1
|
Krainer G, Jacquat RPB, Schneider MM, Welsh TJ, Fan J, Peter QAE, Andrzejewska EA, Šneiderienė G, Czekalska MA, Ausserwoeger H, Chai L, Arter WE, Saar KL, Herling TW, Franzmann TM, Kosmoliaptsis V, Alberti S, Hartl FU, Lee SF, Knowles TPJ. Single-molecule digital sizing of proteins in solution. Nat Commun 2024; 15:7740. [PMID: 39231922 PMCID: PMC11375031 DOI: 10.1038/s41467-024-50825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
The physical characterization of proteins in terms of their sizes, interactions, and assembly states is key to understanding their biological function and dysfunction. However, this has remained a difficult task because proteins are often highly polydisperse and present as multicomponent mixtures. Here, we address this challenge by introducing single-molecule microfluidic diffusional sizing (smMDS). This approach measures the hydrodynamic radius of single proteins and protein assemblies in microchannels using single-molecule fluorescence detection. smMDS allows for ultrasensitive sizing of proteins down to femtomolar concentrations and enables affinity profiling of protein interactions at the single-molecule level. We show that smMDS is effective in resolving the assembly states of protein oligomers and in characterizing the size of protein species within complex mixtures, including fibrillar protein aggregates and nanoscale condensate clusters. Overall, smMDS is a highly sensitive method for the analysis of proteins in solution, with wide-ranging applications in drug discovery, diagnostics, and nanobiotechnology.
Collapse
Affiliation(s)
- Georg Krainer
- Institute of Molecular Biosciences (IMB), University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Raphael P B Jacquat
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Matthias M Schneider
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jieyuan Fan
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Quentin A E Peter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ewa A Andrzejewska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Greta Šneiderienė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Magdalena A Czekalska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hannes Ausserwoeger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lin Chai
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - William E Arter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kadi L Saar
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Therese W Herling
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Titus M Franzmann
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
2
|
Sahtoe DD, Andrzejewska EA, Han HL, Rennella E, Schneider MM, Meisl G, Ahlrichs M, Decarreau J, Nguyen H, Kang A, Levine P, Lamb M, Li X, Bera AK, Kay LE, Knowles TPJ, Baker D. Design of amyloidogenic peptide traps. Nat Chem Biol 2024; 20:981-990. [PMID: 38503834 PMCID: PMC11288891 DOI: 10.1038/s41589-024-01578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
Segments of proteins with high β-strand propensity can self-associate to form amyloid fibrils implicated in many diseases. We describe a general approach to bind such segments in β-strand and β-hairpin conformations using de novo designed scaffolds that contain deep peptide-binding clefts. The designs bind their cognate peptides in vitro with nanomolar affinities. The crystal structure of a designed protein-peptide complex is close to the design model, and NMR characterization reveals how the peptide-binding cleft is protected in the apo state. We use the approach to design binders to the amyloid-forming proteins transthyretin, tau, serum amyloid A1 and amyloid β1-42 (Aβ42). The Aβ binders block the assembly of Aβ fibrils as effectively as the most potent of the clinically tested antibodies to date and protect cells from toxic Aβ42 species.
Collapse
Affiliation(s)
- Danny D Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
- Hubrecht Institute, Utrecht, the Netherlands.
| | - Ewa A Andrzejewska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hannah L Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Herling TW, Cassaignau AME, Wentink AS, Peter QAE, Kumar PC, Kartanas T, Schneider MM, Cabrita LD, Christodoulou J, Knowles TPJ. Thermodynamic profiles for cotranslational trigger factor substrate recognition. SCIENCE ADVANCES 2024; 10:eadn4824. [PMID: 38985872 PMCID: PMC11235164 DOI: 10.1126/sciadv.adn4824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Molecular chaperones are central to the maintenance of proteostasis in living cells. A key member of this protein family is trigger factor (TF), which acts throughout the protein life cycle and has a ubiquitous role as the first chaperone encountered by proteins during synthesis. However, our understanding of how TF achieves favorable interactions with such a diverse substrate base remains limited. Here, we use microfluidics to reveal the thermodynamic determinants of this process. We find that TF binding to empty 70S ribosomes is enthalpy-driven, with micromolar affinity, while nanomolar affinity is achieved through a favorable entropic contribution for both intrinsically disordered and folding-competent nascent chains. These findings suggest a general mechanism for cotranslational TF function, which relies on occupation of the exposed TF-substrate binding groove rather than specific complementarity between chaperone and nascent chain. These insights add to our wider understanding of how proteins can achieve broad substrate specificity.
Collapse
Affiliation(s)
- Therese W. Herling
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Anaïs M. E. Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Anne S. Wentink
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Quentin A. E. Peter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pavan C. Kumar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tadas Kartanas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Matthias M. Schneider
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Lisa D. Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
4
|
Šneiderienė G, Czekalska MA, Xu CK, Jayaram AK, Krainer G, Arter WE, Peter QAE, Castellana-Cruz M, Saar KL, Levin A, Mueller T, Fiedler S, Devenish SRA, Fiegler H, Kumita JR, Knowles TPJ. α-Synuclein Oligomers Displace Monomeric α-Synuclein from Lipid Membranes. ACS NANO 2024; 18:17469-17482. [PMID: 38916260 PMCID: PMC11238581 DOI: 10.1021/acsnano.3c10889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Parkinson's disease (PD) is an increasingly prevalent and currently incurable neurodegenerative disorder linked to the accumulation of α-synuclein (αS) protein aggregates in the nervous system. While αS binding to membranes in its monomeric state is correlated to its physiological role, αS oligomerization and subsequent aberrant interactions with lipid bilayers have emerged as key steps in PD-associated neurotoxicity. However, little is known of the mechanisms that govern the interactions of oligomeric αS (OαS) with lipid membranes and the factors that modulate such interactions. This is in large part due to experimental challenges underlying studies of OαS-membrane interactions due to their dynamic and transient nature. Here, we address this challenge by using a suite of microfluidics-based assays that enable in-solution quantification of OαS-membrane interactions. We find that OαS bind more strongly to highly curved, rather than flat, lipid membranes. By comparing the membrane-binding properties of OαS and monomeric αS (MαS), we further demonstrate that OαS bind to membranes with up to 150-fold higher affinity than their monomeric counterparts. Moreover, OαS compete with and displace bound MαS from the membrane surface, suggesting that disruption to the functional binding of MαS to membranes may provide an additional toxicity mechanism in PD. These findings present a binding mechanism of oligomers to model membranes, which can potentially be targeted to inhibit the progression of PD.
Collapse
Affiliation(s)
- Greta Šneiderienė
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Magdalena A. Czekalska
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Fluidic
Analytics Limited, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
- Nencki
Institute of Experimental Biology, Polish
Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Catherine K. Xu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Akhila K. Jayaram
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Cavendish
Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Georg Krainer
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Institute
of Molecular Biosciences (IMB), University
of Graz, Humboldtstraße
50, 8010 Graz, Austria
| | - William E. Arter
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Quentin A. E. Peter
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Marta Castellana-Cruz
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Kadi Liis Saar
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Aviad Levin
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Thomas Mueller
- Fluidic
Analytics Limited, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Sebastian Fiedler
- Fluidic
Analytics Limited, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Sean R. A. Devenish
- Fluidic
Analytics Limited, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Heike Fiegler
- Fluidic
Analytics Limited, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Janet R. Kumita
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Cavendish
Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
5
|
O'Mahoney C, Watt I, Fiedler S, Devenish S, Srikanth S, Justice E, Dover T, Dean D, Peng C. Microfluidic Diffusional Sizing (MDS) Measurements of Secretory Neutralizing Antibody Affinity Against SARS-CoV-2. Ann Biomed Eng 2024; 52:1653-1664. [PMID: 38459195 PMCID: PMC11082020 DOI: 10.1007/s10439-024-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.
Collapse
Affiliation(s)
- Cara O'Mahoney
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ian Watt
- Fluidic Analytics, Cambridge, UK
| | | | | | - Sujata Srikanth
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Erica Justice
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Tristan Dover
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA.
| |
Collapse
|
6
|
Kar M, Vogel LT, Chauhan G, Felekyan S, Ausserwöger H, Welsh TJ, Dar F, Kamath AR, Knowles TPJ, Hyman AA, Seidel CAM, Pappu RV. Solutes unmask differences in clustering versus phase separation of FET proteins. Nat Commun 2024; 15:4408. [PMID: 38782886 PMCID: PMC11116469 DOI: 10.1038/s41467-024-48775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Phase separation and percolation contribute to phase transitions of multivalent macromolecules. Contributions of percolation are evident through the viscoelasticity of condensates and through the formation of heterogeneous distributions of nano- and mesoscale pre-percolation clusters in sub-saturated solutions. Here, we show that clusters formed in sub-saturated solutions of FET (FUS-EWSR1-TAF15) proteins are affected differently by glutamate versus chloride. These differences on the nanoscale, gleaned using a suite of methods deployed across a wide range of protein concentrations, are prevalent and can be unmasked even though the driving forces for phase separation remain unchanged in glutamate versus chloride. Strikingly, differences in anion-mediated interactions that drive clustering saturate on the micron-scale. Beyond this length scale the system separates into coexisting phases. Overall, we find that sequence-encoded interactions, mediated by solution components, make synergistic and distinct contributions to the formation of pre-percolation clusters in sub-saturated solutions, and to the driving forces for phase separation.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Gaurav Chauhan
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Suren Felekyan
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Hannes Ausserwöger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anjana R Kamath
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Anthony A Hyman
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany.
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
7
|
Zuo C, Wen Y, Chen D, Ouyang J, Li P, Dong T. Dynamic Monitoring of Biomolecular Hydrodynamic Dimensions by Magnetization Motion on Quartz Crystal Microbalance. Anal Chem 2024; 96:7421-7428. [PMID: 38691506 DOI: 10.1021/acs.analchem.3c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Hydrodynamic dimension (HD) is the primary indicator of the size of bioconjugated particles and biomolecules. It is an important parameter in the study of solid-liquid two-phase dynamics. HD dynamic monitoring is crucial for precise and customized medical research as it enables the investigation of the continuous changes in the physicochemical characteristics of biomolecules in response to external stimuli. However, current HD measurements based on Brownian motion, such as dynamic light scattering (DLS), are inadequate for meeting the polydisperse sample demands of dynamic monitoring. In this paper, we propose MMQCM method samples of various types and HD dynamic monitoring. An alternating magnetic field of frequency ωm excites biomolecule-magnetic bead particles (bioMBs) to generate magnetization motion, and the quartz crystal microbalance (QCM) senses this motion to provide HD dynamic monitoring. Specifically, the magnetization motion is modulated onto the thickness-shear oscillation of the QCM at the frequency ωq. By analysis of the frequency spectrum of the QCM output signal, the ratio of the magnitudes of the real and imaginary parts of the components at frequency ωq ± 2ωm is extracted to characterize the particle size. Using the MMQCM approach, we successfully evaluated the size of bioMBs with different biomolecule concentrations. The 30 min HD dynamic monitoring was implemented. An increase of ∼10 nm in size was observed upon biomolecular structural stretching. Subsequently, the size of bioMBs gradually reduced due to the continuous dissociation of biomolecules, with a total reduction of 20∼40 nm. This HD dynamic monitoring demonstrates that the release of biomolecules can be regulated by controlling the duration of magnetic stimulation, providing valuable insights and guidance for controlled drug release in personalized precision medicine.
Collapse
Affiliation(s)
- Can Zuo
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Yumei Wen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Dongyu Chen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Jihai Ouyang
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Ping Li
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Tao Dong
- Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
Qian C, Li P, Wang J, Hong X, Zhao X, Wu L, Miao Z, Du W, Feng X, Li Y, Chen P, Liu BF. Centrifugo-Pneumatic Reciprocating Flowing Coupled with a Spatial Confinement Strategy for an Ultrafast Multiplexed Immunoassay. Anal Chem 2024; 96:7145-7154. [PMID: 38656793 DOI: 10.1021/acs.analchem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.
Collapse
Affiliation(s)
- Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingjing Wang
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liqiang Wu
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Yao Y, Lin Y, Wu Z, Li Z, He X, Wu Y, Sun Z, Ding W, He L. Solute-particle separation in microfluidics enhanced by symmetrical convection. RSC Adv 2024; 14:1729-1740. [PMID: 38192326 PMCID: PMC10772704 DOI: 10.1039/d3ra07285a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
The utilization of microfluidic technology for miniaturized and efficient particle sorting holds significant importance in fields such as biology, chemistry, and healthcare. Passive separation methods, achieved by modifying the geometric shapes of microchannels, enable gentle and straightforward enrichment and separation of particles. Building upon previous discussions regarding the effects of column arrays on fluid flow and particle separation within microchips, we introduced a column array structure into an H-shaped microfluidic chip. It was observed that this structure enhanced mass transfer between two fluids while simultaneously intercepting particles within one fluid, satisfying the requirements for particle interception. This enhancement was primarily achieved by transforming the originally single-mode diffusion-based mass transfer into dual-mode diffusion-convection mass transfer. By further optimizing the column array, it was possible to meet the basic requirements of mass transfer and particle interception with fewer microcolumns, thereby reducing device pressure drop and facilitating the realization of parallel and high-throughput microfluidic devices. These findings have enhanced the potential application of microfluidic systems in clinical and chemical engineering domains.
Collapse
Affiliation(s)
- Yurou Yao
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Yao Lin
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Zerui Wu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University Shenzhen 518060 China
| | - Xuemei He
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Yun Wu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Weiping Ding
- Department of Electronic Engineering and Information Science, University of Science and Technology of China Hefei 230026 China
| | - Liqun He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
10
|
Yao C, Zhang J, Gao L, Jin C, Wang S, Jiang W, Liang H, Feng P, Li X, Ma L, Wei H, Sun C. Enhancing sodium percarbonate catalytic wet peroxide oxidation with artificial intelligence-optimized swirl flow: Ni single atom sites on carbon nanotubes for improved reactivity and silicon resistance. CHEMOSPHERE 2024; 346:140606. [PMID: 37939928 DOI: 10.1016/j.chemosphere.2023.140606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
H2O2 is widely used in the treatment of refractory organic pollutants.However, due to its explosive and corrosive chemical characteristics, H2O2 will bring great safety risks and troubles in transportation.So we chose sodium percarbonate(SPC) to be used in catalytic wet peroxide oxidation enhanced by swirl flow(SF-CWPO) and we designed carbon nanotubes with Ni single atom sites(Ni-NCNTs/AC) to activate SPC to treat an m-cresol wastewater containing Si.Meanwhile, artificial intelligence which used Artificial neural network (ANN) was used to optimize the conditions.Under the conditions of pH = 9.27, reaction time of 8.91 min, m-cresol concentration is 59.09 mg L-1, SPC dosage is 2.80 g L-1 and Na2SiO3·9H2O dosage is 77.27 mg L-1, the degradation rate of total organic carbon(TOC) and m-cresol reaches 94.37% and 100%, respectively.Finally, the applicability of Ni-NCNTs/AC-SPC-SF-CWPO technology was evaluated in a wastewater system of a sewage treatment enterprise and Fourier transform ion cyclotron resonance mass spectrum(FT-ICR MS) analysis and chemical oxygen demand(COD) analysis showed the great ability of Ni-NCNTs/AC-SPC-SF-CWPO technology to treat wastewater.It is believed that this paper is of great significance to the design and construction of the in-depth research and industrial application of SF-CWPO.
Collapse
Affiliation(s)
- Chenxing Yao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Liansong Gao
- Shenyang Jianzhu University, Shenyang, 110168, China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengzhe Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshuo Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanrui Liang
- Guangxi Normal University, Guilin, 541006, China
| | - Pan Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianru Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
11
|
Dai J, Izadi S, Zarzar J, Wu P, Oh A, Carter PJ. Variable domain mutational analysis to probe the molecular mechanisms of high viscosity of an IgG 1 antibody. MAbs 2024; 16:2304282. [PMID: 38269489 PMCID: PMC10813588 DOI: 10.1080/19420862.2024.2304282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Subcutaneous injection is the preferred route of administration for many antibody therapeutics for reasons that include its speed and convenience. However, the small volume limit (typically ≤ 2 mL) for subcutaneous delivery often necessitates antibody formulations at high concentrations (commonly ≥100 mg/mL), which may lead to physicochemical problems. For example, antibodies with large hydrophobic or charged patches can be prone to self-interaction giving rise to high viscosity. Here, we combined X-ray crystallography with computational modeling to predict regions of an anti-glucagon receptor (GCGR) IgG1 antibody prone to self-interaction. An extensive mutational analysis was undertaken of the complementarity-determining region residues residing in hydrophobic surface patches predicted by spatial aggregation propensity, in conjunction with residue-level solvent accessibility, averaged over conformational ensembles from molecular dynamics simulations. Dynamic light scattering (DLS) was used as a medium throughput screen for self-interaction of ~ 200 anti-GCGR IgG1 variants. A negative correlation was found between the viscosity determined at high concentration (180 mg/mL) and the DLS interaction parameter measured at low concentration (2-10 mg/mL). Additionally, anti-GCGR variants were readily identified with reduced viscosity and antigen-binding affinity within a few fold of the parent antibody, with no identified impact on overall developability. The methods described here may be useful in the optimization of other antibodies to facilitate their therapeutic administration at high concentration.
Collapse
Affiliation(s)
- Jing Dai
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Zarzar
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Patrick Wu
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Angela Oh
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
12
|
Herling TW, Invernizzi G, Ausserwöger H, Bjelke JR, Egebjerg T, Lund S, Lorenzen N, Knowles TPJ. Nonspecificity fingerprints for clinical-stage antibodies in solution. Proc Natl Acad Sci U S A 2023; 120:e2306700120. [PMID: 38109540 PMCID: PMC10756282 DOI: 10.1073/pnas.2306700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
Monoclonal antibodies (mAbs) have successfully been developed for the treatment of a wide range of diseases. The clinical success of mAbs does not solely rely on optimal potency and safety but also require good biophysical properties to ensure a high developability potential. In particular, nonspecific interactions are a key developability parameter to monitor during discovery and development. Despite an increased focus on the detection of nonspecific interactions, their underlying physicochemical origins remain poorly understood. Here, we employ solution-based microfluidic technologies to characterize a set of clinical-stage mAbs and their interactions with commonly used nonspecificity ligands to generate nonspecificity fingerprints, providing quantitative data on the underlying physical chemistry. Furthermore, the solution-based analysis enables us to measure binding affinities directly, and we evaluate the contribution of avidity in nonspecific binding by mAbs. We find that avidity can increase the apparent affinity by two orders of magnitude. Notably, we find that a subset of these highly developed mAbs show nonspecific electrostatic interactions, even at physiological pH and ionic strength, and that they can form microscale particles with charge-complementary polymers. The group of mAb constructs flagged here for nonspecificity are among the worst performers in independent reports of surface and column-based screens. The solution measurements improve on the state-of-the-art by providing a stand-alone result for individual mAbs without the need to benchmark against cohort data. Based on our findings, we propose a quantitative solution-based nonspecificity score, which can be integrated in the development workflow for biological therapeutics and more widely in protein engineering.
Collapse
Affiliation(s)
- Therese W. Herling
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Jais Rose Bjelke
- Global Research Technologies, Novo Nordisk A/S, Måløv2760, Denmark
| | - Thomas Egebjerg
- Global Research Technologies, Novo Nordisk A/S, Måløv2760, Denmark
| | - Søren Lund
- Global Research Technologies, Novo Nordisk A/S, Måløv2760, Denmark
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S, Måløv2760, Denmark
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
13
|
Fauquet J, Carette J, Duez P, Zhang J, Nachtergael A. Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction. Molecules 2023; 28:8072. [PMID: 38138562 PMCID: PMC10745392 DOI: 10.3390/molecules28248072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The interaction between SARS-CoV-2 spike RBD and ACE2 proteins is a crucial step for host cell infection by the virus. Without it, the entire virion entrance mechanism is compromised. The aim of this study was to evaluate the capacity of various natural product classes, including flavonoids, anthraquinones, saponins, ivermectin, chloroquine, and erythromycin, to modulate this interaction. To accomplish this, we applied a recently developed a microfluidic diffusional sizing (MDS) technique that allows us to probe protein-protein interactions via measurements of the hydrodynamic radius (Rh) and dissociation constant (KD); the evolution of Rh is monitored in the presence of increasing concentrations of the partner protein (ACE2); and the KD is determined through a binding curve experimental design. In a second time, with the protein partners present in equimolar amounts, the Rh of the protein complex was measured in the presence of different natural products. Five of the nine natural products/extracts tested were found to modulate the formation of the protein complex. A methanol extract of Chenopodium quinoa Willd bitter seed husks (50 µg/mL; bisdesmoside saponins) and the flavonoid naringenin (1 µM) were particularly effective. This rapid selection of effective modulators will allow us to better understand agents that may prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jason Fauquet
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (J.F.); (P.D.); (A.N.)
| | - Julie Carette
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (J.F.); (P.D.); (A.N.)
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (J.F.); (P.D.); (A.N.)
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Amandine Nachtergael
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (J.F.); (P.D.); (A.N.)
| |
Collapse
|
14
|
Sasanian N, Sharma R, Lubart Q, Kk S, Ghaeidamini M, Dorfman KD, Esbjörner EK, Westerlund F. Probing physical properties of single amyloid fibrils using nanofluidic channels. NANOSCALE 2023; 15:18737-18744. [PMID: 37953701 DOI: 10.1039/d3nr02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Amyloid fibril formation is central to the pathology of many diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Amyloid fibrils can also have functional and scaffolding roles, for example in bacterial biofilms, and have also been exploited as useful biomaterials. Despite being linear protein homopolymers, amyloid fibrils can exhibit significant structural and morphological polymorphism, making it relevant to study them on the single fibril level. We here introduce the concept of nanofluidic channel analysis to the study of single, fluorescently-labeled amyloid fibrils in solution, monitoring the extension and emission intensity of individual fibrils confined in nanochannels with a depth of 300 nm and a width that gradually increases from 300 to 3000 nm. The change in fibril extension with channel width permitted accurate determination of the persistence length of individual fibrils using Odijk's theory for strongly confined polymers. The technique was applied to amyloid fibrils prepared from the Alzheimer's related peptide amyloid-β(1-42) and the Parkinson's related protein α-synuclein, obtaining mean persistence lengths of 5.9 ± 4.5 μm and 3.0 ± 1.6 μm, respectively. The broad distributions of fibril persistence lengths indicate that amyloid fibril polymorphism can manifest in their physical properties. Interestingly, the α-synuclein fibrils had lower persistence lengths than the amyloid-β(1-42) fibrils, despite being thicker. Furthermore, there was no obvious within-sample correlation between the fluorescence emission intensity per unit length of the labelled fibrils and their persistence lengths, suggesting that stiffness may not be proportional to thickness. We foresee that the nanofluidics methodology established here will be a useful tool to study amyloid fibrils on the single fibril level to gain information on heterogeneity in their physical properties and interactions.
Collapse
Affiliation(s)
- Nima Sasanian
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Rajhans Sharma
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Quentin Lubart
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Sriram Kk
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Marziyeh Ghaeidamini
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| |
Collapse
|
15
|
Sneideris T, Erkamp NA, Ausserwöger H, Saar KL, Welsh TJ, Qian D, Katsuya-Gaviria K, Johncock MLLY, Krainer G, Borodavka A, Knowles TPJ. Targeting nucleic acid phase transitions as a mechanism of action for antimicrobial peptides. Nat Commun 2023; 14:7170. [PMID: 37935659 PMCID: PMC10630377 DOI: 10.1038/s41467-023-42374-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Antimicrobial peptides (AMPs), which combat bacterial infections by disrupting the bacterial cell membrane or interacting with intracellular targets, are naturally produced by a number of different organisms, and are increasingly also explored as therapeutics. However, the mechanisms by which AMPs act on intracellular targets are not well understood. Using machine learning-based sequence analysis, we identified a significant number of AMPs that have a strong tendency to form liquid-like condensates in the presence of nucleic acids through phase separation. We demonstrate that this phase separation propensity is linked to the effectiveness of the AMPs in inhibiting transcription and translation in vitro, as well as their ability to compact nucleic acids and form clusters with bacterial nucleic acids in bacterial cells. These results suggest that the AMP-driven compaction of nucleic acids and modulation of their phase transitions constitute a previously unrecognised mechanism by which AMPs exert their antibacterial effects. The development of antimicrobials that target nucleic acid phase transitions may become an attractive route to finding effective and long-lasting antibiotics.
Collapse
Affiliation(s)
- Tomas Sneideris
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Daoyuan Qian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Kai Katsuya-Gaviria
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Margaret L L Y Johncock
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, UK.
| |
Collapse
|
16
|
Kar M, Vogel LT, Chauhan G, Ausserwöger H, Welsh TJ, Kamath AR, Knowles TPJ, Hyman AA, Seidel CAM, Pappu RV. Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552963. [PMID: 37609232 PMCID: PMC10441405 DOI: 10.1101/2023.08.11.552963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.
Collapse
|
17
|
Watkin SAJ, Bennie RZ, Gilkes JM, Nock VM, Pearce FG, Dobson RCJ. On the utility of microfluidic systems to study protein interactions: advantages, challenges, and applications. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:459-471. [PMID: 36583735 PMCID: PMC9801160 DOI: 10.1007/s00249-022-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Within the complex milieu of a cell, which comprises a large number of different biomolecules, interactions are critical for function. In this post-reductionist era of biochemical research, the 'holy grail' for studying biomolecular interactions is to be able to characterize them in native environments. While there are a limited number of in situ experimental techniques currently available, there is a continuing need to develop new methods for the analysis of biomolecular complexes that can cope with the additional complexities introduced by native-like solutions. We think approaches that use microfluidics allow researchers to access native-like environments for studying biological problems. This review begins with a brief overview of the importance of studying biomolecular interactions and currently available methods for doing so. Basic principles of diffusion and microfluidics are introduced and this is followed by a review of previous studies that have used microfluidics to measure molecular diffusion and a discussion of the advantages and challenges of this technique.
Collapse
Affiliation(s)
- Serena A J Watkin
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rachel Z Bennie
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jenna M Gilkes
- Protein Science and Engineering Team, Callaghan Innovation, Christchurch, New Zealand
| | - Volker M Nock
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Hug MN, Keller S, Marty T, Gygax D, Meinel D, Spies P, Handschin J, Kleiser M, Vazquez N, Linnik J, Buchli R, Claas F, Heidt S, Kramer CSM, Bezstarosti S, Lee JH, Schaub S, Hönger G. HLA antibody affinity determination: From HLA-specific monoclonal antibodies to donor HLA specific antibodies (DSA) in patient serum. HLA 2023. [PMID: 37191252 DOI: 10.1111/tan.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Organs transplanted across donor-specific HLA antibodies (DSA) are associated with a variety of clinical outcomes, including a high risk of acute kidney graft rejection. Unfortunately, the currently available assays to determine DSA characteristics are insufficient to clearly discriminate between potentially harmless and harmful DSA. To further explore the hazard potential of DSA, their concentration and binding strength to their natural target, using soluble HLA, may be informative. There are currently a number of biophysical technologies available that allow the assessment of antibody binding strength. However, these methods require prior knowledge of antibody concentrations. Our objective within this study was to develop a novel approach that combines the determination of DSA-affinity as well as DSA-concentration for patient sample evaluation within one assay. We initially tested the reproducibility of previously reported affinities of human HLA-specific monoclonal antibodies and assessed the technology-specific precision of the obtained results on multiple platforms, including surface plasmon resonance (SPR), bio-layer interferometry (BLI), Luminex (single antigen beads; SAB), and flow-induced dispersion analysis (FIDA). While the first three (solid-phase) technologies revealed comparable high binding-strengths, suggesting measurement of avidity, the latter (in-solution) approach revealed slightly lower binding-strengths, presumably indicating measurement of affinity. We believe that our newly developed in-solution FIDA-assay is particularly suitable to provide useful clinical information by not just measuring DSA-affinities in patient serum samples but simultaneously delivering a particular DSA-concentration. Here, we investigated DSA from 20 pre-transplant patients, all of whom showed negative CDC-crossmatch results with donor cells and SAB signals ranging between 571 and 14899 mean fluorescence intensity (MFI). DSA-concentrations were found in the range between 11.2 and 1223 nM (median 81.1 nM), and their measured affinities fall between 0.055 and 24.7 nM (median 5.34 nM; 449-fold difference). In 13 of 20 sera (65%), DSA accounted for more than 0.1% of total serum antibodies, and 4/20 sera (20%) revealed a proportion of DSA even higher than 1%. To conclude, this study strengthens the presumption that pre-transplant patient DSA consists of various concentrations and different net affinities. Validation of these results in a larger patient cohort with clinical outcomes will be essential in a further step to assess the clinical relevance of DSA-concentration and DSA-affinity.
Collapse
Affiliation(s)
- Melanie N Hug
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Sabrina Keller
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Talea Marty
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Daniel Gygax
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Dominik Meinel
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Peter Spies
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences Muttenz, Muttenz, Switzerland
| | - Joëlle Handschin
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Kleiser
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Noemi Vazquez
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Janina Linnik
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Rico Buchli
- Department of Research and Development, PureProtein LLC, Oklahoma City, Oklahoma, USA
| | - Frans Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jar-How Lee
- Research Department, Terasaki Innovation Center (TIC), Glendale, California, USA
| | - Stefan Schaub
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Gideon Hönger
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
19
|
Schneider MM, Scheidt T, Priddey AJ, Xu CK, Hu M, Meisl G, Devenish SRA, Dobson CM, Kosmoliaptsis V, Knowles TPJ. Microfluidic antibody affinity profiling of alloantibody-HLA interactions in human serum. Biosens Bioelectron 2023; 228:115196. [PMID: 36921387 DOI: 10.1016/j.bios.2023.115196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Antibody profiling is a fundamental component of understanding the humoral response in a wide range of disease areas. Most currently used approaches operate by capturing antibodies onto functionalised surfaces. Such measurements of surface binding are governed by an overall antibody titre, while the two fundamental molecular parameters, antibody affinity and antibody concentration, are challenging to determine individually from such approaches. Here, by applying microfluidic diffusional sizing (MDS), we show how we can overcome this challenge and demonstrate reliable quantification of alloantibody binding affinity and concentration of alloantibodies binding to Human Leukocyte Antigens (HLA), an extensively used clinical biomarker in organ transplantation, both in buffer and in crude human serum. Capitalising on the ability to vary both serum and HLA concentrations during MDS, we show that both affinity and concentration of HLA-specific antibodies can be determined directly in serum when neither of these parameters is known. Finally, we provide proof of principle in clinical transplant patient sera that our assay enables differentiation of alloantibody reactivity against HLA proteins of highly similar structure, providing information not attainable through currently available techniques. These results outline a path towards detection and in-depth profiling of humoral immunity and may enable further insights into the clinical relevance of antibody reactivity in clinical transplantation and beyond.
Collapse
Affiliation(s)
- Matthias M Schneider
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tom Scheidt
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ashley J Priddey
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Mengsha Hu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sean R A Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Rd, Cambridge, CB1 8DH, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK; NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
20
|
Jiang R, Yoo P, Sudarshana AM, Pelegri-O'Day E, Chhabra S, Mock M, Lee AP. Microfluidic viscometer by acoustic streaming transducers. LAB ON A CHIP 2023; 23:2577-2585. [PMID: 37133350 DOI: 10.1039/d3lc00101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Measurement of fluid viscosity represents a huge need for many biomedical and materials processing applications. Sample fluids containing DNA, antibodies, protein-based drugs, and even cells have become important therapeutic options. The physical properties, including viscosity, of these biologics are critical factors in the optimization of the biomanufacturing processes and delivery of therapeutics to patients. Here we demonstrate an acoustic microstreaming platform termed as microfluidic viscometer by acoustic streaming transducers (μVAST) that induces fluid transport from second-order microstreaming to measure viscosity. Validation of our platform is achieved with different glycerol content mixtures to reflect different viscosities and shows that viscosity can be estimated based on the maximum speed of the second-order acoustic microstreaming. The μVAST platform requires only a small volume of fluid sample (∼1.2 μL), which is 16-30 times smaller than that of commercial viscometers. In addition, μVAST can be scaled up for ultra-high throughput measurements of viscosity. Here we demonstrate 16 samples within 3 seconds, which is an attractive feature for automating the process flows in drug development and materials manufacturing and production.
Collapse
Affiliation(s)
- Ruoyu Jiang
- Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Paul Yoo
- Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | | | - Emma Pelegri-O'Day
- Amgen Research, Biologics Therapeutic Discovery, 1 Amgen Center Drive, Thousand Oaks, California 91320, USA
| | - Sandeep Chhabra
- Amgen Research, Biologics Therapeutic Discovery, 1 Amgen Center Drive, Thousand Oaks, California 91320, USA
| | - Marissa Mock
- Amgen Research, Biologics Therapeutic Discovery, 1 Amgen Center Drive, Thousand Oaks, California 91320, USA
| | - Abraham P Lee
- Biomedical Engineering, University of California, Irvine, CA 92697, USA
- Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Ausserwöger H, Krainer G, Welsh TJ, Thorsteinson N, de Csilléry E, Sneideris T, Schneider MM, Egebjerg T, Invernizzi G, Herling TW, Lorenzen N, Knowles TPJ. Surface patches induce nonspecific binding and phase separation of antibodies. Proc Natl Acad Sci U S A 2023; 120:e2210332120. [PMID: 37011217 PMCID: PMC10104583 DOI: 10.1073/pnas.2210332120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Nonspecific interactions are a key challenge in the successful development of therapeutic antibodies. The tendency for nonspecific binding of antibodies is often difficult to reduce by rational design, and instead, it is necessary to rely on comprehensive screening campaigns. To address this issue, we performed a systematic analysis of the impact of surface patch properties on antibody nonspecificity using a designer antibody library as a model system and single-stranded DNA as a nonspecificity ligand. Using an in-solution microfluidic approach, we find that the antibodies tested bind to single-stranded DNA with affinities as high as KD = 1 µM. We show that DNA binding is driven primarily by a hydrophobic patch in the complementarity-determining regions. By quantifying the surface patches across the library, the nonspecific binding affinity is shown to correlate with a trade-off between the hydrophobic and total charged patch areas. Moreover, we show that a change in formulation conditions at low ionic strengths leads to DNA-induced antibody phase separation as a manifestation of nonspecific binding at low micromolar antibody concentrations. We highlight that phase separation is driven by a cooperative electrostatic network assembly mechanism of antibodies with DNA, which correlates with a balance between positive and negative charged patches. Importantly, our study demonstrates that both nonspecific binding and phase separation are controlled by the size of the surface patches. Taken together, these findings highlight the importance of surface patches and their role in conferring antibody nonspecificity and its macroscopic manifestation in phase separation.
Collapse
Affiliation(s)
- Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Timothy J. Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nels Thorsteinson
- Research and Development, Chemical Computing Group, Montreal, QuebecH3A 2R7, Canada
| | - Ella de Csilléry
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Matthias M. Schneider
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Thomas Egebjerg
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | | | - Therese W. Herling
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
22
|
Nixon-Abell J, Ruggeri FS, Qamar S, Herling TW, Czekalska MA, Shen Y, Wang G, King C, Fernandopulle MS, Sneideris T, Watson JL, Pillai VVS, Meadows W, Henderson JW, Chambers JE, Wagstaff JL, Williams SH, Coyle H, Lu Y, Zhang S, Marciniak SJ, Freund SMV, Derivery E, Ward ME, Vendruscolo M, Knowles TPJ, St George-Hyslop P. ANXA11 biomolecular condensates facilitate protein-lipid phase coupling on lysosomal membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533832. [PMID: 36993242 PMCID: PMC10055329 DOI: 10.1101/2023.03.22.533832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. The frequent juxtaposition of proteinaceous biomolecular condensates to cellular membranes raises the intriguing prospect that phase transitions in proteins and lipids could be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granule condensates to lysosomal membranes to enable their co-trafficking. We show that changes to the protein phase state within this system, driven by the low complexity ANXA11 N-terminus, induce a coupled phase state change in the lipids of the underlying membrane. We identify the ANXA11 interacting proteins ALG2 and CALC as potent regulators of ANXA11-based phase coupling and demonstrate their influence on the nanomechanical properties of the ANXA11-lysosome ensemble and its capacity to engage RNP granules. The phenomenon of protein-lipid phase coupling we observe within this system offers an important template to understand the numerous other examples across the cell whereby biomolecular condensates closely juxtapose cell membranes. GRAPHICAL ABSTRACT
Collapse
|
23
|
Emmenegger M, Worth R, Fiedler S, Devenish SRA, Knowles TPJ, Aguzzi A. Protocol to determine antibody affinity and concentration in complex solutions using microfluidic antibody affinity profiling. STAR Protoc 2023; 4:102095. [PMID: 36853663 PMCID: PMC9925161 DOI: 10.1016/j.xpro.2023.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Conventional methods of measuring affinity are limited by artificial immobilization, large sample volumes, and homogeneous solutions. This protocol describes microfluidic antibody affinity profiling on complex human samples in solution to obtain a fingerprint reflecting both affinity and active concentration of the target protein. To illustrate the protocol, we analyze the antibody response in SARS-CoV-2 omicron-naïve samples against different SARS-CoV-2 variants of concern. However, the protocol and the technology are amenable to a broad spectrum of biomedical questions. For complete details on the use and execution of this protocol, please refer to Emmenegger et al. (2022),1 Schneider et al. (2022),2 and Fiedler et al. (2022).3.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland.
| | - Roland Worth
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Sebastian Fiedler
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Sean R A Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
24
|
Jacquat RB, Krainer G, Peter QAE, Babar AN, Vanderpoorten O, Xu CK, Welsh TJ, Kaminski CF, Keyser UF, Baumberg JJ, Knowles TPJ. Single-Molecule Sizing through Nanocavity Confinement. NANO LETTERS 2023; 23:1629-1636. [PMID: 36826991 PMCID: PMC9999452 DOI: 10.1021/acs.nanolett.1c04830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle's size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics.
Collapse
Affiliation(s)
- Raphaël
P. B. Jacquat
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Georg Krainer
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Quentin A. E. Peter
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Ali Nawaz Babar
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Oliver Vanderpoorten
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Department
of Physics and Technology, UiT The Arctic
University of Norway, Technology Building, Klokkargårdsbakken 35, 9019 Tromsø, Norway
| | - Catherine K. Xu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Timothy J. Welsh
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Ulrich F. Keyser
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jeremy J. Baumberg
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
25
|
Emmenegger M, De Cecco E, Lamparter D, Jacquat RP, Riou J, Menges D, Ballouz T, Ebner D, Schneider MM, Morales IC, Doğançay B, Guo J, Wiedmer A, Domange J, Imeri M, Moos R, Zografou C, Batkitar L, Madrigal L, Schneider D, Trevisan C, Gonzalez-Guerra A, Carrella A, Dubach IL, Xu CK, Meisl G, Kosmoliaptsis V, Malinauskas T, Burgess-Brown N, Owens R, Hatch S, Mongkolsapaya J, Screaton GR, Schubert K, Huck JD, Liu F, Pojer F, Lau K, Hacker D, Probst-Müller E, Cervia C, Nilsson J, Boyman O, Saleh L, Spanaus K, von Eckardstein A, Schaer DJ, Ban N, Tsai CJ, Marino J, Schertler GF, Ebert N, Thiel V, Gottschalk J, Frey BM, Reimann RR, Hornemann S, Ring AM, Knowles TP, Puhan MA, Althaus CL, Xenarios I, Stuart DI, Aguzzi A. Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region. iScience 2023; 26:105928. [PMID: 36619367 PMCID: PMC9811913 DOI: 10.1016/j.isci.2023.105928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - David Lamparter
- Health2030 Genome Center, 9 Chemin des Mines, 1202 Geneva, Switzerland
| | - Raphaël P.B. Jacquat
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Julien Riou
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Dominik Menges
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Tala Ballouz
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, England
| | - Matthias M. Schneider
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - Berre Doğançay
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Anne Wiedmer
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Julie Domange
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Marigona Imeri
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Chryssa Zografou
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Leyla Batkitar
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Lidia Madrigal
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Dezirae Schneider
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | | | | | - Irina L. Dubach
- Division of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Catherine K. Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Tomas Malinauskas
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | | | - Ray Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- The Rosalind Franklin Institute, Harwell Campus, Oxford OX11 0FA, UK
| | - Stephanie Hatch
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, England
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gavin R. Screaton
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - John D. Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Florence Pojer
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | - David Hacker
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | | | - Carlo Cervia
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Lanja Saleh
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ching-Ju Tsai
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Jacopo Marino
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Gebhard F.X. Schertler
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jochen Gottschalk
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Beat M. Frey
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Regina R. Reimann
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tuomas P.J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Christian L. Althaus
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Ioannis Xenarios
- Health2030 Genome Center, 9 Chemin des Mines, 1202 Geneva, Switzerland
- Agora Center, University of Lausanne, 25 Avenue du Bugnon, 1005 Lausanne, Switzerland
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
26
|
Sternke-Hoffmann R, Pauly T, Norrild RK, Hansen J, Tucholski F, Høie MH, Marcatili P, Dupré M, Duchateau M, Rey M, Malosse C, Metzger S, Boquoi A, Platten F, Egelhaaf SU, Chamot-Rooke J, Fenk R, Nagel-Steger L, Haas R, Buell AK. Widespread amyloidogenicity potential of multiple myeloma patient-derived immunoglobulin light chains. BMC Biol 2023; 21:21. [PMID: 36737754 PMCID: PMC9898917 DOI: 10.1186/s12915-022-01506-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity. RESULTS We introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins. CONCLUSIONS We show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients.
Collapse
Affiliation(s)
- Rebecca Sternke-Hoffmann
- grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany ,grid.5991.40000 0001 1090 7501Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Thomas Pauly
- grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XForschungszentrum Jülich GmbH, IBI-7, Jülich, Germany
| | - Rasmus K. Norrild
- grid.5170.30000 0001 2181 8870Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jan Hansen
- grid.411327.20000 0001 2176 9917Condensed Matter Physics Laboratory, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Florian Tucholski
- grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Magnus Haraldson Høie
- grid.5170.30000 0001 2181 8870Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Paolo Marcatili
- grid.5170.30000 0001 2181 8870Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Mathieu Dupré
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, 75015 Paris, France
| | - Magalie Duchateau
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, 75015 Paris, France
| | - Martial Rey
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, 75015 Paris, France
| | - Christian Malosse
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, 75015 Paris, France
| | - Sabine Metzger
- grid.6190.e0000 0000 8580 3777Cologne Biocenter, Cluster of Excellence on Plant Sciences, Mass Spectrometry Platform, University of Cologne, Cologne, Germany
| | - Amelie Boquoi
- grid.411327.20000 0001 2176 9917Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Florian Platten
- grid.411327.20000 0001 2176 9917Condensed Matter Physics Laboratory, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XForschungszentrum Jülich GmbH, IBI-4, Jülich, Germany
| | - Stefan U. Egelhaaf
- grid.411327.20000 0001 2176 9917Condensed Matter Physics Laboratory, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Julia Chamot-Rooke
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, 75015 Paris, France
| | - Roland Fenk
- grid.411327.20000 0001 2176 9917Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Luitgard Nagel-Steger
- grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XForschungszentrum Jülich GmbH, IBI-7, Jülich, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Oncology, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Alexander K. Buell
- grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany ,grid.5170.30000 0001 2181 8870Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
27
|
Watkin SAJ, Hashemi A, Thomson DR, Nock VM, Dobson RCJ, Pearce FG. Laminar flow-based microfluidic systems for molecular interaction analysis-Part 2: Data extraction, processing and analysis. Methods Enzymol 2023; 682:429-464. [PMID: 36948710 DOI: 10.1016/bs.mie.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rate at which fluorescently-labeled biomolecules, that are flowing at a constant speed in a microfluidic channel, diffuse into an adjacent buffer stream can be used to calculate the diffusion coefficient of the molecule, which then gives a measure of its size. Experimentally, determining the rate of diffusion involves capturing concentration gradients in fluorescence microscopy images at different distances along the length of the microfluidic channel, where distance corresponds to residence time, based on the flow velocity. The preceding chapter in this journal covered the development of the experimental setup, including information about the microscope camera detection systems used to acquire fluorescence microscopy data. In order to calculate diffusion coefficients from fluorescence microscopy images, intensity data are extracted from the images and then appropriate methods of processing and analyzing the data, including the mathematical models used for fitting, are applied to the extracted data. This chapter begins with a brief overview of digital imaging and analysis principles, before introducing custom software for extracting the intensity data from the fluorescence microscopy images. Subsequently, methods and explanations for performing the necessary corrections and appropriate scaling of the data are provided. Finally, the mathematics of one-dimensional molecular diffusion is described, and analytical approaches to obtaining the diffusion coefficient from the fluorescence intensity profiles are discussed and compared.
Collapse
Affiliation(s)
- Serena A J Watkin
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Azadeh Hashemi
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Dion R Thomson
- Protein Science & Engineering Team, Callaghan Innovation, Christchurch, New Zealand
| | - Volker M Nock
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
28
|
Baron J, Bauernhofer L, Devenish SRA, Fiedler S, Ilsley A, Riedl S, Zweytick D, Glueck D, Pessentheiner A, Durand G, Keller S. FULL-MDS: Fluorescent Universal Lipid Labeling for Microfluidic Diffusional Sizing. Anal Chem 2022; 95:587-593. [PMID: 36574263 PMCID: PMC9850350 DOI: 10.1021/acs.analchem.2c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidic diffusional sizing (MDS) is a recent and powerful method for determining the hydrodynamic sizes and interactions of biomolecules and nanoparticles. A major benefit of MDS is that it can report the size of a fluorescently labeled target even in mixtures with complex, unpurified samples. However, a limitation of MDS is that the target itself has to be purified and covalently labeled with a fluorescent dye. Such covalent labeling is not suitable for crude extracts such as native nanodiscs directly obtained from cellular membranes. In this study, we introduce fluorescent universal lipid labeling for MDS (FULL-MDS) as a sparse, noncovalent labeling method for determining particle size. We first demonstrate that the inexpensive and well-characterized fluorophore, Nile blue, spontaneously partitions into lipid nanoparticles without disrupting their structure. We then highlight the key advantage of FULL-MDS by showing that it yields robust size information on lipid nanoparticles in crude cell extracts that are not amenable to other sizing methods. Furthermore, even for synthetic nanodiscs, FULL-MDS is faster, cheaper, and simpler than existing labeling schemes.
Collapse
Affiliation(s)
- Jasmin Baron
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria,Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria,BioTechMed-Graz, Graz 8010, Austria
| | - Lena Bauernhofer
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria,Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria,BioTechMed-Graz, Graz 8010, Austria
| | - Sean R. A. Devenish
- The
Paddocks Business Centre, Fluidic Analytics
Ltd., Unit A, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Sebastian Fiedler
- The
Paddocks Business Centre, Fluidic Analytics
Ltd., Unit A, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Alison Ilsley
- The
Paddocks Business Centre, Fluidic Analytics
Ltd., Unit A, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Sabrina Riedl
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria,Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria,BioTechMed-Graz, Graz 8010, Austria
| | - Dagmar Zweytick
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria,Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria,BioTechMed-Graz, Graz 8010, Austria
| | - David Glueck
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria,Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria,BioTechMed-Graz, Graz 8010, Austria
| | - Ariane Pessentheiner
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria,Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria,BioTechMed-Graz, Graz 8010, Austria
| | - Grégory Durand
- Equipe
Synthèse et Systèmes Colloïdaux Bio-organiques,
Unité Propre de Recherche et d’Innovation, Avignon Université, 301 rue Baruch de Spinoza, Avignon 84916 CEDEX 9, France,CHEM2STAB, 301 rue Baruch de Spinoza, Avignon 84916 CEDEX 9, France
| | - Sandro Keller
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria,Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria,BioTechMed-Graz, Graz 8010, Austria,
| |
Collapse
|
29
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
30
|
Pirhaghi M, Frank SA, Alam P, Nielsen J, Sereikaite V, Gupta A, Strømgaard K, Andreasen M, Sharma D, Saboury AA, Otzen DE. A penetratin-derived peptide reduces the membrane permeabilization and cell toxicity of α-synuclein oligomers. J Biol Chem 2022; 298:102688. [PMID: 36370848 PMCID: PMC9791135 DOI: 10.1016/j.jbc.2022.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced β-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 μM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.
Collapse
Affiliation(s)
- Mitra Pirhaghi
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark; Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Signe Andrea Frank
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Parvez Alam
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Arpit Gupta
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India; G.N. Ramachandran Protein Centre, Academy of Scientific & Innovative Research, Chennai, India
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
31
|
Peter QE, Jacquat RB, Herling TW, Challa PK, Kartanas T, Knowles TPJ. Microscale Diffusiophoresis of Proteins. J Phys Chem B 2022; 126:8913-8920. [PMID: 36306420 PMCID: PMC9661530 DOI: 10.1021/acs.jpcb.2c04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Living systems are characterized by their spatially highly inhomogeneous nature which is susceptible to modify fundamentally the behavior of biomolecular species, including the proteins that underpin biological functionality in cells. Spatial gradients in chemical potential are known to lead to strong transport effects for colloidal particles, but their effect on molecular scale species such as proteins has remained largely unexplored. Here, we improve on existing diffusiophoresis microfluidic technique to measure protein diffusiophoresis in real space. The measurement of proteins is made possible by two ameliorations. First, a label-free microscope is used to suppress label interference. Second, improvements in numerical methods are developed to meet the particular challenges posed by small molecules. We demonstrate that individual proteins can undergo strong diffusiophoretic motion in salt gradients in a manner which is sufficient to overcome diffusion and which leads to dramatic changes in their spatial organization on the scale of a cell. Moreover, we demonstrate that this phenomenon can be used to control the motion of proteins in microfluidic devices. These results open up a path towards a physical understanding of the role of gradients in living systems in the spatial organization of macromolecules and highlight novel routes towards protein sorting applications on device.
Collapse
Affiliation(s)
- Quentin
A. E. Peter
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EWCambridge, U.K.
| | - Raphaël
P. B. Jacquat
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, CB3 0HECambridge, U.K.
| | - Therese W. Herling
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EWCambridge, U.K.
| | - Pavan Kumar Challa
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EWCambridge, U.K.
| | - Tadas Kartanas
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EWCambridge, U.K.
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EWCambridge, U.K.,
| |
Collapse
|
32
|
Glueck D, Grethen A, Das M, Mmeka OP, Patallo EP, Meister A, Rajender R, Kins S, Räschle M, Victor J, Chu C, Etzkorn M, Köck Z, Bernhard F, Babalola JO, Vargas C, Keller S. Electroneutral Polymer Nanodiscs Enable Interference-Free Probing of Membrane Proteins in a Lipid-Bilayer Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202492. [PMID: 36228092 DOI: 10.1002/smll.202202492] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.
Collapse
Affiliation(s)
- David Glueck
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Ogochukwu Patricia Mmeka
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Department of Chemistry, University of Ibadan, Ibadan, 200284, Nigeria
| | - Eugenio Pérez Patallo
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Ritu Rajender
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Stefan Kins
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, Technische Universität Kaiserslautern (TUK), Paul-Ehrlich-Str. 24, 67663, Kaiserslautern, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ci Chu
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | | | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
33
|
Kar M, Dar F, Welsh TJ, Vogel LT, Kühnemuth R, Majumdar A, Krainer G, Franzmann TM, Alberti S, Seidel CAM, Knowles TPJ, Hyman AA, Pappu RV. Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proc Natl Acad Sci U S A 2022; 119:e2202222119. [PMID: 35787038 DOI: 10.1101/2022.02.03.478969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Macromolecular phase separation is thought to be one of the processes that drives the formation of membraneless biomolecular condensates in cells. The dynamics of phase separation are thought to follow the tenets of classical nucleation theory, and, therefore, subsaturated solutions should be devoid of clusters with more than a few molecules. We tested this prediction using in vitro biophysical studies to characterize subsaturated solutions of phase-separating RNA-binding proteins with intrinsically disordered prion-like domains and RNA-binding domains. Surprisingly, and in direct contradiction to expectations from classical nucleation theory, we find that subsaturated solutions are characterized by the presence of heterogeneous distributions of clusters. The distributions of cluster sizes, which are dominated by small species, shift continuously toward larger sizes as protein concentrations increase and approach the saturation concentration. As a result, many of the clusters encompass tens to hundreds of molecules, while less than 1% of the solutions are mesoscale species that are several hundred nanometers in diameter. We find that cluster formation in subsaturated solutions and phase separation in supersaturated solutions are strongly coupled via sequence-encoded interactions. We also find that cluster formation and phase separation can be decoupled using solutes as well as specific sets of mutations. Our findings, which are concordant with predictions for associative polymers, implicate an interplay between networks of sequence-specific and solubility-determining interactions that, respectively, govern cluster formation in subsaturated solutions and the saturation concentrations above which phase separation occurs.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Anupa Majumdar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Titus M Franzmann
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Anthony A Hyman
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
34
|
Kar M, Dar F, Welsh TJ, Vogel LT, Kühnemuth R, Majumdar A, Krainer G, Franzmann TM, Alberti S, Seidel CAM, Knowles TPJ, Hyman AA, Pappu RV. Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proc Natl Acad Sci U S A 2022; 119:e2202222119. [PMID: 35787038 PMCID: PMC9282234 DOI: 10.1073/pnas.2202222119] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Macromolecular phase separation is thought to be one of the processes that drives the formation of membraneless biomolecular condensates in cells. The dynamics of phase separation are thought to follow the tenets of classical nucleation theory, and, therefore, subsaturated solutions should be devoid of clusters with more than a few molecules. We tested this prediction using in vitro biophysical studies to characterize subsaturated solutions of phase-separating RNA-binding proteins with intrinsically disordered prion-like domains and RNA-binding domains. Surprisingly, and in direct contradiction to expectations from classical nucleation theory, we find that subsaturated solutions are characterized by the presence of heterogeneous distributions of clusters. The distributions of cluster sizes, which are dominated by small species, shift continuously toward larger sizes as protein concentrations increase and approach the saturation concentration. As a result, many of the clusters encompass tens to hundreds of molecules, while less than 1% of the solutions are mesoscale species that are several hundred nanometers in diameter. We find that cluster formation in subsaturated solutions and phase separation in supersaturated solutions are strongly coupled via sequence-encoded interactions. We also find that cluster formation and phase separation can be decoupled using solutes as well as specific sets of mutations. Our findings, which are concordant with predictions for associative polymers, implicate an interplay between networks of sequence-specific and solubility-determining interactions that, respectively, govern cluster formation in subsaturated solutions and the saturation concentrations above which phase separation occurs.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130
| | - Timothy J. Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Laura T. Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Anupa Majumdar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Titus M. Franzmann
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
| | - Claus A. M. Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Anthony A. Hyman
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
35
|
Paganini C, Hettich B, Kopp MR, Eördögh A, Capasso Palmiero U, Adamo G, Touzet N, Manno M, Bongiovanni A, Rivera‐Fuentes P, Leroux J, Arosio P. Rapid Characterization and Quantification of Extracellular Vesicles by Fluorescence-Based Microfluidic Diffusion Sizing. Adv Healthc Mater 2022; 11:e2100021. [PMID: 34109753 PMCID: PMC11469030 DOI: 10.1002/adhm.202100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) are emerging as promising diagnostic and therapeutic tools for a variety of diseases. The characterization of EVs requires a series of orthogonal techniques that are overall time- and material-consuming. Here, a microfluidic device is presented that exploits the combination of diffusion sizing and multiwavelength fluorescence detection to simultaneously provide information on EV size, concentration, and composition. The latter is achieved with the nonspecific staining of lipids and proteins combined with the specific staining of EV markers such as EV-associated tetraspanins via antibodies. The device can be operated as a single-step immunoassay thanks to the integrated separation and quantification of free and EV-bound fluorophores. This microfluidic technique is capable of detecting and quantifying components associated to EV subtypes and impurities and thus to measure EV purity in a time scale of minutes, requiring less than 5 µL of sample and minimal sample handling before the analysis. Moreover, the analysis is performed directly in solution without immobilization steps. Therefore, this method can accelerate screening of EV samples and aid the evaluation of sample reproducibility, representing an important complementary tool to the current array of biophysical methods for EV characterization, particularly valuable for instance for bioprocess development.
Collapse
Affiliation(s)
- Carolina Paganini
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Britta Hettich
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Marie R.G. Kopp
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Adam Eördögh
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
- Institute of Chemical Sciences and EngineeringEPFLCH C2 425, Bâtiment CH, Station 6LausanneCH‐1015Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Giorgia Adamo
- Institute of Biomedical Research and InnovationNational Research Council of ItalyVia Ugo La Malfa 153Palermo90146Italy
| | - Nicolas Touzet
- Department of Environmental ScienceIT SligoAsh LaneSligoF91 YW50Ireland
| | - Mauro Manno
- Institute of BiophysicsNational Research Council of ItalyVia Ugo La Malfa 153Palermo90146Italy
| | - Antonella Bongiovanni
- Institute of Biomedical Research and InnovationNational Research Council of ItalyVia Ugo La Malfa 153Palermo90146Italy
| | - Pablo Rivera‐Fuentes
- Institute of Chemical Sciences and EngineeringEPFLCH C2 425, Bâtiment CH, Station 6LausanneCH‐1015Switzerland
| | - Jean‐Christophe Leroux
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| |
Collapse
|
36
|
Assessment of Therapeutic Antibody Developability by Combinations of In Vitro and In Silico Methods. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2313:57-113. [PMID: 34478132 DOI: 10.1007/978-1-0716-1450-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although antibodies have become the fastest-growing class of therapeutics on the market, it is still challenging to develop them for therapeutic applications, which often require these molecules to withstand stresses that are not present in vivo. We define developability as the likelihood of an antibody candidate with suitable functionality to be developed into a manufacturable, stable, safe, and effective drug that can be formulated to high concentrations while retaining a long shelf life. The implementation of reliable developability assessments from the early stages of antibody discovery enables flagging and deselection of potentially problematic candidates, while focussing available resources on the development of the most promising ones. Currently, however, thorough developability assessment requires multiple in vitro assays, which makes it labor intensive and time consuming to implement at early stages. Furthermore, accurate in vitro analysis at the early stage is compromised by the high number of potential candidates that are often prepared at low quantities and purity. Recent improvements in the performance of computational predictors of developability potential are beginning to change this scenario. Many computational methods only require the knowledge of the amino acid sequences and can be used to identify possible developability issues or to rank available candidates according to a range of biophysical properties. Here, we describe how the implementation of in silico tools into antibody discovery pipelines is increasingly offering time- and cost-effective alternatives to in vitro experimental screening, thus streamlining the drug development process. We discuss in particular the biophysical and biochemical properties that underpin developability potential and their trade-offs, review various in vitro assays to measure such properties or parameters that are predictive of developability, and give an overview of the growing number of in silico tools available to predict properties important for antibody development, including the CamSol method developed in our laboratory.
Collapse
|
37
|
Diffusional microfluidics for protein analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Dingfelder F, Henriksen A, Wahlund PO, Arosio P, Lorenzen N. Measuring Self-Association of Antibody Lead Candidates with Dynamic Light Scattering. Methods Mol Biol 2022; 2313:241-258. [PMID: 34478142 DOI: 10.1007/978-1-0716-1450-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this method chapter, we provide a brief overview of the key methods available to measure self-association of monoclonal antibodies (mAbs) and explain for which experimental throughputs they are usually applied. We then focus on dynamic light scattering (DLS) and describe experimental details on how to measure the diffusion interaction parameter (kD) which is occasionally referred to as the gold standard for measuring self-association of proteins. The kD is a well-established parameter to predict solution viscosity, which is one of the most critical developability parameters of mAbs. Finally, we present a pH and excipient screen that is designed to measure self-association with DLS under conditions that are relevant for bioprocessing and formulation of mAbs. The presented light scattering methods are well suited for lead candidate selections where it is essential to select mAbs with high developability potential for progression toward first human dose.
Collapse
Affiliation(s)
- Fabian Dingfelder
- Department of Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark.
| | - Anette Henriksen
- Department of Modelling and Predictive Technologies, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Per-Olof Wahlund
- Department of Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Nikolai Lorenzen
- Department of Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark.
| |
Collapse
|
39
|
Bezrukov A, Galyametdinov Y. Characterizing properties of polymers and colloids by their reaction-diffusion behavior in microfluidic channels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Schneider MM, Gautam S, Herling TW, Andrzejewska E, Krainer G, Miller AM, Trinkaus VA, Peter QAE, Ruggeri FS, Vendruscolo M, Bracher A, Dobson CM, Hartl FU, Knowles TPJ. The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nat Commun 2021; 12:5999. [PMID: 34650037 PMCID: PMC8516981 DOI: 10.1038/s41467-021-25966-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 08/25/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular chaperones contribute to the maintenance of cellular protein homoeostasis through assisting de novo protein folding and preventing amyloid formation. Chaperones of the Hsp70 family can further disaggregate otherwise irreversible aggregate species such as α-synuclein fibrils, which accumulate in Parkinson's disease. However, the mechanisms and kinetics of this key functionality are only partially understood. Here, we combine microfluidic measurements with chemical kinetics to study α-synuclein disaggregation. We show that Hsc70 together with its co-chaperones DnaJB1 and Apg2 can completely reverse α-synuclein aggregation back to its soluble monomeric state. This reaction proceeds through first-order kinetics where monomer units are removed directly from the fibril ends with little contribution from intermediate fibril fragmentation steps. These findings extend our mechanistic understanding of the role of chaperones in the suppression of amyloid proliferation and in aggregate clearance, and inform on possibilities and limitations of this strategy in the development of therapeutics against synucleinopathies.
Collapse
Affiliation(s)
- Matthias M. Schneider
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Saurabh Gautam
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,Present Address: ViraTherapeutics GmbH, 6063 Rum, Austria
| | - Therese W. Herling
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Ewa Andrzejewska
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Georg Krainer
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Alyssa M. Miller
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Victoria A. Trinkaus
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Quentin A. E. Peter
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Francesco Simone Ruggeri
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Andreas Bracher
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - F. Ulrich Hartl
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tuomas P. J. Knowles
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK ,grid.5335.00000000121885934Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Road, Cambridge, CB3 0HE UK
| |
Collapse
|
41
|
The binding of the small heat-shock protein αB-crystallin to fibrils of α-synuclein is driven by entropic forces. Proc Natl Acad Sci U S A 2021; 118:2108790118. [PMID: 34518228 PMCID: PMC8463877 DOI: 10.1073/pnas.2108790118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Molecular chaperones are key components of the cellular proteostasis network whose role includes the suppression of the formation and proliferation of pathogenic aggregates associated with neurodegenerative diseases. The molecular principles that allow chaperones to recognize misfolded and aggregated proteins remain, however, incompletely understood. To address this challenge, here we probe the thermodynamics and kinetics of the interactions between chaperones and protein aggregates under native solution conditions using a microfluidic platform. We focus on the binding between amyloid fibrils of α-synuclein, associated with Parkinson's disease, to the small heat-shock protein αB-crystallin, a chaperone widely involved in the cellular stress response. We find that αB-crystallin binds to α-synuclein fibrils with high nanomolar affinity and that the binding is driven by entropy rather than enthalpy. Measurements of the change in heat capacity indicate significant entropic gain originates from the disassembly of the oligomeric chaperones that function as an entropic buffer system. These results shed light on the functional roles of chaperone oligomerization and show that chaperones are stored as inactive complexes which are capable of releasing active subunits to target aberrant misfolded species.
Collapse
|
42
|
Emmenegger M, De Cecco E, Hruska‐Plochan M, Eninger T, Schneider MM, Barth M, Tantardini E, de Rossi P, Bacioglu M, Langston RG, Kaganovich A, Bengoa‐Vergniory N, Gonzalez‐Guerra A, Avar M, Heinzer D, Reimann R, Häsler LM, Herling TW, Matharu NS, Landeck N, Luk K, Melki R, Kahle PJ, Hornemann S, Knowles TPJ, Cookson MR, Polymenidou M, Jucker M, Aguzzi A. LAG3 is not expressed in human and murine neurons and does not modulate α-synucleinopathies. EMBO Mol Med 2021; 13:e14745. [PMID: 34309222 PMCID: PMC8422075 DOI: 10.15252/emmm.202114745] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
While the initial pathology of Parkinson's disease and other α-synucleinopathies is often confined to circumscribed brain regions, it can spread and progressively affect adjacent and distant brain locales. This process may be controlled by cellular receptors of α-synuclein fibrils, one of which was proposed to be the LAG3 immune checkpoint molecule. Here, we analysed the expression pattern of LAG3 in human and mouse brains. Using a variety of methods and model systems, we found no evidence for LAG3 expression by neurons. While we confirmed that LAG3 interacts with α-synuclein fibrils, the specificity of this interaction appears limited. Moreover, overexpression of LAG3 in cultured human neural cells did not cause any worsening of α-synuclein pathology ex vivo. The overall survival of A53T α-synuclein transgenic mice was unaffected by LAG3 depletion, and the seeded induction of α-synuclein lesions in hippocampal slice cultures was unaffected by LAG3 knockout. These data suggest that the proposed role of LAG3 in the spreading of α-synucleinopathies is not universally valid.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Elena De Cecco
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | | | - Timo Eninger
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Matthias M Schneider
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | - Melanie Barth
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Elena Tantardini
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Pierre de Rossi
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Mehtap Bacioglu
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Rebekah G Langston
- Cell Biology and Gene Expression SectionLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | - Alice Kaganovich
- Cell Biology and Gene Expression SectionLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | - Nora Bengoa‐Vergniory
- Department of Physiology, Anatomy and GeneticsOxford Parkinson’s Disease Center (OPDC)Oxford UniversityOxfordUK
| | | | - Merve Avar
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Daniel Heinzer
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Regina Reimann
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Lisa M Häsler
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Therese W Herling
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | - Naunehal S Matharu
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | - Natalie Landeck
- Cell Biology and Gene Expression SectionLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease ResearchUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Ronald Melki
- Laboratory of Neurodegenerative DiseasesCNRSInstitut François Jacob (MIRCen)CEAFontenay‐aux‐RosesFrance
| | - Philipp J Kahle
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of NeurodegenerationHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Simone Hornemann
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| | - Tuomas P J Knowles
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeUK
| | - Mark R Cookson
- Cell Biology and Gene Expression SectionLaboratory of NeurogeneticsNational Institute on AgingNational Institutes of HealthBethesdaMDUSA
| | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Adriano Aguzzi
- Institute of NeuropathologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
43
|
Soltermann F, Struwe WB, Kukura P. Label-free methods for optical in vitro characterization of protein-protein interactions. Phys Chem Chem Phys 2021; 23:16488-16500. [PMID: 34342317 PMCID: PMC8359934 DOI: 10.1039/d1cp01072g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions are involved in the regulation and function of the majority of cellular processes. As a result, much effort has been aimed at the development of methodologies capable of quantifying protein-protein interactions, with label-free methods being of particular interest due to the associated simplified workflows and minimisation of label-induced perturbations. Here, we review recent advances in optical technologies providing label-free in vitro measurements of affinities and kinetics. We provide an overview and comparison of existing techniques and their principles, discussing advantages, limitations, and recent applications.
Collapse
Affiliation(s)
- Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Weston B. Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| |
Collapse
|
44
|
Zhang Y, Wright MA, Saar KL, Challa P, Morgunov AS, Peter QAE, Devenish S, Dobson CM, Knowles TPJ. Machine learning-aided protein identification from multidimensional signatures. LAB ON A CHIP 2021; 21:2922-2931. [PMID: 34109955 PMCID: PMC8314522 DOI: 10.1039/d0lc01148g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The ability to determine the identity of specific proteins is a critical challenge in many areas of cellular and molecular biology, and in medical diagnostics. Here, we present a macine learning aided microfluidic protein characterisation strategy that within a few minutes generates a three-dimensional fingerprint of a protein sample indicative of its amino acid composition and size and, thereby, creates a unique signature for the protein. By acquiring such multidimensional fingerprints for a set of ten proteins and using machine learning approaches to classify the fingerprints, we demonstrate that this strategy allows proteins to be classified at a high accuracy, even though classification using a single dimension is not possible. Moreover, we show that the acquired fingerprints correlate with the amino acid content of the samples, which makes it is possible to identify proteins directly from their sequence without requiring any prior knowledge about the fingerprints. These findings suggest that such a multidimensional profiling strategy can lead to the development of a novel method for protein identification in a microfluidic format.
Collapse
Affiliation(s)
- Yuewen Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Maya A Wright
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. and Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, UK
| | - Pavankumar Challa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Alexey S Morgunov
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. and Fluidic Analytics Ltd., Cambridge, UK
| | - Quentin A E Peter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | - Christopher M Dobson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. and Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, UK
| |
Collapse
|
45
|
Iwasaki Y, Seyama M, Matsuura N, Inoue S, Hayashi K, Koizumi H. Direct Measurement of Near-Wall Molecular Transport Rate in a Microchannel and Its Dependence on Diffusivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8687-8695. [PMID: 34270898 DOI: 10.1021/acs.langmuir.1c00561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solute transport in a narrow space is the most elemental process in chromatography and biological pattern formation. However, the observation of such transport has been quite difficult, and theoretical investigations have therefore preponderated. Here, using a space- and time-resolved surface plasmon resonance (SPR) method, we measured the nanoscale near-wall (next to the wall) transport rate in a narrow channel after a solution and its solvent had come into contact. By combining the SPR method with a capillary injection method, which enables two solution plugs to flow immediately after they have made contact, we were able to measure the solute concentration evolution at the channel wall. We tested three combinations of two plugs of solution-water-glucose, sodium chloride-water, and glucose-sodium chloride-and succeeded in measuring diffusion-coefficient-dependent changes in the concentration of solute flowing through a rectangular microchannel in less than 0.4 s. A numerical analysis of this system revealed the acceleration of the solute/solution boundary moving on the wall and its deceleration at the center of the channel cross section. The observed experimental transport rate agreed with the numerical result quantitatively. These results show that the solute transport followed a laminar flow with a no-slip model and that the molecules were transported in the order of their diffusivity. In the third combination, when the two solutions made contact and started flowing, the interdiffusion of the solutes resulted in temporal concentrations lower than either of the solutions before contact, which indicated that the contact between the two solutions quickly led to separation by the advection-diffusion processes. We found that such a concentration profile could actually be measured. Our techniques are simple and applicable to a wide range of molecules; the method opens the way to direct observation of the space-time near-wall solute transport process and can be used for the rapid determination of diffusivity.
Collapse
Affiliation(s)
- Yuzuru Iwasaki
- NTT Device Technology Labs., NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi Kanagawa 243-0198, Japan
| | - Michiko Seyama
- NTT Device Technology Labs., NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi Kanagawa 243-0198, Japan
| | - Nobuaki Matsuura
- NTT Device Innovation Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi Kanagawa 243-0198, Japan
| | - Suzuyo Inoue
- NTT Device Technology Labs., NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi Kanagawa 243-0198, Japan
| | - Katsuyoshi Hayashi
- NTT Device Technology Labs., NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi Kanagawa 243-0198, Japan
| | - Hiroshi Koizumi
- NTT Device Innovation Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi Kanagawa 243-0198, Japan
| |
Collapse
|
46
|
Otzen DE, Buell AK, Jensen H. Microfluidics and the quantification of biomolecular interactions. Curr Opin Struct Biol 2021; 70:8-15. [PMID: 33831785 DOI: 10.1016/j.sbi.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
Microfluidic systems under laminar flow conditions provide in-solution information about species size and binding affinities at very modest sample costs. Flow-induced dispersion analysis directly measures the spread of the analyte profile using Taylor dispersion analysis, whereas microfluidic diffusional sizing quantifies the transfer of analyte from one phase to another. Species of sizes between 0.5 and 1000 nm can be analyzed, and different populations resolved. Both techniques also allow analysis in complex media and medium throughput analysis. These properties make them valuable complements to existing approaches to measure biomolecular interactions.
Collapse
Affiliation(s)
- Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK - 8000, Aarhus C, Denmark.
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltoft Plads, DK - 2800, Kgs. Lyngby, Denmark.
| | - Henrik Jensen
- Fida Biosystems Aps, Fruebjergvej 3, DK - 2100, Copenhagen, Denmark.
| |
Collapse
|
47
|
Meisl G, Kurt T, Condado-Morales I, Bett C, Sorce S, Nuvolone M, Michaels TCT, Heinzer D, Avar M, Cohen SIA, Hornemann S, Aguzzi A, Dobson CM, Sigurdson CJ, Knowles TPJ. Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nat Struct Mol Biol 2021; 28:365-372. [PMID: 33767451 PMCID: PMC8922999 DOI: 10.1038/s41594-021-00565-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Prions consist of pathological aggregates of cellular prion protein and have the ability to replicate, causing neurodegenerative diseases, a phenomenon mirrored in many other diseases connected to protein aggregation, including Alzheimer's and Parkinson's diseases. However, despite their key importance in disease, the individual processes governing this formation of pathogenic aggregates, as well as their rates, have remained challenging to elucidate in vivo. Here we bring together a mathematical framework with kinetics of the accumulation of prions in mice and microfluidic measurements of aggregate size to dissect the overall aggregation reaction into its constituent processes and quantify the reaction rates in mice. Taken together, the data show that multiplication of prions in vivo is slower than in in vitro experiments, but efficient when compared with other amyloid systems, and displays scaling behavior characteristic of aggregate fragmentation. These results provide a framework for the determination of the mechanisms of disease-associated aggregation processes within living organisms.
Collapse
Affiliation(s)
- Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Timothy Kurt
- Department of Pathology, UC San Diego, San Diego, CA, USA
| | - Itzel Condado-Morales
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Cyrus Bett
- Department of Pathology, UC San Diego, San Diego, CA, USA
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Daniel Heinzer
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Merve Avar
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Samuel I A Cohen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Wren Therapeutics, Cambridge, UK
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
48
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|
49
|
Arter WE, Xu CK, Castellana-Cruz M, Herling TW, Krainer G, Saar KL, Kumita JR, Dobson CM, Knowles TPJ. Rapid Structural, Kinetic, and Immunochemical Analysis of Alpha-Synuclein Oligomers in Solution. NANO LETTERS 2020; 20:8163-8169. [PMID: 33079553 PMCID: PMC7116857 DOI: 10.1021/acs.nanolett.0c03260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Oligomers comprised of misfolded proteins are implicated as neurotoxins in the pathogenesis of protein misfolding conditions such as Parkinson's and Alzheimer's diseases. Structural, biophysical, and biochemical characterization of these nanoscale protein assemblies is key to understanding their pathology and the design of therapeutic interventions, yet it is challenging due to their heterogeneous, transient nature and low relative abundance in complex mixtures. Here, we demonstrate separation of heterogeneous populations of oligomeric α-synuclein, a protein central to the pathology of Parkinson's disease, in solution using microfluidic free-flow electrophoresis. We characterize nanoscale structural heterogeneity of transient oligomers on a time scale of seconds, at least 2 orders of magnitude faster than conventional techniques. Furthermore, we utilize our platform to analyze oligomer ζ-potential and probe the immunochemistry of wild-type α-synuclein oligomers. Our findings contribute to an improved characterization of α-synuclein oligomers and demonstrate the application of microchip electrophoresis for the free-solution analysis of biological nanoparticle analytes.
Collapse
Affiliation(s)
- William E. Arter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Catherine K. Xu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Marta Castellana-Cruz
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Therese W. Herling
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Georg Krainer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Kadi L. Saar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Janet R. Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
50
|
Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat Struct Mol Biol 2020; 27:1125-1133. [PMID: 32989305 DOI: 10.1038/s41594-020-0505-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
The amyloid cascade hypothesis, according to which the self-assembly of amyloid-β peptide (Aβ) is a causative process in Alzheimer's disease, has driven many therapeutic efforts for the past 20 years. Failures of clinical trials investigating Aβ-targeted therapies have been interpreted as evidence against this hypothesis, irrespective of the characteristics and mechanisms of action of the therapeutic agents, which are highly challenging to assess. Here, we combine kinetic analyses with quantitative binding measurements to address the mechanism of action of four clinical stage anti-Aβ antibodies, aducanumab, gantenerumab, bapineuzumab and solanezumab. We quantify the influence of these antibodies on the aggregation kinetics and on the production of oligomeric aggregates and link these effects to the affinity and stoichiometry of each antibody for monomeric and fibrillar forms of Aβ. Our results reveal that, uniquely among these four antibodies, aducanumab dramatically reduces the flux of Aβ oligomers.
Collapse
|