1
|
Sun J, Skanata A, Movileanu L. Single-Molecule Observation of Competitive Protein-Protein Interactions Utilizing a Nanopore. ACS NANO 2025; 19:1103-1115. [PMID: 39718930 PMCID: PMC11752528 DOI: 10.1021/acsnano.4c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Two or more protein ligands may compete against each other to interact transiently with a protein receptor. While this is a ubiquitous phenomenon in cell signaling, existing technologies cannot identify its kinetic complexity because specific subpopulations of binding events of different ligands are hidden in the averaging process in an ensemble. In addition, the limited time resolution of prevailing methods makes detecting and discriminating binding events among diverse interacting partners challenging. Here, we utilize a genetically encoded nanopore sensor to disentangle competitive protein-protein interactions (PPIs) in a one-on-one and label-free fashion. Our measurements involve binary mixtures of protein ligands of varying binding affinity against the same receptor, which was externally immobilized on the nanopore tip. We use the resistive-pulse technique to monitor the kinetics and dynamics of reversible PPIs without the nanopore confinement, with a high-time bandwidth, and at titratable ligand concentrations. In this way, we systematically evaluate how individual protein ligands take their turn to reside on the receptor's binding site. Further, our single-molecule determinations of these interactions are quantitatively compared with data generated by a two-ligand, one-receptor queuing model. The outcomes of this work provide a fundamental basis for future developments aimed at a better mechanistic understanding of competitive PPIs. Moreover, they may also form a platform in drug development pipelines targeting high-complexity PPIs mediated by protein hubs.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Antun Skanata
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Grifagni D, Doni D, Susini B, Fonseca BM, Louro RO, Costantini P, Ciofi‐Baffoni S. Unraveling the molecular determinants of a rare human mitochondrial disorder caused by the P144L mutation of FDX2. Protein Sci 2024; 33:e5197. [PMID: 39467201 PMCID: PMC11515921 DOI: 10.1002/pro.5197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Episodic mitochondrial myopathy with or without optic atrophy and reversible leukoencephalopathy (MEOAL) is a rare, orphan autosomal recessive disorder caused by mutations in ferredoxin-2 (FDX2), which is a [2Fe-2S] cluster-binding protein participating in the formation of iron-sulfur clusters in mitochondria. In this biosynthetic pathway, FDX2 works as electron donor to promote the assembly of both [2Fe-2S] and [4Fe-4S] clusters. A recently identified missense mutation of MEOAL is the homozygous mutation c.431C>T (p.P144L) described in six patients from two unrelated families. This mutation alters a highly conserved proline residue located in a loop of FDX2 that is distant from the [2Fe-2S] cluster. How this Pro to Leu substitution damages iron-sulfur cluster biosynthesis is unknown. In this work, we have first compared the structural, dynamic, cluster binding and redox properties of WT and P144L [2Fe-2S] FDX2 to have clues on how the pathogenic P144L mutation can perturb the FDX2 function. Then, we have investigated the interaction of both WT and P144L [2Fe-2S] FDX2 with its physiological electron donor, ferredoxin reductase FDXR, comparing their electron transfer efficiency and protein-protein recognition patterns. Overall, the data indicate that the pathogenic P144L mutation negatively affects the FDXR-dependent electron transfer pathway from NADPH to FDX2, thereby reducing the capacity of FDX2 in assembling both [2Fe-2S] and [4Fe-4S] clusters. Our study also provided solid molecular evidences on the functional role of the C-terminal tail of FDX2 in the electron transfer between FDX2 and FDXR.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Davide Doni
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Bianca Susini
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Bruno M. Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | - Ricardo O. Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | | | - Simone Ciofi‐Baffoni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| |
Collapse
|
4
|
Ma H, Wang Y, Li YX, Xie BK, Hu ZL, Yu RJ, Long YT, Ying YL. Label-Free Mapping of Multivalent Binding Pathways with Ligand-Receptor-Anchored Nanopores. J Am Chem Soc 2024. [PMID: 39180483 DOI: 10.1021/jacs.4c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Understanding single-molecule multivalent ligand-receptor interactions is crucial for comprehending molecular recognition at biological interfaces. However, label-free identifications of these transient interactions during multistep binding processes remains challenging. Herein, we introduce a ligand-receptor-anchored nanopore that allows the protein to maintain structural flexibility and favorable orientations in native states, mapping dynamic multivalent interactions. Using a four-state Markov chain model, we clarify two concentration-dependent binding pathways for the Omicron spike protein (Omicron S) and soluble angiotensin-converting enzyme 2 (sACE2): sequential and concurrent. Real-time kinetic analysis at the single-monomeric subunit level reveals that three S1 monomers of Omicron S exhibit a consistent and robust binding affinity toward sACE2 (-13.1 ± 0.2 kcal/mol). These results highlight the enhanced infectivity of Omicron S compared to other homologous spike proteins (WT S and Delta S). Notably, the preceding binding of sACE2 to Omicron S facilitates the subsequent binding steps, which was previously obscured in bulk measurements. Our single-molecule studies resolve the controversy over the disparity between the measured spike protein binding affinity with sACE2 and the viral infectivity, offering valuable insights for drug design and therapies.
Collapse
Affiliation(s)
- Hui Ma
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yongyong Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ya-Xue Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zheng-Li Hu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ru-Jia Yu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Mayse L, Wang Y, Ahmad M, Movileanu L. Real-Time Measurement of a Weak Interaction of a Transcription Factor Motif with a Protein Hub at Single-Molecule Precision. ACS NANO 2024; 18:20468-20481. [PMID: 39049818 PMCID: PMC11308778 DOI: 10.1021/acsnano.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Transcription factors often interact with other protein cofactors, regulating gene expression. Direct detection of these brief events using existing technologies remains challenging due to their transient nature. In addition, intrinsically disordered domains, intranuclear location, and lack of cofactor-dependent active sites of transcription factors further complicate the quantitative analysis of these critical processes. Here, we create a genetically encoded label-free sensor to identify the interaction between a motif of the MYC transcription factor, a primary cancer driver, and WDR5, a chromatin-associated protein hub. Using an engineered nanopore equipped with this motif, WDR5 is probed through reversible captures and releases in a one-by-one and time-resolved fashion. Our single-molecule kinetic measurements indicate a weak-affinity interaction arising from a relatively slow complex association and a fast dissociation of WDR5 from the tethered motif. Further, we validate this subtle interaction by determinations in an ensemble using single nanodisc-wrapped nanopores immobilized on a biolayer interferometry sensor. This study also provides the proof-of-concept for a sensor that reveals unique recognition signatures of different protein binding sites. Our foundational work may be further developed to produce sensing elements for analytical proteomics and cancer nanomedicine.
Collapse
Affiliation(s)
- Lauren
A. Mayse
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Yazheng Wang
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Mohammad Ahmad
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Abouelkheir M, Roy T, Krzyscik MA, Özdemir E, Hristova K. Investigations of membrane protein interactions in cells using fluorescence microscopy. Curr Opin Struct Biol 2024; 86:102816. [PMID: 38648680 PMCID: PMC11141325 DOI: 10.1016/j.sbi.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The interactions between proteins in membranes govern many cellular functions. Our ability to probe for such interactions has greatly evolved in recent years due to the introduction of new fluorescence techniques. As a result, we currently have a choice of methods that can be used to assess the spatial distribution of a membrane protein, its association state, and the thermodynamic stability of the oligomers in the native milieu. These biophysical measurements have revealed new insights into important biological processes in cellular membranes.
Collapse
Affiliation(s)
- Mahmoud Abouelkheir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA
| | - Tanaya Roy
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA.
| |
Collapse
|
7
|
Veale CGL, Chakraborty A, Mhlanga R, Albericio F, de la Torre BG, Edkins AL, Clarke DJ. A native mass spectrometry approach to qualitatively elucidate interfacial epitopes of transient protein-protein interactions. Chem Commun (Camb) 2024; 60:5844-5847. [PMID: 38752317 PMCID: PMC11139139 DOI: 10.1039/d4cc01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Native mass spectrometric analysis of TPR2A and GrpE with unpurified peptides derived from limited proteolysis of their respective PPI partners (HSP90 C-terminus and DnaK) facilitated efficient, qualitative identification of interfacial epitopes involved in transient PPI formation. Application of this approach can assist in elucidating interfaces of currently uncharacterised transient PPIs.
Collapse
Affiliation(s)
- Clinton G L Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Abir Chakraborty
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Richwell Mhlanga
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville, South Africa
| | - Beatriz G de la Torre
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Adrienne L Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH93FJ, UK.
| |
Collapse
|
8
|
Ahmad M, Movileanu L. Multiplexed imaging for probing RAS-RAF interactions in living cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184173. [PMID: 37211322 PMCID: PMC10330472 DOI: 10.1016/j.bbamem.2023.184173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
GTP-bound RAS interacts with its protein effectors in response to extracellular stimuli, leading to chemical inputs for downstream pathways. Significant progress has been made in measuring these reversible protein-protein interactions (PPIs) in various cell-free environments. Yet, acquiring high sensitivity in heterogeneous solutions remains challenging. Here, using an intermolecular fluorescence resonance energy transfer (FRET) biosensing approach, we develop a method to visualize and localize HRAS-CRAF interactions in living cells. We demonstrate that the EGFR activation and the HRAS-CRAF complex formation can be concurrently probed in a single cell. This biosensing strategy discriminates EGF-stimulated HRAS-CRAF interactions at the cell and organelle membranes. In addition, we provide quantitative FRET measurements for assessing these transient PPIs in a cell-free environment. Finally, we prove the utility of this approach by showing that an EGFR-binding compound is a potent inhibitor of HRAS-CRAF interactions. The outcomes of this work form a fundamental basis for further explorations of the spatiotemporal dynamics of various signaling networks.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
9
|
Structure of the Sec14 domain of Kalirin reveals a distinct class of lipid-binding module in RhoGEFs. Nat Commun 2023; 14:96. [PMID: 36609407 PMCID: PMC9823006 DOI: 10.1038/s41467-022-35678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Gated entry of lipophilic ligands into the enclosed hydrophobic pocket in stand-alone Sec14 domain proteins often links lipid metabolism to membrane trafficking. Similar domains occur in multidomain mammalian proteins that activate small GTPases and regulate actin dynamics. The neuronal RhoGEF Kalirin, a central regulator of cytoskeletal dynamics, contains a Sec14 domain (KalbSec14) followed by multiple spectrin-like repeats and catalytic domains. Previous studies demonstrated that Kalirin lacking its Sec14 domain fails to maintain cell morphology or dendritic spine length, yet whether and how KalbSec14 interacts with lipids remain unknown. Here, we report the structural and biochemical characterization of KalbSec14. KalbSec14 adopts a closed conformation, sealing off the canonical ligand entry site, and instead employs a surface groove to bind a limited set of lysophospholipids. The low-affinity interactions of KalbSec14 with lysolipids are expected to serve as a general model for the regulation of Rho signaling by other Sec14-containing Rho activators.
Collapse
|
10
|
Wen Y, Xie D, Liu Z. Advances in protein analysis in single live cells: principle, instrumentation and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Tas RP, Albertazzi L, Voets IK. Small Peptide-Protein Interaction Pair for Genetically Encoded, Fixation Compatible Peptide-PAINT. NANO LETTERS 2021; 21:9509-9516. [PMID: 34757759 PMCID: PMC8631740 DOI: 10.1021/acs.nanolett.1c02895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/01/2021] [Indexed: 05/08/2023]
Abstract
Super-resolution microscopy via PAINT has been widely adopted in life sciences to interrogate the nanoscale architecture of many cellular structures. However, obtaining quantitative information in fixed cellular samples remains challenging because control of labeling stoichiometry is hampered in current approaches due to click-chemistry and additional targeting probes. To overcome these challenges, we have identified a small, PDZ-based, peptide-protein interaction pair that is genetically encodable and compatible with super-resolution imaging upon cellular fixation without additional labeling. Stoichiometric labeling control by genetic incorporation of this probe into the cellular vimentin network and mitochondria resulted in super-resolved 3D reconstructions with high specificity and spatial resolution. Further characterization reveals that this peptide-protein interaction is compatible with quantitative PAINT and that its binding kinetics remains unaltered upon fixation. Finally, by fusion of our probe to nanobodies against conventional expression markers, we show that this approach provides a versatile addition to the super-resolution toolbox.
Collapse
Affiliation(s)
- Roderick P. Tas
- Laboratory
of Self-Organizing Soft Matter, Institute for Complex Molecular Systems
and Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| | - Lorenzo Albertazzi
- Laboratory
of Nanoscopy for Nanomedicine, Institute for Complex Molecular Systems
and Department of Biomedical Engineering, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Institute for Complex Molecular Systems
and Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| |
Collapse
|
12
|
Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration. Methods Mol Biol 2021; 2217:85-113. [PMID: 33215379 DOI: 10.1007/978-1-0716-0962-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell migration is a complex biophysical process which involves the coordination of molecular assemblies including integrin-dependent adhesions, signaling networks and force-generating cytoskeletal structures incorporating both actin polymerization and myosin activity. During the last decades, proteomic studies have generated impressive protein-protein interaction maps, although the subcellular location, duration, strength, sequence, and nature of these interactions are still concealed. In this chapter we describe how recent developments in superresolution microscopy (SRM) and single-protein tracking (SPT) start to unravel protein interactions and actions in subcellular molecular assemblies driving cell migration.
Collapse
|
13
|
Bagheri Y, Ali AA, You M. Current Methods for Detecting Cell Membrane Transient Interactions. Front Chem 2020; 8:603259. [PMID: 33365301 PMCID: PMC7750205 DOI: 10.3389/fchem.2020.603259] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022] Open
Abstract
Short-lived cell membrane complexes play a key role in regulating cell signaling and communication. Many of these complexes are formed based on low-affinity and transient interactions among various lipids and proteins. New techniques have emerged to study these previously overlooked membrane transient interactions. Exciting functions of these transient interactions have been discovered in cellular events such as immune signaling, host-pathogen interactions, and diseases such as cancer. In this review, we have summarized current experimental methods that allow us to detect and analyze short-lived cell membrane protein-protein, lipid-protein, and lipid-lipid interactions. These methods can provide useful information about the strengths, kinetics, and/or spatial patterns of membrane transient interactions. However, each method also has its own limitations. We hope this review can be used as a guideline to help the audience to choose proper approaches for studying membrane transient interactions in different membrane trafficking and cell signaling events.
Collapse
Affiliation(s)
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
14
|
Fluorescent Protein-Based Indicators for Functional Super-Resolution Imaging of Biomolecular Activities in Living Cells. Int J Mol Sci 2019; 20:ijms20225784. [PMID: 31744242 PMCID: PMC6887983 DOI: 10.3390/ijms20225784] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
Super-resolution light microscopy (SRM) offers a unique opportunity for diffraction-unlimited imaging of biomolecular activities in living cells. To realize such potential, genetically encoded indicators were developed recently from fluorescent proteins (FPs) that exhibit phototransformation behaviors including photoactivation, photoconversion, and photoswitching, etc. Super-resolution observations of biomolecule interactions and biochemical activities have been demonstrated by exploiting the principles of bimolecular fluorescence complementation (BiFC), points accumulation for imaging nanoscale topography (PAINT), and fluorescence fluctuation increase by contact (FLINC), etc. To improve functional nanoscopy with the technology of genetically encoded indicators, it is essential to fully decipher the photo-induced chemistry of FPs and opt for innovative indicator designs that utilize not only fluorescence intensity but also multi-parametric readouts such as phototransformation kinetics. In parallel, technical improvements to both the microscopy optics and image analysis pipeline are promising avenues to increase the sensitivity and versatility of functional SRM.
Collapse
|
15
|
Optimizing the fluorescent protein toolbox and its use. Curr Opin Biotechnol 2019; 58:183-191. [DOI: 10.1016/j.copbio.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/24/2019] [Indexed: 01/07/2023]
|
16
|
Ryu JY, Kim J, Shon MJ, Sun J, Jiang X, Lee W, Yoon TY. Profiling protein-protein interactions of single cancer cells with in situ lysis and co-immunoprecipitation. LAB ON A CHIP 2019; 19:1922-1928. [PMID: 31073561 DOI: 10.1039/c9lc00139e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heterogeneity in a tumor allows a small portion of cancer cells to survive and regrow upon targeted cancer therapy, eventually leading to cancer relapse. Such drug-resistant cells often exhibit dynamic adaptation of their signaling pathways at the level of protein-protein interactions (PPIs). To probe the rewiring of signaling pathways and the heterogeneity across individual cancer cells, we developed a single-cell version of the co-immunoprecipitation (co-IP) analysis that examines the amount and PPIs of target proteins immunoprecipitated from individual cells. The method captures cancer cells at predefined locations using a microfluidic chip, pulls down target proteins on the surface using antibodies, and lyses the captured cells in situ. Then, subsequent addition of eGFP-labeled downstream proteins enables the determination of the corresponding PPIs for the minimal amount of target proteins sampled from a single cell. We applied the technique to probe epidermal growth factor receptors (EGFRs) in PC9 lung adenocarcinoma cells. The results reveal that the strength of EGFR PPIs can be largely uncorrelated with the expression level of EGFRs in single cells. In addition, the individual PC9 cells showed markedly different patterns of PPIs, indicating a high heterogeneity in EGFR signaling within a genetically homogeneous population.
Collapse
Affiliation(s)
- Ji Young Ryu
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea. and R&D Center, Proteina, Inc., Seoul 08826, South Korea
| | - Jihye Kim
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea.
| | - Min Ju Shon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea.
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, China
| | - Wonhee Lee
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea. and Department of Physics, KAIST, Daejeon 34141, South Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
17
|
Pereira PM, Albrecht D, Culley S, Jacobs C, Marsh M, Mercer J, Henriques R. Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation. Front Immunol 2019; 10:675. [PMID: 31024536 PMCID: PMC6460894 DOI: 10.3389/fimmu.2019.00675] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) techniques allow near molecular scale resolution (~ 20 nm) as well as precise and robust analysis of protein organization at different scales. SMLM hardware, analytics and probes have been the focus of a variety of studies and are now commonly used in laboratories across the world. Protocol reliability and artifact identification are increasingly seen as important aspects of super-resolution microscopy. The reliability of these approaches thus requires in-depth evaluation so that biological findings are based on solid foundations. Here we explore how different fixation approaches that disrupt or preserve the actin cytoskeleton affect membrane protein organization. Using CD4 as a model, we show that fixation-mediated disruption of the actin cytoskeleton correlates with changes in CD4 membrane organization. We highlight how these artifacts are easy to overlook and how careful sample preparation is essential for extracting meaningful results from super-resolution microscopy.
Collapse
Affiliation(s)
- Pedro M. Pereira
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - David Albrecht
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Siân Culley
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Caron Jacobs
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Mark Marsh
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jason Mercer
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Thakur AK, Movileanu L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore. Nat Biotechnol 2018; 37:nbt.4316. [PMID: 30531896 PMCID: PMC6557705 DOI: 10.1038/nbt.4316] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/11/2018] [Indexed: 12/30/2022]
Abstract
Protein-protein interactions (PPIs) are essential for many cellular processes. However, transient PPIs are difficult to measure at high throughput or in complex biological fluids using existing methods. We engineered a genetically encoded sensor for real-time sampling of transient PPIs at single-molecule resolution. Our sensor comprises a truncated outer membrane protein pore, a flexible tether, a protein receptor and a peptide adaptor. When a protein ligand present in solution binds to the receptor, reversible capture and release events of the receptor can be measured as current transitions between two open substates of the pore. Notably, the binding and release of the receptor by a protein ligand can be unambiguously discriminated in a complex sample containing fetal bovine serum. Our selective nanopore sensor could be applied for single-molecule protein detection, could form the basis for a nanoproteomics platform or might be adapted to build tools for protein profiling and biomarker discovery.
Collapse
Affiliation(s)
- Avinash Kumar Thakur
- Department of Physics, Syracuse University, Syracuse, New York, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, Syracuse, New York, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| |
Collapse
|