1
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Yang L, Hu H, Scholz A, Feist F, Cadilha Marques G, Kraus S, Bojanowski NM, Blasco E, Barner-Kowollik C, Aghassi-Hagmann J, Wegener M. Laser printed microelectronics. Nat Commun 2023; 14:1103. [PMID: 36843156 PMCID: PMC9968718 DOI: 10.1038/s41467-023-36722-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/28/2023] Open
Abstract
Printed organic and inorganic electronics continue to be of large interest for sensors, bioelectronics, and security applications. Many printing techniques have been investigated, albeit often with typical minimum feature sizes in the tens of micrometer range and requiring post-processing procedures at elevated temperatures to enhance the performance of functional materials. Herein, we introduce laser printing with three different inks, for the semiconductor ZnO and the metals Pt and Ag, as a facile process for fabricating printed functional electronic devices with minimum feature sizes below 1 µm. The ZnO printing is based on laser-induced hydrothermal synthesis. Importantly, no sintering of any sort needs to be performed after laser printing for any of the three materials. To demonstrate the versatility of our approach, we show functional diodes, memristors, and a physically unclonable function based on a 6 × 6 memristor crossbar architecture. In addition, we realize functional transistors by combining laser printing and inkjet printing.
Collapse
Affiliation(s)
- Liang Yang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.
- Suzhou Institute for Advanced Research, University of Science and Technology of China (USTC), 215127, Suzhou, China.
| | - Hongrong Hu
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Alexander Scholz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Florian Feist
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Gabriel Cadilha Marques
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Steven Kraus
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | | | - Eva Blasco
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- Institut für Organische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225 and 270, 69120, Heidelberg, Germany
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.
| |
Collapse
|
4
|
Li W, Xu M, Gao J, Zhang X, Huang H, Zhao R, Zhu X, Yang Y, Luo L, Chen M, Ji H, Zheng L, Wang X, Huang W. Large-Scale Ultra-Robust MoS 2 Patterns Directly Synthesized on Polymer Substrate for Flexible Sensing Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207447. [PMID: 36353895 DOI: 10.1002/adma.202207447] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Synthesis of large-area patterned MoS2 is considered the principle base for realizing high-performance MoS2 -based flexible electronic devices. Patterning and transferring MoS2 films to target flexible substrates, however, require conventional multi-step photolithography patterning and transferring process, despite tremendous progress in the facilitation of practical applications. Herein, an approach to directly synthesize large-scale MoS2 patterns that combines inkjet printing and thermal annealing is reported. An optimal precursor ink is prepared that can deposit arbitrary patterns on polyimide films. By introducing a gas atmosphere of argon/hydrogen (Ar/H2 ), thermal treatment at 350 °C enables an in situ decomposition and crystallization in the patterned precursors and, consequently, results in the formation of MoS2 . Without complicated processes, patterned MoS2 is obtained directly on polymer substrate, exhibiting superior mechanical flexibility and durability (≈2% variation in resistance over 10,000 bending cycles), as well as excellent chemical stability, which is attributed to the generated continuous and thin microstructures, as well as their strong adhesion with the substrate. As a step further, this approach is employed to manufacture various flexible sensing devices that are insensitive to body motions and moisture, including temperature sensors and biopotential sensing systems for real-time, continuously monitoring skin temperature, electrocardiography, and electromyography signals.
Collapse
Affiliation(s)
- Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jiuwei Gao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaoshan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - He Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xigang Zhu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yabao Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Mengdi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
5
|
Kim J, Kim M, Jung H, Park J, Jun BO, Kang B, Jang JE, Lee Y. High-Quality Microprintable and Stretchable Conductors for High-Performance 5G Wireless Communication. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53250-53260. [PMID: 36382782 DOI: 10.1021/acsami.2c18424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the advent of 5G wireless and Internet of Things technologies, flexible and stretchable printed circuit boards (PCBs) should be designed to address all the specifications necessary to receive signal transmissions, maintaining the signal integrity, and providing electrical connections. Here, we propose a silver nanoparticle (AgNP)/silver nanowire (AgNW) hybrid conductor and high-quality microprinting technology for fabricating flexible and stretchable PCBs in high-performance 5G wireless communication. A simple and low-cost reverse offset printing technique using a commercial adhesive hand-roller was adapted to ensure high-resolution and excellent pattern quality. The AgNP/AgNW micropatterns were fabricated in various line widths, from 5 μm to 5 mm. They exhibited excellent pattern qualities, such as fine line spacing, clear edge definition and outstanding pattern uniformity. After annealing via intense pulsed light irradiation, they showed outstanding electrical resistivity (15.7 μΩ cm). Moreover, they could withstand stretching up to a strain of 90% with a small change in resistance. As a demonstration of their practical application, the AgNP/AgNW micropatterns were used to fabricate 5G communication antennas that exhibited excellent wireless signal processing at operating frequencies in the C-band (4-8 GHz). Finally, a wearable sensor fabricated with these AgNP/AgNW micropatterns could successfully detected fine finger movements in real time with excellent sensitivity.
Collapse
Affiliation(s)
- Jongyoun Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Minkyoung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jaehyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Byoung Ok Jun
- Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Byeongjae Kang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jae Eun Jang
- Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Youngu Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| |
Collapse
|
6
|
Barandun G, Gonzalez-Macia L, Lee HS, Dincer C, Güder F. Challenges and Opportunities for Printed Electrical Gas Sensors. ACS Sens 2022; 7:2804-2822. [PMID: 36131601 PMCID: PMC9623589 DOI: 10.1021/acssensors.2c01086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Printed electrical gas sensors are a low-cost, lightweight, low-power, and potentially disposable alternative to gas sensors manufactured using conventional methods such as photolithography, etching, and chemical vapor deposition. The growing interest in Internet-of-Things, smart homes, wearable devices, and point-of-need sensors has been the main driver fueling the development of new classes of printed electrical gas sensors. In this Perspective, we provide an insight into the current research related to printed electrical gas sensors including materials, methods of fabrication, and applications in monitoring food quality, air quality, diagnosis of diseases, and detection of hazardous gases. We further describe the challenges and future opportunities for this emerging technology.
Collapse
Affiliation(s)
- Giandrin Barandun
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
- BlakBear,
Ltd, 7-8 Child’s
Place, SW5 9RX London, United Kingdom
| | - Laura Gonzalez-Macia
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| | - Hong Seok Lee
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| | - Can Dincer
- FIT
Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg 79110, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Freiburg 79110, Germany
| | - Firat Güder
- Imperial
College London, Department of Bioengineering,
Royal School of Mines, SW7
2AZ London, United Kingdom
| |
Collapse
|
7
|
Jiang X, Wang J, Guo J, Liu M, Fang Y. Reduction in Graphene Oxide by Sodium Borohydride for Enhanced BR13 Dye and Cu2+ Adsorption. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Kim J, Hwang I, Kim M, Jung H, Bae H, Lee Y. Simple, Fast, and Scalable Reverse-Offset Printing of Micropatterned Copper Nanowire Electrodes with Sub-10 μm Resolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5807-5814. [PMID: 35041372 DOI: 10.1021/acsami.1c21223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper nanowires (CuNWs) possess key characteristics for realizing flexible transparent electronics. High-quality CuNW micropatterns with high resolution and uniform thickness are required to realize integrated transparent electronic devices. However, patterning high-aspect-ratio CuNWs is challenging because of their long length, exceeding the target pattern dimension. This work reports a novel reverse-offset printing technology that enables the sub-10 μm high-resolution micropatterning of CuNW transparent conducting electrodes (TCEs). The CuNW ink for reverse-offset printing was formulated to control viscoelasticity, cohesive force, and adhesion by adjusting the ligands, solvents, surface energy modifiers, and leveling additives. An inexpensive commercial adhesive handroller achieved a simple, fast, and scalable micropatterning of CuNW TCEs. Easy production of high-quality CuNW micropatterns with various curvatures and shapes was possible, regardless of the printing direction. The reverse-offset-printed CuNW micropatterns exhibited a minimum of 7 μm line width and excellent pattern qualities such as fine line spacing, sharp edge definition, and outstanding pattern uniformity. In addition, they exhibited excellent sheet resistance, high optical transparency, outstanding mechanical durability, and long-term stability. Flexible light-emitting diode (LED) circuits, transparent heaters, and organic LEDs (OLEDs) can be fabricated using high-resolution reverse-offset-printed CuNW micropatterns for applications in flexible transparent electronic devices.
Collapse
Affiliation(s)
- Jongyoun Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Inkook Hwang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Minkyoung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyejeong Bae
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Youngu Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| |
Collapse
|
9
|
Zhang R, Qi L, Lian H, Luo J. Direct printing of surface-embedded stretchable graphene patterns with strong adhesion on viscous substrates. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Ni Y, Qian S, Tong Q. Strain-Engineered Adhesion and Reversible Transfer Printing of Water Droplets and Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4783-4790. [PMID: 35020362 DOI: 10.1021/acsami.1c23349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transfer printing has been playing a crucial role in the fabrication of various functional devices. In spite of the extensive progress in technology, challenges are remaining, in the aspects of accuracy, efficiency, and adaptivity. Here, we propose a reversible transfer printing technique of tailoring adhesion by selectively stretching the surfaces. Through molecular dynamics simulations, we demonstrate the transfer of nanoscale substances such as water droplets, colloids, and nanoparticles between two graphene surfaces with strains switched on and off. We reveal the mechanism of the dynamic behaviors by analyzing the energies and driving forces of the substances during the process of transfer. The work not only advances the fundamental understanding of adhesion but also can inspire applications in the design of next-generation electronic and biomedical devices.
Collapse
Affiliation(s)
- Yifeng Ni
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
- Shanghai Minghua Electric Power Science & Technology Co., Ltd., Shanghai 200090, China
| | - Sheng Qian
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Qi Tong
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
SI A, Kyzas GZ, Pal K, de Souza Jr. FG. Graphene functionalized hybrid nanomaterials for industrial-scale applications: A systematic review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Zhang Y, Zhou N. Electrochemical Biosensors Based on Micro‐fabricated Devices for Point‐of‐Care Testing: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi 214122 China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi 214122 China
| |
Collapse
|
13
|
Corletto A, Shapter JG. Thickness/morphology of functional material patterned by topographical discontinuous dewetting. NANO SELECT 2021. [DOI: 10.1002/nano.202000301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Alexander Corletto
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia
| | - Joseph G. Shapter
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
14
|
Dore C, Dörling B, Garcia-Pomar JL, Campoy-Quiles M, Mihi A. Hydroxypropyl Cellulose Adhesives for Transfer Printing of Carbon Nanotubes and Metallic Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004795. [PMID: 33135371 DOI: 10.1002/smll.202004795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Transfer printing is one of the key nanofabrication techniques for the large-scale manufacturing of complex device architectures. It provides a cost-effective and high-throughput route for the integration of independently processed materials into spatially tailored architectures. Furthermore, this method enables the fabrication of flexible and curvilinear devices, paving the way for the fabrication of a new generation of technologies for optics, electronics, and biomedicine. In this work, hydroxypropyl cellulose (HPC) membranes are used as water soluble adhesives for transfer printing processes with improved performance and versatility compared to conventional silicone alternatives. The high-water solubility and excellent mechanical properties of HPC facilitate transfer printing with high yield for both metal and carbon nanotubes (CNTs) inks. In the case of metal inks, crack-free stripping of silver films and the simple fabrication of Moiré Plasmonic architectures of different geometries are demonstrated. Furthermore, HPC membranes are used to transfer print carbon nanotube films with different thicknesses and up to 77% transparency in the visible and near infrared region with potential applications as transparent conductive substrates. Finally, the use of prepatterned HPC membranes enables nanoscale patterning of CNT with feature resolution down to 1 µm.
Collapse
Affiliation(s)
- Camilla Dore
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| | - Bernhard Dörling
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| | - Juan Luis Garcia-Pomar
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| | - Mariano Campoy-Quiles
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| | - Agustín Mihi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| |
Collapse
|
15
|
Dahiya AS, Shakthivel D, Kumaresan Y, Zumeit A, Christou A, Dahiya R. High-performance printed electronics based on inorganic semiconducting nano to chip scale structures. NANO CONVERGENCE 2020; 7:33. [PMID: 33034776 PMCID: PMC7547062 DOI: 10.1186/s40580-020-00243-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
The Printed Electronics (PE) is expected to revolutionise the way electronics will be manufactured in the future. Building on the achievements of the traditional printing industry, and the recent advances in flexible electronics and digital technologies, PE may even substitute the conventional silicon-based electronics if the performance of printed devices and circuits can be at par with silicon-based devices. In this regard, the inorganic semiconducting materials-based approaches have opened new avenues as printed nano (e.g. nanowires (NWs), nanoribbons (NRs) etc.), micro (e.g. microwires (MWs)) and chip (e.g. ultra-thin chips (UTCs)) scale structures from these materials have been shown to have performances at par with silicon-based electronics. This paper reviews the developments related to inorganic semiconducting materials based high-performance large area PE, particularly using the two routes i.e. Contact Printing (CP) and Transfer Printing (TP). The detailed survey of these technologies for large area PE onto various unconventional substrates (e.g. plastic, paper etc.) is presented along with some examples of electronic devices and circuit developed with printed NWs, NRs and UTCs. Finally, we discuss the opportunities offered by PE, and the technical challenges and viable solutions for the integration of inorganic functional materials into large areas, 3D layouts for high throughput, and industrial-scale manufacturing using printing technologies.
Collapse
Affiliation(s)
- Abhishek Singh Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yogeenth Kumaresan
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ayoub Zumeit
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
16
|
Corzo D, Tostado-Blázquez G, Baran D. Flexible Electronics: Status, Challenges and Opportunities. FRONTIERS IN ELECTRONICS 2020. [DOI: 10.3389/felec.2020.594003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
17
|
Liu J, Pang B, Xue R, Li R, Song J, Zhao X, Wang D, Hu X, Lu Y, Wang L. Sacrificial layer-assisted nanoscale transfer printing. MICROSYSTEMS & NANOENGINEERING 2020; 6:80. [PMID: 34567690 PMCID: PMC8433480 DOI: 10.1038/s41378-020-00195-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 06/13/2023]
Abstract
Transfer printing is an emerging assembly technique for flexible and stretchable electronics. Although a variety of transfer printing methods have been developed, transferring patterns with nanometer resolution remains challenging. We report a sacrificial layer-assisted nanoscale transfer printing method. A sacrificial layer is deposited on a donor substrate, and ink is prepared on and transferred with the sacrificial layer. Introducing the sacrificial layer into the transfer printing process eliminates the effect of the contact area on the energy release rate (ERR) and ensures that the ERR for the stamp/ink-sacrificial layer interface is greater than that for the sacrificial layer/donor interface even at a slow peel speed (5 mm s-1). Hence, large-area nanoscale patterns can be successfully transferred with a yield of 100%, such as Au nanoline arrays (100 nm thick, 4 mm long and 47 nm wide) fabricated by photolithography techniques and PZT nanowires (10 mm long and 63 nm wide) fabricated by electrohydrodynamic jet printing, using only a blank stamp and without the assistance of any interfacial chemistries. Moreover, the presence of the sacrificial layer also enables the ink to move close to the mechanical neutral plane of the multilayer peel-off sheet, remarkably decreasing the bending stress and obviating cracks or fractures in the ink during transfer printing.
Collapse
Affiliation(s)
- Junshan Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024 China
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024 China
| | - Bo Pang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024 China
| | - Riye Xue
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116024 China
| | - Rui Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116024 China
| | - Jinlong Song
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024 China
| | - Xiaojun Zhao
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024 China
| | - Dazhi Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024 China
| | - Xiaoguang Hu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024 China
| | - Yao Lu
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK
| | - Liding Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024 China
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024 China
| |
Collapse
|
18
|
Chuquitarqui A, Cotet LC, Baia M, György E, Magyari K, Barbu-Tudoran L, Baia L, Díaz-González M, Fernández-Sánchez C, Pérez Del Pino A. New fabrication method for producing reduced graphene oxide flexible electrodes by using a low-power visible laser diode engraving system. NANOTECHNOLOGY 2020; 31:325402. [PMID: 32340003 DOI: 10.1088/1361-6528/ab8d67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fabrication of bendable electronic devices is a scientific-technological area of very rapid advance in which new materials and fabrication techniques are being continuously developed. In these kinds of devices, the fabrication of flexible conductive electrodes adherent to the substrate is a key factor. Further, eco-friendliness, low cost and fast production are essential requirements for the successful progress of new technologies. In this work, a novel method for obtaining graphene-based flexible electrodes is presented. Conductive films were obtained by means of the visible laser irradiation of graphene oxide layers deposited on polyethylene terephthalate substrates and self-standing membranes sandwiched between glass slides. Despite the low power of the laser system, the numerical simulations indicate the development of temperatures over 1000 K throughout the irradiated material. The laser-induced spatially confined heating leads to the reduction of the graphene oxide material, whereas the glass-based sandwich assembly avoids reoxidation from the surrounding air. By scanning and pixelated modes, reduced graphene oxide electrodes, up to 100 μm in thickness, and with a resistivity as low as 6 × 10-4 Ωm, were obtained in an easy and versatile way. Proof-of-concept microsupercapacitors and electrochemical sensors were fabricated with this technique, showing promising performance.
Collapse
Affiliation(s)
- A Chuquitarqui
- Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB 08193, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chai Z, Korkmaz A, Yilmaz C, Busnaina AA. High-Rate Printing of Micro/Nanoscale Patterns Using Interfacial Convective Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000747. [PMID: 32323404 DOI: 10.1002/adma.202000747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Printing of electronics has been receiving increasing attention from academia and industry over the recent years. However, commonly used printing techniques have limited resolution of micro- or sub-microscale. Here, a directed-assembly-based printing technique, interfacial convective assembly, is reported, which utilizes a substrate-heating-induced solutal Marangoni convective flow to drive particles toward patterned substrates and then uses van der Waals interactions as well as geometrical confinement to trap the particles in the pattern areas. The influence of various assembly parameters including type of mixing solvent, substrate temperature, particle concentration, and assembly time is investigated. The results show successful assembly of various nanoparticles in patterns of different shapes with a high resolution down to 25 nm. In addition, the assembly only takes a few minutes, which is two orders of magnitude faster than conventional convective assembly. Small-sized (diameter below 5 nm) nanoparticles tend to coalesce during the assembly process and form sintered structures. The fabricated silver nanorods show single-crystal structure with a low resistivity of 8.58 × 10-5 Ω cm. With high versatility, high resolution, and high throughput, the interfacial convective assembly opens remarkable opportunities for printing next generation nanoelectronics and sensors.
Collapse
Affiliation(s)
- Zhimin Chai
- NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, MA, 02115, USA
| | - Adnan Korkmaz
- NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, MA, 02115, USA
| | - Cihan Yilmaz
- NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, MA, 02115, USA
| | - Ahmed A Busnaina
- NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Zhang YZ, Wang Y, Jiang Q, El-Demellawi JK, Kim H, Alshareef HN. MXene Printing and Patterned Coating for Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908486. [PMID: 32239560 DOI: 10.1002/adma.201908486] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 05/08/2023]
Abstract
As a thriving member of the 2D nanomaterials family, MXenes, i.e., transition metal carbides, nitrides, and carbonitrides, exhibit outstanding electrochemical, electronic, optical, and mechanical properties. They have been exploited in many applications including energy storage, electronics, optoelectronics, biomedicine, sensors, and catalysis. Compared to other 2D materials, MXenes possess a unique set of properties such as high metallic conductivity, excellent dispersion quality, negative surface charge, and hydrophilicity, making them particularly suitable as inks for printing applications. Printing and pre/post-patterned coating methods represent a whole range of simple, economically efficient, versatile, and eco-friendly manufacturing techniques for devices based on MXenes. Moreover, printing can allow for complex 3D architectures and multifunctionality that are highly required in various applications. By means of printing and patterned coating, the performance and application range of MXenes can be dramatically increased through careful patterning in three dimensions; thus, printing/coating is not only a device fabrication tool but also an enabling tool for new applications as well as for industrialization.
Collapse
Affiliation(s)
- Yi-Zhou Zhang
- Physical Sciences and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yang Wang
- University of Twente, MESA+ Institute for Nanotechnology, P. O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Qiu Jiang
- Physical Sciences and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jehad K El-Demellawi
- Physical Sciences and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hyunho Kim
- Physical Sciences and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Physical Sciences and Engineering Division, Materials Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Yu Y, Nyein HYY, Gao W, Javey A. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902083. [PMID: 31432573 DOI: 10.1002/adma.201902083] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Indexed: 05/21/2023]
Abstract
The amalgamation of flexible electronics in biological systems has shaped the way health and medicine are administered. The growing field of flexible electrochemical bioelectronics enables the in situ quantification of a variety of chemical constituents present in the human body and holds great promise for personalized health monitoring owing to its unique advantages such as inherent wearability, high sensitivity, high selectivity, and low cost. It represents a promising alternative to probe biomarkers in the human body in a simpler method compared to conventional instrumental analytical techniques. Various bioanalytical technologies are employed in flexible electrochemical bioelectronics, including ion-selective potentiometry, enzymatic amperometry, potential sweep voltammetry, field-effect transistors, affinity-based biosensing, as well as biofuel cells. Recent key innovations in flexible electrochemical bioelectronics from electrochemical sensing modalities, materials, systems, fabrication, to applications are summarized and highlighted. The challenges and opportunities in this field moving forward toward future preventive and personalized medicine devices are also discussed.
Collapse
Affiliation(s)
- You Yu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wei Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
22
|
Abdolhosseinzadeh S, Schneider R, Verma A, Heier J, Nüesch F, Zhang CJ. Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screen-Printed Micro-Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000716. [PMID: 32196130 DOI: 10.1002/adma.202000716] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 05/20/2023]
Abstract
Printed functional conductive inks have triggered scalable production of smart electronics such as energy-storage devices, antennas, wearable electronics, etc. Of particular interest are highly conductive-additive-free inks devoid of costly postdeposition treatments to eliminate sacrificial components. Due to the high filler concentration required, formulation of such waste-free inks has proven quite challenging. Here, additive-free, 2D titanium carbide MXene aqueous inks with appropriate rheological properties for scalable screen printing are demonstrated. Importantly, the inks consist essentially of the sediments of unetched precursor and multilayered MXene, which are usually discarded after delamination. Screen-printed structures are presented on paper with high resolution and spatial uniformity, including micro-supercapacitors, conductive tracks, integrated circuit paths, and others. It is revealed that the delaminated nanosheets among the layered particles function as efficient conductive binders, maintaining the mechanical integrity and thus the metallic conductive network. The areal capacitance (158 mF cm-2 ) and energy density (1.64 µWh cm-2 ) of the printed micro-supercapacitors are much superior to other devices based on MXene or graphene. The ink formulation strategy of "turning trash into treasure" for screen printing highlights the potential of waste-free MXene sediment printing for scalable and sustainable production of next-generation wearable smart electronics.
Collapse
Affiliation(s)
- Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - René Schneider
- Laboratory for Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Anand Verma
- Laboratory for Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Chuanfang John Zhang
- Laboratory for Functional Polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| |
Collapse
|
23
|
Araki T, Uemura T, Yoshimoto S, Takemoto A, Noda Y, Izumi S, Sekitani T. Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902684. [PMID: 31782576 DOI: 10.1002/adma.201902684] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/02/2019] [Indexed: 05/24/2023]
Abstract
Mechanically and visually imperceptible sensor sheets integrated with lightweight wireless loggers are employed in ultimate flexible hybrid electronics (FHE) to reduce vital stress/nervousness and monitor natural biosignal responses. The key technologies and applications for conceptual sensor system fabrication are reported, as exemplified by the use of a stretchable sensor sheet completely conforming to an individual's body surface to realize a low-noise wireless monitoring system (<1 µV) that can be attached to the human forehead for recording electroencephalograms. The above system can discriminate between Alzheimer's disease and the healthy state, thus offering a rapid in-home brain diagnosis possibility. Moreover, the introduction of metal nanowires to improve the transparency of the biocompatible sensor sheet allows one to wirelessly acquire electrocorticograms of nonhuman primates and simultaneously offers optogenetic stimulation such as toward-the-brain-machine interface under free movement. Also discussed are effective methods of improving electrical reliability, biocompatibility, miniaturization, etc., for metal nanowire based tracks and exploring the use of an organic amplifier as an important component to realize a flexible active probe with a high signal-to-noise ratio. Overall, ultimate FHE technologies are demonstrated to achieve efficient closed-loop systems for healthcare management, medical diagnostics, and preclinical studies in neuroscience and neuroengineering.
Collapse
Affiliation(s)
- Teppei Araki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takafumi Uemura
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Suita, Osaka, 565-0871, Japan
| | - Shusuke Yoshimoto
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Ashuya Takemoto
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuki Noda
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Shintaro Izumi
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Parate K, Rangnekar SV, Jing D, Mendivelso-Perez DL, Ding S, Secor EB, Smith EA, Hostetter JM, Hersam MC, Claussen JC. Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8592-8603. [PMID: 32040290 DOI: 10.1021/acsami.9b22183] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 μm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.
Collapse
Affiliation(s)
- Kshama Parate
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Sonal V Rangnekar
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Dapeng Jing
- Materials Analysis and Research Laboratory , Iowa State University , Ames , Iowa 50010 , Unites States
| | | | - Shaowei Ding
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Ethan B Secor
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Emily A Smith
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Jesse M Hostetter
- College of Veterinary Medicine , Iowa State University , Ames , Iowa 50011 , United States
| | - Mark C Hersam
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
25
|
Qiao Y, Li X, Hirtz T, Deng G, Wei Y, Li M, Ji S, Wu Q, Jian J, Wu F, Shen Y, Tian H, Yang Y, Ren TL. Graphene-based wearable sensors. NANOSCALE 2019; 11:18923-18945. [PMID: 31532436 DOI: 10.1039/c9nr05532k] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human body is a "delicate machine" full of sensors such as the fingers, nose, and mouth. In addition, numerous physiological signals are being created every moment, which can reflect the condition of the body. The quality and the quantity of the physiological signals are important for diagnoses and the execution of therapies. Due to the incompact interface between the sensors and the skin, the signals obtained by commercial rigid sensors do not bond well with the body; this decreases the quality of the signal. To increase the quantity of the data, it is important to detect physiological signals in real time during daily life. In recent years, there has been an obvious trend of applying graphene devices with excellent performance (flexibility, biocompatibility, and electronic characters) in wearable systems. In this review, we will first provide an introduction about the different methods of synthesis of graphene, and then techniques for graphene patterning will be outlined. Moreover, wearable graphene sensors to detect mechanical, electrophysiological, fluid, and gas signals will be introduced. Finally, the challenges and prospects of wearable graphene devices will be discussed. Wearable graphene sensors can improve the quality and quantity of the physiological signals and have great potential for health-care and telemedicine in the future.
Collapse
Affiliation(s)
- Yancong Qiao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Xiaoshi Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Thomas Hirtz
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Ge Deng
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Yuhong Wei
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Mingrui Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Shourui Ji
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China. and School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Jinming Jian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Fan Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Yang Shen
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Yi Yang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Sui Y, Hess-Dunning A, Wei P, Pentzer E, Sankaran RM, Zorman CA. Electrically Conductive, Reduced Graphene Oxide Structures Fabricated by Inkjet Printing and Low Temperature Plasma Reduction. ADVANCED MATERIALS TECHNOLOGIES 2019; 4:10.1002/admt.201900834. [PMID: 35178467 PMCID: PMC8849540 DOI: 10.1002/admt.201900834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Here, an environmentally-friendly and scalable process is reported to synthesize reduced graphene oxide (RGO) thin films for printed electronics applications. The films are produced by inkjet printing GO flakes dispersed binder-free in aqueous solutions followed by treatment with a nonthermal, radio-frequency (RF) plasma containing only argon (Ar) gas. The plasma process is found to heat the substrate to temperatures no greater than 138 °C, enabling RGO to be printed directly on a wide range of temperature-sensitive substrate materials including photo paper. Unlike other low-temperature methods such as electrochemical reduction, plasma reduction is friendly to moisture absorbent materials. Moreover, the plasma treatment can be performed on nonconducting substrates, eliminating the need for film transfer. From an applications perspective, the printed, plasma-reduced RGO exhibits excellent electrical, mechanical, and electrochemical properties. As a technology demonstrator, the working electrodes of hydrogen peroxide (H2O2) sensors fabricated from plasma-reduced GO show a sensitivity of 277 ± 80 μA mm-1 cm-2, which is comparable to RGO working electrodes made by electrochemical reduction.
Collapse
Affiliation(s)
- Yongkun Sui
- Department of Electrical, Computer and Systems Engineering Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Allison Hess-Dunning
- Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA, Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Peiran Wei
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emily Pentzer
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - R Mohan Sankaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christian A Zorman
- Department of Electrical, Computer and Systems Engineering Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Zhou M, Kang Z, Zhu S. Preparation of Ag/graphene composite films by three-component spray-spin-spray coating on surface modified PET substrate. NANOTECHNOLOGY 2019; 30:395701. [PMID: 31212256 DOI: 10.1088/1361-6528/ab2a91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a novel method of three-component spray-spin-spray coating to prepare uniform and dense Ag/graphene nanosheet (Ag/GNS) composite films on a surface modified polyethylene terephthalate (PET) substrate. Compared with an untreated sample, the adhesion between composite films and the substrate was significantly enhanced due to the effects of chemical etching and molecular grafting. From the results of the four-probe test, the sheet resistance of hybrid films of Ag/GNS-5 reduced by 60% compared to the pristine Ag films, which was due to the efficient deposition of GNS by spray-spin-spray coating method. Meanwhile, a variety of complex flexible patterns were successfully fabricated with the help of the masking method. This means that the method could provide an efficient and low cost way for flexible electronics production of various complex flexible metallic coatings in practice.
Collapse
Affiliation(s)
- Mingqiang Zhou
- Guangdong Key Laboratory for Advanced Metallic Materials Processing, School of Mechanical & Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640, People's Republic of China
| | | | | |
Collapse
|
28
|
He P, Cao J, Ding H, Liu C, Neilson J, Li Z, Kinloch IA, Derby B. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32225-32234. [PMID: 31390171 DOI: 10.1021/acsami.9b04589] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Conductive inks for the future printed electronics should have the following merits: high conductivity, flexibility, low cost, and compatibility with wide range of substrates. However, the state-of-the-art conductive inks based on metal nanoparticles are high in cost and poor in flexibility. Herein, we reported a highly conductive, low cost, and super flexible ink based on graphene nanoplatelets. The graphene ink has been screen-printed on plastic and paper substrates. Combined with postprinting treatments including thermal annealing and compression rolling, the printed graphene pattern shows a high conductivity of 8.81 × 104 S m-1 and good flexibility without significant conductivity loss after 1000 bending cycles. We further demonstrate that the printed highly conductive graphene patterns can act as current collectors for supercapacitors. The supercapacitor with the printed graphene pattern as the current collector and printed activated carbon as the active material shows a good rate capability of up to 200 mV s-1. This work potentially provides a promising route toward the large-scale fabrication of low cost yet flexible printed electronic devices.
Collapse
Affiliation(s)
- Pei He
- School of Physics and Electronics , Central South University , Changsha 410083 , Hunan , P. R. China
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Jianyun Cao
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Hui Ding
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Chongguang Liu
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Joseph Neilson
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Zheling Li
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Ian A Kinloch
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Brian Derby
- School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| |
Collapse
|
29
|
Uz M, Jackson K, Donta MS, Jung J, Lentner MT, Hondred JA, Claussen JC, Mallapragada SK. Fabrication of High-resolution Graphene-based Flexible Electronics via Polymer Casting. Sci Rep 2019; 9:10595. [PMID: 31332270 PMCID: PMC6646327 DOI: 10.1038/s41598-019-46978-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the need for harsh post-processing techniques and enables creation of conductive graphene circuits (sheet resistance: ~0.2 kΩ/sq) with high stability (stable after 100 bending and 24 h washing cycles) on various polymeric flexible substrates. Moreover, this approach allows precise control of the substrate properties such as composition, biodegradability, 3D microstructure, pore size, porosity and mechanical properties using different film formation techniques. This approach can also be used to fabricate flexible biointerfaces to control stem cell behavior, such as differentiation and alignment. Overall, this promising approach provides a facile and low-cost method for the fabrication of flexible and stretchable electronic circuits.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Kyle Jackson
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Maxsam S Donta
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Juhyung Jung
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Matthew T Lentner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - John A Hondred
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
30
|
Zhang CJ, McKeon L, Kremer MP, Park SH, Ronan O, Seral-Ascaso A, Barwich S, Coileáin CÓ, McEvoy N, Nerl HC, Anasori B, Coleman JN, Gogotsi Y, Nicolosi V. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun 2019; 10:1795. [PMID: 30996224 PMCID: PMC6470171 DOI: 10.1038/s41467-019-09398-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 11/26/2022] Open
Abstract
Direct printing of functional inks is critical for applications in diverse areas including electrochemical energy storage, smart electronics and healthcare. However, the available printable ink formulations are far from ideal. Either surfactants/additives are typically involved or the ink concentration is low, which add complexity to the manufacturing and compromises the printing resolution. Here, we demonstrate two types of two-dimensional titanium carbide (Ti3C2Tx) MXene inks, aqueous and organic in the absence of any additive or binary-solvent systems, for extrusion printing and inkjet printing, respectively. We show examples of all-MXene-printed structures, such as micro-supercapacitors, conductive tracks and ohmic resistors on untreated plastic and paper substrates, with high printing resolution and spatial uniformity. The volumetric capacitance and energy density of the all-MXene-printed micro-supercapacitors are orders of magnitude greater than existing inkjet/extrusion-printed active materials. The versatile direct-ink-printing technique highlights the promise of additive-free MXene inks for scalable fabrication of easy-to-integrate components of printable electronics. Printing functional inks is attractive for applications in electrochemical energy storage and smart electronics, among others. Here the authors report highly concentrated, additive-free, aqueous and organic MXene-based inks that can be used for high-resolution extrusion and inkjet printing.
Collapse
Affiliation(s)
- Chuanfang John Zhang
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland. .,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Lorcan McKeon
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthias P Kremer
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.,I-FORM Advanced Manufacturing Research Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Sang-Hoon Park
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Oskar Ronan
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Andrés Seral-Ascaso
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Sebastian Barwich
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Cormac Ó Coileáin
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niall McEvoy
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Hannah C Nerl
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Babak Anasori
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jonathan N Coleman
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA.
| | - Valeria Nicolosi
- CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, Ireland. .,School of Chemistry, Trinity College Dublin, Dublin 2, Ireland. .,I-FORM Advanced Manufacturing Research Centre, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
31
|
Song D, Zare Bidoky F, Secor EB, Hersam MC, Frisbie CD. Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9947-9954. [PMID: 30758176 DOI: 10.1021/acsami.8b20766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Freestanding ion gels (FIGs) provide unique opportunities for scalable, low-cost fabrication of flexible microsupercapacitors (MSCs). While conventional MSCs employ a distinct electrolyte and substrate, FIGs perform both functions, offering new possibilities for device integration and multifunctionality while maintaining high performance. Here, a capillarity-driven printing method is demonstrated to manufacture high-precision graphene electrodes on FIGs for MSCs. This method achieves excellent self-alignment and resolution (width: 50 μm, interdigitated electrode footprint: <1 mm2) and 100% fabrication yield (48/48 devices) and is readily generalized to alternative electrode materials including multiwalled carbon nanotubes (MWCNTs). The devices demonstrate good performance, including high specific capacitance (graphene: 0.600 mF cm-2; MWCNT: 6.64 mF cm-2) and excellent stability against bending, folding, and electrical cycling. Moreover, this strategy offers unique opportunities for device design and integration, including a bifacial electrode structure with enhanced capacitance (graphene: 0.673 mF cm-2; MWCNT: 7.53 mF cm-2) and improved rate performance, print-and-place versatility for integration on diverse substrates, and multifunctionality for light emission and transistor gating. These compelling results demonstrate the potential of FIGs for scalable, low-cost fabrication of flexible, printed, and multifunctional energy storage devices.
Collapse
Affiliation(s)
- Donghoon Song
- Department of Chemical Engineering and Materials Science , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Fazel Zare Bidoky
- Department of Chemical Engineering and Materials Science , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ethan B Secor
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
32
|
Oh D, Lara E, Arellano N, Shin YC, Medina P, Kim J, Ta T, Akca E, Ozgit-Akgun C, Demirci G, Kim HC, Han SJ, Maune H, Samant MG. Flat Monolayer Graphene Cathodes for Li-Oxygen Microbatteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:489-498. [PMID: 30525380 DOI: 10.1021/acsami.8b12718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Miniature batteries can accelerate the development of mobile electronics by providing sufficient energy to power small devices. Typical microbatteries commonly use thin-film inorganic electrodes based on Li-ion insertion reaction. However, they rely on the complicated thin-film synthesis method of inorganics containing many elements. Graphene, one atomic layer thick carbon sheet, has diverse physical and chemical properties and is compatible with conventional micron-scale device fabrication. Here, we study the use of chemical vapor deposition (CVD) grown monolayer graphene in a two-dimensional configuration, as a future Li-oxygen microbattery cathode. By maximizing the dissolution of discharge intermediates, we obtain 2610 Ah/ggraphene of capacity corresponding to 20% higher areal cathode energy density and 2.7 times higher cathode specific energy than that can be derived from the same volume or mass of conventional Li-ion battery cathode material. Furthermore, a clear observation on the discharge reaction on composite electrodes and their role in the charging reaction was made, thanks to the two-dimensional monolayer graphene Li-oxygen battery cathode. We demonstrate an easy integration of two-dimensional CVD graphene cathode into microscale devices by simply transferring or coating the target device substrate with flexible graphene layers. The ability to integrate and use monolayer graphene on arbitrary device substrates as well as precise control over a chemical derivation of the carbon interface can have a radical impact on future energy-storage devices.
Collapse
Affiliation(s)
- Dahyun Oh
- Chemical and Materials Engineering Department , San José State University , San Jose , California 95112 , United States
- IBM Almaden Research Center , San Jose , California 95120 , United States
| | - Erik Lara
- Chemical and Materials Engineering Department , San José State University , San Jose , California 95112 , United States
| | - Noel Arellano
- IBM Almaden Research Center , San Jose , California 95120 , United States
| | - Yong Cheol Shin
- Korea Institute of Science and Technology Evaluation and Planning (KISTEP) , Seoul 06775 , South Korea
| | - Phillip Medina
- IBM Almaden Research Center , San Jose , California 95120 , United States
| | - Jangwoo Kim
- IBM Almaden Research Center , San Jose , California 95120 , United States
| | - Toan Ta
- Chemical and Materials Engineering Department , San José State University , San Jose , California 95112 , United States
| | - Esin Akca
- ASELSAN Inc.-Microelectronics, Guidance and Electro-Optics Business Sector , Ankara 06750 , Turkey
| | - Cagla Ozgit-Akgun
- ASELSAN Inc.-Microelectronics, Guidance and Electro-Optics Business Sector , Ankara 06750 , Turkey
| | - Gökhan Demirci
- ASELSAN Inc.-Microelectronics, Guidance and Electro-Optics Business Sector , Ankara 06750 , Turkey
| | - Ho-Cheol Kim
- IBM Almaden Research Center , San Jose , California 95120 , United States
| | - Shu-Jen Han
- IBM Almaden Research Center , San Jose , California 95120 , United States
| | - Hareem Maune
- IBM Almaden Research Center , San Jose , California 95120 , United States
| | - Mahesh G Samant
- IBM Almaden Research Center , San Jose , California 95120 , United States
| |
Collapse
|
33
|
Liao Y, Zhang R, Qian J. Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Adv 2019; 9:29154-29172. [PMID: 35702365 PMCID: PMC9116116 DOI: 10.1039/c9ra05954g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
The diverse demands of consumers for packaging functions and increasingly complex product circulation systems have spurred the development of intelligent food packaging (IFP).
Collapse
Affiliation(s)
- Yu Liao
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
- Chemical & Environmental Engineering
| | - Rui Zhang
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| | - Jun Qian
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| |
Collapse
|
34
|
Song M, Dang L, Long J, Hu C. Laser-Cut Polymer Tape Templates for Scalable Filtration Fabrication of User-Designed and Carbon-Nanomaterial-Based Electrochemical Sensors. ACS Sens 2018; 3:2518-2525. [PMID: 30403134 DOI: 10.1021/acssensors.8b00639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report here a simple filtration method for the scalable fabrication of user-designed and carbon-nanomaterial-based electrode arrays using laser-cut poly(vinyl chloride) (PVC) tape templates. This method can produce electrode arrays with high uniformity and low resistance from the dilute dispersions of single-walled carbon nanotubes (SWNTs) and graphene nanoplatelets (GNPs). For these two carbon arrays, the SWNT array is demonstrated to possess several interesting properties, e.g., good mechanical properties, excellent flexibility, and favorable electrochemical behavior. Moreover, its porous structure enables the construction of a paperlike solid-state electrochemical sensor using Nafion electrolytes, which is suitable for the on-site monitoring of trace phenol pollutants in electrolyte-free water. Besides, an electrochemically addressable 36-zone sensor was constructed by this method. With the aid of an inexpensive 3D printer, the addressable sensor can achieve the semiautomatic and high-throughput evaluation of antioxidant capacity on a series of vegetables and fruits using a single-channel electrochemical analyzer.
Collapse
Affiliation(s)
- Mengmeng Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lantu Dang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Long
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengguo Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
35
|
Song D, Secor EB, Wang Y, Hersam MC, Frisbie CD. Transfer Printing of Sub-5 μm Graphene Electrodes for Flexible Microsupercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22303-22310. [PMID: 29894146 DOI: 10.1021/acsami.8b06235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Printed graphene microsupercapacitors (MSCs) are attractive for scalable and low-cost on-chip energy storage for distributed electronic devices. Although electronic devices have experienced significant scaling to smaller formats, the corresponding miniaturization of energy storage components has been limited, with a typical resolution of ∼30 μm for printed graphene patterns to date. Transfer printing is demonstrated here for patterning graphene electrodes with fine line and spacing resolution less than 5 μm. The resulting devices exhibit an exceptionally small footprint (∼0.0067 mm2), which provides, to the best of our knowledge, the smallest printed graphene MSCs. Despite this, the devices retain excellent performance with a high areal capacitance of ∼6.63 mF/cm2 along with excellent electrochemical stability and mechanical flexibility, resulting from an efficient nonplanar electrode structure and an optimized two-step photoannealing method. As a result, this miniaturization strategy facilitates the on-chip integration of printed graphene MSCs to power emerging electronic devices.
Collapse
Affiliation(s)
| | - Ethan B Secor
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | | | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | | |
Collapse
|
36
|
Garlapati SK, Divya M, Breitung B, Kruk R, Hahn H, Dasgupta S. Printed Electronics Based on Inorganic Semiconductors: From Processes and Materials to Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707600. [PMID: 29952112 DOI: 10.1002/adma.201707600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Following the ever-expanding technological demands, printed electronics has shown palpable potential to create new and commercially viable technologies that will benefit from its unique characteristics, such as, large-area and wide range of substrate compatibility, conformability and low-cost. Through the last few decades, printed/solution-processed field-effect transistors (FETs) and circuits have witnessed immense research efforts, technological growth and increased commercial interests. Although printing of functional inks comprising organic semiconductors has already been initiated in early 1990s, gradually the attention, at least partially, has been shifted to various forms of inorganic semiconductors, starting from metal chalcogenides, oxides, carbon nanotubes and very recently to graphene and other 2D semiconductors. In this review, the entire domain of printable inorganic semiconductors is considered. In fact, thanks to the continuous development of materials/functional inks and novel design/printing strategies, the inorganic printed semiconductor-based circuits today have reached an operation frequency up to several hundreds of kilohertz with only a few nanosecond time delays at the individual FET/inverter levels; in this regard, often circuits based on hybrid material systems have been found to be advantageous. At the end, a comparison of relative successes of various printable inorganic semiconductor materials, the remaining challenges and the available future opportunities are summarized.
Collapse
Affiliation(s)
- Suresh Kumar Garlapati
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Mitta Divya
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Ben Breitung
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Robert Kruk
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- KIT-TUD Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt (TUD), Institute of Materials Science, Jovanka-Bontschits-Str. 2, ,64287, Darmstadt, Germany
| | - Subho Dasgupta
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344, Eggenstein-Leopoldshafen, Germany
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
37
|
Kang K, Cho Y, Yu KJ. Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems. MICROMACHINES 2018; 9:E263. [PMID: 30424196 PMCID: PMC6187536 DOI: 10.3390/mi9060263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
Recent progress in fabricating flexible electronics has been significantly developed because of the increased interest in flexible electronics, which can be applied to enormous fields, not only conventional in electronic devices, but also in bio/eco-electronic devices. Flexible electronics can be applied to a wide range of fields, such as flexible displays, flexible power storages, flexible solar cells, wearable electronics, and healthcare monitoring devices. Recently, flexible electronics have been attached to the skin and have even been implanted into the human body for monitoring biosignals and for treatment purposes. To improve the electrical and mechanical properties of flexible electronics, nanoscale fabrications using novel nanomaterials are required. Advancements in nanoscale fabrication methods allow the construction of active materials that can be combined with ultrathin soft substrates to form flexible electronics with high performances and reliability. In this review, a wide range of flexible electronic applications via nanoscale fabrication methods, classified as either top-down or bottom-up approaches, including conventional photolithography, soft lithography, nanoimprint lithography, growth, assembly, and chemical vapor deposition (CVD), are introduced, with specific fabrication processes and results. Here, our aim is to introduce recent progress on the various fabrication methods for flexible electronics, based on novel nanomaterials, using application examples of fundamental device components for electronics and applications in healthcare systems.
Collapse
Affiliation(s)
- Kyowon Kang
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Younguk Cho
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Ki Jun Yu
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
38
|
Naik AR, Kim JJ, Usluer Ö, Gonzalez Arellano DL, Secor EB, Facchetti A, Hersam MC, Briseno AL, Watkins JJ. Direct Printing of Graphene Electrodes for High-Performance Organic Inverters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15988-15995. [PMID: 29667396 DOI: 10.1021/acsami.8b01302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Scalable fabrication of high-resolution electrodes and interconnects is necessary to enable advanced, high-performance, printed, and flexible electronics. Here, we demonstrate the direct printing of graphene patterns with feature widths from 300 μm to ∼310 nm by liquid-bridge-mediated nanotransfer molding. This solution-based technique enables residue-free printing of graphene patterns on a variety of substrates with surface energies between ∼43 and 73 mN m-1. Using printed graphene source and drain electrodes, high-performance organic field-effect transistors (OFETs) are fabricated with single-crystal rubrene (p-type) and fluorocarbon-substituted dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDIF-CN2) (n-type) semiconductors. Measured mobilities range from 2.1 to 0.2 cm2 V-1 s-1 for rubrene and from 0.6 to 0.1 cm2 V-1 s-1 for PDIF-CN2. Complementary inverter circuits are fabricated from these single-crystal OFETs with gains as high as ∼50. Finally, these high-resolution graphene patterns are compatible with scalable processing, offering compelling opportunities for inexpensive printed electronics with increased performance and integration density.
Collapse
Affiliation(s)
- Aditi R Naik
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jae Joon Kim
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Özlem Usluer
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - D Leonardo Gonzalez Arellano
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | | | | | | - Alejandro L Briseno
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - James J Watkins
- Department of Polymer Science and Engineering , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
39
|
Homola T, Pospíšil J, Krumpolec R, Souček P, Dzik P, Weiter M, Černák M. Atmospheric Dry Hydrogen Plasma Reduction of Inkjet-Printed Flexible Graphene Oxide Electrodes. CHEMSUSCHEM 2018; 11:941-947. [PMID: 29356373 DOI: 10.1002/cssc.201702139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Indexed: 06/07/2023]
Abstract
This study concerns a low-temperature method for dry hydrogen plasma reduction of inkjet-printed flexible graphene oxide (GO) electrodes, an approach compatible with processes envisaged for the manufacture of flexible electronics. The processing of GO to reduced graphene oxide (rGO) was performed in 1-64 s, and sp2 /sp2 +sp3 carbon concentration increased from approximately 20 % to 90 %. Since the plasma reduction was associated with an etching effect, the optimal reduction time occurred between 8 and 16 s. The surface showed good mechanical stability when deposited on polyethylene terephthalate flexible foils and significantly lower sheet resistance after plasma reduction. This method for dry plasma reduction could be important for large-area hydrogenation and reduction of GO flexible surfaces, with present and potential applications in a wide variety of emerging technologies.
Collapse
Affiliation(s)
- Tomáš Homola
- R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT), Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Jan Pospíšil
- Department Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Richard Krumpolec
- R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT), Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Pavel Souček
- R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT), Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Petr Dzik
- Department Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Martin Weiter
- Department Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Mirko Černák
- R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT), Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| |
Collapse
|