1
|
Qi R, Huang X, Yang T, Luo P, Qi W, Zhang Y, Yuan H, Li H, Wang J, Liu B, Xie S. Morphology Control and Spectral Study of the 2D and Hierarchical Nanostructures Self-Assembled by the Chiral Alanine-Decorated Perylene Bisimides. Molecules 2024; 29:4610. [PMID: 39407540 PMCID: PMC11477776 DOI: 10.3390/molecules29194610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Tailoring the morphologies and optical properties of the 2D and hierarchical nanostructures self-assembled by the π-conjugated molecules is both interesting and challenging. Herein, a series of 2D ribbon-like nanostructures with single or multiple H-aggregated perylene bisimides (PBI) monolayer and hierarchical nanostructures (including straw-like, dumbbell-shaped, and rod-like nanostructures) are fabricated by solution self-assembly of three chiral alanine-decorated PBI. The influence of the solvent's dissolving capacity, the chirality of alanine, and the preparation methods on the morphologies and optical properties of the nanostructures were extensively studied. It was observed that the hierarchical nanostructures are formed by the reorganization of the 2D ribbon-like nanostructures. The size of the 2D ribbon-like nanostructures and the amount of the hierarchical nanostructures increase with the decrease in the solvent's dissolving capacity. The small chiral alanine moiety is unable to induce chirality in the nanostructures, owing to its low steric hindrance and the dominant strong π-π stacking interaction of the PBI skeleton. A weaker π-π stacking interaction and better H-aggregated arrangement of the PBI skeleton could reduce the low-wavelength fluorescence intensity. The process of heating, cooling, and aging promotes the formation of H-aggregation in the PBI skeleton. The region of spectral overlap of the PBI solutions increases with the decrease in the dissolving capacity of the solvent and the steric hindrance of the chiral alanine. This study supplies a view to tailor the morphologies and optical properties of the nanostructures, which could be used as sensors and photocatalysts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Songzhi Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (R.Q.); (X.H.); (T.Y.); (P.L.); (W.Q.); (Y.Z.); (H.Y.); (H.L.); (J.W.); (B.L.)
| |
Collapse
|
2
|
Yao ZF, Cordova DLM, Milligan GM, Lopez D, Allison SJ, Kuang Y, Ardoña HAM, Arguilla MQ. Lattice-guided assembly of optoelectronically active π-conjugated peptides on 1D van der Waals single crystals. SCIENCE ADVANCES 2024; 10:eadl2402. [PMID: 38865466 PMCID: PMC11168473 DOI: 10.1126/sciadv.adl2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
The deployment of organic molecules in high-performance devices strongly relies on the formation of well-ordered domains, which is often complicated by the dynamic and sensitive nature of supramolecular interactions. Here, we engineered the assembly of water-processable, optoelectronic π-conjugated peptides into well-defined organic-inorganic heterointerfaced assemblies by leveraging the long-range anisotropic ordering of 1D van der Waals (vdW) crystals composed of subnanometer-thick transition metal sulfide chains (MS3; M = Nb, Ta) as assembly templates. We found that the monomers can readily form 1D supramolecular assemblies onto the underlying crystal surface, owing to the structural correspondence between the π-π interactions of the quaterthiophene (4T)-based peptide units (DDD-4T) and sulfur atom ordering along the NbS3 (100) surface. The heterointerfaced assemblies exhibited substantially red-shifted photoluminescence and enhanced visible-range photocurrent generation compared to solution-assembled films. Our results underscore the role of lattice matching in forming ordered supramolecular assemblies, offering an emergent approach to assembling organic building blocks endowed with improved physical properties.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Dmitri Leo Mesoza Cordova
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Griffin M. Milligan
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Diana Lopez
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Steven Jay Allison
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Maxx Q. Arguilla
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Cheung LH, To JC, Wong WK, Stuart MCA, Kajitani T, Keng VW, Leung FKC. Tailoring Multicontrolled Supramolecular Assemblies of Stiff-Stilbene Amphiphiles into Macroscopic Soft Scaffolds as Cell-Material Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4056-4070. [PMID: 38198650 DOI: 10.1021/acsami.3c16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biocompatible synthetic supramolecular systems have shed light on biomedical and tissue-regenerative material applications. The intrinsic functional applicability, tunability, and stimuli-responsiveness of synthetic supramolecular systems allow one to develop various multicontrolled supramolecular assemblies in aqueous media. However, it remains highly challenging to use state-of-the-art supramolecular assemblies of photoresponsive amphiphiles controlled by multiple stimulations in fabricating macroscopic materials. Herein, we demonstrate a stiff-stilbene amphiphile (SA) multicontrolled supramolecular assembling system that comprises two different charged end groups. The excellent photoswitchabilities of SA in both organic and aqueous media are demonstrated. Furthermore, multiple stimuli, i.e., light, pH, and counterions, are applied to control the supramolecular assembling behaviors, which are monitored by circular dichroism spectroscopy and electron microscopies. This multicontrolled supramolecular system can be systematically assembled into macroscopic soft functional scaffolds, whose structural parameters are investigated by electron microscopies and X-ray diffraction techniques, suggesting the large aspect ratio of SA nanostructures assembled into macroscopic soft scaffolds. The fabricated soft functional scaffold is highly biocompatible for photocontrolled biotarget encapsulation/release selectively, as well as a cell-material interface for diverse cells' attachment. This new synthetic multicontrolled soft functional material provides a new strategy toward the development of next-generation controllable and biocompatible soft functional materials.
Collapse
Affiliation(s)
- Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jeffrey C To
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Wai-Ki Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Takashi Kajitani
- TC College Promotion Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Vincent W Keng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
4
|
Dibble JP, Deboer SR, Mersha M, Robinson TJ, Felling RJ, Zeiler SR, Tovar JD. In Vivo Formation and Tracking of π-Peptide Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25091-25097. [PMID: 35838681 DOI: 10.1021/acsami.2c04598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The photophysics associated with the self-assembly of π-peptide molecules into 1-D nanostructures has been well-established, thus revealing the creation of nanoscale electronic conduits in aqueous media. Such materials have therapeutic potential in many biomedical applications. In this work, we report the in vivo deployment of these π-peptide nanostructures in brain tissue using photothrombotic stroke as a model application. A test peptide was used for brain injections, and the nanostructures formed were visualized with electron microscopy. A new peptide bearing a low-energy fluorescence dye was prepared to facilitate direct visualization of π-peptide localization in the brain cavity by way of fluorescence microscopy. This work demonstrates feasibility for in vivo application of π-peptide nanostructures toward pressing biomedical challenges.
Collapse
Affiliation(s)
- Jessie P Dibble
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Scott R Deboer
- Medstar Franklin Square Medical Center, 9000 Franklin Square Drive, Baltimore, Maryland 21237, United States
| | - Mahlet Mersha
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | - Thomas J Robinson
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
- Department of Pediatrics, Johns Hopkins School of Medicine, 1800 Orleans Street, Baltimore, Maryland 21287, United States
| | - Steven R Zeiler
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Yao Z, Lundqvist E, Kuang Y, Ardoña HAM. Engineering Multi-Scale Organization for Biotic and Organic Abiotic Electroactive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205381. [PMID: 36670065 PMCID: PMC10074131 DOI: 10.1002/advs.202205381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Multi-scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems-whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state-of-the-art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi-scale organization of electroactive organic materials, including biomolecule-based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic-abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems.
Collapse
Affiliation(s)
- Ze‐Fan Yao
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
| | - Emil Lundqvist
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Sue & Bill Gross Stem Cell Research CenterUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
6
|
Yao Z, Kuang Y, Kohl P, Li Y, Ardoña HAM. Carbodiimide‐Fueled Assembly of π‐Conjugated Peptides Regulated byElectrostatic Interactions. CHEMSYSTEMSCHEM 2023. [DOI: 10.1002/syst.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Ze‐Fan Yao
- Department of Chemical and Biomolecular Engineering Samueli School of Engineering University of California Irvine CA 92697 USA
- Department of Chemistry School of Physical Sciences University of California Irvine CA 92697 USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering Samueli School of Engineering University of California Irvine CA 92697 USA
| | - Phillip Kohl
- Materials Research Laboratory and BioPACIFIC MIP University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Youli Li
- Materials Research Laboratory and BioPACIFIC MIP University of California, Santa Barbara Santa Barbara CA 93106 USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular Engineering Samueli School of Engineering University of California Irvine CA 92697 USA
- Department of Chemistry School of Physical Sciences University of California Irvine CA 92697 USA
- Department of Biomedical Engineering Samueli School of Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| |
Collapse
|
7
|
Ferguson AL, Tovar JD. Evolution of π-Peptide Self-Assembly: From Understanding to Prediction and Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15463-15475. [PMID: 36475709 DOI: 10.1021/acs.langmuir.2c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular materials derived from the self-assembly of engineered molecules continue to garner tremendous scientific and technological interest. Recent innovations include the realization of nano- and mesoscale particles (0D), rods and fibrils (1D), sheets (2D), and even extended lattices (3D). Our research groups have focused attention over the past 15 years on one particular class of supramolecular materials derived from oligopeptides with embedded π-electron units, where the oligopeptides can be viewed as substituents or side chains to direct the assembly of the central π-electron cores. Upon assembly, the π-systems are driven into close cofacial architectures that facilitate a variety of energy migration processes within the nanomaterial volume, including exciton transport, voltage transmission, and photoinduced electron transfer. Like many practitioners of supramolecular materials science, many of our initial molecular designs were designed with substantial inspiration from biologically occurring self-assembly coupled with input from chemical intuition and molecular modeling and simulation. In this feature article, we summarize our current understanding of the π-peptide self-assembly process as documented through our body of publications in this area. We address fundamental spectroscopic and computational tools used to extract information regarding the internal structures and energetics of the π-peptide assemblies, and we address the current state of the art in terms of recent applications of data science tools in conjunction with high-throughput computational screening and experimental assays to guide the efficient traversal of the π-peptide molecular design space. The abstract image details our integrated program of chemical synthesis, spectroscopic and functional characterization, multiscale simulation, and machine learning which has advanced the understanding and control of the assembly of synthetic π-conjugated peptides into supramolecular nanostructures with energy and biomedical applications.
Collapse
Affiliation(s)
- Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218 United States
| |
Collapse
|
8
|
Martínez-Abadía M, Dubey RK, Fernández M, Martín-Arroyo M, Aguirresarobe R, Saeki A, Mateo-Alonso A. Molecular nanoribbon gels. Chem Sci 2022; 13:10773-10778. [PMID: 36320686 PMCID: PMC9491176 DOI: 10.1039/d2sc02637f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered π-gels with morphologies and sol–gel transitions that vary with the length of the nanoribbon. In addition, the nanoribbon gels show a red fluorescence and also pseudoconductivity values in the same range as current state-of-the-art π-gels. Herein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered π-gels with morphologies and sol–gel transitions that vary with the length of the nanoribbon.![]()
Collapse
Affiliation(s)
- Marta Martínez-Abadía
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Rajeev K. Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Miguel Martín-Arroyo
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Robert Aguirresarobe
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Ding J, Xu N, Nguyen MT, Qiao Q, Shi Y, He Y, Shao Q. Machine learning for molecular thermodynamics. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Özen B, Fadaei Tirani F, Schenk K, Lin KH, Scopelliti R, Corminboeuf C, Frauenrath H. Structure-Property Relationships in Bithiophenes with Hydrogen-Bonded Substituents. Chemistry 2021; 27:3348-3360. [PMID: 32894599 DOI: 10.1002/chem.202003113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Indexed: 11/10/2022]
Abstract
The use of crystal engineering to control the supramolecular arrangement of π-conjugated molecules in the solid-state is of considerable interest for the development of novel organic electronic materials. In this study, we investigated the effect of combining of two types of supramolecular interaction with different geometric requirements, amide hydrogen bonding and π-interactions, on the π-overlap between calamitic π-conjugated cores. To this end, we prepared two series of bithiophene diesters and diamides with methylene, ethylene, or propylene spacers between the bithiophene core and the functional groups in their terminal substituents. The hydrogen-bonded bithiophene diamides showed significantly denser packing of the bithiophene cores than the diesters and other known α,ω-disubstituted bithiophenes. The bithiophene packing density reach a maximum in the bithiophene diamide with an ethylene spacer, which had the smallest longitudinal bithiophene displacement and infinite 1D arrays of electronically conjugated, parallel, and almost linear N-H⋅⋅⋅O=C hydrogen bonds. The synergistic hydrogen bonding and π-interactions were attributed to the favorable conformation mechanics of the ethylene spacer and resulted in H-type spectroscopic aggregates in solid-state absorption spectroscopy. These results demonstrate that the optoelectronic properties of π-conjugated materials in the solid-state may be tailored systematically by side-chain engineering, and hence that this approach has significant potential for the design of organic and polymer semiconductors.
Collapse
Affiliation(s)
- Bilal Özen
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, MXG 037, Station 12, 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei Tirani
- BCH 2111, Batochime UNIL, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Avenue Forel 2, 1015, Lausanne, Switzerland
| | - Kurt Schenk
- Institute of Physics, PH L1 500, Station 3, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kun-Han Lin
- BCH 5312, Batochime UNIL, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Avenue Forel 2, 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- BCH 2111, Batochime UNIL, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Avenue Forel 2, 1015, Lausanne, Switzerland
| | - Clémence Corminboeuf
- BCH 5312, Batochime UNIL, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Avenue Forel 2, 1015, Lausanne, Switzerland
| | - Holger Frauenrath
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, MXG 037, Station 12, 1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Abstract
This review surveys recent progress towards robust chiral nanostructure fabrication techniques using synthetic helical polymers, the unique inferred properties that these materials possess, and their intricate connection to natural, biological chirality.
Collapse
Affiliation(s)
| | - James F. Reuther
- Department of Chemistry
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|
12
|
Özen B, Candau N, Temiz C, Grozema FC, Stoclet G, Plummer CJG, Frauenrath H. Semiaromatic polyamides with enhanced charge carrier mobility. Polym Chem 2021. [DOI: 10.1039/d1py01203g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of local order in polymer semiconductors using non-covalent interactions may be used to engineer materials with interesting combinations of mechanical and optoelectronic properties.
Collapse
Affiliation(s)
- Bilal Özen
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015 Lausanne, Switzerland
| | - Nicolas Candau
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015 Lausanne, Switzerland
| | - Cansel Temiz
- Delft University of Technology, Department of Chemical Engineering, Netherlands
| | | | - Grégory Stoclet
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, F-59000 Lille, France
| | - Christopher J. G. Plummer
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015 Lausanne, Switzerland
| | - Holger Frauenrath
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Lee Y, Kim KW, Duong NX, Park H, Park J, Ahn CW, Park IW, Jang SC, Kim DH, Lee M, Chung WJ, Kim TH, Lee H, Heo K. Large-Scale Assembly of Peptide-Based Hierarchical Nanostructures and Their Antiferroelectric Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003986. [PMID: 33078539 DOI: 10.1002/smll.202003986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Indexed: 06/11/2023]
Abstract
An effective strategy is developed to create peptide-based hierarchical nanostructures through the meniscus-driven self-assembly in a large area and fabricate antiferroelectric devices based on these nanostructures for the first time. The diphenylalanine hierarchical nanostructures (FF-HNs) are self-assembled by vertically pulling a substrate from a diphenylalanine (FF) solution dissolved in a miscible solvent under precisely controlled conditions. Owing to the unique structural properties of FF nanostructures, including high crystallinity and α-helix structures, FF-HNs possess a net electrical dipole moment, which can be switched in an external electric field. The mass production of antiferroelectric devices based on FF-HNs can be successfully achieved by means of this biomimetic assembly technique. The devices show an evident antiferroelectric to ferroelectric transition under dark conditions, while the ferroelectricity is found to be tunable by light. Notably, it is discovered that the modulation of antiferroelectric behaviors of FF-HNs under glutaraldehyde exposure is due to the FF molecules that are transformed into cyclophenylalanine by glutaraldehyde. This work provides a stepping stone toward the mass production of self-assembled hierarchical nanostructures based on biomolecules as well as the mass fabrication of electronic devices based on biomolecular nanostructures for practical applications.
Collapse
Affiliation(s)
- Yonghun Lee
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Kyung Won Kim
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Nguyen Xuan Duong
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Hyeok Park
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Jinhong Park
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea
| | - Chang Won Ahn
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan, 44610, Republic of Korea
| | - In Woo Park
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Seok Cheon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 14619, Republic of Korea
| | - Dong Hoe Kim
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| | - Minbaek Lee
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 14619, Republic of Korea
| | - Tae Heon Kim
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Hyungwoo Lee
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Kwang Heo
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul, 05006, Republic of Korea
| |
Collapse
|
14
|
Hafner RJ, Görl D, Sienkiewicz A, Balog S, Frauenrath H. Long‐Lived Photocharges in Supramolecular Polymers of Low‐Band‐Gap Chromophores. Chemistry 2020; 26:9506-9517. [DOI: 10.1002/chem.201904561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Regina J. Hafner
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)EPFL-STI-IMX-LMOM, MXG 037, Station 12 1015 Lausanne Switzerland
| | - Daniel Görl
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)EPFL-STI-IMX-LMOM, MXG 037, Station 12 1015 Lausanne Switzerland
| | - Andrzej Sienkiewicz
- Institute of Condensed Matter PhysicsEcole Polytechnique Fédérale de Lausanne (EPFL)EPFL-SB-IPHYS-LPMC, PH L 1 491, Station 3 1015 Lausanne Switzerland
| | - Sandor Balog
- Adolphe Merkle InstituteUniversité de Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Holger Frauenrath
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)EPFL-STI-IMX-LMOM, MXG 037, Station 12 1015 Lausanne Switzerland
| |
Collapse
|
15
|
Panda SS, Shmilovich K, Ferguson AL, Tovar JD. Computationally Guided Tuning of Amino Acid Configuration Influences the Chiroptical Properties of Supramolecular Peptide-π-Peptide Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6782-6792. [PMID: 32491857 DOI: 10.1021/acs.langmuir.0c00961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled supramolecular materials derived from peptidic macromolecules with π-conjugated building blocks are of enormous interest because of their aqueous solubility and biocompatibility. The design rules to achieve tailored optoelectronic properties from these types of materials can be guided by computation and virtual screening rather than intuition-based experimental trial-and-error. Using machine learning, we reported previously that the supramolecular chirality in self-assembled aggregates from VEVAG-π-GAVEV type peptidic materials was most strongly influenced by hydrogen bonding and hydrophobic packing of the alanine and valine residues. Herein, we build upon this idea to demonstrate through molecular-level experimental characterization and all-atom molecular modeling that varying the stereogenic centers of these residues has a profound impact on the optoelectronic properties of the supramolecular aggregates, whereas the variation of stereogenic centers of other residues has only nominal influence on these properties. This study highlights the synergy between computational and experimental insight relevant to the control of chiroptical or other electronic properties associated with supramolecular materials.
Collapse
Affiliation(s)
| | - Kirill Shmilovich
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | | |
Collapse
|
16
|
Jira ER, Shmilovich K, Kale TS, Ferguson A, Tovar JD, Schroeder CM. Effect of Core Oligomer Length on the Phase Behavior and Assembly of π-Conjugated Peptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20722-20732. [PMID: 32286786 DOI: 10.1021/acsami.0c02095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biohybrid molecules are a versatile class of materials for controlling the assembly behavior and functional properties of electronically active organics. In this work, we study the effect of the size of the π-conjugated core on the assembly and phase behavior for a series of π-conjugated peptides consisting of oligothiophene cores of defined lengths flanked by sequence-defined peptides (OTX, where X = 4, 5, 6 is the number of thiophene core units). Interestingly, we find that π-conjugated peptides with relatively short OT4 cores assemble into ordered, high aspect ratio, one-dimensional (1D) structures, whereas π-conjugated peptides with longer OT5 and OT6 cores assemble into disordered structures or lower aspect ratio 1D structures depending on assembly conditions. Phase diagrams for assembled materials are experimentally determined as a function of ionic strength, pH, temperature, and peptide concentration, revealing the impact of molecular sequence and π-conjugated core length on assembled morphologies. Molecular dynamics (MD) simulations are further used to probe the origins of microscale differences in assembly that arise from subtle changes in molecular identity. Broadly, our work elucidates the mechanisms governing the assembly of π-conjugated peptides, which will aid in efficient materials processing for soft electronic applications. Overall, these results highlight the complex phase behavior of biohybrid materials, including the impact of molecular sequence on assembly behavior and morphology.
Collapse
Affiliation(s)
- Edward R Jira
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kirill Shmilovich
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Tejaswini S Kale
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Andrew Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Lee T, Panda SS, Tovar JD, Katz HE. Unusually Conductive Organic-Inorganic Hybrid Nanostructures Derived from Bio-Inspired Mineralization of Peptide/Pi-Electron Assemblies. ACS NANO 2020; 14:1846-1855. [PMID: 31999098 DOI: 10.1021/acsnano.9b07911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular materials derived from pi-conjugated peptidic macromolecules are well-established to self-assemble into 1D nanostructures. In the presence of KOH, which was used to more fully dissolve the peptide macromolecules prior to triggering the self-assembly by way of exposure to HCl vapor, we report here an unexpected mineralization of KCl as templated presumably by the glutamic acid residues that were present along the backbone of the peptide macromolecules. In order to decouple the peptidic side chains from the central pi-electron unit, three-carbon spacers were added between them on both sides. The assembled structures that resulted from the collective formation of β-sheets, π-orbital overlaps, and mineralization resulted in highly interconnected dendritic structures under suitable KOH concentrations. Electrical measurements indicated that when well-interconnected, these dendritic structures maintained conductivities comparable to those of metals at around 1800 S/cm. About 50 mA current was measured for 0.5 V/37.5 μm. Varying the gate voltage in a transistor configuration had no effect on the current levels, indicating a conductive instead of a semiconducting pathway. Control experiments without the peptide, measurements of conductivity over time, and conductivity quenching by ammonia suggested the conductivity of these dendritic networks was derived from proton doping of the central π-electron units in a strong acid environment and was facilitated by closely spaced chromophores, as suggested in the literature, leading to facile π-electron transfer along the interconnected dendritic pathways. Our findings suggest that mineralization templated by appropriate amino acids combined with peptide/π-electron self-assembly can lead to highly conductive dendritic macrostructures as well as control of nanowire growth in specific directions.
Collapse
Affiliation(s)
- Taein Lee
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Sayak Subhra Panda
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - John D Tovar
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Howard E Katz
- Department of Materials Science and Engineering and Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
18
|
Thurston BA, Shapera EP, Tovar JD, Schleife A, Ferguson AL. Revealing the Sequence-Structure-Electronic Property Relation of Self-Assembling π-Conjugated Oligopeptides by Molecular and Quantum Mechanical Modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15221-15231. [PMID: 31657579 DOI: 10.1021/acs.langmuir.9b02593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled nanoaggregates of π-conjugated synthetic peptides present a biocompatible and highly tunable alternative to silicon-based optical and electronic materials. Understanding the relationship between structural morphology and electronic properties of these assemblies is critical for understanding and controlling their mechanical, optical, and electronic responses. In this work, we combine all-atom classical molecular simulations with quantum mechanical electronic structure calculations to ascertain the sequence-structure-electronic property relationship within a family of Asp-X-X-quaterthiophene-X-X-Asp (DXX-OT4-XXD) oligopeptides in which X is one of the five amino acids {Ala, Phe, Gly, Ile, Val} ({A, F, G, I, V}). Molecular dynamics simulations reveal that smaller amino acid substituents (A, G) favor linear stacking within a peptide dimer, whereas larger groups (F, I, V) induce larger twist angles between the peptides. Density functional theory calculations on the dimer show the absorption spectrum to be dominated by transitions between carbon and sulfur p orbitals. Although the absorption spectrum is largely insensitive to the relative twist angle, the highest occupied molecular orbital strongly localizes onto one molecule within the dimer at large twist angles, impeding the efficiency of transport between molecules. Our results provide a fundamental understanding of the relation between peptide orientation and electronic structure and offer design precepts for rational engineering of these systems.
Collapse
Affiliation(s)
- Bryce A Thurston
- Center for Integrated Nanotechnologies , Sandia National Laboratories , P.O. Box 5800, Albuquerque , New Mexico 87185 , United States
| | - Ethan P Shapera
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - John D Tovar
- Department of Chemistry, Krieger School of Arts and Sciences , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Institute for NanoBioTechnology , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Department of Materials Science and Engineering, Whiting School of Engineering , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - André Schleife
- Department of Materials Science and Engineering , 1304 West Green Street , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Materials Research Laboratory , University of Illinois at Urbana-Champaign , 104 South Goodwin Avenue , Urbana , Illinois 61801 , United States
- National Center for Supercomputing Applications , University of Illinois at Urbana-Champaign , 1205 West Clark Street , Urbana , Illinois 61801 , United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering , University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| |
Collapse
|
19
|
Panda SS, Shmilovich K, Ferguson AL, Tovar JD. Controlling Supramolecular Chirality in Peptide-π-Peptide Networks by Variation of the Alkyl Spacer Length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14060-14073. [PMID: 31566986 DOI: 10.1021/acs.langmuir.9b02683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled supramolecular organic materials with π-functionalities are of great interest because of their applications as biocompatible nanoelectronics. A detailed understanding of molecular parameters to modulate the formation of hierarchical structures can inform design principles for materials with engineered optical and electronic properties. In this work, we combine molecular-level characterization techniques with all-atom molecular simulations to investigate the subtle relationship between the chemical structure of peptide-π-peptide molecules and the emergent supramolecular chirality of their spontaneously self-assembled nanoaggregates. We demonstrate through circular dichroism measurements that we can modulate the chirality by incorporating alkyl spacers of various lengths in between the peptides and thienylene-phenylene π-system chromophores: even numbers of alkyl carbons in the spacer units (0, 2) induce M-type helical character whereas odd numbers (1, 3) induce P-type. Corroborating molecular dynamics simulations and explicating machine learning analysis techniques identify hydrogen bonding and hydrophobic packing to be the principal discriminants of the observed chirality switches. Our results present a molecular-level design rule to engineer chirality into optically and electronically active nanoaggregates of these peptidic building blocks by exploiting systematic variations in the alkyl spacer length.
Collapse
Affiliation(s)
| | - Kirill Shmilovich
- Pritzker School of Molecular Engineering , University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering , University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | | |
Collapse
|
20
|
Leung FK, Kajitani T, Stuart MCA, Fukushima T, Feringa BL. Dual‐Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angew Chem Int Ed Engl 2019; 58:10985-10989. [DOI: 10.1002/anie.201905445] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Franco King‐Chi Leung
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Takashi Kajitani
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Marc C. A. Stuart
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Takanori Fukushima
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| |
Collapse
|
21
|
Leung FK, Kajitani T, Stuart MCA, Fukushima T, Feringa BL. Dual‐Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Franco King‐Chi Leung
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Takashi Kajitani
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Marc C. A. Stuart
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| | - Takanori Fukushima
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9747AG Groningen Netherlands
| |
Collapse
|
22
|
Ochs NAK, Lewandowska U, Zajaczkowski W, Corra S, Reger S, Herdlitschka A, Schmid S, Pisula W, Müllen K, Bäuerle P, Wennemers H. Oligoprolines guide the self-assembly of quaterthiophenes. Chem Sci 2019; 10:5391-5396. [PMID: 31191896 PMCID: PMC6540903 DOI: 10.1039/c8sc05742g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Control over the molecular organization of π-conjugated oligothiophenes into different types of supramolecular assemblies is key to their use in organic electronics but difficult to achieve as these chromophores have a pronounced tendency to aggregate. Herein we show that oligoprolines, which do not self-assemble on their own, control the self-assembly of quaterthiophenes. Spectroscopic, microscopic, and diffraction studies with quaterthiophene-oligoproline conjugates revealed the formation of mono- or double-layered sheets or, alternatively, helically twisted ribbons - depending on the length of the oligoproline. The dimensions of the nanoscopic objects, which extend into the micrometer regime, correlate with the molecular dimensions of the quaterthiophene-oligoproline building blocks.
Collapse
Affiliation(s)
- Nellie A K Ochs
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Urszula Lewandowska
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Wojciech Zajaczkowski
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
| | - Stefano Corra
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Stephan Reger
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Andreas Herdlitschka
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Sylvia Schmid
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
- Department of Molecular Physics , Faculty of Chemistry , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Helma Wennemers
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| |
Collapse
|
23
|
Kale TS, Ardoña HAM, Ertel A, Tovar JD. Torsional Impacts on Quaterthiophene Segments Confined within Peptidic Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2270-2282. [PMID: 30642185 DOI: 10.1021/acs.langmuir.8b03708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The co-assembly behavior of peptide-π-peptide and peptide-alkyl-peptide triblock molecules that form one-dimensional (1D) nanostructures under acidic, aqueous environments is dependent on the peptide sequence and the torsional constraints imposed within the nanomaterial volume. Although a hydrophilic tripeptide sequence (Asp-Asp-Asp, DDD-) previously promoted isolation/dilution of minority π-electron components in the matrix of aliphatic peptides, a β-sheet promoting sequence (Asp-Val-Val, DVV-) led to blocks of the two components distributed within larger 1D self-assembled nanostructures. Furthermore, torsional restrictions exerted on the oligoaromatic π-electron unit by the self-assembly process can lead to changes in its conformation (for example, planarity), which has ramifications on its functionality within the peptide matrix. Here, we study this impact on thiophene-based π-electron units with inherently different geometries, viz., relatively planar 2,2':5',2″:5″,2‴-quaterthiophene and 3″,4'-dimethyl-2,2':5',2″:5″,2‴-quaterthiophene, which is twisted at the core bithiophene unit due to the presence of two methyl groups. These peptides were co-assembled at 5 and 20 mol % with peptide- n-decyl-peptide triblock molecules, and the resultant assemblies were studied using UV-vis absorption, photoluminescence, and circular dichroism spectroscopies. We found that torsional restriction in dimethylated quaterthiophene units can impact the stacking behavior of these 1D peptide nanoassemblies and have consequences on their photophysical properties. Additionally, these insights help in the understanding of the dependence of the optoelectronic properties of these materials on both the intrinsic conformation of π-units and the geometric constraints imposed by their immediate local environment under aqueous conditions.
Collapse
|
24
|
Zhang X, Wang B, Huang W, Wang G, Zhu W, Wang Z, Zhang W, Facchetti A, Marks TJ. Oxide-Polymer Heterojunction Diodes with a Nanoscopic Phase-Separated Insulating Layer. NANO LETTERS 2019; 19:471-476. [PMID: 30517010 DOI: 10.1021/acs.nanolett.8b04284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic semiconductor-insulator blend films are widely explored for high-performance electronic devices enabled by unique phase-separation and self-assembly phenomena at key device interfaces. Here we report the first demonstration of high-performance hybrid diodes based on p- n junctions formed by a p-type poly(3-hexylthiophene) (P3HT)-poly(methyl methacrylate) (PMMA) blend and n-type indium-gallium-zinc oxide (IGZO). The thin film morphology, microstructure, and vertical phase-separation behavior of the P3HT films with varying contents of PMMA are systematically analyzed. Microstructural and charge transport evaluation indicates that the polymer insulator component positively impacts the morphology, molecular orientation, and effective conjugation length of the P3HT films, thereby enhancing the heterojunction performance. Furthermore, the data suggest that PMMA phase segregation creates a continuous nanoscopic interlayer between the P3HT and IGZO layers, playing an important role in enhancing diode performance. Thus, the diode based on an optimal P3HT-PMMA blend exhibits a remarkable 10-fold increase in forward current versus that of a neat P3HT diode, yielding an ideality factor value as low as 2.5, and a moderate effective barrier height with an excellent rectification ratio. These results offer a new approach to simplified manufacturing of low-cost, large-area hybrid inorganic-organic electronics technologies.
Collapse
Affiliation(s)
- Xinan Zhang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
- School of Physics and Electronics, Key Laboratory of Photovoltaic Materials , Henan University , Kaifeng 475004 , China
| | - Binghao Wang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Wei Huang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Gang Wang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Weigang Zhu
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Zhi Wang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Weifeng Zhang
- School of Physics and Electronics, Key Laboratory of Photovoltaic Materials , Henan University , Kaifeng 475004 , China
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
25
|
Amdursky N, Głowacki ED, Meredith P. Macroscale Biomolecular Electronics and Ionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802221. [PMID: 30334284 DOI: 10.1002/adma.201802221] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/25/2018] [Indexed: 05/18/2023]
Abstract
The conduction of ions and electrons over multiple length scales is central to the processes that drive the biological world. The multidisciplinary attempts to elucidate the physics and chemistry of electron, proton, and ion transfer in biological charge transfer have focused primarily on the nano- and microscales. However, recently significant progress has been made on biomolecular materials that can support ion and electron currents over millimeters if not centimeters. Likewise, similar transport phenomena in organic semiconductors and ionics have led to new innovations in a wide variety of applications from energy generation and storage to displays and bioelectronics. Here, the underlying principles of conduction on the macroscale in biomolecular materials are discussed, highlighting recent examples, and particularly the establishment of accurate structure-property relationships to guide rationale material and device design. The technological viability of biomolecular electronics and ionics is also discussed.
Collapse
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, SE-60174, Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, 58183, Linköping, Sweden
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
26
|
Leung FKC, van den Enk T, Kajitani T, Chen J, Stuart MCA, Kuipers J, Fukushima T, Feringa BL. Supramolecular Packing and Macroscopic Alignment Controls Actuation Speed in Macroscopic Strings of Molecular Motor Amphiphiles. J Am Chem Soc 2018; 140:17724-17733. [PMID: 30462498 PMCID: PMC6302472 DOI: 10.1021/jacs.8b10778] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Three-dimensional organized unidirectionally
aligned and responsive
supramolecular structures have much potential in adaptive materials
ranging from biomedical components to soft actuator systems. However,
to control the supramolecular structure of these stimuli responsive,
for example photoactive, materials and control their actuation remains
a major challenge. Toward the design of “artificial muscles”,
herein, we demonstrate an approach that allows hierarchical control
of the supramolecular structure, and as a consequence its photoactuation
function, by electrostatic interaction between motor amphiphiles (MA)
and counterions. Detailed insight into the effect of various ions
on structural parameters for self-assembly from nano- to micrometer
scale in water including nanofiber formation and nanofiber aggregation
as well as the packing structure, degree of alignment, and actuation
speed of the macroscopic MA strings prepared from various metal chlorides
solution, as determined by electronic microscopy, X-ray diffraction,
and actuation speed measurements, is presented. Macroscopic MA strings
prepared from calcium and magnesium ions provide a high degree of
alignment and fast response photoactuation. By the selection of metal
ions and chain length of MAs, the macroscopic MA string structure
and function can be controlled, demonstrating the potential of generating
multiple photoresponsive supramolecular systems from an identical
molecular structure.
Collapse
Affiliation(s)
- Franco King-Chi Leung
- Center for System Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Tobias van den Enk
- Center for System Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Takashi Kajitani
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta , Midori-ku, Yokohama 226-8503 , Japan.,RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Jiawen Chen
- Center for System Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Marc C A Stuart
- Center for System Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, Molecular Imaging and Electron Microscopy, University Medical Center Groningen , University of Groningen , 9712 CP Groningen , The Netherlands
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta , Midori-ku, Yokohama 226-8503 , Japan
| | - Ben L Feringa
- Center for System Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
27
|
Mansbach RA, Ferguson AL. Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. J Phys Chem B 2018; 122:10219-10236. [DOI: 10.1021/acs.jpcb.8b05781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rachael A. Mansbach
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Andrew L. Ferguson
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, 1304 W Green Street, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Amit M, Yuran S, Gazit E, Reches M, Ashkenasy N. Tailor-Made Functional Peptide Self-Assembling Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707083. [PMID: 29989255 DOI: 10.1002/adma.201707083] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Noncovalent interactions are the main driving force in the folding of proteins into a 3D functional structure. Motivated by the wish to reveal the mechanisms of the associated self-assembly processes, scientists are focusing on studying self-assembly processes of short protein segments (peptides). While this research has led to major advances in the understanding of biological and pathological process, only in recent years has the applicative potential of the resulting self-assembled peptide assemblies started to be explored. Here, major advances in the development of biomimetic supramolecular peptide assemblies as coatings, gels, and as electroactive materials, are highlighted. The guiding lines for the design of helical peptides, β strand peptides, as well as surface binding monolayer-forming peptides that can be utilized for a specific function are highlighted. Examples of their applications in diverse immerging applications in, e.g., ecology, biomedicine, and electronics, are described. Taking into account that, in addition to extraordinary design flexibility, these materials are naturally biocompatible and ecologically friendly, and their production is cost effective, the emergence of devices incorporating these biomimetic materials in the market is envisioned in the near future.
Collapse
Affiliation(s)
- Moran Amit
- Department of Materials Engineering, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA, 92093-0407, USA
| | - Sivan Yuran
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
29
|
Ing NL, El-Naggar MY, Hochbaum AI. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. J Phys Chem B 2018; 122:10403-10423. [DOI: 10.1021/acs.jpcb.8b07431] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Martínez‐Abadía M, Antonicelli G, Saeki A, Mateo‐Alonso A. Readily Processable Hole‐Transporting Peropyrene Gels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marta Martínez‐Abadía
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Gabriella Antonicelli
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
31
|
Martínez‐Abadía M, Antonicelli G, Saeki A, Mateo‐Alonso A. Readily Processable Hole‐Transporting Peropyrene Gels. Angew Chem Int Ed Engl 2018; 57:8209-8213. [DOI: 10.1002/anie.201804453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/29/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Marta Martínez‐Abadía
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Gabriella Antonicelli
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Akinori Saeki
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- IkerbasqueBasque Foundation for Science 48011 Bilbao Spain
| |
Collapse
|
32
|
Del Borgo MP, Kulkarni K, Tonta MA, Ratcliffe JL, Seoudi R, Mechler AI, Perlmutter P, Parkington HC, Aguilar MI. β3-tripeptides act as sticky ends to self-assemble into a bioscaffold. APL Bioeng 2018; 2:026104. [PMID: 31069301 PMCID: PMC6481712 DOI: 10.1063/1.5020105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Peptides comprised entirely of β3-amino acids, commonly referred to as β-foldamers, have been shown to self-assemble into a range of materials. Previously, β-foldamers have been functionalised via various side chain chemistries to introduce function to these materials without perturbation of the self-assembly motif. Here, we show that insertion of both rigid and flexible molecules into the backbone structure of the β-foldamer did not disturb the self-assembly, provided that the molecule is positioned between two β3-tripeptides. These hybrid β3-peptide flanked molecules self-assembled into a range of structures. α-Arginlyglycylaspartic acid (RGD), a commonly used cell attachment motif derived from fibronectin in the extracellular matrix, was incorporated into the peptide sequence in order to form a biomimetic scaffold that would support neuronal cell growth. The RGD-containing sequence formed the desired mesh-like scaffold but did not encourage neuronal growth, possibly due to over-stimulation with RGD. Mixing the RGD peptide with a β-foldamer without the RGD sequence produced a well-defined scaffold that successfully encouraged the growth of neurons and enabled neuronal electrical functionality. These results indicate that β3-tripeptides can form distinct self-assembly units separated by a linker and can form fibrous assemblies. The linkers within the peptide sequence can be composed of a bioactive α-peptide and tuned to provide a biocompatible scaffold.
Collapse
Affiliation(s)
- Mark P. Del Borgo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mary A. Tonta
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessie L. Ratcliffe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rania Seoudi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Adam I. Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Helena C. Parkington
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
33
|
Thurston BA, Ferguson AL. Machine learning and molecular design of self-assembling -conjugated oligopeptides. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1469754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Bryce A. Thurston
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Andrew L. Ferguson
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|
34
|
Arribat M, Rémond E, Clément S, Lee AVD, Cavelier F. Phospholyl(borane) Amino Acids and Peptides: Stereoselective Synthesis and Fluorescent Properties with Large Stokes Shift. J Am Chem Soc 2018; 140:1028-1034. [DOI: 10.1021/jacs.7b10954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mathieu Arribat
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Sébastien Clément
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Arie Van Der Lee
- Institut Européen des Membranes, IEM, UMR 5635, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
35
|
Panda SS, Katz HE, Tovar JD. Solid-state electrical applications of protein and peptide based nanomaterials. Chem Soc Rev 2018; 47:3640-3658. [DOI: 10.1039/c7cs00817a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advancements in electrical properties and applications of natural proteins and mutated variants, synthetic oligopeptides and peptide–π conjugates.
Collapse
Affiliation(s)
- Sayak Subhra Panda
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| | - Howard E. Katz
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| | - John D. Tovar
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
36
|
Tovar JD. Photon management in supramolecular peptide nanomaterials. BIOINSPIRATION & BIOMIMETICS 2017; 13:015004. [PMID: 29076807 DOI: 10.1088/1748-3190/aa9685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembling peptides with covalent pi-electron functionality offer new ways to create delocalized conduits within protein-based nanomaterials. My group's recent research is summarized in this regard, detailing foundational self-assembly and photophysical characterizations that validate the electronic couplings existing within the resulting peptidic nanomaterials. Using these initial studies as a benchmark, ongoing studies to create even more complex photonic energy delocalization schemes are presented, spanning excitonic and Förster energy transfer to low-bandgap dopant sites (whereby 46% of the observed photoluminescence could be quenched by the addition of 1 mol% of an energy acceptor), the creation of charge separated states following photoinduced electron transfer that persisted for over a nanosecond, and use of kinetic control to dictate self-sorting (at long time scales, ca. several hours) or intimate coassembly (at short time scales, ca. several seconds) of multiple peptide components. Peptide coassemblies are described that exhibit both directed exciton migration to low-energy sites and follow-up charge separation events, very much in mimicry with relevant photosynthetic processes.
Collapse
Affiliation(s)
- John D Tovar
- Department of Chemistry, Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street (NCB 316), Baltimore, MD 21218, United States of America
| |
Collapse
|
37
|
Berto M, Diacci C, D'Agata R, Pinti M, Bianchini E, Lauro MD, Casalini S, Cossarizza A, Berggren M, Simon D, Spoto G, Biscarini F, Bortolotti CA. EGOFET Peptide Aptasensor for Label-Free Detection of Inflammatory Cytokines in Complex Fluids. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marcello Berto
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Chiara Diacci
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche; Università di Catania; V.le A. Doria 6 95131 Catania
| | - Marcello Pinti
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Elena Bianchini
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Michele Di Lauro
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Stefano Casalini
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Andrea Cossarizza
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto; Università di Modena e Reggio Emilia; Via Campi 287 41125 Modena Italy
| | - Magnus Berggren
- Laboratory of Organic Electronics; Department of Science and Technology; ITN; Linköping University; S-601 74 Norrköping Sweden
| | - Daniel Simon
- Laboratory of Organic Electronics; Department of Science and Technology; ITN; Linköping University; S-601 74 Norrköping Sweden
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche; Università di Catania; V.le A. Doria 6 95131 Catania
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici; c/o Dipartimento di Scienze Chimiche; Università di Catania; Viale Andrea Doria 6 95131 Catania Italy
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| |
Collapse
|
38
|
Iwaura R. Visualization of periodic electric polarizability of helical nanofibers formed by self-assembly of nucleotide-bearing bolaamphiphiles and natural-source DNA as a template. SOFT MATTER 2017; 13:8293-8299. [PMID: 29072751 DOI: 10.1039/c7sm01420a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The possibility of fabricating DNA-based electronics has attracted considerable attention, but constructing robust, functional DNA nanowires on hard substrates has proven to be difficult. This paper describes the production of robust one-dimensional nanofibers by self-assembly of 1,18-nucleotide-bearing bolaamphiphiles templated by salmon sperm DNA. Electrostatic force microscopy measurements of the nanofibers on a highly oriented pyrolytic graphite substrate revealed that they showed electric polarizability that varied periodically with a pitch of 20-30 nm. Atomic force microscopy, gel electrophoresis, and circular dichroism spectroscopy suggested that the periodic polarizability was derived from right-handed helicity induced by the template DNA. Salmon sperm DNA itself did not show electric polarizability.
Collapse
Affiliation(s)
- Rika Iwaura
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
39
|
Zhou S, Wang L, Chen M, Liu B, Sun X, Cai M, Li H. Superstructures with diverse morphologies and highly ordered fullerene C 60 arrays from 1 : 1 and 2 : 1 adamantane-C 60 hybrid molecules. NANOSCALE 2017; 9:16375-16385. [PMID: 29053163 DOI: 10.1039/c7nr06112a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Superstructures from fullerene C60-containing compounds, especially those tethered to rigid functional groups with defined shapes, remain largely unexplored. Being the smallest diamondoid, adamantane (Ad) can be viewed as a promising building block for the construction of well-defined superstructures. Here, we report the syntheses of 1 : 1 (4a) and 2 : 1 (4b) Ad-C60 hybrid molecules, which were then used to construct superstructures in binary solvent mixtures via a modified liquid/liquid interfacial precipitation (LLIP) method using CHCl3 as a good solvent. Typically in the combination of DMSO/CHCl3 with a final concentration (cf) of 1.0 mmol L-1, 4a successively forms spheres, plates, nanoflowers and plicated particles with increasing content of DMSO while 4b forms cuboid blocks and microparticles with hierarchically organized surfaces. Changing from DMSO to other poor solvents including acetone, MeOH and EtOAc leads to variations of the morphology of the superstructures for both 4a and 4b. At the nanometer length scale, 4a and 4b adopt different organizations within the superstructures. While 4a tends to self-organize into lamellae with highly ordered C60 layers, the hexagonal phase is dominant in the superstructures formed by 4b. Wettability tests indicate that films formed by the superstructures of 4a and 4b show anti-wetting properties. Besides the solvent effect, the morphology of the superstructures can be also tuned by concentration. For example, when cf is lowered to 0.5 mmol L-1, a new form of superstructure, i.e., fibers, was detected for 4a. Our results also indicate that besides the solvent-induced aggregate transition, gravity-induced sedimentation and subsequent structure ripening can have a significant influence on the final morphology of the superstructures and the aggregate transition pathways.
Collapse
Affiliation(s)
- Shengju Zhou
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhou Y, Li B, Li S, Ardoña HAM, Wilson WL, Tovar JD, Schroeder CM. Concentration-Driven Assembly and Sol-Gel Transition of π-Conjugated Oligopeptides. ACS CENTRAL SCIENCE 2017; 3:986-994. [PMID: 28979940 PMCID: PMC5620977 DOI: 10.1021/acscentsci.7b00260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 05/26/2023]
Abstract
Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. In this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particle tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration cfiber and a critical gel concentration cgel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G″) are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.
Collapse
Affiliation(s)
- Yuecheng Zhou
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular
Engineering, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Bo Li
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular
Engineering, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Songsong Li
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular
Engineering, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Herdeline Ann M. Ardoña
- Department
of Chemistry and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - William L. Wilson
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular
Engineering, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Center
for Nanoscale Systems, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John D. Tovar
- Department
of Chemistry and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Charles M. Schroeder
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular
Engineering, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Ardoña HAM, Kale TS, Ertel A, Tovar JD. Nonresonant and Local Field Effects in Peptidic Nanostructures Bearing Oligo(p-phenylenevinylene) Units. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7435-7445. [PMID: 28683194 DOI: 10.1021/acs.langmuir.7b01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptide nanostructures with built-in electronic functions offer a new platform for biomaterial science. In this report, we interrogate the influences of the immediate peptide environment around oligo(p-phenylenevinylene) (OPV3) electronic units embedded within one-dimensional peptide nanostructures on the resulting photophysics as assessed by UV-vis, photoluminescence (PL), and circular dichroism spectroscopies. To do so, we studied peptide-core-peptide molecules where the core was either OPV3 or an aliphatic n-decyl chain. Coassemblies of these molecules wherein the π-core was diluted as a minority component within a majority aliphatic matrix allowed for the variation of interchromophore exciton coupling commonly found in homoassemblies of peptide-OPV3-peptide monomers. Upon coassembly of the peptides, a hydrophilic tripeptide sequence (Asp-Asp-Asp-, DDD-) promoted the dilution/isolation of the peptide-π-peptide molecules in the majority peptide-decyl-peptide matrix whereas a hydrophobic tripeptide sequence (Asp-Val-Val-, DVV-) promoted the formation of self-associated stacks within the nanostructures. We also performed temperature variation studies to induce the reorganization of π-electron units in the spatially constrained n-decyl environment. This study elucidates the nonresonant (e.g., conformational) and local peptide field effects enforced within the internal environment of peptide nanomaterials and how they lead to varied photophysical properties of the embedded π-electron cores. It offers new insights on tuning the optoelectronic properties of these types of materials on the basis of the local electronic and steric environment available within the nanostructures.
Collapse
Affiliation(s)
- Herdeline Ann M Ardoña
- Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and §Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Tejaswini S Kale
- Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and §Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Alyssa Ertel
- Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and §Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - John D Tovar
- Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and §Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
42
|
Kale TS, Marine JE, Tovar JD. Self-Assembly and Associated Photophysics of Dendron-Appended Peptide-π-Peptide Triblock Macromolecules. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Jeannette E. Marine
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | | |
Collapse
|
43
|
Ardoña HAM, Draper ER, Citossi F, Wallace M, Serpell LC, Adams DJ, Tovar JD. Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport. J Am Chem Soc 2017; 139:8685-8692. [DOI: 10.1021/jacs.7b04006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Emily R. Draper
- School
of Chemistry, WESTChem, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Francesca Citossi
- School
of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Matthew Wallace
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Louise C. Serpell
- School
of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Dave J. Adams
- School
of Chemistry, WESTChem, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | |
Collapse
|
44
|
|
45
|
Li B, Li S, Zhou Y, Ardoña HAM, Valverde LR, Wilson WL, Tovar JD, Schroeder CM. Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3977-3984. [PMID: 28067038 DOI: 10.1021/acsami.6b15068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Songsong Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61820, United States
| | - Yuecheng Zhou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61820, United States
| | - Herdeline Ann M Ardoña
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Lawrence R Valverde
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61820, United States
| | - William L Wilson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61820, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Center for Nanoscale Systems, Faculty of Arts and Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61820, United States
| |
Collapse
|
46
|
Liyanage W, Ardoña HAM, Mao HQ, Tovar JD. Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels. Bioconjug Chem 2016; 28:751-759. [DOI: 10.1021/acs.bioconjchem.6b00593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Hai-Quan Mao
- Translational
Tissue Engineering Center, Johns Hopkins School of Medicine, 400
North Broadway, Baltimore, Maryland 21287, United States
| | | |
Collapse
|
47
|
Triguero J, Zanuy D, Alemán C. Conformational analysis of a modified RGD adhesive sequence. J Pept Sci 2016; 23:172-181. [DOI: 10.1002/psc.2937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jordi Triguero
- Department of Chemical Engineering, ETSEIB; Universitat Politècnica de Catalunya; Av. Diagonal 647 Barcelona 08028 Spain
| | - David Zanuy
- Department of Chemical Engineering, ETSEIB; Universitat Politècnica de Catalunya; Av. Diagonal 647 Barcelona 08028 Spain
| | - Carlos Alemán
- Department of Chemical Engineering, ETSEIB; Universitat Politècnica de Catalunya; Av. Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering; Universitat Politècnica de Catalunya; Campus Sud, Edifici C', C/Pasqual i Vila s/n Barcelona 08028 Spain
| |
Collapse
|
48
|
Nguyen V, Zhu R, Jenkins K, Yang R. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat Commun 2016; 7:13566. [PMID: 27857133 PMCID: PMC5120215 DOI: 10.1038/ncomms13566] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/16/2016] [Indexed: 01/05/2023] Open
Abstract
Peptides have attracted considerable attention due to their biocompatibility, functional molecular recognition and unique biological and electronic properties. The strong piezoelectricity in diphenylalanine peptide expands its technological potential as a smart material. However, its random and unswitchable polarization has been the roadblock to fulfilling its potential and hence the demonstration of a piezoelectric device remains lacking. Here we show the control of polarization with an electric field applied during the peptide self-assembly process. Uniform polarization is obtained in two opposite directions with an effective piezoelectric constant d33 reaching 17.9 pm V−1. We demonstrate the power generation with a peptide-based power generator that produces an open-circuit voltage of 1.4 V and a power density of 3.3 nW cm−2. Devices enabled by peptides with controlled piezoelectricity provide a renewable and biocompatible energy source for biomedical applications and open up a portal to the next generation of multi-functional electronics compatible with human tissue. Piezoelectricity in diphenylalanine peptide nanotubes (PNTs) suggests an avenue towards green piezoelectric devices. Here the authors show ‘smart' PNTs whose polarization can be controlled with an electric field, and a resultant power generator which harvests biomechanical energy with high power density.
Collapse
Affiliation(s)
- Vu Nguyen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ren Zhu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kory Jenkins
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rusen Yang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|