1
|
Sansone F, Tonacci A. Non-Invasive Diagnostic Approaches for Kidney Disease: The Role of Electronic Nose Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:6475. [PMID: 39409515 PMCID: PMC11479338 DOI: 10.3390/s24196475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024]
Abstract
Kidney diseases are a group of conditions related to the functioning of kidneys, which are in turn unable to properly filter waste and excessive fluids from the blood, resulting in the presence of dangerous levels of electrolytes, fluids, and waste substances in the human body, possibly leading to significant health effects. At the same time, the toxins amassing in the organism can lead to significant changes in breath composition, resulting in halitosis with peculiar features like the popular ammonia breath. Starting from this evidence, scientists have started to work on systems that can detect the presence of kidney diseases using a minimally invasive approach, minimizing the burden to the individuals, albeit providing clinicians with useful information about the disease's presence or its main related features. The electronic nose (e-nose) is one of such tools, and its applications in this specific domain represent the core of the present review, performed on articles published in the last 20 years on humans to stay updated with the latest technological advancements, and conducted under the PRISMA guidelines. This review focuses not only on the chemical and physical principles of detection of such compounds (mainly ammonia), but also on the most popular data processing approaches adopted by the research community (mainly those relying on Machine Learning), to draw exhaustive conclusions about the state of the art and to figure out possible cues for future developments in the field.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| |
Collapse
|
2
|
Song Z, Fang W, Zhu B, Yan J. Nano-Schottky-junction-engineered Pd/SnO 2 nanotube array for ultrasensitive hydrogen sensing at room temperature. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5954-5958. [PMID: 39188154 DOI: 10.1039/d4ay00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Detecting H2 at low concentrations is important due to it being a major safety concern in practical applications. However, semiconductor chemiresistive gas sensors always suffer from high operating temperatures and power consumption, as well as a limited concentration detection range, which restricts their widespread use. Herein, we developed a 3D nanostructured gas sensor employing a Pd-nanocluster-decorated SnO2 nanotube array as the sensing layer. The sensor showed sensitive and selective properties for detecting low concentrations of H2 at room temperature, with a low limit of detection of 1.6 ppb. It also showed good long-term stability, as long as 100 days. Moreover, systematical characterizations were performed in conjunction with density functional theory (DFT) calculations to determine the ability of Pd/SnO2 junctions to improve the gas-sensing properties. The engineering of the nano-Schottky junction allows us to expand the library for designing low-power-consumption H2 sensors for widespread applications.
Collapse
Affiliation(s)
- Zhilong Song
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Weihao Fang
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bingchen Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jia Yan
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Zhang Q, Zhang D, Liao Z, Cao YB, Kumar M, Poddar S, Han J, Hu Y, Lv H, Mo X, Srivastava AK, Fan Z. Perovskite Light-Emitting Diodes with Quantum Wires and Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405418. [PMID: 39183527 DOI: 10.1002/adma.202405418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Indexed: 08/27/2024]
Abstract
Perovskite materials, celebrated for their exceptional optoelectronic properties, have seen extensive application in the field of light-emitting diodes (LEDs), where research is as abundant as the proverbial "carloads of books." In this review, the research of perovskite materials is delved into from a dimensional perspective, with a focus on the exemplary performance of low-dimensional perovskite materials in LEDs. This discussion predominantly revolves around perovskite quantum wires and perovskite nanorods. Perovskite quantum wires are versatile in their growth, compatible with both solution-based and vapor-phase growth, and can be deposited over large areas-even on spherical substrates-to achieve commendable electroluminescence (EL). Perovskite nanorods, on the other hand, boast a suite of superior characteristics, such as polarization properties and tunability of the transition dipole moment, endowing them with the great potential to enhance light extraction efficiency. Furthermore, zero-dimensional (0D) perovskite materials like nanocrystals (NCs) are also the subject of widespread research and application. This review reflects on and synthesizes the unique qualities of the aforementioned materials while exploring their vital roles in the development of high-efficiency perovskite LEDs (PeLEDs).
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zebing Liao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Bryan Cao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mallem Kumar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Junchao Han
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Ying Hu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Hualiang Lv
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Abhishek Kumar Srivastava
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Kim T, Kim Y, Cho W, Kwak JH, Cho J, Pyeon Y, Kim JJ, Shin H. Ultralow-Power Single-Sensor-Based E-Nose System Powered by Duty Cycling and Deep Learning for Real-Time Gas Identification. ACS Sens 2024; 9:3557-3572. [PMID: 38857120 DOI: 10.1021/acssensors.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
This study presents a novel, ultralow-power single-sensor-based electronic nose (e-nose) system for real-time gas identification, distinguishing itself from conventional sensor-array-based e-nose systems, whose power consumption and cost increase with the number of sensors. Our system employs a single metal oxide semiconductor (MOS) sensor built on a suspended 1D nanoheater, driven by duty cycling─characterized by repeated pulsed power inputs. The sensor's ultrafast thermal response, enabled by its small size, effectively decouples the effects of temperature and surface charge exchange on the MOS nanomaterial's conductivity. This provides distinct sensing signals that alternate between responses coupled with and decoupled from the thermally enhanced conductivity, all within a single time domain during duty cycling. The magnitude and ratio of these dual responses vary depending on the gas type and concentration, facilitating the early stage gas identification of five gas types within 30 s via a convolutional neural network (classification accuracy = 93.9%, concentration regression error = 19.8%). Additionally, the duty-cycling mode significantly reduces power consumption by up to 90%, lowering it to 160 μW to heat the sensor to 250 °C. Manufactured using only wafer-level batch microfabrication processes, this innovative e-nose system promises the facile implementation of battery-driven, long-term, and cost-effective IoT monitoring systems.
Collapse
Affiliation(s)
- Taejung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yonggi Kim
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wootaek Cho
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong-Hyun Kwak
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeonghoon Cho
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youjang Pyeon
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Joon Kim
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heungjoo Shin
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Zhai Z, Liu Y, Li C, Wang D, Wu H. Electronic Noses: From Gas-Sensitive Components and Practical Applications to Data Processing. SENSORS (BASEL, SWITZERLAND) 2024; 24:4806. [PMID: 39123852 PMCID: PMC11314697 DOI: 10.3390/s24154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 08/12/2024]
Abstract
Artificial olfaction, also known as an electronic nose, is a gas identification device that replicates the human olfactory organ. This system integrates sensor arrays to detect gases, data acquisition for signal processing, and data analysis for precise identification, enabling it to assess gases both qualitatively and quantitatively in complex settings. This article provides a brief overview of the research progress in electronic nose technology, which is divided into three main elements, focusing on gas-sensitive materials, electronic nose applications, and data analysis methods. Furthermore, the review explores both traditional MOS materials and the newer porous materials like MOFs for gas sensors, summarizing the applications of electronic noses across diverse fields including disease diagnosis, environmental monitoring, food safety, and agricultural production. Additionally, it covers electronic nose pattern recognition and signal drift suppression algorithms. Ultimately, the summary identifies challenges faced by current systems and offers innovative solutions for future advancements. Overall, this endeavor forges a solid foundation and establishes a conceptual framework for ongoing research in the field.
Collapse
Affiliation(s)
- Zhenyu Zhai
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Yaqian Liu
- Inner Mongolia Institute of Metrology Testing and Research, Hohhot 010020, China
| | - Congju Li
- College of Textiles, Donghua University, Shanghai 201620, China;
| | - Defa Wang
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Hai Wu
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| |
Collapse
|
6
|
Jang YW, Kim J, Shin J, Jo JW, Shin JW, Kim YH, Cho SW, Park SK. Autonomous Artificial Olfactory Sensor Systems with Homeostasis Recovery via a Seamless Neuromorphic Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400614. [PMID: 38689548 DOI: 10.1002/adma.202400614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Neuromorphic olfactory systems have been actively studied in recent years owing to their considerable potential in electronic noses, robotics, and neuromorphic data processing systems. However, conventional gas sensors typically have the ability to detect hazardous gas levels but lack synaptic functions such as memory and recognition of gas accumulation, which are essential for realizing human-like neuromorphic sensory system. In this study, a seamless architecture for a neuromorphic olfactory system capable of detecting and memorizing the present level and accumulation status of nitrogen dioxide (NO2) during continuous gas exposure, regulating a self-alarm implementation triggered after 147 and 85 s at a continuous gas exposure of 20 and 40 ppm, respectively. Thin-film-transistor type gas sensors utilizing carbon nanotube semiconductors detect NO2 gas molecules through carrier trapping and exhibit long-term retention properties, which are compatible with neuromorphic excitatory applications. Additionally, the neuromorphic inhibitory performance is also characterized via gas desorption with programmable ultraviolet light exposure, demonstrating homeostasis recovery. These results provide a promising strategy for developing a facile artificial olfactory system that demonstrates complicated biological synaptic functions with a seamless and simplified system architecture.
Collapse
Affiliation(s)
- Young-Woo Jang
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jaehyun Kim
- Department of Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jaewon Shin
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jeong-Wan Jo
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Jong Wook Shin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Woon Cho
- Department of Advanced Components and Materials Engineering, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Sung Kyu Park
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, South Korea
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
7
|
Park J, Shin H, Jung G, Hong S, Park M, Hwang J, Bae J, Kim J, Lee J. On-Chip Annealing Using Embedded Micro-Heater for Highly Sensitive and Selective Gas Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401821. [PMID: 38738755 PMCID: PMC11267278 DOI: 10.1002/advs.202401821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The demand for gas sensing systems that enable fast and precise gas recognition is growing rapidly. However, substantial challenges arise from the complex fabrication process of sensor arrays, time-consuming data transmission to an external processor, and high energy consumption in multi-stage data processing. In this study, a gas sensing system using on-chip annealing for fast and power-efficient gas detection is proposed. By utilizing a micro-heater embedded in the gas sensor, the sensing material of adjacent sensors in the same substrate can be easily varied without further fabrication steps. The response to oxidizing gas is constrained in metal oxide (MOX) sensing material with small grain sizes, as the depletion width of grain cannot extend beyond the grain size during the gas reaction. On the other hand, the response to reducing gases and humidity, which decrease the depletion width, is less affected by grain sizes. A readout circuit integrating a differential amplifier and dual FET-type gas sensors effectively emphasizes the response to oxidizing gases by canceling the response to reducing gases and humidity. The selective on-chip annealing method is applicable to various MOX sensing materials, demonstrating its potential for application in commercial fields due to its simplicity and expandability.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Hunhee Shin
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Gyuweon Jung
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Seongbin Hong
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Min‐Kyu Park
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Joon Hwang
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Jong‐Ho Bae
- School of Electrical EngineeringKookmin UniversitySeoul02707Republic of Korea
| | - Jae‐Joon Kim
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Jong‐Ho Lee
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
8
|
Dubourg G, Pavlović Z, Bajac B, Kukkar M, Finčur N, Novaković Z, Radović M. Advancement of metal oxide nanomaterials on agri-food fronts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172048. [PMID: 38580125 DOI: 10.1016/j.scitotenv.2024.172048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The application of metal oxide nanomaterials (MOx NMs) in the agrifood industry offers innovative solutions that can facilitate a paradigm shift in a sector that is currently facing challenges in meeting the growing requirements for food production, while safeguarding the environment from the impacts of current agriculture practices. This review comprehensively illustrates recent advancements and applications of MOx for sustainable practices in the food and agricultural industries and environmental preservation. Relevant published data point out that MOx NMs can be tailored for specific properties, enabling advanced design concepts with improved features for various applications in the agrifood industry. Applications include nano-agrochemical formulation, control of food quality through nanosensors, and smart food packaging. Furthermore, recent research suggests MOx's vital role in addressing environmental challenges by removing toxic elements from contaminated soil and water. This mitigates the environmental effects of widespread agrichemical use and creates a more favorable environment for plant growth. The review also discusses potential barriers, particularly regarding MOx toxicity and risk evaluation. Fundamental concerns about possible adverse effects on human health and the environment must be addressed to establish an appropriate regulatory framework for nano metal oxide-based food and agricultural products.
Collapse
Affiliation(s)
- Georges Dubourg
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | - Zoran Pavlović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Manil Kukkar
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nina Finčur
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Zorica Novaković
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Marko Radović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Zink A, Reichstein J, Ruhland N, Stockinger N, Morozov BS, Cuadrado Collados C, Thommes M, Kataev EA, Wintzheimer S, Mandel K. Mesoporous supraparticles with a tailored solid-liquid-gas interface for visual indication of H 2 gas and NH 3 vapours. Chem Commun (Camb) 2024; 60:5840-5843. [PMID: 38751319 DOI: 10.1039/d4cc01247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Dual-gasochromic supraparticles that undergo rapid eye-readable and gas-specific colour changes upon reaction with hydrogen or ammonia are reported. This functionality is achieved by tailoring the solid-liquid-gas interface within the mesoporous framework of supraparticles via spray-drying.
Collapse
Affiliation(s)
- Andreas Zink
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058 Erlangen, Germany.
| | - Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058 Erlangen, Germany.
| | - Nico Ruhland
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058 Erlangen, Germany.
| | - Nina Stockinger
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058 Erlangen, Germany.
| | - Boris S Morozov
- Department of Chemistry and Pharmacy, Organic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Carlos Cuadrado Collados
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Evgeny A Kataev
- Department of Chemistry and Pharmacy, Organic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058 Erlangen, Germany.
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082 Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058 Erlangen, Germany.
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082 Würzburg, Germany
| |
Collapse
|
10
|
Wu X, Chen S, Jiang L, Wang X, Qiu L, Zheng L. Highly Sensitive, Low-Energy-Consumption Biomimetic Olfactory Synaptic Transistors Based on the Aggregation of the Semiconductor Films. ACS Sens 2024; 9:2673-2683. [PMID: 38688032 DOI: 10.1021/acssensors.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Artificial olfactory synaptic devices with low energy consumption and low detection limits are important for the further development of neuromorphic computing and intelligent robotics. In this work, an ultralow energy consumption and low detection limit imitation olfactory synaptic device based on organic field-effect transistors (OFETs) was prepared. The aggregation state of poly(diketopyrrolopyrrole-selenophene) (PTDPP) semiconductor films is modulated by adding unfavorable solvents and annealing treatments to obtain excellent charge transfer and gas synaptic properties. The regulated OFET device can execute basic biological synaptic functions, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), and the transition from short-term to long-term plasticity, at an ultralow operating voltage of -0.0005 V. The ultralow energy consumption during the biomimetic simulation is in the range of 8.94-88 fJ per spike. Noteworthily, the gas detection limit of the device is as low as 50 ppb, well below normal human NO2 gas perception limits (100-1000 ppb). Additionally, high-pass filtering, Pavlovian conditioned reflexes, and decoding of "Morse code" were simulated. Finally, a grid-free conformal device with outstanding flexibility and stability was fabricated. In conclusion, the control of semiconductor thin-film aggregation provides effective guidance for preparing low-energy-consumption, highly sensitive olfactory nerve-mimicking devices and promoting the development of wearable electronics.
Collapse
Affiliation(s)
- Xiaocheng Wu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Siyu Chen
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Longlong Jiang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Abideen ZU, Arifeen WU, Bandara YMNDY. Emerging trends in metal oxide-based electronic noses for healthcare applications: a review. NANOSCALE 2024; 16:9259-9283. [PMID: 38680123 DOI: 10.1039/d4nr00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
An electronic nose (E-nose) is a technology fundamentally inspired by the human nose, designed to detect, recognize, and differentiate specific odors or volatile components in complex and chaotic environments. Comprising an array of sensors with meticulously designed nanostructured architectures, E-noses translate the chemical information captured by these sensors into useful metrics using complex pattern recognition algorithms. E-noses can significantly enhance the quality of life by offering preventive point-of-care devices for medical diagnostics through breath analysis, and by monitoring and tracking hazardous and toxic gases in the environment. They are increasingly being used in defense and surveillance, medical diagnostics, agriculture, environmental monitoring, and product validation and authentication. The major challenge in developing a reliable E-nose involves miniaturization and low power consumption. Various sensing materials are employed to address these issues. This review presents the key advancements over the last decade in E-nose technology, specifically focusing on chemiresistive metal oxide sensing materials. It discusses their sensing mechanisms, integration into portable E-noses, and various data analysis techniques. Additionally, we review the primary metal oxide-based E-noses for disease detection through breath analysis. Finally, we address the major challenges and issues in developing and implementing a portable metal oxide-based E-nose.
Collapse
Affiliation(s)
- Zain Ul Abideen
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia.
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, South Korea
| | - Y M Nuwan D Y Bandara
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
12
|
Chen Z, Zhou B, Xiao M, Bhowmick T, Karthick Kannan P, Occhipinti LG, Gardner JW, Hasan T. Real-time, noise and drift resilient formaldehyde sensing at room temperature with aerogel filaments. SCIENCE ADVANCES 2024; 10:eadk6856. [PMID: 38335291 PMCID: PMC10857368 DOI: 10.1126/sciadv.adk6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Formaldehyde, a known human carcinogen, is a common indoor air pollutant. However, its real-time and selective recognition from interfering gases remains challenging, especially for low-power sensors suffering from noise and baseline drift. We report a fully 3D-printed quantum dot/graphene-based aerogel sensor for highly sensitive and real-time recognition of formaldehyde at room temperature. By optimizing the morphology and doping of printed structures, we achieve a record-high and stable response of 15.23% for 1 part per million formaldehyde and an ultralow detection limit of 8.02 parts per billion consuming only ∼130-microwatt power. On the basis of measured dynamic response snapshots, we also develop intelligent computational algorithms for robust and accurate detection in real time despite simulated substantial noise and baseline drift, hitherto unachievable for room temperature sensors. Our framework in combining materials engineering, structural design, and computational algorithm to capture dynamic response offers unprecedented real-time identification capabilities of formaldehyde and other volatile organic compounds at room temperature.
Collapse
Affiliation(s)
- Zhuo Chen
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Binghan Zhou
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Mingfei Xiao
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Tynee Bhowmick
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | | | - Luigi G. Occhipinti
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | | | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| |
Collapse
|
13
|
Chen SS, Chen XX, Yang TY, Chen L, Guo Z, Huang XJ. Temperature-modulated sensing characteristics of ultrafine Au nanoparticle-loaded porous ZnO nanobelts for identification and determination of BTEX. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132940. [PMID: 37951172 DOI: 10.1016/j.jhazmat.2023.132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
The identification and determination of benzene, toluene, ethylbenzene, and xylene (BTEX) has always been a formidable challenge for chemiresistive metal oxide sensors owing to their structural similarity and low reactivity, as well as the intrinsic cross sensitivity of metal oxides. In this paper, a temperature-modulated sensing strategy is proposed for the identification and determination of BTEX using a high-performance chemiresistive sensor. Ultrafine Au nanoparticle-loaded porous ZnO nanobelts as sensing materials were synthesized through an exchange reaction followed by thermal oxidation, which exhibited high response toward BTEX. Under dynamic modulation of working temperature, the distinguishable characteristic curves were demonstrated for each BTEX compound. By employing the linear discrimination and convolutional neural network analyses, highly effective BTEX identification was achieved among all investigated volatile organic compounds, which is difficult to realize for single chemiresistive sensors at constant working temperatures. Furthermore, quantitative analysis of BTEX concentrations was accomplished by establishing the relationship between concentration and response at specific points on their response curves. This developed strategy is expected to pave a new way for constructing highly sensitive gas sensors for the identification and analysis of hazardous gases, thereby enhancing their applicability in environmental monitoring.
Collapse
Affiliation(s)
- Shun-Shun Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Xu-Xiu Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Tian-Yu Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Li Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China.
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China.
| | - Xing-Jiu Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| |
Collapse
|
14
|
Ou Y, Zhai L, Zhu G, Zhang W, Huang X, Akdim O, Zhu L, Nie J, Rao F, Huang Y, Shi X, Gao J, Lu H, Hojamberdiev M. Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles. ACS Sens 2024; 9:139-148. [PMID: 38096168 DOI: 10.1021/acssensors.3c01777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2-3 nm). The strong interaction between Au and SnO2 via the Au-O-Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au-SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au-SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.
Collapse
Affiliation(s)
- Yucheng Ou
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Liangyu Zhai
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Gangqiang Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Weibin Zhang
- Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, P.R. China
| | - Xiaoyang Huang
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Ouardia Akdim
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Lujun Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Junli Nie
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Fei Rao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Yu Huang
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P.R. China
| | - Xianjin Shi
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P.R. China
| | - Jianzhi Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Hongbin Lu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Mirabbos Hojamberdiev
- Institut für Chemie, Technische Universität Berlin, Straße des 17, Juni 135, Berlin 10623, Germany
| |
Collapse
|
15
|
Jung G, Kim J, Hong S, Shin H, Jeong Y, Shin W, Kwon D, Choi WY, Lee J. Energy Efficient Artificial Olfactory System with Integrated Sensing and Computing Capabilities for Food Spoilage Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302506. [PMID: 37651074 PMCID: PMC10602532 DOI: 10.1002/advs.202302506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Indexed: 09/01/2023]
Abstract
Artificial olfactory systems (AOSs) that mimic biological olfactory systems are of great interest. However, most existing AOSs suffer from high energy consumption levels and latency issues due to data conversion and transmission. In this work, an energy- and area-efficient AOS based on near-sensor computing is proposed. The AOS efficiently integrates an array of sensing units (merged field effect transistor (FET)-type gas sensors and amplifier circuits) and an AND-type nonvolatile memory (NVM) array. The signals of the sensing units are directly connected to the NVM array and are computed in memory, and the meaningful linear combinations of signals are output as bit line currents. The AOS is designed to detect food spoilage by employing thin zinc oxide films as gas-sensing materials, and it exhibits low detection limits for H2 S and NH3 gases (0.01 ppm), which are high-protein food spoilage markers. As a proof of concept, monitoring the entire spoilage process of chicken tenderloin is demonstrated. The system can continuously track freshness scores and food conditions throughout the spoilage process. The proposed AOS platform is applicable to various applications due to its ability to change the sensing temperature and programmable NVM cells.
Collapse
Affiliation(s)
- Gyuweon Jung
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Jaehyeon Kim
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Seongbin Hong
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Hunhee Shin
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yujeong Jeong
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Wonjun Shin
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Dongseok Kwon
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Woo Young Choi
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Jong‐Ho Lee
- Department of Electrical and Computer Engineering and Inter‐University Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Ministry of Science and ICTSejong30121Republic of Korea
| |
Collapse
|
16
|
Girma HG, Ryu KY, Tang X, Ryu GS, Wang R, Kim Y, Choi JO, Lee HM, Jeon S, Jung SH, Park JM, Jung YJ, Kim JY, Hwang DH, Noh YY, Lim B, Kong H, Kim SH. Large-Area Printed Oxide Film Sensors Enabling Ultrasensitive and Dual Electrical/Colorimetric Detection of Hydrogen at Room Temperature. ACS Sens 2023; 8:3004-3013. [PMID: 37487692 DOI: 10.1021/acssensors.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Commercial hydrogen (H2) sensors operate at high temperatures, which increases power consumption and poses a safety risk owing to the flammable nature of H2. Here, a polymer-noble metal-metal oxide film is fabricated using the spin-coating and printing methods to realize a highly sensitive, low-voltage operation, wide-operating-concentration, and near-monoselective H2 sensor at room temperature. The H2 sensors with an optimized thickness of Pd nanoparticles and SnO2 showed an extremely high response of 16,623 with a response time of 6 s and a recovery time of 5 s at room temperature and 2% H2. At the same time, printed flexible sensors demonstrate excellent sensitivity, with a response of 2300 at 2% H2. The excellent sensing performance at room temperature is due to the optimal SnO2 thickness, corresponding to the Debye length and the oxygen and H2 spillover caused by the optimized coverage of the Pd catalyst. Furthermore, multistructures of WO3 and SnO2 films are used to fabricate a new type of dual-signal sensor, which demonstrated simultaneous conductance and transmittance, i.e., color change. This work provides an effective strategy to develop robust, flexible, transparent, and long-lasting H2 sensors through large-area printing processes based on polymer-metal-metal oxide nanostructures.
Collapse
Affiliation(s)
- Henok Getachew Girma
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- KRICT School, Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ka Yeon Ryu
- Department of Chemistry and Research Institute of Nature Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea
| | - Xiaowu Tang
- School of Chemical Engineering Yeungnam University, Gyeongsan 38541, Republic of Korea
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China
| | - Gi-Seong Ryu
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Republic of Korea
| | - Rixuan Wang
- School of Chemical Engineering Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yejin Kim
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Jae Ook Choi
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Min Lee
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungju Jeon
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Seo-Hyun Jung
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Jong Mok Park
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Yu Jin Jung
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Do-Hoon Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Republic of Korea
| | - Bogyu Lim
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Engineering Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Hoyoul Kong
- Department of Chemistry and Research Institute of Nature Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Cho I, Lee K, Sim YC, Jeong JS, Cho M, Jung H, Kang M, Cho YH, Ha SC, Yoon KJ, Park I. Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor. LIGHT, SCIENCE & APPLICATIONS 2023; 12:95. [PMID: 37072383 PMCID: PMC10113244 DOI: 10.1038/s41377-023-01120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Electronic nose (e-nose) technology for selectively identifying a target gas through chemoresistive sensors has gained much attention for various applications, such as smart factory and personal health monitoring. To overcome the cross-reactivity problem of chemoresistive sensors to various gas species, herein, we propose a novel sensing strategy based on a single micro-LED (μLED)-embedded photoactivated (μLP) gas sensor, utilizing the time-variant illumination for identifying the species and concentrations of various target gases. A fast-changing pseudorandom voltage input is applied to the μLED to generate forced transient sensor responses. A deep neural network is employed to analyze the obtained complex transient signals for gas detection and concentration estimation. The proposed sensor system achieves high classification (~96.99%) and quantification (mean absolute percentage error ~ 31.99%) accuracies for various toxic gases (methanol, ethanol, acetone, and nitrogen dioxide) with a single gas sensor consuming 0.53 mW. The proposed method may significantly improve the efficiency of e-nose technology in terms of cost, space, and power consumption.
Collapse
Affiliation(s)
- Incheol Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kichul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Chul Sim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Seok Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minkyu Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Heechan Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mingu Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Hoon Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung Chul Ha
- SENKO Co., Ltd., 485, Oesammi-Dong, Osan-Si, Gyeonggil-Do, 18111, Republic of Korea
| | - Kuk-Jin Yoon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
18
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
19
|
Song Z, Tang W, Chen Z, Wan Z, Chan CLJ, Wang C, Ye W, Fan Z. Temperature-Modulated Selective Detection of Part-per-Trillion NO 2 Using Platinum Nanocluster Sensitized 3D Metal Oxide Nanotube Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203212. [PMID: 36058651 DOI: 10.1002/smll.202203212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor chemiresistive gas sensors play critical roles in a smart and sustainable city where a safe and healthy environment is the foundation. However, the poor limits of detection and selectivity are the two bottleneck issues limiting their broad applications. Herein, a unique sensor design with a 3D tin oxide (SnO2 ) nanotube array as the sensing layer and platinum (Pt) nanocluster decoration as the catalytic layer, is demonstrated. The Pt/SnO2 sensor significantly enhances the sensitivity and selectivity of NO2 detection by strengthening the adsorption energy and lowering the activation energy toward NO2 . It not only leads to ultrahigh sensitivity to NO2 with a record limit of detection of 107 parts per trillion, but also enables selective NO2 sensing while suppressing the responses to interfering gases. Furthermore, a wireless sensor system integrated with sensors, a microcontroller, and a Bluetooth unit is developed for the practical indoor and on-road NO2 detection applications. The rational design of the sensors and their successful demonstration pave the way for future real-time gas monitoring in smart home and smart city applications.
Collapse
Affiliation(s)
- Zhilong Song
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
- Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenying Tang
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhu'an Wan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wenhao Ye
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
20
|
Liu L, Wang Y, Liu Y, Wang S, Li T, Feng S, Qin S, Zhang T. Heteronanostructural metal oxide-based gas microsensors. MICROSYSTEMS & NANOENGINEERING 2022; 8:85. [PMID: 35911378 PMCID: PMC9329395 DOI: 10.1038/s41378-022-00410-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance, portable and miniaturized gas sensors has aroused increasing interest in the fields of environmental monitoring, security, medical diagnosis, and agriculture. Among different detection tools, metal oxide semiconductor (MOS)-based chemiresistive gas sensors are the most popular choice in commercial applications and have the advantages of high stability, low cost, and high sensitivity. One of the most important ways to further enhance the sensor performance is to construct MOS-based nanoscale heterojunctions (heteronanostructural MOSs) from MOS nanomaterials. However, the sensing mechanism of heteronanostructural MOS-based sensors is different from that of single MOS-based gas sensors in that it is fairly complex. The performance of the sensors is influenced by various parameters, including the physical and chemical properties of the sensing materials (e.g., grain size, density of defects, and oxygen vacancies of materials), working temperatures, and device structures. This review introduces several concepts in the design of high-performance gas sensors by analyzing the sensing mechanism of heteronanostructural MOS-based sensors. In addition, the influence of the geometric device structure determined by the interconnection between the sensing materials and the working electrodes is discussed. To systematically investigate the sensing behavior of the sensor, the general sensing mechanism of three typical types of geometric device structures based on different heteronanostructural materials are introduced and discussed in this review. This review will provide guidelines for readers studying the sensing mechanism of gas sensors and designing high-performance gas sensors in the future.
Collapse
Affiliation(s)
- Lin Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Yingyi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu China
| | - Yinhang Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Department of Nano Science and Nano Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu China
| | - Shuqi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Tie Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Simin Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Sujie Qin
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Nano-X, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui PR China
- Gusu Laboratory of Materials, Suzhou, Jiangsu PR China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, PR China
| |
Collapse
|
21
|
Tang W, Chen Z, Song Z, Wang C, Wan Z, Chan CLJ, Chen Z, Ye W, Fan Z. Microheater Integrated Nanotube Array Gas Sensor for Parts-Per-Trillion Level Gas Detection and Single Sensor-Based Gas Discrimination. ACS NANO 2022; 16:10968-10978. [PMID: 35797450 DOI: 10.1021/acsnano.2c03372] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real-time monitoring of health threatening gases for chemical safety and human health protection requires detection and discrimination of trace gases with proper gas sensors. In many applications, costly, bulky, and power-hungry devices, normally employing optical gas sensors and electrochemical gas sensors, are used for this purpose. Using a single miniature low-power semiconductor gas sensor to achieve this goal is hardly possible, mostly due to its selectivity issue. Herein, we report a dual-mode microheater integrated nanotube array gas sensor (MINA sensor). The MINA sensor can detect hydrogen, acetone, toluene, and formaldehyde with the lowest measured limits of detection (LODs) as 40 parts-per-trillion (ppt) and the theoretical LODs of ∼7 ppt, under the continuous heating (CH) mode, owing to the nanotubular architecture with large sensing area and excellent surface catalytic activity. Intriguingly, unlike the conventional electronic noses that use arrays of gas sensors for gas discrimination, we discovered that when driven by the pulse heating (PH) mode, a single MINA sensor possesses discrimination capability of multiple gases through a transient feature extraction method. These above features of our MINA sensors make them highly attractive for distributed low-power sensor networks and battery-powered mobile sensing systems for chemical/environmental safety and healthcare applications.
Collapse
Affiliation(s)
- Wenying Tang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhilong Song
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhu'an Wan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhuo Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| | - Wenhao Ye
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- The Hong Kong University of Science and Technology-Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
22
|
Low-Dimensional Nanomaterial Systems Formed by IVA Group Elements Allow Energy Conversion Materials to Flourish. NANOMATERIALS 2022; 12:nano12152521. [PMID: 35893488 PMCID: PMC9332081 DOI: 10.3390/nano12152521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
In response to the exhaustion of traditional energy, green and efficient energy conversion has attracted growing attention. The IVA group elements, especially carbon, are widely distributed and stable in the earth’s crust, and have received a lot of attention from scientists. The low-dimensional structures composed of IVA group elements have special energy band structure and electrical properties, which allow them to show more excellent performance in the fields of energy conversion. In recent years, the diversification of synthesis and optimization of properties of IVA group elements low-dimensional nanomaterials (IVA-LD) contributed to the flourishing development of related fields. This paper reviews the properties and synthesis methods of IVA-LD for energy conversion devices, as well as their current applications in major fields such as ion battery, moisture electricity generation, and solar-driven evaporation. Finally, the prospects and challenges faced by the IVA-LD in the field of energy conversion are discussed.
Collapse
|
23
|
Ma P, Xu W, Teng Z, Luo Y, Gong C, Wang Q. An Integrated Food Freshness Sensor Array System Augmented by a Metal-Organic Framework Mixed-Matrix Membrane and Deep Learning. ACS Sens 2022; 7:1847-1854. [PMID: 35834210 DOI: 10.1021/acssensors.2c00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The static labels presently prevalent on the food market are confronted with challenges due to the assumption that a food product only undergoes a limited range of predefined conditions, which cause elevated safety risks or waste of perishable food products. Hence, integrated systems for measuring food freshness in real time have been developed for improving the reliability, safety, and sustainability of the food supply. However, these systems are limited by poor sensitivity and accuracy. Here, a metal-organic framework mixed-matrix membrane and deep learning technology were combined to tackle these challenges. UiO-66-OH and polyvinyl alcohol were impregnated with six chromogenic indicators to prepare sensor array composites. The sensors underwent color changes after being exposed to ammonia at different pH values. The limit of detection of 80 ppm for trimethylamine was obtained, which was practically acceptable in the food industry. Four state-of-the-art deep convolutional neural networks were applied to recognize the color change, endowing it with high-accuracy freshness estimation. The simulation test for chicken freshness estimation achieved accuracy up to 98.95% by the WISeR-50 algorithm. Moreover, 3D printing was applied to create a mold for possible scale-up production, and a portable food freshness detector platform was conceptually built. This approach has the potential to advance integrated and real-time food freshness estimation.
Collapse
Affiliation(s)
- Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20742, United States
| | - Wenhao Xu
- Department of Chemistry and Biochemistry, College of Computer, Mathematical and Natural Science, University of Maryland, College Park, Maryland 20742, United States
| | - Zi Teng
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20742, United States.,U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Food Quality Laboratory, Beltsville, Maryland 20705, United States
| | - Yaguang Luo
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Food Quality Laboratory, Beltsville, Maryland 20705, United States
| | - Cheng Gong
- Department of Electrical and Computer Engineering and Quantum Technology Center, University of Maryland, College Park, Maryland 20742, United States
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Moon YK, Kim KB, Jeong SY, Lee JH. Designing oxide chemiresistors for detecting volatile aromatic compounds: recent progresses and future perspectives. Chem Commun (Camb) 2022; 58:5439-5454. [PMID: 35415739 DOI: 10.1039/d2cc01563c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxide chemiresistors have mostly been used to detect reactive gases such as ethanol, acetone, formaldehyde, nitric dioxide, and carbon monoxide. However, the selective and sensitive detection of volatile aromatic compounds such as benzene, toluene, and xylene, which are extremely toxic and harmful, using oxide chemiresistors remains challenging because of the molecular stability of benzene rings containing chemicals. Moreover, the performance of the sensing materials is insufficient to detect trace concentration levels of volatile aromatic compounds, which lead to harmful effects on human beings. Here, the strategies for designing highly selective and sensitive volatile aromatic compound gas sensors using oxide chemiresistors were suggested and reviewed. Key approaches include the use of thermal activation, design of sensing materials with high catalytic activity, the utilization of catalytic microreactors and bilayer structures with catalytic overlayer, and the pretreatment of analyte gases or post analysis of sensing signals. In addition, future perspectives from the viewpoint of designing sensing materials and sensor structures for high-performance and robust volatile aromatic compounds gas sensors are provided. Finally, we discuss possible applications of the sensors and sensor arrays.
Collapse
Affiliation(s)
- Young Kook Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ki Beom Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Seong-Yong Jeong
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Weerakkody JS, El Kazzy M, Jacquier E, Elchinger PH, Mathey R, Ling WL, Herrier C, Livache T, Buhot A, Hou Y. Surfactant-like Peptide Self-Assembled into Hybrid Nanostructures for Electronic Nose Applications. ACS NANO 2022; 16:4444-4457. [PMID: 35174710 DOI: 10.1021/acsnano.1c10734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An electronic nose (e-nose) utilizes a multisensor array, which relies on the vector contrast of combinatorial responses, to effectively discriminate between volatile organic compounds (VOCs). In recent years, hierarchical structures made of nonbiological materials have been used to achieve the required sensor diversity. With the advent of self-assembling peptides, the ability to tune nanostructuration, surprisingly, has not been exploited for sensor array diversification. In this work, a designer surfactant-like peptide sequence, CG7-NH2, is used to fabricate morphologically and physicochemically heterogeneous "biohybrid" surfaces on Au-covered chips. These multistructural sensing surfaces, containing immobilized hierarchical nanostructures surrounded by self-assembled monolayers, are used for the detection and discrimination of VOCs. Through a simple and judicious design process, involving changes in pH and water content of peptide solutions, a five-element biohybrid sensor array coupled with a gas-phase surface plasmon resonance imaging system is shown to achieve sufficient discriminatory capabilities for four VOCs. Moreover, the limit of detection of the multiarray system is bench-marked at <1 and 6 ppbv for hexanoic acid and phenol (esophago-gastric biomarkers), respectively. Finally, the humidity effects are characterized, identifying the dissociation rate constant as a robust descriptor for classification, further exemplifying their efficacy as biomaterials in the field of artificial olfaction.
Collapse
Affiliation(s)
- Jonathan S Weerakkody
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Marielle El Kazzy
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Elise Jacquier
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Pierre-Henri Elchinger
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Raphael Mathey
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Wai Li Ling
- Université Grenoble Alpes, CEA, CNRS, IRIG, IBS, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Cyril Herrier
- Aryballe, 7 Rue des Arts et Métiers, Grenoble 38000, France
| | | | - Arnaud Buhot
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Yanxia Hou
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|
26
|
Honda H, Takahashi T, Shiiki Y, Zeng H, Nakamura K, Nagata S, Hosomi T, Tanaka W, Zhang G, Kanai M, Nagashima K, Ishikuro H, Yanagida T. Impact of Lateral SnO 2 Nanofilm Channel Geometry on a 1024 Crossbar Chemical Sensor Array. ACS Sens 2022; 7:460-468. [PMID: 35067043 DOI: 10.1021/acssensors.1c02173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We propose a rational strategy to fabricate thermally robust, highly integrated molecular and gas sensors utilizing a lateral SnO2 nanofilm channel geometry on a 1024 crossbar sensor array. The proposed lateral channel geometry substantially suppresses the detrimental effects of parasitic interconnect wire resistances compared with those of a conventional vertical sandwich-type crossbar array because of its excellent resistance controllability. A conductive oxide top-contact electrode on the lateral SnO2 nanofilm channel enhances the thermal stability at temperatures of up to 500 °C in ambient air. Integrating this lateral SnO2 nanofilm geometry with analog circuits enables the operation of a 1024 crossbar sensor array without selector devices to avoid sneak currents. The developed 1024 crossbar sensor array system detects the local spatial distribution of the molecular gas concentration. The spatial data of molecular concentrations include molecule-specific data to distinguish various volatile molecules based on their vapor pressures. Thus, this integrated crossbar sensor array system using lateral nanofilm geometry offers a platform for robust, reliable, highly integrated molecular and gas sensors.
Collapse
Affiliation(s)
- Haruka Honda
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yohsuke Shiiki
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kentaro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Shintaro Nagata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroki Ishikuro
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
27
|
Aykanat A, Meng Z, Stolz RM, Morrell CT, Mirica KA. Bimetallic Two-Dimensional Metal-Organic Frameworks for the Chemiresistive Detection of Carbon Monoxide. Angew Chem Int Ed Engl 2022; 61:e202113665. [PMID: 34796599 PMCID: PMC8797516 DOI: 10.1002/anie.202113665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Indexed: 02/03/2023]
Abstract
This paper describes the demonstration of a series of heterobimetallic, isoreticular 2D conductive metal-organic frameworks (MOFs) with metallophthalocyanine (MPc, M=Co and Ni) units interconnected by Cu nodes towards low-power chemiresistive sensing of ppm levels of carbon monoxide (CO). Devices achieve a sub-part-per-million (ppm) limit of detection (LOD) of 0.53 ppm toward CO at a low driving voltage of 0.1 V. MPc-based Cu-linked MOFs can continuously detect CO at 50 ppm, the permissible exposure limit required by the Occupational Safety and Health Administration (OSHA), for multiple exposures, and realize CO detection in air and in humid environment. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), density functional theory (DFT) calculations, and comparison experiments suggest the contribution of Cu nodes to CO binding and the essential role of MPc units in tuning and amplifying the sensing response.
Collapse
Affiliation(s)
- Aylin Aykanat
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Zheng Meng
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Robert M Stolz
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Colin T Morrell
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Katherine A Mirica
- Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
28
|
Aykanat A, Meng Z, Stolz RM, Morrell CT, Mirica KA. Bimetallic Two‐Dimensional Metal–Organic Frameworks for the Chemiresistive Detection of Carbon Monoxide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aylin Aykanat
- Laboratory Department of Chemistry Dartmouth College Hanover NH 03755 USA
| | - Zheng Meng
- Laboratory Department of Chemistry Dartmouth College Hanover NH 03755 USA
| | - Robert M. Stolz
- Laboratory Department of Chemistry Dartmouth College Hanover NH 03755 USA
| | - Colin T. Morrell
- Laboratory Department of Chemistry Dartmouth College Hanover NH 03755 USA
| | | |
Collapse
|
29
|
Aykanat A, Jones CG, Cline E, Stolz RM, Meng Z, Nelson HM, Mirica KA. Conductive Stimuli-Responsive Coordination Network Linked with Bismuth for Chemiresistive Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60306-60318. [PMID: 34898182 PMCID: PMC9201806 DOI: 10.1021/acsami.1c14453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper describes the design, synthesis, characterization, and performance of a novel semiconductive crystalline coordination network, synthesized using 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligands interconnected with bismuth ions, toward chemiresistive gas sensing. Bi(HHTP) exhibits two distinct structures upon hydration and dehydration of the pores within the network, Bi(HHTP)-α and Bi(HHTP)-β, respectively, both with unprecedented network topology (2,3-c and 3,4,4,5-c nodal net stoichiometry, respectively) and unique corrugated coordination geometries of HHTP molecules held together by bismuth ions, as revealed by a crystal structure resolved via microelectron diffraction (MicroED) (1.00 Å resolution). Good electrical conductivity (5.3 × 10-3 S·cm-1) promotes the utility of this material in the chemical sensing of gases (NH3 and NO) and volatile organic compounds (VOCs: acetone, ethanol, methanol, and isopropanol). The chemiresistive sensing of NO and NH3 using Bi(HHTP) exhibits limits of detection 0.15 and 0.29 parts per million (ppm), respectively, at low driving voltages (0.1-1.0 V) and operation at room temperature. This material is also capable of exhibiting unique and distinct responses to VOCs at ppm concentrations. Spectroscopic assessment via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopic methods (i.e., attenuated total reflectance-infrared spectroscopy (ATR-IR) and diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS)), suggests that the sensing mechanisms of Bi(HHTP) to VOCs, NO, and NH3 comprise a complex combination of steric, electronic, and protic properties of the targeted analytes.
Collapse
Affiliation(s)
- Aylin Aykanat
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Christopher G. Jones
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Evan Cline
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Robert M. Stolz
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Hosea M. Nelson
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Katherine A. Mirica
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
30
|
Zhou T, Zhang T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. SMALL METHODS 2021; 5:e2100515. [PMID: 34928067 DOI: 10.1002/smtd.202100515] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Indexed: 05/27/2023]
Abstract
Along with the progress of nanoscience and nanotechnology, nanomaterials with attractive structural and functional properties have gained more attention than ever before, especially in the field of electronic sensors. In recent years, the gas sensing devices have made great achievement and also created wide application prospects, which leads to a new wave of research for designing advanced sensing materials. There is no doubt that the characteristics are highly governed by the sensitive layers. For this reason, important advances for the outstanding, novel sensing materials with different dimensional structures including 0D, 1D, 2D, and 3D are reported and summarized systematically. The sensing materials cover noble metals, metal oxide semiconductors, carbon nanomaterials, metal dichalcogenides, g-C3 N4 , MXenes, and complex composites. Discussion is also extended to the relation between sensing performances and their structure, electronic properties, and surface chemistry. In addition, some gas sensing related applications are also highlighted, including environment monitoring, breath analysis, food quality and safety, and flexible wearable electronics, from current situation and the facing challenges to the future research perspectives.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
31
|
Park J, Tabata H. Gas Sensor Array Using a Hybrid Structure Based on Zeolite and Oxide Semiconductors for Multiple Bio-Gas Detection. ACS OMEGA 2021; 6:21284-21293. [PMID: 34471733 PMCID: PMC8387996 DOI: 10.1021/acsomega.1c01435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Semiconductor-type gas sensors, composed of metal-oxide semiconductors and porous zeolite materials, are attractive devices for bio-gas detection, particularly when used as bio-gas sensors such as electronic nose application. Previous studies have shown such detection can be obtained with a separate gas concentrator and a sensor device using zeolites and oxide semiconductors of WO3 nanoparticles. By applying the gas concentrator, porous molecular structures alter both the gas sensitivity and the selectivity, and even can be used to define the sensor characteristics. Based on such a gas sensor design, we investigated the properties of an array of three sensors made of a layer of WO3 nanoparticles coated with zeolites with different interactions between gas molecule adsorption and desorption. The array was tested with four volatile organic compounds, each measured at different concentrations. The results confirm that the features of individual zeolites combined with the hybrid gas sensor behavior, along with the differences among the sensors, are sufficient for enabling the discrimination of volatile compounds when disregarding their concentration.
Collapse
|
32
|
Park Y, Ryu B, Ki SJ, McCracken B, Pennington A, Ward KR, Liang X, Kurabayashi K. Few-Layer MoS 2 Photodetector Arrays for Ultrasensitive On-Chip Enzymatic Colorimetric Analysis. ACS NANO 2021; 15:7722-7734. [PMID: 33825460 DOI: 10.1021/acsnano.1c01394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymatic colorimetric analysis of metabolites provides signatures of energy conversion and biosynthesis associated with disease onsets and progressions. Miniaturized photodetectors based on emerging two-dimensional transition metal dichalcogenides (TMDCs) promise to advance point-of-care diagnosis employing highly sensitive enzymatic colorimetric detection. Reducing diagnosis costs requires a batched multisample assay. The construction of few-layer TMDC photodetector arrays with consistent performance is imperative to realize optical signal detection for a miniature batched multisample enzymatic colorimetric assay. However, few studies have promoted an optical reader with TMDC photodetector arrays for on-chip operation. Here, we constructed 4 × 4 pixel arrays of miniaturized molybdenum disulfide (MoS2) photodetectors and integrated them with microfluidic enzyme reaction chambers to create an optoelectronic biosensor chip device. The fabricated device allowed us to achieve arrayed on-chip enzymatic colorimetric detection of d-lactate, a blood biomarker signifying the bacterial translocation from the intestine, with a limit of detection that is 1000-fold smaller than the clinical baseline, a 10 min assay time, high selectivity, and reasonably small variability across the entire arrays. The enzyme (Ez)/MoS2 optoelectronic biosensor unit consistently detected d-lactate in clinically important biofluids, such as saliva, urine, plasma, and serum of swine and humans with a wide detection range (10-3-103 μg/mL). Furthermore, the biosensor enabled us to show that high serum d-lactate levels are associated with the symptoms of systemic infection and inflammation. The lensless, optical waveguide-free device architecture should readily facilitate development of a monolithically integrated hand-held module for timely, cost-effective diagnosis of metabolic disorders in near-patient settings.
Collapse
Affiliation(s)
- Younggeun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Byunghoon Ryu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seung Jun Ki
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brendan McCracken
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda Pennington
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin R Ward
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaogan Liang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
33
|
Song Z, Ye W, Chen Z, Chen Z, Li M, Tang W, Wang C, Wan Z, Poddar S, Wen X, Pan X, Lin Y, Zhou Q, Fan Z. Wireless Self-Powered High-Performance Integrated Nanostructured-Gas-Sensor Network for Future Smart Homes. ACS NANO 2021; 15:7659-7667. [PMID: 33871965 DOI: 10.1021/acsnano.1c01256] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The accelerated evolution of communication platforms including Internet of Things (IoT) and the fifth generation (5G) wireless communication network makes it possible to build intelligent gas sensor networks for real-time monitoring chemical safety and personal health. However, this application scenario requires a challenging combination of characteristics of gas sensors including small formfactor, low cost, ultralow power consumption, superior sensitivity, and high intelligence. Herein, self-powered integrated nanostructured-gas-sensor (SINGOR) systems and a wirelessly connected SINGOR network are demonstrated here. The room-temperature operated SINGOR system can be self-driven by indoor light with a Si solar cell, and it features ultrahigh sensitivity to H2, formaldehyde, toluene, and acetone with the record low limits of detection (LOD) of 10, 2, 1, and 1 ppb, respectively. Each SINGOR consisting of an array of nanostructured sensors has the capability of gas pattern recognition and classification. Furthermore, multiple SINGOR systems are wirelessly connected as a sensor network, which has successfully demonstrated flammable gas leakage detection and alarm function. They can also achieve gas leakage localization with satisfactory precision when deployed in one single room. These successes promote the development of using nanostructured-gas-sensor network for wide range applications including smart home/building and future smart city.
Collapse
Affiliation(s)
- Zhilong Song
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wenhao Ye
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhuo Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Mutian Li
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wenying Tang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhu'an Wan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiaolin Wen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaofang Pan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingfeng Zhou
- School of Electric Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
34
|
Qu F, Zhang S, Huang C, Guo X, Zhu Y, Thomas T, Guo H, Attfield JP, Yang M. Surface Functionalized Sensors for Humidity‐Independent Gas Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fengdong Qu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Shendan Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Chaozhu Huang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Xuyun Guo
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong China
| | - Ye Zhu
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras Adyar Chennai 600036 India
| | - Haichuan Guo
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - J. Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JZ UK
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
35
|
Qu F, Zhang S, Huang C, Guo X, Zhu Y, Thomas T, Guo H, Attfield JP, Yang M. Surface Functionalized Sensors for Humidity-Independent Gas Detection. Angew Chem Int Ed Engl 2021; 60:6561-6566. [PMID: 33354797 DOI: 10.1002/anie.202015856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/19/2020] [Indexed: 12/20/2022]
Abstract
Semiconducting metal oxides (SMOXs) are used widely for gas sensors. However, the effect of ambient humidity on the baseline and sensitivity of the chemiresistors is still a largely unsolved problem, reducing sensor accuracy and causing complications for sensor calibrations. Presented here is a general strategy to overcome water-sensitivity issues by coating SMOXs with a hydrophobic polymer separated by a metal-organic framework (MOF) layer that preserves the SMOX surface and serves a gas-selective function. Sensor devices using these nanoparticles display near-constant responses even when humidity is varied across a wide range [0-90 % relative humidity (RH)]. Furthermore, the sensor delivers notable performance below 20 % RH whereas other water-resistance strategies typically fail. Selectivity enhancement and humidity-independent sensitivity are concomitantly achieved using this approach. The reported tandem coating strategy is expected to be relevant for a wide range of SMOXs, leading to a new generation of gas sensors with excellent humidity-resistant performance.
Collapse
Affiliation(s)
- Fengdong Qu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shendan Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chaozhu Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras Adyar, Chennai, 600036, India
| | - Haichuan Guo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
36
|
Suzuki Y, Hasegawa G, Kanamori K, Nakanishi K. Designing hierarchical porosity in tin oxide monoliths and their application as a solid acid catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj03307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchically porous tin oxide monoliths were prepared through a sol–gel accompanied by phase separation for application as a solid acid catalyst.
Collapse
Affiliation(s)
- Yoshinao Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - George Hasegawa
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Nakanishi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
37
|
Guo L, Wang T, Wu Z, Wang J, Wang M, Cui Z, Ji S, Cai J, Xu C, Chen X. Portable Food-Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004805. [PMID: 33006183 DOI: 10.1002/adma.202004805] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Indexed: 05/14/2023]
Abstract
Artificial scent screening systems (known as electronic noses, E-noses) have been researched extensively. A portable, automatic, and accurate, real-time E-nose requires both robust cross-reactive sensing and fingerprint pattern recognition. Few E-noses have been commercialized because they suffer from either sensing or pattern-recognition issues. Here, cross-reactive colorimetric barcode combinatorics and deep convolutional neural networks (DCNNs) are combined to form a system for monitoring meat freshness that concurrently provides scent fingerprint and fingerprint recognition. The barcodes-comprising 20 different types of porous nanocomposites of chitosan, dye, and cellulose acetate-form scent fingerprints that are identifiable by DCNN. A fully supervised DCNN trained using 3475 labeled barcode images predicts meat freshness with an overall accuracy of 98.5%. Incorporating DCNN into a smartphone application forms a simple platform for rapid barcode scanning and identification of food freshness in real time. The system is fast, accurate, and non-destructive, enabling consumers and all stakeholders in the food supply chain to monitor food freshness.
Collapse
Affiliation(s)
- Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Ting Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhonghua Wu
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwu Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zequn Cui
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaobo Ji
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianfei Cai
- Department of Data Science & AI, Monash University, Clayton, Victoria, 3168, Australia
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
38
|
To KC, Ben-Jaber S, Parkin IP. Recent Developments in the Field of Explosive Trace Detection. ACS NANO 2020; 14:10804-10833. [PMID: 32790331 DOI: 10.1021/acsnano.0c01579] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Explosive trace detection (ETD) technologies play a vital role in maintaining national security. ETD remains an active research area with many analytical techniques in operational use. This review details the latest advances in animal olfactory, ion mobility spectrometry (IMS), and Raman and colorimetric detection methods. Developments in optical, biological, electrochemical, mass, and thermal sensors are also covered in addition to the use of nanomaterials technology. Commercially available systems are presented as examples of current detection capabilities and as benchmarks for improvement. Attention is also drawn to recent collaborative projects involving government, academia, and industry to highlight the emergence of multimodal screening approaches and applications. The objective of the review is to provide a comprehensive overview of ETD by highlighting challenges in ETD and providing an understanding of the principles, advantages, and limitations of each technology and relating this to current systems.
Collapse
Affiliation(s)
- Ka Chuen To
- Department of Chemistry, University College London, 20 Gordon Street, Bloomsbury, London WC1H 0AJ, United Kingdom
| | - Sultan Ben-Jaber
- Department of Science and Forensics, King Fahad Security College, Riyadh 13232, Saudi Arabia
| | - Ivan P Parkin
- Department of Chemistry, University College London, 20 Gordon Street, Bloomsbury, London WC1H 0AJ, United Kingdom
| |
Collapse
|
39
|
Dai T, Meng G, Deng Z, Chen Y, Liu H, Li L, Wang S, Chang J, Xu P, Li X, Fang X. Generic Approach to Boost the Sensitivity of Metal Oxide Sensors by Decoupling the Surface Charge Exchange and Resistance Reading Process. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37295-37304. [PMID: 32700520 DOI: 10.1021/acsami.0c07626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the bottleneck parameters for practical applications of metal oxide semiconductor-based gas sensors, sensitivity enhancement has attracted significant attention in the past few decades. In this work, alternative to conventional strategies for designing sensitive surfaces via morphology/defect/heterojunction control (then operating at an optimized isothermal temperature with a maximal response), a facile enhancement approach by decoupling surface charge exchange and resistance reading process (possessing different temperature-dependent behaviors) through pulsed temperature modulation (PTM) is reported. Substantially magnifying electrical responses of a generic metal oxide (e.g., WO3) micro-electromechanical systems sensor toward diverse analyte molecules are demonstrated. Under the optimal PTM condition, the response toward 10 ppm NO2 can be boosted from (isothermal) 99.7 to 842.7, and the response toward 100 ppm acetone is increased from (isothermal) 2.7 to 425, which are comparable to or even better than most of the state-of-the-art WO3-based sensors. In comparison to conventional (isothermal) operation, PTM allows to sequentially manipulate the physisorption/chemisorption of analyte molecules, generation of surface reactive oxygen species, and sensor resistance reading and thus provides additional opportunities in boosting the electrical response of oxide sensors for advanced health and/or environment monitoring in future.
Collapse
Affiliation(s)
- Tiantian Dai
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Ying Chen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hongyu Liu
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Liang Li
- College of Physics Optoelectronics and Energy Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Junqing Chang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaodong Fang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
40
|
Abstract
With the rapid development of high technology, chemical science is not as it used to be a century ago. Many chemists acquire and utilize skills that are well beyond the traditional definition of chemistry. The digital age has transformed chemistry laboratories. One aspect of this transformation is the progressing implementation of electronics and computer science in chemistry research. In the past decade, numerous chemistry-oriented studies have benefited from the implementation of electronic modules, including microcontroller boards (MCBs), single-board computers (SBCs), professional grade control and data acquisition systems, as well as field-programmable gate arrays (FPGAs). In particular, MCBs and SBCs provide good value for money. The application areas for electronic modules in chemistry research include construction of simple detection systems based on spectrophotometry and spectrofluorometry principles, customizing laboratory devices for automation of common laboratory practices, control of reaction systems (batch- and flow-based), extraction systems, chromatographic and electrophoretic systems, microfluidic systems (classical and nonclassical), custom-built polymerase chain reaction devices, gas-phase analyte detection systems, chemical robots and drones, construction of FPGA-based imaging systems, and the Internet-of-Chemical-Things. The technology is easy to handle, and many chemists have managed to train themselves in its implementation. The only major obstacle in its implementation is probably one's imagination.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
41
|
Experimental study of resistive load for impedance matching of triboelectric energy harvester fabricated with patterned polydimethylsiloxane polymer layer. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2820-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
Tran VV, Park D, Lee YC. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2927. [PMID: 32340311 PMCID: PMC7215772 DOI: 10.3390/ijerph17082927] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Indoor air pollution (IAP) is a serious threat to human health, causing millions of deaths each year. A plethora of pollutants can result in IAP; therefore, it is very important to identify their main sources and concentrations and to devise strategies for the control and enhancement of indoor air quality (IAQ). Herein, we provide a critical review and evaluation of the major sources of major pollutant emissions, their health effects, and issues related to IAP-based illnesses, including sick building syndrome (SBS) and building-related illness (BRI). In addition, the strategies and approaches for control and reduction of pollutant concentrations are pointed out, and the recent trends in efforts to resolve and improve IAQ, with their respective advantages and potentials, are summarized. It is predicted that the development of novel materials for sensors, IAQ-monitoring systems, and smart homes is a promising strategy for control and enhancement of IAQ in the future.
Collapse
Affiliation(s)
- Vinh Van Tran
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea;
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si 16105, Gyeonggi-do, Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea;
| |
Collapse
|
43
|
Zhu Y, Zhang J, Zhang L. Sn 13-Oxo Clusters with an Open Hollow Structural Motif and Decorated by Different Functional Ligands. Inorg Chem 2019; 58:15692-15695. [PMID: 31710468 DOI: 10.1021/acs.inorgchem.9b02474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first open hollow Sn13-oxo cluster family has been successfully prepared and characterized. These Sn13 clusters contain a {Sn7} moiety that is similar to the basic structure unit of rutile SnO2. Interestingly, the Sn13 clusters show labile coordination sites on the edge, which could be functionalized by different ligands. With the different decorated types of functionalized ligands, the open hollow Sn13 clusters present different structural details and framework diameters. The presented results provide a new open hollow structural motif of tin-oxo clusters and also a good platform for their ligand functionalization.
Collapse
Affiliation(s)
- Yu Zhu
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| |
Collapse
|
44
|
Liu B, Wu X, Kam KWL, Cheung WF, Zheng B. Cuprous Oxide Based Chemiresistive Electronic Nose for Discrimination of Volatile Organic Compounds. ACS Sens 2019; 4:3051-3055. [PMID: 31591885 DOI: 10.1021/acssensors.9b01697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper reports a facile functionalization method on a metal-oxide semiconductor and a cuprous oxide (Cu2O) based chemiresistive electronic nose for the detection of volatile organic compounds (VOCs). A library of functionalized Cu2O nanospheres was developed through silanization using chemically diverse organosilanes. An electronic nose was fabricated with unmodified Cu2O nanospheres and five types of functionalized Cu2O nanospheres as the sensing elements. The electronic nose showed stable and rapid resistance responses to 25-200 ppm model VOCs, with the operating temperature of 180 °C. Single VOCs and ternary VOC mixtures could be discriminated by the electronic nose, and six types of tea leaves were also proved to be distinguishable as an illustration of the application of the electronic nose. We expected that the silanization could provide a simple approach for material diversification and the electronic nose would have further application in identification and discrimination of complex gas samples.
Collapse
Affiliation(s)
- Baishu Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xue Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
45
|
Zhang D, Wu J, Li P, Cao Y, Yang Z. Hierarchical Nanoheterostructure of Tungsten Disulfide Nanoflowers Doped with Zinc Oxide Hollow Spheres: Benzene Gas Sensing Properties and First-Principles Study. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31245-31256. [PMID: 31365825 DOI: 10.1021/acsami.9b07021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper reports an original fabrication of a benzene gas sensor based on tungsten disulfide nanoflowers (WS2 NFs)/zinc oxide hollow spheres (ZnO HMDs) hierarchical nanoheterostructure. The ZnO/WS2 hierarchical composite was characterized for the inspection of its nanostructure, elementary composition, and surface morphology. The benzene-sensing properties of the ZnO/WS2 nanofilm sensor were exactly investigated. The results illustrate that the ZnO/WS2 sensor exhibits a remarkable sensing performance toward benzene gas, including good sensitivity, rapid detection, outstanding repeatability, and stability. This is attributed to the fact that the ZnO/WS2 nanoheterostructure can dramatically enhance the benzene sensing performance. Furthermore, density functional theory was employed to construct the benzene gas adsorption model for the ZnO/WS2 heterostructure, from which the determined parameters in geometry, energy, and charge provided a powerful support for the mechanism explanation. This work suggests that the ZnO/WS2 nanoheterostructure is competent to detect trace benzene gas at room temperature.
Collapse
Affiliation(s)
- Dongzhi Zhang
- College of Information and Control Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Junfeng Wu
- College of Information and Control Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments , Tsinghua University , Beijing 100084 , China
| | - Yuhua Cao
- College of Information and Control Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Zhimin Yang
- College of Information and Control Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
46
|
Yao D, Dong C, Bing Q, Liu Y, Qu F, Yang M, Liu B, Yang B, Zhang H. Oxygen-Defective Ultrathin BiVO 4 Nanosheets for Enhanced Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23495-23502. [PMID: 31252475 DOI: 10.1021/acsami.9b05626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BiVO4 nanomaterials are potentially applicable in gas sensing, but the sensing performance is limited by the less active sites on the BiVO4 surface. In this work, we propose a strategy to improve the gas-sensing performance of BiVO4 by forming ultrathin nanosheets and introducing oxygen vacancies, which increase the surface active sites. Two-dimensional (2D) BiVO4 nanosheets with oxygen vacancies are prepared through a colloidal method with the assistance of nitric acid. Gas sensors based on the oxygen-defective 2D ultrathin BiVO4 nanosheets exhibit an enhanced sensing response, which is 3.4 times higher than those of the sensors based on oxygen-abundant BiVO4 nanosheets. The density functional theory calculation is employed to uncover the promoting effects of oxygen vacancies on enhancing the O2 adsorption capability of BiVO4 nanosheets. This work is not only expected to build a wide range of 2D metal oxide semiconductors with a high gas-sensing performance but also gives an insight into the mechanism of the enhanced response induced by the oxygen vacancies, which will be a guideline for further designing high-performance sensing materials.
Collapse
Affiliation(s)
- Dong Yao
- Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China
| | | | - Qiming Bing
- Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China
| | | | - Fengdong Qu
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | | | | | | |
Collapse
|
47
|
Lin Y, Chen J, Tavakoli MM, Gao Y, Zhu Y, Zhang D, Kam M, He Z, Fan Z. Printable Fabrication of a Fully Integrated and Self-Powered Sensor System on Plastic Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804285. [PMID: 30520163 DOI: 10.1002/adma.201804285] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/02/2018] [Indexed: 05/27/2023]
Abstract
Wearable and portable devices with desirable flexibility, operational safety, and long cruising time, are in urgent demand for applications in wireless communications, multifunctional entertainments, personal healthcare monitoring, etc. Herein, a monolithically integrated self-powered smart sensor system with printed interconnects, printed gas sensor for ethanol and acetone detection, and printable supercapacitors and embedded solar cells as energy sources, is successfully demonstrated in a wearable wristband fashion by utilizing inkjet printing as a proof-of-concept. In such a "wearable wristband", the harvested solar energy can either directly drive the sensor and power up a light-emitting diode as a warning signal, or can be stored in the supercapacitors in a standby mode, and the energy released from supercapacitors can compensate the intermittency of light illumination. To the best of our knowledge, the demonstration of such a self-powered sensor system integrated onto a single piece of flexible substrate in a printable and additive manner has not previously been reported. Particularly, the printable supercapacitors deliver an areal capacitance of 12.9 mF cm-2 and the printed SnO2 gas sensor shows remarkable detection sensitivity under room temperature. The printable strategies for device fabrication and system integration developed here show great potency for scalable and facile fabrication of a variety of wearable devices.
Collapse
Affiliation(s)
- Yuanjing Lin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Jiaqi Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Mohammad Mahdi Tavakoli
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology, MA, 02139, USA
| | - Yuan Gao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Yudong Zhu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd, Shenzhen, Guangdong, 518055, China
| | - Daquan Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Matthew Kam
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Zhubing He
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd, Shenzhen, Guangdong, 518055, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
48
|
Wang L, Chen S, Li W, Wang K, Lou Z, Shen G. Grain-Boundary-Induced Drastic Sensing Performance Enhancement of Polycrystalline-Microwire Printed Gas Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804583. [PMID: 30484929 DOI: 10.1002/adma.201804583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/04/2018] [Indexed: 05/13/2023]
Abstract
The development of materials with high efficiency and stable signal output in a bent state is important for flexible electronics. Grain boundaries provide lasting inspiration and a promising avenue for designing advanced functionalities using nanomaterials. Combining bulk defects in polycrystalline materials is shown to result in rich new electronic structures, catalytic activities, and mechanical properties for many applications. However, direct evidence that grain boundaries can create new physicochemical properties in flexible electronics is lacking. Here, a combination of bulk electrosensitive measurements, density functional theory calculations, and atomic force microscopy technology with quantitative nanomechanical mapping is used to show that grain boundaries in polycrystalline wires are more active and mechanically stable than single-crystalline wires for real-time detection of chemical analytes. The existence of a grain boundary improves the electronic and mechanical properties, which activate and stabilize materials, and allow new opportunities to design highly sensitive, flexible chemical sensors.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shuai Chen
- College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, China
| | - Kang Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Hu W, Wan L, Jian Y, Ren C, Jin K, Su X, Bai X, Haick H, Yao M, Wu W. Electronic Noses: From Advanced Materials to Sensors Aided with Data Processing. ADVANCED MATERIALS TECHNOLOGIES 2018:1800488. [DOI: 10.1002/admt.201800488] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and TechnologyXidian University Shaanxi 710126 P. R. China
| | - Liangtian Wan
- The Key Laboratory for Ubiquitous Network and Service Software of Liaoning ProvinceSchool of SoftwareDalian University of Technology Dalian 116620 China
| | - Yingying Jian
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Cong Ren
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Ke Jin
- School of Aerospace Science and TechnologyXidian University Shaanxi 710126 P. R. China
| | - Xinghua Su
- School of Materials Science and EngineeringChang'an University Xi'an 710061 China
| | - Xiaoxia Bai
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| | - Hossam Haick
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Mingshui Yao
- Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Weiwei Wu
- School of Advanced Materials and NanotechnologyXidian University Shaanxi 710126 P. R. China
| |
Collapse
|