kelvin probe force microscopy (FM-KPFM) and strain gradient distribution techniques, the existence of a piezoelectric field in monolayer WS2 nanobubbles was confirmed. Combining w/o and with illumination FM-KPFM, second-order capacitance gradient technique and in situ nanoscale tip-enhanced photoluminescence characterization techniques, the interrelationships among the piezoelectric effect, interlayer carrier transfer, and the funneling effect for photocarrier dynamics process across various nanobubble sizes were revealed. Notably, for a WS2/graphene bubble height of 15.45 nm, a 0 mV surface potential difference was recorded in the bubble region w/o and with illumination, indicating a mutual offset of piezoelectric effect, interlayer carrier transfer, and the funneling effect. This phenomenon is prevalent in transition metal dichalcogenides materials exhibiting inversion symmetry breaking. The implication of our study is profound for advancing the understanding of the dynamics of photogenerated electron-hole pair in nonuniform strain piezoelectric systems, and offers a reliable framework for the separation and modulation of photogenerated electron-hole pair in flexible optoelectronic devices and photocatalytic applications.
Collapse
Affiliation(s)
- Sheng Han
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jiong Liu
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Ana I Pérez-Jiménez
- Technology Innovation Institute, 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Zhou Lei
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Pei Yan
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yu Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xiangyu Guo
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Rongxu Bai
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Shen Hu
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Jiashan Fudan Institute, Jiaxing 314110, China
| | - Xuefeng Wu
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Shanghai Integrated Circuit Manufacturing Innovation Center, Shanghai 201210, China
| | - David W Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Shanghai Integrated Circuit Manufacturing Innovation Center, Shanghai 201210, China
- Jiashan Fudan Institute, Jiaxing 314110, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Qingqing Sun
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Shanghai Integrated Circuit Manufacturing Innovation Center, Shanghai 201210, China
- Jiashan Fudan Institute, Jiaxing 314110, China
| | - Deji Akinwande
- Microelectronic Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78758, United States
| | - Edward T Yu
- Microelectronic Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78758, United States
| | - Li Ji
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Shanghai Integrated Circuit Manufacturing Innovation Center, Shanghai 201210, China
- Jiashan Fudan Institute, Jiaxing 314110, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
7
|
Wu Z, Chen M, Liu X, Peng J, Yao J, Xue J, Zheng Z, Dong H, Li J. Sandwiched WS 2/MoTe 2/WS 2 Heterostructure with a Completely Depleted Interlayer for a Photodetector with Outstanding Detectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36609-36619. [PMID: 38949990 DOI: 10.1021/acsami.4c06712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Photodetectors based on two-dimensional van der Waals (2D vdW) heterostructures with high detectivity and rapid response have emerged as promising candidates for next-generation imaging applications. However, the practical application of currently studied 2D vdW heterostructures faces challenges related to insufficient light absorption and inadequate separation of photocarriers. To address these challenges, we present a sandwiched WS2/MoTe2/WS2 heterostructure with a completely depleted interlayer, integrated on a mirror electrode, for a highly efficient photodetector. This well-designed structure enhances light-matter interactions while facilitating effective separation and rapid collection of photocarriers. The resulting photodetector exhibits a broadband photoresponse spanning from deep ultraviolet to near-infrared wavelengths. When operated in self-powered mode, the device demonstrates an exceptional response speed of 22/34 μs, along with an impressive detectivity of 8.27 × 1010 Jones under 635 nm illumination. Additionally, by applying a bias voltage of -1 V, the detectivity can be further increased to 1.49 × 1012 Jones, while still maintaining a rapid response speed of 180/190 μs. Leveraging these outstanding performance metrics, high-resolution visible-near-infrared light imaging has been successfully demonstrated using this device. Our findings provide valuable insights into the optimization of device architecture for diverse photoelectric applications.
Collapse
Affiliation(s)
- Ziqiao Wu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meifei Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Xinyue Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, P. R. China
| | - Junhao Peng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Jiancai Xue
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
8
|
Li C, Sang D, Ge S, Zou L, Wang Q. Recent Excellent Optoelectronic Applications Based on Two-Dimensional WS 2 Nanomaterials: A Review. Molecules 2024; 29:3341. [PMID: 39064919 PMCID: PMC11280397 DOI: 10.3390/molecules29143341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Tungsten disulfide (WS2) is a promising material with excellent electrical, magnetic, optical, and mechanical properties. It is regarded as a key candidate for the development of optoelectronic devices due to its high carrier mobility, high absorption coefficient, large exciton binding energy, polarized light emission, high surface-to-volume ratio, and tunable band gap. These properties contribute to its excellent photoluminescence and high anisotropy. These characteristics render WS2 an advantageous material for applications in light-emitting devices, memristors, and numerous other devices. This article primarily reviews the most recent advancements in the field of optoelectronic devices based on two-dimensional (2D) nano-WS2. A variety of advanced devices have been considered, including light-emitting diodes (LEDs), sensors, field-effect transistors (FETs), photodetectors, field emission devices, and non-volatile memory. This review provides a guide for improving the application of 2D WS2 through improved methods, such as introducing defects and doping processes. Moreover, it is of great significance for the development of transition-metal oxides in optoelectronic applications.
Collapse
Affiliation(s)
| | - Dandan Sang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | | | | | - Qinglin Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
9
|
Zhong H, You S, Wu J, Zhu ZK, Yu P, Li H, Wu ZY, Li Y, Guan Q, Dai H, Qu C, Wang J, Chen S, Ji C, Luo J. Multiple Interlayer Interactions Enable Highly Stable X-ray Detection in 2D Hybrid Perovskites. JACS AU 2024; 4:2393-2402. [PMID: 38938789 PMCID: PMC11200223 DOI: 10.1021/jacsau.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Abstract
Metal halide perovskites have outperformed conventional inorganic semiconductors in direct X-ray detection due to their ease of synthesis and intriguing photoelectric properties. However, the operational instability caused by severe ion migration under a high external electric field is still a big concern for the practical application of perovskite detectors. Here, we report a 2D (BPEA)2PbI4 (BPEA = R-1-(4-bromophenyl)ethylammonium) perovskite with Br-substituted aromatic spacer capable of introducing abundant interactions, e.g., the molecular electrostatic forces between Br atoms and aromatic rings and halogen bonds of Br-I, in the interlayer space, which effectively suppresses ion migration and thus enables superior operational stability. Constructing direct X-ray detectors based on high-quality single crystals of (BPEA)2PbI4 results in a high sensitivity of 1,003 μC Gy-1 cm-2, a low detection limit of 366 nGy s-1, and an ultralow baseline drift of 3.48 × 10-8 nA cm-1 s-1 V-1 at 80 V bias. More strikingly, it also exhibits exceptional operational stability under high flux, long-time X-ray irradiation, and large working voltage. This work shows an integration of multiple interlayer interactions to stabilize perovskite X-ray detectors, providing new insights into the future design of perovskite optoelectronic devices toward practical application.
Collapse
Affiliation(s)
- Haiqing Zhong
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- College
of Chemistry and Materials Science, Fujian
Normal University, Fuzhou, Fujian 350007, China
| | - Shihai You
- Research
Institute of Frontier Science, Southwest
Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jianbo Wu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
| | - Zeng-Kui Zhu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
- Key
Laboratory of Fluorine and Silicon for Energy Materials and Chemistry
of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Panpan Yu
- Key
Laboratory of Fluorine and Silicon for Energy Materials and Chemistry
of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hang Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
| | - Zi-Yang Wu
- Kuang Yaming
Honors School, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Li
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qianwen Guan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
| | - Hongliang Dai
- Key
Laboratory of Fluorine and Silicon for Energy Materials and Chemistry
of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chang Qu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- College
of Chemistry and Materials Science, Fujian
Normal University, Fuzhou, Fujian 350007, China
| | - Jiahong Wang
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Shuang Chen
- Kuang Yaming
Honors School, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chengmin Ji
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
| | - Junhua Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science and Technology Innovation Laboratory for Optoelectronic Information
of China, Fuzhou, Fujian 350108, China
- College
of Chemistry and Materials Science, Fujian
Normal University, Fuzhou, Fujian 350007, China
- Key
Laboratory of Fluorine and Silicon for Energy Materials and Chemistry
of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
10
|
Chen X, Zhang Q, Peng J, Gao W, Yang M, Yu P, Yao J, Liang Y, Xiao Y, Zheng Z, Li J. Ideal Photodetector Based on WS 2/CuInP 2S 6 Heterostructure by Combining Band Engineering and Ferroelectric Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13927-13937. [PMID: 38456299 DOI: 10.1021/acsami.3c16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Two-dimensional van der Waals (2D vdW) heterostructure photodetectors have garnered significant attention for their potential applications in next-generation optoelectronic systems. However, current 2D vdW photodetectors inevitably encounter compromises between responsivity, detectivity, and response time due to the absence of multilevel regulation for free and photoexcited carriers, thereby restricting their widespread applications. To address this challenge, we propose an efficient 2D WS2/CuInP2S6 vdW heterostructure photodetector by combining band engineering and ferroelectric modulation. In this device, the asymmetric conduction and valence band offsets effectively block the majority carriers (free electrons), while photoexcited holes are efficiently tunneled and rapidly collected by the bottom electrode. Additionally, the ferroelectric CuInP2S6 layer generates polarization states that reconfigure the built-in electric field, reducing dark current and facilitating the separation of photocarriers. Moreover, photoelectrons are trapped during long-distance lateral transport, resulting in a high photoconductivity gain. Consequently, the device achieves an impressive responsivity of 88 A W-1, an outstanding specific detectivity of 3.4 × 1013 Jones, and a fast response time of 37.6/371.3 μs. Moreover, the capability of high-resolution imaging under various wavelengths and fast optical communication has been successfully demonstrated using this device, highlighting its promising application prospects in future optoelectronic systems.
Collapse
Affiliation(s)
- Xiqiang Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Qiyang Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Junhao Peng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, Guangdong, P. R. China
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, Guangdong, P. R. China
| | - Peng Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Ying Liang
- The Basic Course Department, Guangzhou Maritime University, Guangzhou 510799, Guangdong, P. R. China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
11
|
Sun W, Liu S, Wang C, Zu X, Li S, Xiang X. Integration of One-Dimensional (1D) Lead-Free Perovskite Microbelts onto Silicon for Ultraviolet-Visible-Near-Infrared (UV-vis-NIR) Heterojunction Photodetectors. J Phys Chem Lett 2024; 15:2359-2368. [PMID: 38391127 DOI: 10.1021/acs.jpclett.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Lead-free perovskites are considered to be candidates for next-generation photodetectors, because of their excellent charge carrier transport properties and low toxicity. However, their application in integrated circuits is hindered by their inadequate performance and size restrictions. To aim at the development of lead-free perovskite-integrated optoelectronic devices, a CsAg2I3/silicon (CAI/Si) heterojunction is presented in this work by using a spatial confinement growth method, where the in-plane growth of CAI microbelts with high-quality single-crystal characteristics is primarily dependent on the concentration of surrounding precursor solution. The fabricated photodetectors based on the CAI/Si heterojunctions exhibit a broad-spectrum detection capability in the ultraviolet-visible-near-infrared (UV-vis-NIR) range. In addition, the photodetectors show good photoelectric detection performance, including a maximum responsivity of 48.5 mA/W and detectivity of 1.13 × 1011 Jones, respectively. Besides, the photodetectors have a rapid response of 6.5/224 μs and good air stability for over 2 months. This work contributes a new idea to design next-generation optoelectronic devices with high integration density.
Collapse
Affiliation(s)
- Wenfeng Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shaolong Liu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Caizheng Wang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Sean Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xia Xiang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Singh J, Astarini NA, Tsai M, Venkatesan M, Kuo C, Yang C, Yen H. Growth of Wafer-Scale Single-Crystal 2D Semiconducting Transition Metal Dichalcogenide Monolayers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307839. [PMID: 38164110 PMCID: PMC10953574 DOI: 10.1002/advs.202307839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Due to extraordinary electronic and optoelectronic properties, large-scale single-crystal two-dimensional (2D) semiconducting transition metal dichalcogenide (TMD) monolayers have gained significant interest in the development of profit-making cutting-edge nano and atomic-scale devices. To explore the remarkable properties of single-crystal 2D monolayers, many strategies are proposed to achieve ultra-thin functional devices. Despite substantial attempts, the controllable growth of high-quality single-crystal 2D monolayer still needs to be improved. The quality of the 2D monolayer strongly depends on the underlying substrates primarily responsible for the formation of grain boundaries during the growth process. To restrain the grain boundaries, the epitaxial growth process plays a crucial role and becomes ideal if an appropriate single crystal substrate is selected. Therefore, this perspective focuses on the latest advances in the growth of large-scale single-crystal 2D TMD monolayers in the light of enhancing their industrial applicability. In the end, recent progress and challenges of 2D TMD materials for various potential applications are highlighted.
Collapse
Affiliation(s)
- Jitendra Singh
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City106335Taiwan
- Department of PhysicsUdit Narayan Post Graduate College PadraunaKushinagarUttar Pradesh274304India
| | - Nadiya Ayu Astarini
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City106335Taiwan
| | - Meng‐Lin Tsai
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City106335Taiwan
| | - Manikandan Venkatesan
- Department of Molecular Science and EngineeringInstitute of Organic and Polymeric MaterialsNational Taipei University of TechnologyTaipei City106344Taiwan
| | - Chi‐Ching Kuo
- Department of Molecular Science and EngineeringInstitute of Organic and Polymeric MaterialsNational Taipei University of TechnologyTaipei City106344Taiwan
| | - Chan‐Shan Yang
- Institute and Undergraduate Program of Electro‐Optical EngineeringNational Taiwan Normal UniversityTaipei City11677Taiwan
| | - Hung‐Wei Yen
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei City106319Taiwan
| |
Collapse
|
13
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
14
|
Uthappa UT, Nehra M, Kumar R, Dilbaghi N, Marrazza G, Kaushik A, Kumar S. Trends and prospects of 2-D tungsten disulphide (WS 2) hybrid nanosystems for environmental and biomedical applications. Adv Colloid Interface Sci 2023; 322:103024. [PMID: 37952364 DOI: 10.1016/j.cis.2023.103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Recently, 2D layered transition metal dichalcogenides (TMDCs) with their ultrathin sheet nanostructure and diversified electronic structure have drawn attention for various advanced applications to achieve high-performance parameters. Unique 2D TMDCs mainly comprise transition metal and chalcogen element where chalcogen element layers sandwich the transition metal element layer. In such a case, various properties can be enhanced and controlled depending on the targeted application. Among manipulative 2D TMDCs, tungsten disulphide (WS2) is one of the emerging nano-system due to its fascinating properties in terms of direct band gap, higher mobility, strong photoluminescence, good thermal stability, and strong magnetic field interaction. The advancement in characterization techniques, especially scattering techniques, can help in study of opto-electronic properties of 2D TMDCs along with determination of layer variations and investigation of defect. In this review, the fabrication and applications are well summarized to optimize an appropriate WS2-TMDCs assembly according to focused field of research. Here, the scientific investigations on 2D WS2 are studied in terms of its structure, role of scattering techniques to study its properties, and synthesis routes followed by its potential applications for environmental remediation (e.g., photocatalytic degradation of pollutants, gas sensing, and wastewater treatment) and biomedical domain (e.g., drug delivery, photothermal therapy, biomedical imaging, and biosensing). Further, a special emphasis is given to the significance of 2D WS2 as a substrate for surface-enhanced Raman scattering (SERS). The discussion is further extended to commercial and industrial aspects, keeping in view major research gaps in existing research studies.
Collapse
Affiliation(s)
- U T Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry" Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA; United State, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
15
|
Wang S, Qi L, Xia Z, Wang W, Yue D, Wang S, Su S. Polarization-Sensitive Detector Based on MoTe 2/WTe 2 Heterojunction for Broadband Optoelectronic Imaging. J Phys Chem Lett 2023; 14:10509-10516. [PMID: 37970815 DOI: 10.1021/acs.jpclett.3c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polarization-sensitive detectors have significant applications in modern communication and information processing. In this study. We present a polarization-sensitive detector based on a MoTe2/WTe2 heterojunction, where WTe2 forms a favorable bandgap structure with MoTe2 after forming the heterojunction. This enhances the carrier separation efficiency and photoelectric response. We successfully achieved wide spectral detection ranging from visible to near-infrared light. Specifically, under zero bias, our photodetector exhibits a responsivity (R) of 0.6 A/W and a detectivity (D*) of 3.6 × 1013 Jones for 635 nm laser illumination. Moreover, the photoswitching ratio can approach approximately 6.3 × 105. Importantly, the polarization sensitivity can reach 3.5 (5.2) at 635 (1310) nm polarized light at zero bias. This study both unveils potential for utilizing MoTe2/WTe2 heterojunctions as polarization-sensitive detectors and provides novel insights for developing high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Sujuan Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, 999078 Macao SAR, P.R. China
| | - Ligan Qi
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Zhonghui Xia
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Wenhai Wang
- College of Electrical Engineering, Hebei University of Architecture, Zhangjiakou 075000, P.R. China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, P.R. China
| | - Shuangpeng Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, P.R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, 999078 Macao SAR, P.R. China
| | - Shichen Su
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Guangzhou 510631, P.R. China
| |
Collapse
|
16
|
Fu JH, Min J, Chang CK, Tseng CC, Wang Q, Sugisaki H, Li C, Chang YM, Alnami I, Syong WR, Lin C, Fang F, Zhao L, Lo TH, Lai CS, Chiu WS, Jian ZS, Chang WH, Lu YJ, Shih K, Li LJ, Wan Y, Shi Y, Tung V. Oriented lateral growth of two-dimensional materials on c-plane sapphire. NATURE NANOTECHNOLOGY 2023; 18:1289-1294. [PMID: 37474684 DOI: 10.1038/s41565-023-01445-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) represent the ultimate thickness for scaling down channel materials. They provide a tantalizing solution to push the limit of semiconductor technology nodes in the sub-1 nm range. One key challenge with 2D semiconducting TMD channel materials is to achieve large-scale batch growth on insulating substrates of single crystals with spatial homogeneity and compelling electrical properties. Recent studies have claimed the epitaxy growth of wafer-scale, single-crystal 2D TMDs on a c-plane sapphire substrate with deliberately engineered off-cut angles. It has been postulated that exposed step edges break the energy degeneracy of nucleation and thus drive the seamless stitching of mono-oriented flakes. Here we show that a more dominant factor should be considered: in particular, the interaction of 2D TMD grains with the exposed oxygen-aluminium atomic plane establishes an energy-minimized 2D TMD-sapphire configuration. Reconstructing the surfaces of c-plane sapphire substrates to only a single type of atomic plane (plane symmetry) already guarantees the single-crystal epitaxy of monolayer TMDs without the aid of step edges. Electrical results evidence the structural uniformity of the monolayers. Our findings elucidate a long-standing question that curbs the wafer-scale batch epitaxy of 2D TMD single crystals-an important step towards using 2D materials for future electronics. Experiments extended to perovskite materials also support the argument that the interaction with sapphire atomic surfaces is more dominant than step-edge docking.
Collapse
Affiliation(s)
- Jui-Han Fu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jiacheng Min
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Che-Kang Chang
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Chih Tseng
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qingxiao Wang
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hayato Sugisaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Chenyang Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Yu-Ming Chang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Ibrahim Alnami
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wei-Ren Syong
- Research Centre for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ci Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Feier Fang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Lv Zhao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Tzu-Hsuan Lo
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chao-Sung Lai
- Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Sheng Chiu
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Zih-Siang Jian
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Hao Chang
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
- Research Centre for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Jung Lu
- Research Centre for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Lain-Jong Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yi Wan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yumeng Shi
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China.
| | - Vincent Tung
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Center for Green Technology of the Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Mandal A, Gupta S, Dutta S, Pati SK, Bhattacharyya S. Transition from Dion-Jacobson hybrid layered double perovskites to 1D perovskites for ultraviolet to visible photodetection. Chem Sci 2023; 14:9770-9779. [PMID: 37736622 PMCID: PMC10510777 DOI: 10.1039/d3sc01919e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
New perovskite phases having diverse optoelectronic properties are the need of the hour. We present five variations of R2AgM(iii)X8, where R = NH3C4H8NH3 (4N4) or NH3C6H12NH3 (6N6); M(iii) = Bi3+ or Sb3+; and X = Br- or I-, by tuning the composition of (4N4)2AgBiBr8, a structurally rich hybrid layered double perovskite (HLDP). (4N4)2AgBiBr8, (4N4)2AgSbBr8, and (6N6)2AgBiBr8 crystallize as Dion-Jacobson (DJ) HLDPs, whereas 1D (6N6)SbBr5, (4N4)-BiI and (4N4)-SbI have trans-connected chains by corner-shared octahedra. Ag+ stays out of the 1D lattice either when SbBr63- distortion is high or if Ag+ needs to octahedrally coordinate with I-. Band structure calculations show a direct bandgap for all the bromide phases except (6N6)2AgBiBr8. (4N4)2AgBiBr8 with lower octahedral tilt shows a maximum UV responsivity of 18.8 ± 0.2 A W-1 and external quantum efficiency (EQE) of 6360 ± 58%, at 2.5 V. When self-powered (0 V), (4N4)-SbI has the best responsivity of 11.7 ± 0.2 mA W-1 under 485 nm visible light, with fast photoresponse ≤100 ms.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| | - Shresth Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| | - Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| |
Collapse
|
19
|
Segura-Sanchis E, García-Aboal R, Fenollosa R, Ramiro-Manzano F, Atienzar P. Scanning Photocurrent Microscopy in Single Crystal Multidimensional Hybrid Lead Bromide Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2570. [PMID: 37764599 PMCID: PMC10535732 DOI: 10.3390/nano13182570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
We investigated solution-grown single crystals of multidimensional 2D-3D hybrid lead bromide perovskites using spatially resolved photocurrent and photoluminescence. Scanning photocurrent microscopy (SPCM) measurements where the electrodes consisted of a dip probe contact and a back contact. The crystals revealed significant differences between 3D and multidimensional 2D-3D perovskites under biased detection, not only in terms of photocarrier decay length values but also in the spatial dynamics across the crystal. In general, the photocurrent maps indicate that the closer the border proximity, the shorter the effective decay length, thus suggesting a determinant role of the border recombination centers in monocrystalline samples. In this case, multidimensional 2D-3D perovskites exhibited a simple fitting model consisting of a single exponential, while 3D perovskites demonstrated two distinct charge carrier migration dynamics within the crystal: fast and slow. Although the first one matches that of the 2D-3D perovskite, the long decay of the 3D sample exhibits a value two orders of magnitude larger. This difference could be attributed to the presence of interlayer screening and a larger exciton binding energy of the multidimensional 2D-3D perovskites with respect to their 3D counterparts.
Collapse
Affiliation(s)
| | | | | | - Fernando Ramiro-Manzano
- Instituto de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain; (E.S.-S.); (R.G.-A.); (R.F.)
| | - Pedro Atienzar
- Instituto de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Avenida de los Naranjos s/n, 46022 Valencia, Spain; (E.S.-S.); (R.G.-A.); (R.F.)
| |
Collapse
|
20
|
Tian Y, Zeng X, Xing Y, Chen J, Deng S, She J, Liu F. High-Performance Planar Field-Emission Photodetector of Monolayer Tungsten Disulfide with Microtips. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304233. [PMID: 37616506 DOI: 10.1002/smll.202304233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Monolayer tungsten disulfide (ML WS2 ) is believed as an ideal photosensitive material due to its small direct bandgap, large exciton/trion binding energy, high carrier mobility, and considerable quantum conversion efficiency. Compared with other photosensitive devices, planar field emission (FE)-type photodetectors with a full-plane structure should simultaneously have rapider switching speed and lower power consumption. In this work, ML WS2 microtips are fabricated by electron beam lithography (EBL) way and used to construct a planar FE-type photodetector. By optimization design, ML WS2 with three microtips can exhibit the maximum current density as high as 52 A cm-2 (@300 V µm-1 ), and the largest photoresponsivity is up to 6.8 × 105 A W-1 under green light irradiation, superior to that of many other ML transition metal dichalcogenide (TMDC) detectors. More interestingly, ML WS2 devices with microtips can effectively solve the contradictory problem between large photoresponsivity and rapid switching speed. The excellent photoresponse performances of ML WS2 with microtips should be attributed to their high carrier mobility, sharp emission edge, ultrahigh quantum yield, and unique planar FE device structure. Our research may shed new light on exploring the fabrication technology and photosensitive mechanism of two dimensional (2D) material-based planar FE photodetectors.
Collapse
Affiliation(s)
- Yan Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiangjun Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yang Xing
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Juncong She
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
21
|
Wu J, Zhang X, You S, Zhu ZK, Zhu T, Wang Z, Li R, Guan Q, Liang L, Niu X, Luo J. Low Detection Limit Circularly Polarized Light Detection Realized by Constructing Chiral Perovskite/Si Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302443. [PMID: 37156749 DOI: 10.1002/smll.202302443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite-based CPL detectors with both high distinguishability of left- and right-handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R-MPA)2 MAPb2 I7 /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high-sensitive and low-limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built-in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure-based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm-2 under the self-driven mode. As a pioneering study, this work paves the way for designing high-sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Shihai You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Zeng-Kui Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Tingting Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Ziyang Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Ruiqing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qianwen Guan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lishan Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Xinyi Niu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| |
Collapse
|
22
|
Cai Y, Lu Z, Xu X, Gao Y, Shi T, Wang X, Shui L. Bandgap Engineering of Two-Dimensional Double Perovskite Cs 4AgBiBr 8/WSe 2 Heterostructure from Indirect Bandgap to Direct Bandgap by Introducing Se Vacancy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103668. [PMID: 37241293 DOI: 10.3390/ma16103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Heterostructures based on layered materials are considered next-generation photocatalysts due to their unique mechanical, physical, and chemical properties. In this work, we conducted a systematic first-principles study on the structure, stability, and electronic properties of a 2D monolayer WSe2/Cs4AgBiBr8 heterostructure. We found that the heterostructure is not only a type-II heterostructure with a high optical absorption coefficient, but also shows better optoelectronic properties, changing from an indirect bandgap semiconductor (about 1.70 eV) to a direct bandgap semiconductor (about 1.23 eV) by introducing an appropriate Se vacancy. Moreover, we investigated the stability of the heterostructure with Se atomic vacancy in different positions and found that the heterostructure was more stable when the Se vacancy is near the vertical direction of the upper Br atoms from the 2D double perovskite layer. The insightful understanding of WSe2/Cs4AgBiBr8 heterostructure and the defect engineering will offer useful strategies to design superior layered photodetectors.
Collapse
Affiliation(s)
- Yiwei Cai
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Zhengli Lu
- Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Xin Xu
- Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Yujia Gao
- Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Tingting Shi
- Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Jinan University, Guangzhou 510632, China
| | - Xin Wang
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou 510006, China
| | - Lingling Shui
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Device, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
23
|
Dan Z, Yang B, Song Q, Chen J, Li H, Gao W, Huang L, Zhang M, Yang M, Zheng Z, Huo N, Han L, Li J. Type-II Bi 2O 2Se/MoTe 2 van der Waals Heterostructure Photodetectors with High Gate-Modulation Photovoltaic Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18101-18113. [PMID: 36989425 DOI: 10.1021/acsami.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In recent years, two-dimensional (2D) nonlayered Bi2O2Se-based electronics and optoelectronics have drawn enormous attention owing to their high electron mobility, facile synthetic process, stability to the atmosphere, and moderate narrow band gaps. However, 2D Bi2O2Se-based photodetectors typically present large dark current, relatively slow response speed, and persistent photoconductivity effect, limiting further improvement in fast-response imaging sensors and low-consumption broadband detection. Herein, a Bi2O2Se/2H-MoTe2 van der Waals (vdWs) heterostructure obtained from the chemical vapor deposition (CVD) approach and vertical stacking is reported. The proposed type-II staggered band alignment desirable for suppression of dark current and separation of photoinduced carriers is confirmed by density functional theory (DFT) calculations, accompanied by strong interlayer coupling and efficient built-in potential at the junction. Consequently, a stable visible (405 nm) to near-infrared (1310 nm) response capability, a self-driven prominent responsivity (R) of 1.24 A·W-1, and a high specific detectivity (D*) of 3.73 × 1011 Jones under 405 nm are achieved. In particular, R, D*, fill factor, and photoelectrical conversion efficiency (PCE) can be enhanced to 4.96 A·W-1, 3.84 × 1012 Jones, 0.52, and 7.21% at Vg = -60 V through a large band offset originated from the n+-p junction. It is suggested that the present vdWs heterostructure is a promising candidate for logical integrated circuits, image sensors, and low-power consumption detection.
Collapse
Affiliation(s)
- Zhiying Dan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Baoxiang Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Qiqi Song
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jianru Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Hengyi Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Le Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Menglong Zhang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Nengjie Huo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Lixiang Han
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Jingbo Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| |
Collapse
|
24
|
Pan R, Cai Y, Zhang F, Wang S, Chen L, Feng X, Ha Y, Zhang R, Pu M, Li X, Ma X, Luo X. High Performance Graphene-C 60 -Bismuth Telluride-C 60 -Graphene Nanometer Thin Film Phototransistor with Adjustable Positive and Negative Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206997. [PMID: 36748286 PMCID: PMC10074057 DOI: 10.1002/advs.202206997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Graphene is a promising candidate for the next-generation infrared array image sensors at room temperature due to its high mobility, tunable energy band, wide band absorption, and compatibility with complementary metal oxide semiconductor process. However, it is difficult to simultaneously obtain ultrafast response time and ultrahigh responsivity, which limits the further improvement of graphene photoconductive devices. Here, a novel graphene/C60 /bismuth telluride/C60 /graphene vertical heterojunction phototransistor is proposed. The response spectral range covers 400-1800 nm; the responsivity peak is 106 A W-1 ; and the peak detection rate and peak response speed reach 1014 Jones and 250 µs, respectively. In addition, the regulation of positive and negative photocurrents at a gate voltage is characterized and the ionization process in impurities of the designed phototransistor at a low temperature is analyzed. Tunable bidirectional response provides a new degree of freedom for phototransistors' signal resolution. The analysis of the dynamic change process of impurity energy level is conducted to improve the device's performance. From the perspective of manufacturing process, the ultrathin phototransistor (20-30 nm) is compatible with functional metasurface to realize wavelength or polarization selection, making it possible to achieve large-scale production of integrated spectrometer or polarization imaging sensor by nanoimprinting process.
Collapse
Affiliation(s)
- Rui Pan
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- Division of Frontier Science and TechnologyInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Yuanlingyun Cai
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- School of OptoelectronicsUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Feifei Zhang
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Si Wang
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Lianwei Chen
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Xingdong Feng
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- School of OptoelectronicsUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yingli Ha
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- School of OptoelectronicsUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Research Center on Vector Optical FieldsInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Renyan Zhang
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- Division of Frontier Science and TechnologyInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Mingbo Pu
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- School of OptoelectronicsUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Research Center on Vector Optical FieldsInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
| | - Xiong Li
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- School of OptoelectronicsUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiaoliang Ma
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- School of OptoelectronicsUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano‐Fabrication and Micro‐EngineeringInstitute of Optics and ElectronicsChinese Academy of SciencesChengdu610209P. R. China
- School of OptoelectronicsUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
25
|
Song X, Jian Y, Wang X, Chen J, Shan Q, Zhang S, Chen Z, Chen X, Zeng H. Hybrid mixed-dimensional WTe 2/CsPbI 3perovskite heterojunction for high-performance photodetectors. NANOTECHNOLOGY 2023; 34:195201. [PMID: 36753757 DOI: 10.1088/1361-6528/acba1c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Perovskites have showed significant potential for the application in photodetectors due to their outstanding electrical and optical properties. Integrating two-dimensional (2D) materials with perovskites can make full use of the high carrier mobility of 2D materials and strong light absorption of perovskite to realize excellent optoelectrical properties. Here, we demonstrate a photodetector based on the WTe2/CsPbI3heterostructure. The quenching and the shortened lifetime of photoluminescence (PL) for CsPbI3perovskite confirms the efficient charge transfer at the WTe2/CsPbI3heterojunction. After coupled with WTe2, the photoresponsivity of the CsPbI3photodetector is improved by almost two orders of magnitude due to the high-gain photogating effect. The WTe2/CsPbI3heterojunction photodetector reveals a large responsivity of 1157 A W-1and a high detectivity of 2.1 × 1013Jones. The results pave the way for the development of high-performance optoelectronic devices based on 2D materials/perovskite heterojunctions.
Collapse
Affiliation(s)
- Xiufeng Song
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yuxuan Jian
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xusheng Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Jiawei Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Qingsong Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhanyang Chen
- Shangdong Gemei Tungsten & Molybdenum Material Co. LTD, Weihai 265222, People's Republic of China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
26
|
Yang B, Gao W, Li H, Gao P, Yang M, Pan Y, Wang C, Yang Y, Huo N, Zheng Z, Li J. Visible and infrared photodiode based on γ-InSe/Ge van der Waals heterojunction for polarized detection and imaging. NANOSCALE 2023; 15:3520-3531. [PMID: 36723020 DOI: 10.1039/d2nr06642d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Broadband photodetectors are a category of optoelectronic devices that have important applications in modern communication information. γ-InSe is a newly developed two-dimensional (2D) layered semiconductor with an air-stable and low-symmetry crystal structure that is suitable for polarization-sensitive photodetection. Herein, we report a P-N photodiode based on 3D Ge/2D γ-InSe van der Waals heterojunction (vdWH). A built-in electric field is introduced at the p-Ge/n-InSe interface to suppress the dark current and accelerate the separation of photogenerated carriers. Moreover, the heterojunction belongs to the accumulation mode with a well-designed type-II band arrangement, which is suitable for the fast separation of photogenerated carriers. Driven by these advantages, the device exhibits excellent photovoltaic performance within the detection range of 400 to 1600 nm and shows a double photocurrent peak at around 405 and 1550 nm. In particular, the responsivity (R) is up to 9.78 A W-1 and the specific detectivity (D*) reaches 5.38 × 1011 Jones with a fast response speed of 46/32 μs under a 1550 nm laser. Under blackbody radiation, the room temperature R and D* in the mid-wavelength infrared region are 0.203 A W-1 and 5.6 × 108 Jones, respectively. Moreover, polarization-sensitive light detection from 405-1550 nm was achieved, with the dichroism ratios of 1.44, 3.01, 1.71, 1.41 and 1.34 at 405, 635, 808, 1310 and 1550 nm, respectively. In addition, high-resolution single-pixel imaging capability is demonstrated at visible and near-infrared wavelengths. This work reveals the great potential of the γ-InSe/Ge photodiode for high-performance, broadband, air-stable and polarization-sensitive photodetection.
Collapse
Affiliation(s)
- Baoxiang Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Wei Gao
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Hengyi Li
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Peng Gao
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Yuan Pan
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Chuanglei Wang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Yani Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Nengjie Huo
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Jingbo Li
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| |
Collapse
|
27
|
Liu S, Li H, Lu H, Wang Y, Wen X, Deng S, Li MY, Liu S, Wang C, Li X. High Performance 0D ZnO Quantum Dot/2D (PEA) 2PbI 4 Nanosheet Hybrid Photodetectors Fabricated via a Facile Antisolvent Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4217. [PMID: 36500840 PMCID: PMC9738548 DOI: 10.3390/nano12234217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) organic-inorganic perovskites have great potential for the fabrication of next-generation photodetectors owing to their outstanding optoelectronic features, but their utilization has encountered a bottleneck in anisotropic carrier transportation induced by the unfavorable continuity of the thin films. We propose a facile approach for the fabrication of 0D ZnO quantum dot (QD)/2D (PEA)2PbI4 nanosheet hybrid photodetectors under the atmospheric conditions associated with the ZnO QD chloroform antisolvent. Profiting from the antisolvent, the uniform morphology of the perovskite thin films is obtained owing to the significantly accelerated nucleation site formation and grain growth rates, and ZnO QDs homogeneously decorate the surface of (PEA)2PbI4 nanosheets, which spontaneously passivate the defects on perovskites and enhance the carrier separation by the well-matched band structure. By varying the ZnO QD concentration, the Ion/Ioff ratio of the photodetectors radically elevates from 78.3 to 1040, and a 12-fold increase in the normalized detectivity is simultaneously observed. In addition, the agglomeration of perovskite grains is governed by the annealing temperature, and the photodetector fabricated at a relatively low temperature of 120 °C exhibits excellent stability after a 50-cycle test in the air condition without any encapsulation.
Collapse
Affiliation(s)
- Shijie Liu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Li
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Haifei Lu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yanran Wang
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoyan Wen
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Shuo Deng
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Ming-Yu Li
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Sisi Liu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Cong Wang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiao Li
- Hisense Visual Technology Co., Ltd., Qingdao 266555, China
| |
Collapse
|
28
|
Wang H, Wang W, Zhong Y, Li D, Li Z, Xu X, Song X, Chen Y, Huang P, Mei A, Han H, Zhai T, Zhou X. Approaching the External Quantum Efficiency Limit in 2D Photovoltaic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206122. [PMID: 35953088 DOI: 10.1002/adma.202206122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
2D transition metal dichalcogenides (TMDs) are promising candidates for realizing ultrathin and high-performance photovoltaic devices. However, the external quantum efficiency (EQE) and power conversion efficiency (PCE) of most 2D photovoltaic devices face great challenges in exceeding 50% and 3%, respectively, due to the low efficiency of photocarrier separation and collection. Here, this study demonstrates photovoltaic devices with defect-free interface and recombination-free channel based on 2D WS2 , showing high EQE of 92% approaching the theoretical limit and high PCE of 5.0%. The high performances are attributed to the van der Waals metal contact without interface defects and Fermi-level pinning, and the fully depleted channel without photocarrier recombination, leading to intrinsic photocarrier separation and collection with high efficiency. Furthermore, this study demonstrates that the strategy can be extended to other TMDs such as MoSe2 and WSe2 with EQE of 92% and 94%, respectively. This work proposes a universal strategy for building high-performance 2D photovoltaic devices. The nearly ideal EQE provides great potential for PCE approaching the Shockley-Queisser limit.
Collapse
Affiliation(s)
- Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Wang
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yongle Zhong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingyu Song
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunxin Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Pu Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Anyi Mei
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongwei Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
29
|
Abstract
The past one and a half decades have witnessed the tremendous progress of two-dimensional (2D) crystals, including graphene, transition-metal dichalcogenides, black phosphorus, MXenes, hexagonal boron nitride, etc., in a variety of fields. The key to their success is their unique structural, electrical, mechanical and optical properties. Herein, this paper gives a comprehensive summary on the recent advances in 2D materials for optoelectronic approaches with the emphasis on the morphology and structure, optical properties, synthesis methods, as well as detailed optoelectronic applications. Additionally, the challenges and perspectives in the current development of 2D materials are also summarized and indicated. Therefore, this review can provide a reference for further explorations and innovations of 2D material-based optoelectronics devices.
Collapse
|
30
|
Mandal A, Mondal A, Bhattacharyya R, Bhattacharyya S. Cs 4CuSb 2Cl 12-xI x( x = 0-10) nanocrystals for visible light photodetection. NANOTECHNOLOGY 2022; 33:415403. [PMID: 35793644 DOI: 10.1088/1361-6528/ac7ed2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Lead-free layered double perovskite nanocrystals (NCs) with tunable visible range emission, high carrier mobility and low trap density are the need of the hour to make them applicable for optoelectronic and photovoltaic devices. Introduction of Cu2+in the high band gap Cs3Sb2Cl9lattice transforms it to the monoclinic Cs4CuSb2Cl12(CCSC) NCs having a direct band gap of 1.96 eV. The replacement of 50% Cl-by I-ions generates <5 nm Cs4CuSb2Cl6I6(C6I6) monodispersed NCs with an unchanged crystal system but with further lowering of the band gap to 1.92 eV. Thep-type C6I6 NCs exhibit emission spectra, lower trap density, appreciable hole mobility and most importantly a lower exciton binding energy of only 50.8 ± 1.3 meV. The temperature dependent photoluminescence (PL) spectra of the C6I6 NCs show a decrease in non-radiative recombination from 300 K down to 78 K. When applied as the photoactive layer in out-of-plane photodetector devices, C6I6 NC devices exhibit an appreciable responsivity of 0.67 A W-1at 5 V, detectivity of 4.55 × 108Jones (2.5 V), and fast photoresponse with rise and fall time of 126 and 94 ms, respectively. On the other hand, higher I-substitution in Cs4CuSb2Cl2I10NCs (C2I10) degrades the lattice into a mixture of monoclinic and trigonal crystal phases, which also lowers the device performance.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India
| | - Anamika Mondal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India
| | - Rachana Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India
| |
Collapse
|