1
|
Pham PV, Mai TH, Dash SP, Biju V, Chueh YL, Jariwala D, Tung V. Transfer of 2D Films: From Imperfection to Perfection. ACS NANO 2024; 18:14841-14876. [PMID: 38810109 PMCID: PMC11171780 DOI: 10.1021/acsnano.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Atomically thin 2D films and their van der Waals heterostructures have demonstrated immense potential for breakthroughs and innovations in science and technology. Integrating 2D films into electronics and optoelectronics devices and their applications in electronics and optoelectronics can lead to improve device efficiencies and tunability. Consequently, there has been steady progress in large-area 2D films for both front- and back-end technologies, with a keen interest in optimizing different growth and synthetic techniques. Parallelly, a significant amount of attention has been directed toward efficient transfer techniques of 2D films on different substrates. Current methods for synthesizing 2D films often involve high-temperature synthesis, precursors, and growth stimulants with highly chemical reactivity. This limitation hinders the widespread applications of 2D films. As a result, reports concerning transfer strategies of 2D films from bare substrates to target substrates have proliferated, showcasing varying degrees of cleanliness, surface damage, and material uniformity. This review aims to evaluate, discuss, and provide an overview of the most advanced transfer methods to date, encompassing wet, dry, and quasi-dry transfer methods. The processes, mechanisms, and pros and cons of each transfer method are critically summarized. Furthermore, we discuss the feasibility of these 2D film transfer methods, concerning their applications in devices and various technology platforms.
Collapse
Affiliation(s)
- Phuong V. Pham
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - The-Hung Mai
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Saroj P. Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Vasudevanpillai Biju
- Research
Institute for Electronic Science, Hokkaido
University, Hokkaido 001-0020, Japan
| | - Yu-Lun Chueh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Deep Jariwala
- Department
of Electrical and Systems Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vincent Tung
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Demirezen S, Ulusoy M, Durmuş H, Cavusoglu H, Yılmaz K, Altındal Ş. Electrical and Photodetector Characteristics of Schottky Structures Interlaid with P(EHA) and P(EHA- co-AA) Functional Polymers by the iCVD Method. ACS OMEGA 2023; 8:46499-46512. [PMID: 38107908 PMCID: PMC10720022 DOI: 10.1021/acsomega.3c04935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
In this study, poly(2-ethylhexyl acrylate) (PEHA) homopolymer and its copolymer combined with acrylic acid P(EHA-co-AA) were employed as interfaces in two separate Schottky structures. First, both interfaces were grown by initiated chemical vapor deposition (iCVD), which provides much better deposition control and homogeneous coating compared to solution-phase methods. In addition to this advantageous method, the effects of two different polymers, one of which is better able to adhere to the crystal surface on which it is formed than the other, on the optoelectronic properties have been studied. Then, their current-voltage (I-V) and capacitance/conductance-voltage (C/(G/ω)-V) characteristics were investigated both in the dark and under illumination. The basic electrical parameters and the illumination-induced profile of the surface state (Nss) were probed by I-V and C-V measurements for two samples. A decrease in the barrier height (BH) and, consequently, a significant increase in the photocurrent were observed under illumination. Striking changes in series resistance (Rs) values are also highlighted. The photocapacitance and conductance characteristics indicated that the structures could be considered not only as photodiodes but also as photocapacitors. Moreover, the voltage-dependent changes of some photodetector parameters, such as responsivity (R), sensitivity (S), and specific detectivity (D*), along with the transient photocurrent characteristics, are discussed for both structures. Therefore, we can say that the strong changes in these parameters, which figure the merit of photodiode and photodetector applications, depending on the voltage and under illumination, prove that it is a study carried out in accordance with the purpose and so they can be used in electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Selçuk Demirezen
- Sabuncuoğlu
Şerefeddin Vocational School of Health Services, Amasya University, 05100 Amasya, Turkey
| | - Murat Ulusoy
- Department
of Physics, Gazi University, 06500 Ankara, Turkey
| | - Haziret Durmuş
- Department
of Physics, Faculty of Science, Selçuk
University, Selçuklu, 42130 Konya, Turkey
| | - Halit Cavusoglu
- Department
of Physics, Faculty of Science, Selçuk
University, Selçuklu, 42130 Konya, Turkey
| | - Kurtuluş Yılmaz
- Chemical
Engineering Department, Konya Technical
University, 42030 Konya, Turkey
| | | |
Collapse
|
4
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
5
|
Lu M, Ji H, Zhao Y, Chen Y, Tao J, Ou Y, Wang Y, Huang Y, Wang J, Hao G. Machine Learning-Assisted Synthesis of Two-Dimensional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1871-1878. [PMID: 36574361 DOI: 10.1021/acsami.2c18167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) materials have intriguing physical and chemical properties, which exhibit promising applications in the fields of electronics, optoelectronics, as well as energy storage. However, the controllable synthesis of 2D materials is highly desirable but remains challenging. Machine learning (ML) facilitates the development of insights and discoveries from a large amount of data in a short time for the materials synthesis, which can significantly reduce the computational costs and shorten the development cycles. Based on this, taking the 2D material MoS2 as an example, the parameters of successfully synthesized materials by chemical vapor deposition (CVD) were explored through four ML algorithms: XGBoost, Support Vector Machine (SVM), Naïve Bayes (NB), and Multilayer Perceptron (MLP). Recall, specificity, accuracy, and other metrics were used to assess the performance of these four models. By comparison, XGBoost was the best performing model among all the models, with an average prediction accuracy of over 88% and a high area under the receiver operating characteristic (AUROC) reaching 0.91. And these findings showed that the reaction temperature (T) had a crucial influence on the growth of MoS2. Furthermore, the importance of the features in the growth mechanism of MoS2 was optimized, such as the reaction temperature (T), Ar gas flow rate (Rf), reaction time (t), and so on. The results demonstrated that ML assisted materials preparation can significantly minimize the time spent on exploration and trial-and-error, which provided perspectives in the preparation of 2D materials.
Collapse
Affiliation(s)
- Mingying Lu
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Haining Ji
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yong Zhao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yongxing Chen
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Jundong Tao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yangyong Ou
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yi Wang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yan Huang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Junlong Wang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Guolin Hao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| |
Collapse
|
6
|
Shams M, Mansukhani N, Hersam MC, Bouchard D, Chowdhury I. Environmentally sustainable implementations of two-dimensional nanomaterials. Front Chem 2023; 11:1132233. [PMID: 36936535 PMCID: PMC10020365 DOI: 10.3389/fchem.2023.1132233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Rapid advancement in nanotechnology has led to the development of a myriad of useful nanomaterials that have novel characteristics resulting from their small size and engineered properties. In particular, two-dimensional (2D) materials have become a major focus in material science and chemistry research worldwide with substantial efforts centered on their synthesis, property characterization, and technological, and environmental applications. Environmental applications of these nanomaterials include but are not limited to adsorbents for wastewater and drinking water treatment, membranes for desalination, and coating materials for filtration. However, it is also important to address the environmental interactions and implications of these nanomaterials in order to develop strategies that minimize their environmental and public health risks. Towards this end, this review covers the most recent literature on the environmental implementations of emerging 2D nanomaterials, thereby providing insights into the future of this fast-evolving field including strategies for ensuring sustainable development of 2D nanomaterials.
Collapse
Affiliation(s)
- Mehnaz Shams
- Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
| | - Nikhita Mansukhani
- Departments of Materials Science and Engineering, Chemistry and Medicine, Northwestern University, Evanston, IL, United States
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry and Medicine, Northwestern University, Evanston, IL, United States
| | - Dermont Bouchard
- National Exposure Research Laboratory, United States Environmental Protection Agency, Athens, GA, United States
| | - Indranil Chowdhury
- Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
- *Correspondence: Indranil Chowdhury,
| |
Collapse
|
7
|
Ye L, Xu X, He S, Liu Y, Jin Y, Yang YM, Zhu H. Molecular Triplet Sensitization of Monolayer Semiconductors in 2D Organic/Inorganic Hybrid Heterostructures. ACS NANO 2022; 16:12532-12540. [PMID: 35900068 DOI: 10.1021/acsnano.2c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hybrid heterostructures (HSs) comprising organic and two-dimensional (2D) monolayer semiconductors hold great promise for optoelectronic applications. So far, research efforts on organic/2D HSs have exclusively focused on coupling directly photoexcited singlets to monolayer semiconductors. It remains unexplored whether and how the optically dark triplets in organic semiconductors with intriguing properties (e.g., long lifetime) can be implemented for modulating light-matter interactions of hybrid HSs. Herein, we investigate the triplet sensitization of monolayer semiconductors by time-resolved spectroscopic studies on Pd-octaethylporphyrin (PdOEP)/WSe2 and PdOEP/WS2 HSs with type I and type II band alignment, respectively. We show that PdOEP triplets formed in ∼5 ps from intersystem crossing can transfer energy or charge to WSe2 or WS2 monolayers, respectively, leading to a significant photoluminescence enhancement (180%) in WSe2 or long-lived charge separation (>2 ns) in WS2. The triplet transfer occurs in ∼100 ns, which is more than 3 orders of magnitude slower than singlet and can be attributed to its tightly localized nature. Further study of thickness dependence reveals the dictating role of triplet diffusion for triplet sensitization in organic/2D HSs. This study shows the great promise of much less explored molecular triplets on sensitizing 2D monolayer semiconductors and provides the guidance to achieve long-range light harvesting and energy migration in organic/2D HSs for enhanced optoelectronic applications.
Collapse
Affiliation(s)
- Lei Ye
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310014, China
| | - Xuehui Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Siyu He
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yanping Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yizheng Jin
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yang Michael Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haiming Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310014, China
| |
Collapse
|
8
|
Ji J, Choi JH. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: properties and applications in energy and optoelectronics fields. NANOSCALE 2022; 14:10648-10689. [PMID: 35839069 DOI: 10.1039/d2nr01358d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) present extraordinary optoelectronic, electrochemical, and mechanical properties that have not been accessible in bulk semiconducting materials. Recently, a new research field, 2D hybrid heteromaterials, has emerged upon integrating TMDs with molecular systems, including organic molecules, polymers, metal-organic frameworks, and carbonaceous materials, that can tailor the TMD properties and exploit synergetic effects. TMD-based hybrid heterostructures can meet the demands of future optoelectronics, including supporting flexible, transparent, and ultrathin devices, and energy-based applications, offering high energy and power densities with long cycle lives. To realize such applications, it is necessary to understand the interactions between the hybrid components and to develop strategies for exploiting the distinct benefits of each component. Here, we provide an overview of the current understanding of the new phenomena and mechanisms involved in TMD/organic hybrids and potential applications harnessing such valuable materials in an insightful way. We highlight recent discoveries relating to multicomponent hybrid materials. Finally, we conclude this review by discussing challenges related to hybrid heteromaterials and presenting future directions and opportunities in this research field.
Collapse
Affiliation(s)
- Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
9
|
Wang X, Liu S, Chen Y, Zheng Y, Li L. Properties at the interface of the pristine CdSe and core-shell CdSe-ZnS quantum dots with ultrathin monolayers of two-dimensional MX 2 (M: Mo, W; X: S, Se, Te) heterostructures from density functional theory. J Mol Model 2022; 28:220. [PMID: 35831761 DOI: 10.1007/s00894-022-05194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
In this work, eight van der Waals heterojunctions based on CdSe or CdSe-ZnS quantum dots (QDs) and four commonly used two-dimensional transition metal dichalcogenides (2D-TMDs) are theoretically designed. On the basis of the constructed structures, density functional theory (DFT) method is employed to investigate the structural and optoelectronic related properties of these heterojunctions in detail. Specifically, their electronic properties including charge density differences, density of states, and band offsets are calculated, based on which band alignment types as well as their potentials as novel photovoltaic materials are discussed. According to these calculations, we proposed that several van der Waals heterostructures including MoS2/CdSe, MoTe2/CdSe, WSe2/CdSe, MoTe2/CdSe-ZnS, and WSe2/CdSe-ZnS might be used as potential photovoltaic materials due to their type II band alignment characteristics. Moreover, the WSe2/CdSe-ZnS heterostructure is expected to have optimal photovoltaic performance attributed to their large bond offsets and band gaps, which could not only facilitate charge separation processes, but also slow down charge recombination. Our present theoretical work could be helpful for the future experimental design of novel CdSe QDs and 2D-TMD based van der Waals heterostructures with excellent photovoltaic performances.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yang Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yan Zheng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
10
|
Jadwiszczak J, Sherman J, Lynall D, Liu Y, Penkov B, Young E, Keneipp R, Drndić M, Hone JC, Shepard KL. Mixed-Dimensional 1D/2D van der Waals Heterojunction Diodes and Transistors in the Atomic Limit. ACS NANO 2022; 16:1639-1648. [PMID: 35014261 PMCID: PMC9526797 DOI: 10.1021/acsnano.1c10524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inverting a semiconducting channel is the basis of all field-effect transistors. In silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs), a gate dielectric mediates this inversion. Access to inversion layers may be granted by interfacing ultrathin low-dimensional semiconductors in heterojunctions to advance device downscaling. Here we demonstrate that monolayer molybdenum disulfide (MoS2) can directly invert a single-walled semiconducting carbon nanotube (SWCNT) transistor channel without the need for a gate dielectric. We fabricate and study this atomically thin one-dimensional/two-dimensional (1D/2D) van der Waals heterojunction and employ it as the gate of a 1D heterojunction field-effect transistor (1D-HFET) channel. Gate control is based on modulating the conductance through the channel by forming a lateral p-n junction within the CNT itself. In addition, we observe a region of operation exhibiting a negative static resistance after significant gate tunneling current passes through the junction. Technology computer-aided design (TCAD) simulations confirm the role of minority carrier drift-diffusion in enabling this behavior. The resulting van der Waals transistor architecture thus has the dual characteristics of both field-effect and tunneling transistors, and it advances the downscaling of heterostructures beyond the limits of dangling bonds and epitaxial constraints faced by III-V semiconductors.
Collapse
Affiliation(s)
- Jakub Jadwiszczak
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Jeffrey Sherman
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - David Lynall
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Yang Liu
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Boyan Penkov
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Erik Young
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachael Keneipp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, New York 10027, United States
| |
Collapse
|
11
|
Ab initio Nonadiabatic Dynamics of Semiconductor Nanomaterials via Surface Hopping Method. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Amsterdam SH, Stanev TK, Wang L, Zhou Q, Irgen-Gioro S, Padgaonkar S, Murthy AA, Sangwan VK, Dravid VP, Weiss EA, Darancet P, Chan MKY, Hersam MC, Stern NP, Marks TJ. Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. J Am Chem Soc 2021; 143:17153-17161. [PMID: 34613735 DOI: 10.1021/jacs.1c07795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lattice defects play an important role in determining the optical and electrical properties of monolayer semiconductors such as MoS2. Although the structures of various defects in monolayer MoS2 are well studied, little is known about the nature of the fluorescent defect species and their interaction with molecular adsorbates. In this study, the quenching of the low-temperature defect photoluminescence (PL) in MoS2 is investigated following the deposition of metallophthalocyanines (MPcs). The quenching is found to significantly depend on the identity of the phthalocyanine metal, with the quenching efficiency decreasing in the order CoPc > CuPc > ZnPc, and almost no quenching by metal-free H2Pc is observed. Time-correlated single photon counting (TCSPC) measurements corroborate the observed trend, indicating a decrease in the defect PL lifetime upon MPc adsorption, and the gate voltage-dependent PL reveals the suppression of the defect emission even at large Fermi level shifts. Density functional theory modeling argues that the MPc complexes stabilize dark negatively charged defects over luminescent neutral defects through an electrostatic local gating effect. These results demonstrate the control of defect-based excited-state decay pathways via molecular electronic structure tuning, which has broad implications for the design of mixed-dimensional optoelectronic devices.
Collapse
Affiliation(s)
- Samuel H Amsterdam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Teodor K Stanev
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Luqing Wang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Qunfei Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Shawn Irgen-Gioro
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Suyog Padgaonkar
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Akshay A Murthy
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Pierre Darancet
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Maria K Y Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathaniel P Stern
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Park S, Mutz N, Kovalenko SA, Schultz T, Shin D, Aljarb A, Li L, Tung V, Amsalem P, List‐Kratochvil EJW, Stähler J, Xu X, Blumstengel S, Koch N. Type-I Energy Level Alignment at the PTCDA-Monolayer MoS 2 Interface Promotes Resonance Energy Transfer and Luminescence Enhancement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100215. [PMID: 34194946 PMCID: PMC8224443 DOI: 10.1002/advs.202100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Indexed: 06/13/2023]
Abstract
Van der Waals heterostructures consisting of 2D semiconductors and conjugated molecules are of increasing interest because of the prospect of a synergistic enhancement of (opto)electronic properties. In particular, perylenetetracarboxylic dianhydride (PTCDA) on monolayer (ML)-MoS2 has been identified as promising candidate and a staggered type-II energy level alignment and excited state interfacial charge transfer have been proposed. In contrast, it is here found with inverse and direct angle resolved photoelectron spectroscopy that PTCDA/ML-MoS2 supported by insulating sapphire exhibits a straddling type-I level alignment, with PTCDA having the wider energy gap. Photoluminescence (PL) and sub-picosecond transient absorption measurements reveal that resonance energy transfer, i.e., electron-hole pair (exciton) transfer, from PTCDA to ML-MoS2 occurs on a sub-picosecond time scale. This gives rise to an enhanced PL yield from ML-MoS2 in the heterostructure and an according overall modulation of the photoresponse. These results underpin the importance of a precise knowledge of the interfacial electronic structure in order to understand excited state dynamics and to devise reliable design strategies for optimized optoelectronic functionality in van der Waals heterostructures.
Collapse
Affiliation(s)
- Soohyung Park
- Advanced Analysis CenterKorea Institute of Science and Technology (KIST)Seoul02792South Korea
| | - Niklas Mutz
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
| | | | - Thorsten Schultz
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
- Helmholtz‐Zentrum für Materialien und Energie GmbHBerlin12489Germany
| | - Dongguen Shin
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
| | - Areej Aljarb
- Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Saudi Arabia
| | - Lain‐Jong Li
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong Kong
| | - Vincent Tung
- Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955‐6900Saudi Arabia
| | - Patrick Amsalem
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
| | - Emil J. W. List‐Kratochvil
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
- Humboldt‐Universität zu BerlinInstitut für ChemieBerlin12489Germany
- Helmholtz‐Zentrum für Materialien und Energie GmbHBerlin12489Germany
| | - Julia Stähler
- Humboldt‐Universität zu BerlinInstitut für ChemieBerlin12489Germany
| | - Xiaomin Xu
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Sylke Blumstengel
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
- Humboldt‐Universität zu BerlinInstitut für ChemieBerlin12489Germany
| | - Norbert Koch
- Humboldt‐Universität zu BerlinInstitut für Physik & IRIS AdlershofBerlin12489Germany
- Helmholtz‐Zentrum für Materialien und Energie GmbHBerlin12489Germany
| |
Collapse
|
14
|
Zhou HJ, Xu DH, Yang QH, Liu XY, Cui G, Li L. Rational design of monolayer transition metal dichalcogenide@fullerene van der Waals photovoltaic heterojunctions with time-domain density functional theory simulations. Dalton Trans 2021; 50:6725-6734. [PMID: 33912883 DOI: 10.1039/d1dt00291k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
van der Waals heterojunctions formed by transition metal dichalcogenides (TMDs) and fullerenes are promising candidates for novel photovoltaic devices due to the excellent optoelectronic properties of both TMDs and fullerenes. However, relevant experimental and theoretical investigations remain scarce to the best of our knowledge. Herein, we have first employed static density functional theory (DFT) calculations in combination with time-domain density functional theory (TDDFT) based nonadiabatic dynamics simulations to rationally evaluate the photovoltaic performances of four TMD@fullerene heterostructures, i.e. WSe2@C60, WSe2@C70, MoTe2@C60 and MoTe2@C70, respectively. Our simulation results indicate that the C70-based heterostructures overall have better photoinduced electron transfer efficiencies than their C60-based counterparts, among which the performance of the WSe2@C70 heterostructure is the best and the electron transfer from WSe2 to C70 almost accomplishes within 1 ps. In addition, the large build-in potential of about 0.75 eV of WSe2@C70 is beneficial for the charge separation processes. Our present work not only selects the van der Waals TMD@fullerene heterojunctions that might have excellent photovoltaic properties, but also paves the way for the rational design of novel heterojunctions with better optoelectronic performances with DFT and TDDFT simulations in the future.
Collapse
Affiliation(s)
- Hong-Jun Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | | | | | | | |
Collapse
|
15
|
Amsterdam SH, Marks TJ, Hersam MC. Leveraging Molecular Properties to Tailor Mixed-Dimensional Heterostructures beyond Energy Level Alignment. J Phys Chem Lett 2021; 12:4543-4557. [PMID: 33970639 DOI: 10.1021/acs.jpclett.1c00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The surface sensitivity and lack of dielectric screening in two-dimensional (2D) materials provide numerous intriguing opportunities to tailor their properties using adsorbed π-electron organic molecules. These organic-2D mixed-dimensional heterojunctions are often considered solely in terms of their energy level alignment, i.e., the relative energies of the frontier molecular orbitals versus the 2D material conduction and valence band edges. While this simple model is frequently adequate to describe doping and photoinduced charge transfer, the tools of molecular chemistry enable additional manipulation of properties in organic-2D heterojunctions that are not accessible in other solid-state systems. Fully exploiting these possibilities requires consideration of the details of the organic adlayer beyond its energy level alignment, including hybridization and electrostatics, molecular orientation and thin-film morphology, nonfrontier orbitals and defects, excitonic states, spin, and chirality. This Perspective explores how these relatively overlooked molecular properties offer unique opportunities for tuning optical and electronic characteristics, thereby guiding the rational design of organic-2D mixed-dimensional heterojunctions with emergent properties.
Collapse
Affiliation(s)
- Samuel H Amsterdam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Abstract
Grain boundaries (GBs) are a kind of lattice imperfection widely existing in two-dimensional materials, playing a critical role in materials' properties and device performance. Related key issues in this area have drawn much attention and are still under intense investigation. These issues include the characterization of GBs at different length scales, the dynamic formation of GBs during the synthesis, the manipulation of the configuration and density of GBs for specific material functionality, and the understanding of structure-property relationships and device applications. This review will provide a general introduction of progress in this field. Several techniques for characterizing GBs, such as direct imaging by high-resolution transmission electron microscopy, visualization techniques of GBs by optical microscopy, plasmon propagation, or second harmonic generation, are presented. To understand the dynamic formation process of GBs during the growth, a general geometric approach and theoretical consideration are reviewed. Moreover, strategies controlling the density of GBs for GB-free materials or materials with tunable GB patterns are summarized, and the effects of GBs on materials' properties are discussed. Finally, challenges and outlook are provided.
Collapse
Affiliation(s)
- Wenqian Yao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P.R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P.R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P.R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
17
|
Nalwa HS. A review of molybdenum disulfide (MoS 2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv 2020; 10:30529-30602. [PMID: 35516069 PMCID: PMC9056353 DOI: 10.1039/d0ra03183f] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have attracted much attention in the field of optoelectronics due to their tunable bandgaps, strong interaction with light and tremendous capability for developing diverse van der Waals heterostructures (vdWHs) with other materials. Molybdenum disulfide (MoS2) atomic layers which exhibit high carrier mobility and optical transparency are very suitable for developing ultra-broadband photodetectors to be used from surveillance and healthcare to optical communication. This review provides a brief introduction to TMD-based photodetectors, exclusively focused on MoS2-based photodetectors. The current research advances show that the photoresponse of atomic layered MoS2 can be significantly improved by boosting its charge carrier mobility and incident light absorption via forming MoS2 based plasmonic nanostructures, halide perovskites-MoS2 heterostructures, 2D-0D MoS2/quantum dots (QDs) and 2D-2D MoS2 hybrid vdWHs, chemical doping, and surface functionalization of MoS2 atomic layers. By utilizing these different integration strategies, MoS2 hybrid heterostructure-based photodetectors exhibited remarkably high photoresponsivity raging from mA W-1 up to 1010 A W-1, detectivity from 107 to 1015 Jones and a photoresponse time from seconds (s) to nanoseconds (10-9 s), varying by several orders of magnitude from deep-ultraviolet (DUV) to the long-wavelength infrared (LWIR) region. The flexible photodetectors developed from MoS2-based hybrid heterostructures with graphene, carbon nanotubes (CNTs), TMDs, and ZnO are also discussed. In addition, strain-induced and self-powered MoS2 based photodetectors have also been summarized. The factors affecting the figure of merit of a very wide range of MoS2-based photodetectors have been analyzed in terms of their photoresponsivity, detectivity, response speed, and quantum efficiency along with their measurement wavelengths and incident laser power densities. Conclusions and the future direction are also outlined on the development of MoS2 and other 2D TMD-based photodetectors.
Collapse
Affiliation(s)
- Hari Singh Nalwa
- Advanced Technology Research 26650 The Old Road Valencia California 91381 USA
| |
Collapse
|
18
|
Padgaonkar S, Olding JN, Lauhon LJ, Hersam MC, Weiss EA. Emergent Optoelectronic Properties of Mixed-Dimensional Heterojunctions. Acc Chem Res 2020; 53:763-772. [PMID: 31961121 DOI: 10.1021/acs.accounts.9b00581] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ConspectusThe electronic dimensionality of a material is defined by the number of spatial degrees of confinement of its electronic wave function. Low-dimensional semiconductor nanomaterials with at least one degree of spatial confinement have optoelectronic properties that are tunable with size and environment (dielectric and chemical) and are of particular interest for optoelectronic applications such as light detection, light harvesting, and photocatalysis. By combining nanomaterials of differing dimensionalities, mixed-dimensional heterojunctions (MDHJs) exploit the desirable characteristics of their components. For example, the strong optical absorption of zero-dimensional (0D) materials combined with the high charge carrier mobilities of two-dimensional (2D) materials widens the spectral response and enhances the responsivity of mixed-dimensional photodetectors, which has implications for ultrathin, flexible optoelectronic devices. MDHJs are highly sensitive to (i) interfacial chemistry because of large surface area-to-volume ratios and (ii) electric fields, which are incompletely screened because of the ultrathin nature of MDHJs. This sensitivity presents opportunities for control of physical phenomena in MDHJs through chemical modification, optical excitation, externally applied electric fields, and other environmental parameters. Since this fast-moving research area is beginning to pose and answer fundamental questions that underlie the fundamental optoelectronic behavior of MDHJs, it is an opportune time to assess progress and suggest future directions in this field.In this Account, we first outline the characteristic properties, advantages, and challenges for low-dimensional materials, many of which arise as a result of quantum confinement effects. The optoelectronic properties and performance of MDHJs are primarily determined by dynamics of excitons and charge carriers at their interfaces, where these particles tunnel, trap, scatter, and/or recombine on the time scales of tens of femtoseconds to hundreds of nanoseconds. We discuss several photophysical phenomena that deviate from those observed in bulk heterojunctions, as well as factors that can be used to vary, probe, and ultimately control the behavior of excitons and charge carriers in MDHJ systems. We then discuss optoelectronic applications of MDHJs, namely, photodetectors, photovoltaics, and photocatalysts, and identify current performance limits compared to state-of-the-art benchmarks. Finally, we suggest strategies to extend the current understanding of dynamics in MDHJs toward the realization of stimuli-driven responses, particularly with respect to exciton delocalization, quantum emission, interfacial morphology, responsivity to external stimuli, spin selectivity, and usage of chemically reactive materials.
Collapse
|
19
|
Liu S, Wang YC, Chang CM, Yasuda T, Fukui N, Maeda H, Long P, Nakazato K, Jian WB, Xie W, Tsukagoshi K, Nishihara H. Solution-processed organometallic quasi-two-dimensional nanosheets as a hole buffer layer for organic light-emitting devices. NANOSCALE 2020; 12:6983-6990. [PMID: 32207501 DOI: 10.1039/d0nr00240b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) vdW materials have been integrated into optoelectronic devices to achieve exceptional functionality. However, the integration of large-area 2D thin films into organic light-emitting devices (OLEDs) remains challenging because of the finite number of inorganic 2D materials and the high-temperature requirements of their deposition process. The construction of 2D organometallic materials holds immense potential because of their solution synthesis and unlimited structural and functional diversity. Here, we report a facile route using an oil-water interfacial coordination reaction between organic ligands and divalent metal ions to synthesize crystalline quasi-2D organometallic bis(dithiolato)nickel (NiDT) nanosheets with a centimeter scale and a tunable thickness. The NiDT nanosheets can be directly integrated into OLEDs for use as a hole buffer layer and a fluorescent mounting medium without the aid of a transfer process. Moreover, OLEDs with NiDT nanosheets show not only comparable efficiency to conventional OLEDs but also prolonged device lifetime by nearly 2 times. These results open up a new dimension to use quasi-2D organometallic nanosheets as functional layers in large-area organic devices.
Collapse
Affiliation(s)
- Shihao Liu
- WPI International Center for Materials Nanoarchitectonics (WPI-MANA) & International Center for Young Scientists (ICYS), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li S, Zhong C, Henning A, Sangwan VK, Zhou Q, Liu X, Rahn MS, Wells SA, Park HY, Luxa J, Sofer Z, Facchetti A, Darancet P, Marks TJ, Lauhon LJ, Weiss EA, Hersam MC. Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe-Organic van der Waals Heterostructures. ACS NANO 2020; 14:3509-3518. [PMID: 32078300 DOI: 10.1021/acsnano.9b09661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Layered indium selenide (InSe) is an emerging two-dimensional semiconductor that has shown significant promise for high-performance transistors and photodetectors. The range of optoelectronic applications for InSe can potentially be broadened by forming mixed-dimensional van der Waals heterostructures with zero-dimensional molecular systems that are widely employed in organic electronics and photovoltaics. Here, we report the spatially resolved investigation of photoinduced charge separation between InSe and two molecules (C70 and C8-BTBT) using scanning tunneling microscopy combined with laser illumination. We experimentally and computationally show that InSe forms type-II and type-I heterojunctions with C70 and C8-BTBT, respectively, due to an interplay of charge transfer and dielectric screening at the interface. Laser-excited scanning tunneling spectroscopy reveals a ∼0.25 eV decrease in the energy of the lowest unoccupied molecular orbital of C70 with optical illumination. Furthermore, photoluminescence spectroscopy and Kelvin probe force microscopy indicate that electron transfer from InSe to C70 in the type-II heterojunction induces a photovoltage that quantitatively matches the observed downshift in the tunneling spectra. In contrast, no significant changes are observed upon optical illumination in the type-I heterojunction formed between InSe and C8-BTBT. Density functional theory calculations further show that, despite the weak coupling between the molecular species and InSe, the band alignment of these mixed-dimensional heterostructures strongly differs from the one suggested by the ionization potential and electronic affinities of the isolated components. Self-energy-corrected density functional theory indicates that these effects are the result of the combination of charge redistribution at the interface and heterogeneous dielectric screening of the electron-electron interactions in the heterostructure. In addition to providing specific insight for mixed-dimensional InSe-organic van der Waals heterostructures, this work establishes a general experimental methodology for studying localized charge transfer at the molecular scale that is applicable to other photoactive nanoscale systems.
Collapse
Affiliation(s)
- Shaowei Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Chengmei Zhong
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Alex Henning
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Qunfei Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Northwestern Argonne Institute for Science and Engineering, Evanston, Illinois 60208, United States
| | - Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew S Rahn
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Spencer A Wells
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Hong Youl Park
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Pierre Darancet
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Northwestern Argonne Institute for Science and Engineering, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Applied Physics Graduate Program, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
21
|
Kim KL, Koo M, Park C. Controlled polymer crystal/two-dimensional material heterostructures for high-performance photoelectronic applications. NANOSCALE 2020; 12:5293-5307. [PMID: 32100770 DOI: 10.1039/c9nr10911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The control of atomically thin two-dimensional (2D) crystal-based heterostructures wherein the interfaces of 2D nanomaterials are vertically stacked with other thin functional materials via van der Waals interactions is highly important for not only optimizing the excellent properties of 2D nanomaterials, but also for utilizing the functionality of the contact materials. In particular, when 2D nanomaterials are combined with soft polymeric components, the resulting photoelectronic devices are potentially scalable and mechanically flexible, allowing the development of a variety of prototype soft-electronic devices, such as solar cells, displays, photodetectors, and non-volatile memory devices. Diverse polymer/2D heterostructures are frequently employed, but the performance of the devices with heterostructures is limited, mainly because of the difficulty in controlling the molecular structures of the polymers on the 2D surface. Thus, understanding the crystal interactions of polymers on atomically flat and dangling-bond-free surfaces of 2D materials is essential for ensuring high performance. In this study, the recent progress made in the development of thin polymer films fabricated on the surfaces of various 2D nanomaterials for high-performance photoelectronic devices is comprehensively reviewed, with an emphasis on the control of the molecular and crystalline structures of the polymers on the 2D surface.
Collapse
Affiliation(s)
- Kang Lib Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Min Koo
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
22
|
Sun J, Choi Y, Choi YJ, Kim S, Park JH, Lee S, Cho JH. 2D-Organic Hybrid Heterostructures for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803831. [PMID: 30786064 DOI: 10.1002/adma.201803831] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/10/2019] [Indexed: 05/08/2023]
Abstract
The unique properties of hybrid heterostructures have motivated the integration of two or more different types of nanomaterials into a single optoelectronic device structure. Despite the promising features of organic semiconductors, such as their acceptable optoelectronic properties, availability of low-cost processes for their fabrication, and flexibility, further optimization of both material properties and device performances remains to be achieved. With the emergence of atomically thin 2D materials, they have been integrated with conventional organic semiconductors to form multidimensional heterostructures that overcome the present limitations and provide further opportunities in the field of optoelectronics. Herein, a comprehensive review of emerging 2D-organic heterostructures-from their synthesis and fabrication to their state-of-the-art optoelectronic applications-is presented. Future challenges and opportunities associated with these heterostructures are highlighted.
Collapse
Affiliation(s)
- Jia Sun
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yongsuk Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Young Jin Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jin-Hong Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Sungjoo Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jeong Ho Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| |
Collapse
|
23
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations Reveal Distinct Effects of the Thickness of PTB7 on Interfacial Electron and Hole Transfer Dynamics in PTB7@MoS 2 Heterostructures. J Phys Chem Lett 2019; 10:2949-2956. [PMID: 31083919 DOI: 10.1021/acs.jpclett.9b01066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed-dimensional hybrid heterostructures have attracted a lot of experimental attention because they can provide an ideal charge-separated interface for optoelectronic and photonic applications. In this Letter, we have employed first-principles DFT calculations and nonadiabatic dynamics simulations to explore photoinduced interfacial electron and hole transfer processes in two PTB7- nL@MoS2 models ( n = 1 and 5). The interfacial electron transfer is found to be ultrafast and completes within ca. 10 fs in both PTB7-1L@MoS2 and PTB7-5L@MoS2 models, which demonstrates that the electron transfer is not sensitive to the thickness of the PTB7 polymer. Differently, the interfacial hole transfer is sensitive to the thickness of the PTB7 polymer. The transfer time is estimated to be ca. 70 ps in PTB7-1L@MoS2, while it is significantly accelerated to ca. 1 ps in PTB7-5L@MoS2. Finally, we have found that the electron transfer is mainly controlled by adiabatic electron evolution, whereas in the hole transfer, nonadiabatic hoppings play a dominant role. These findings are useful for the design of excellent charge-separated interfaces of mixed-dimensional TMD-based heterojunctions for a variety of optoelectronic applications.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
24
|
Amsterdam SH, Stanev TK, Zhou Q, Lou AJT, Bergeron H, Darancet P, Hersam MC, Stern NP, Marks TJ. Electronic Coupling in Metallophthalocyanine-Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions. ACS NANO 2019; 13:4183-4190. [PMID: 30848891 DOI: 10.1021/acsnano.8b09166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed-dimensional heterojunctions, such as zero-dimensional (0D) organic molecules deposited on two-dimensional (2D) transition metal dichalcogenides (TMDCs), often exhibit interfacial effects that enhance the properties of the individual constituent layers. Here we report a systematic study of interfacial charge transfer in metallophthalocyanine (MPc) - MoS2 heterojunctions using optical absorption and Raman spectroscopy to elucidate M core (M = first row transition metal), MoS2 layer number, and excitation wavelength effects. Observed phenomena include the emergence of heterojunction-specific optical absorption transitions and strong Raman enhancement that depends on the M identity. In addition, the Raman enhancement is tunable by excitation laser wavelength and MoS2 layer number, ultimately reaching a maximum enhancement factor of 30x relative to SiO2 substrates. These experimental results, combined with density functional theory (DFT) calculations, indicate strong coupling between nonfrontier MPc orbitals and the MoS2 band structure as well as charge transfer across the heterojunction interface that varies as a function of the MPc electronic structure.
Collapse
Affiliation(s)
- Samuel H Amsterdam
- Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
- Center for Light Energy Activated Redox Processes , Evanston , Illinois 60208 , United States
| | - Teodor K Stanev
- Department of Physics and Astronomy , Northwestern University , Evanston , Illinois 60208 , United States
| | - Qunfei Zhou
- Department of Materials Science and Engineering and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Alexander J-T Lou
- Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
| | - Hadallia Bergeron
- Department of Materials Science and Engineering and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
| | - Pierre Darancet
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
- Northwestern Argonne Institute for Science and Engineering , Evanston , Illinois 60208 , United States
| | - Mark C Hersam
- Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
- Center for Light Energy Activated Redox Processes , Evanston , Illinois 60208 , United States
- Department of Materials Science and Engineering and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
| | - Nathaniel P Stern
- Department of Physics and Astronomy , Northwestern University , Evanston , Illinois 60208 , United States
- Northwestern Argonne Institute for Science and Engineering , Evanston , Illinois 60208 , United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
- Center for Light Energy Activated Redox Processes , Evanston , Illinois 60208 , United States
- Department of Materials Science and Engineering and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
25
|
Han T, Liu H, Wang S, Chen S, Li W, Yang X. Probing the Growth Improvement of Large-Size High Quality Monolayer MoS₂ by APCVD. NANOMATERIALS 2019; 9:nano9030433. [PMID: 30875768 PMCID: PMC6474001 DOI: 10.3390/nano9030433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have attracted attention from researchers in recent years. Monolayer molybdenum disulfide (MoS₂) is the direct band gap two-dimensional crystal with excellent physical and electrical properties. Monolayer MoS₂ can effectively compensate for the lack of band gap of graphene in the field of nano-electronic devices, which is widely used in catalysis, transistors, optoelectronic devices, and integrated circuits. Therefore, it is critical to obtain high-quality, large size monolayer MoS₂. The large-area uniform high-quality monolayer MoS₂ is successfully grown on an SiO₂/Si substrate with oxygen plasma treatment and graphene quantum dot solution by atmospheric pressure chemical vapor deposition (APCVD) in this paper. In addition, the effects of substrate processing conditions, such as oxygen plasma treatment time, power, and dosage of graphene quantum dot solution on growth quality and the area of the monolayer of MoS₂, are studied systematically, which would contribute to the preparation of large-area high-quality monolayer MoS₂. Analysis and characterization of monolayer MoS₂ are carried out by Optical Microscopy, AFM, XPS, Raman, and Photoluminescence Spectroscopy. The results show that monolayer MoS₂ is a large-area, uniform, and triangular with a side length of 200 μm, and it is very effective to treat the SiO₂/Si substrate by oxygen plasma and graphene quantum dot solution, which would help the fabrication of optoelectronic devices.
Collapse
Affiliation(s)
- Tao Han
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an 710071, China.
| | - Hongxia Liu
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an 710071, China.
| | - Shulong Wang
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an 710071, China.
| | - Shupeng Chen
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an 710071, China.
| | - Wei Li
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, the School of Microelectronics, Xidian University, Xi'an 710071, China.
| | - Xiaoli Yang
- The School of Mathematics and Statistics, Xidian University, Xi'an 710071, China.
| |
Collapse
|
26
|
Cheng CH, Li Z, Hambarde A, Deotare PB. Efficient Energy Transfer across Organic-2D Inorganic Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39336-39342. [PMID: 30339346 DOI: 10.1021/acsami.8b12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Combining organic and inorganic semiconductors enables us to integrate complementary advantages of each material system into a single hybrid material platform. Here, we report a study on the energy transport across a hybrid interface consisting of j-aggregates of organic dye and monolayer molybdenum disulfide (MoS2). The excellent overlap between the photoluminescence spectra of j-aggregates and the absorption of MoS2 B-exciton enables the material system to be used to study Förster resonance energy transfer (FRET) across the hybrid interface. We report a short Förster radius of 1.88 nm for the hybrid system. We achieve this by fabricating photodetectors based on the hybrid organic-inorganic interface that combine the high absorption of organics with the high-charge mobility of inorganics. Concomitantly, the hybrid photodetectors show nearly 93 ± 5% enhancement of photoresponsivity in the excitonic spectral overlap regime due to efficient energy transfer (ET) from j-aggregate to MoS2. This work not only provides valuable insight into the ET mechanism across such hybrid organic-inorganic interfaces but also demonstrates the feasibility of the platform for designing efficient energy conversion and optoelectronic devices.
Collapse
|
27
|
Liu X, Hersam MC. Interface Characterization and Control of 2D Materials and Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801586. [PMID: 30039558 DOI: 10.1002/adma.201801586] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/09/2018] [Indexed: 05/28/2023]
Abstract
2D materials and heterostructures have attracted significant attention for a variety of nanoelectronic and optoelectronic applications. At the atomically thin limit, the material characteristics and functionalities are dominated by surface chemistry and interface coupling. Therefore, methods for comprehensively characterizing and precisely controlling surfaces and interfaces are required to realize the full technological potential of 2D materials. Here, the surface and interface properties that govern the performance of 2D materials are introduced. Then the experimental approaches that resolve surface and interface phenomena down to the atomic scale, as well as strategies that allow tuning and optimization of interfacial interactions in van der Waals heterostructures, are systematically reviewed. Finally, a future outlook that delineates the remaining challenges and opportunities for 2D material interface characterization and control is presented.
Collapse
Affiliation(s)
- Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
| | - Mark C Hersam
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
- Department of Materials Science and Engineering, Department of Chemistry, Department of Medicine, Department of Electrical Engineering and Computer Science, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
| |
Collapse
|
28
|
Wang H, Li C, Fang P, Zhang Z, Zhang JZ. Synthesis, properties, and optoelectronic applications of two-dimensional MoS 2 and MoS 2-based heterostructures. Chem Soc Rev 2018; 47:6101-6127. [PMID: 30022215 DOI: 10.1039/c8cs00314a] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a two-dimensional (2D) material, molybdenum disulfide (MoS2) exhibits unique electronic and optical properties useful for a variety of optoelectronic applications including light harvesting. In this article, we review recent progress in the synthesis, properties and applications of MoS2 and related heterostructures. Heterostructured materials are developed to add more functionality or flexibility compared to single component materials. Our focus is on their novel properties and functionalities as well as emerging applications, especially in the areas of light energy harvesting or conversion. We highlight the correlation between structural properties and other properties including electronic, optical, and dynamic. Whenever appropriate, we also try to provide fundamental insight gained from experimental as well as theoretical studies. Finally, we discuss some current challenges and opportunities in technological applications of MoS2.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | | | | | | | | |
Collapse
|
29
|
Selhorst R, Wang P, Barnes M, Emrick T. Bithiazolidinylidene polymers: synthesis and electronic interactions with transition metal dichalcogenides. Chem Sci 2018; 9:5047-5051. [PMID: 29938034 PMCID: PMC5994791 DOI: 10.1039/c8sc01416g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
We describe the synthesis of electron acceptors consisting of bithiazolidinylidene (BT) derivatives incorporated into solution processible polymers. Novel BT-containing polymers displayed p-doping behavior when in contact with the n-type transition metal dichalcogenide (TMDC) MoS2. A work function (WF) increase of MoS2, resulting from contact with BT polymers, was measured by Kelvin probe force microscopy (KPFM), representing the first example of polymer p-doping of MoS2, which is beneficial for advancing the design of electronically tailored TMDCs.
Collapse
Affiliation(s)
- Ryan Selhorst
- Polymer Science and Engineering Department , 120 Governors Drive , Amherst , Massachusetts 01003 , USA .
| | - Peijian Wang
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , MA 01003 , USA
| | - Michael Barnes
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , MA 01003 , USA
| | - Todd Emrick
- Polymer Science and Engineering Department , 120 Governors Drive , Amherst , Massachusetts 01003 , USA .
| |
Collapse
|
30
|
Zhong C, Sangwan VK, Wang C, Bergeron H, Hersam MC, Weiss EA. Mechanisms of Ultrafast Charge Separation in a PTB7/Monolayer MoS 2 van der Waals Heterojunction. J Phys Chem Lett 2018; 9:2484-2491. [PMID: 29688016 DOI: 10.1021/acs.jpclett.8b00628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mixed-dimensional van der Waals heterojunctions comprising polymer and two-dimensional (2D) semiconductors have many characteristics of an ideal charge separation interface for optoelectronic and photonic applications. However, the photoelectron dynamics at polymer-2D semiconductor heterojunction interfaces are currently not sufficiently understood to guide the optimization of devices for these applications. This Letter reports a systematic exploration of the time-dependent photophysical processes that occur upon photoexcitation of a type-II heterojunction between the polymer PTB7 and monolayer MoS2. In particular, photoinduced electron transfer from PTB7 to electronically hot states of MoS2 occurs in less than 250 fs. This process is followed by a 1-5 ps exciton diffusion-limited electron transfer from PTB7 to MoS2 and a sub-3 ps photoinduced hole transfer from MoS2 to PTB7. The equilibrium between excitons and polaron pairs in PTB7 determines the charge separation yield, whereas the 3-4 ns lifetime of photogenerated carriers is probably limited by MoS2 defects.
Collapse
Affiliation(s)
- Chengmei Zhong
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Chen Wang
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Hadallia Bergeron
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Mark C Hersam
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
- Department of Electrical Engineering and Computer Science , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Emily A Weiss
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| |
Collapse
|
31
|
Huang YL, Zheng YJ, Song Z, Chi D, Wee ATS, Quek SY. The organic-2D transition metal dichalcogenide heterointerface. Chem Soc Rev 2018; 47:3241-3264. [PMID: 29651487 DOI: 10.1039/c8cs00159f] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the first isolation of graphene, new classes of two-dimensional (2D) materials have offered fascinating platforms for fundamental science and technology explorations at the nanometer scale. In particular, 2D transition metal dichalcogenides (TMD) such as MoS2 and WSe2 have been intensely investigated due to their unique electronic and optical properties, including tunable optical bandgaps, direct-indirect bandgap crossover, strong spin-orbit coupling, etc., for next-generation flexible nanoelectronics and nanophotonics applications. On the other hand, organics have always been excellent materials for flexible electronics. A plethora of organic molecules, including donors, acceptors, and photosensitive molecules, can be synthesized using low cost and scalable procedures. Marrying the fields of organics and 2D TMDs will bring benefits that are not present in either material alone, enabling even better, multifunctional flexible devices. Central to the realization of such devices is a fundamental understanding of the organic-2D TMD interface. Here, we review the organic-2D TMD interface from both chemical and physical perspectives. We discuss the current understanding of the interfacial interactions between the organic layers and the TMDs, as well as the energy level alignment at the interface, focusing in particular on surface charge transfer and electronic screening effects. Applications from the literature are discussed, especially in optoelectronics and p-n hetero- and homo-junctions. We conclude with an outlook on future scientific and device developments based on organic-2D TMD heterointerfaces.
Collapse
Affiliation(s)
- Yu Li Huang
- Institute of Materials Research & Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore.
| | | | | | | | | | | |
Collapse
|
32
|
Henning A, Sangwan VK, Bergeron H, Balla I, Sun Z, Hersam MC, Lauhon LJ. Charge Separation at Mixed-Dimensional Single and Multilayer MoS 2/Silicon Nanowire Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16760-16767. [PMID: 29682958 DOI: 10.1021/acsami.8b03133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Layered two-dimensional (2-D) semiconductors can be combined with other low-dimensional semiconductors to form nonplanar mixed-dimensional van der Waals (vdW) heterojunctions whose charge transport behavior is influenced by the heterojunction geometry, providing a new degree of freedom to engineer device functions. Toward that end, we investigated the photoresponse of Si nanowire/MoS2 heterojunction diodes with scanning photocurrent microscopy and time-resolved photocurrent measurements. Comparison of n-Si/MoS2 isotype heterojunctions with p-Si/MoS2 heterojunction diodes under varying biases shows that the depletion region in the p-n heterojunction promotes exciton dissociation and carrier collection. We measure an instrument-limited response time of 1 μs, which is 10 times faster than the previously reported response times for planar Si/MoS2 devices, highlighting the advantages of the 1-D/2-D heterojunction. Finite element simulations of device models provide a detailed understanding of how the electrostatics affect charge transport in nanowire/vdW heterojunctions and inform the design of future vdW heterojunction photodetectors and transistors.
Collapse
|
33
|
Affiliation(s)
- Vinod K. Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry and Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
34
|
Sangwan VK, Lee HS, Bergeron H, Balla I, Beck ME, Chen KS, Hersam MC. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018; 554:500-504. [DOI: 10.1038/nature25747] [Citation(s) in RCA: 494] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
|
35
|
Abstract
Large-scale 2D MoS2 hollow flakes can be realized by the combination of CVD growth using MoO3 and S powders as precursors and annealing under a S atmosphere at a high temperature of 860 °C.
Collapse
Affiliation(s)
- Fei Chen
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou
- China
- School of Materials Science and Engineering
| | - Ting Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Lei Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Weitao Su
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou
- China
| |
Collapse
|
36
|
Baek J, Umeyama T, Choi W, Tsutsui Y, Yamada H, Seki S, Imahori H. Formation and Photodynamic Behavior of Transition Metal Dichalcogenide Nanosheet-Fullerene Inorganic/Organic Nanohybrids on Semiconducting Electrodes. Chemistry 2017; 24:1561-1572. [DOI: 10.1002/chem.201703699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jinseok Baek
- Department of Molecular Engineering, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Tomokazu Umeyama
- Department of Molecular Engineering, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Wookjin Choi
- Department of Molecular Engineering, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Hiroki Yamada
- Department of Molecular Engineering, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University, Sakyo-ku; Kyoto 606-8501 Japan
| |
Collapse
|
37
|
Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y, Wan Q. 2D MoS 2 Neuromorphic Devices for Brain-Like Computational Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700933. [PMID: 28561996 DOI: 10.1002/smll.201700933] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Hardware implementation of artificial synapses/neurons with 2D solid-state devices is of great significance for nanoscale brain-like computational systems. Here, 2D MoS2 synaptic/neuronal transistors are fabricated by using poly(vinyl alcohol) as the laterally coupled, proton-conducting electrolytes. Fundamental synaptic functions, such as an excitatory postsynaptic current, paired-pulse facilitation, and a dynamic filter for information transmission of biological synapse, are successfully emulated. Most importantly, with multiple input gates and one modulatory gate, spiking-dependent logic operation/modulation, multiplicative neural coding, and neuronal gain modulation are also experimentally demonstrated. The results indicate that the intriguing 2D MoS2 transistors are also very promising for the next-generation of nanoscale neuromorphic device applications.
Collapse
Affiliation(s)
- Jie Jiang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Junjie Guo
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Xiang Wan
- School of Electronic Science and Engineering and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yi Yang
- School of Electronic Science and Engineering and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Haipeng Xie
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Dongmei Niu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Junliang Yang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jun He
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Yongli Gao
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Qing Wan
- School of Electronic Science and Engineering and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
38
|
Liu X, Gu J, Ding K, Fan D, Hu X, Tseng YW, Lee YH, Menon V, Forrest SR. Photoresponse of an Organic Semiconductor/Two-Dimensional Transition Metal Dichalcogenide Heterojunction. NANO LETTERS 2017; 17:3176-3181. [PMID: 28388064 DOI: 10.1021/acs.nanolett.7b00695] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the optoelectronic properties of a type-II heterojunction (HJ) comprising a monolayer of the transition metal dichalcogenide (TMDC), WS2, and a thin film of the organic semiconductor, 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA). Both theoretical and experimental investigations of the HJ indicate that Frenkel states in the organic layer and two-dimensional Wannier-Mott states in the TMDC dissociate to form hybrid charge transfer excitons at the interface that subsequently dissociate into free charges that are collected at opposing electrodes. A photodiode employing the HJ achieves a peak external quantum efficiency of 1.8 ± 0.2% at a wavelength of 430 ± 10 nm, corresponding to an internal quantum efficiency (IQE) as high as 11 ± 1% in these ultrathin devices. The photoluminescence spectra of PTCDA and PTCDA/WS2 thin films show that excitons in the WS2 have a quenching rate that is approximately seven times higher than in PTCDA. This difference leads to strong wavelength dependence in IQE.
Collapse
Affiliation(s)
| | - Jie Gu
- Department of Physics, City College of New York , New York, New York 10031, United States
| | | | | | | | - Yu-Wen Tseng
- Department of Materials Science & Technology, National Tsing Hua University , Hsinchu City, Taiwan
| | - Yi-Hsien Lee
- Department of Materials Science & Technology, National Tsing Hua University , Hsinchu City, Taiwan
| | - Vinod Menon
- Department of Physics, City College of New York , New York, New York 10031, United States
| | | |
Collapse
|