1
|
Shiohama Y, Nakamura J, Nakamura M. Cellular Distribution and Intracellular Localization of Different Sizes of Fluorescent Thiol-Organosilica Particles in Mouse Lungs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18627-18642. [PMID: 38590224 DOI: 10.1021/acsami.4c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We investigated the distribution of intratracheally administered thiol-organosilica (thiol-OS) particles in mouse lungs. Toward this end, single doses of thiol-OS particles containing fluorescein (140 nm in diameter) (F140) and rhodamine B (Rh) (Rh160, Rh280, Rh420, Rh640, and Rh1630 with diameters of 160, 280, 420, 640, and 1630 nm, respectively) were administered. After 24 h, fluorescence imaging revealed homogeneous fluorescence with a patchier pattern on the lung surface and no difference among the six particle sizes. Simultaneous dual administration of Rh and F140 particles did not reveal any size-dependent differences in the lung surface fluorescence. Fluorescence microscopy of the lung sections revealed a similar tissue distribution in the fluorescent areas of Rhs and F140. Some fluorescent areas showed one type of particle fluorescence or only one fluorescence. Cellular distribution of particles was observed in bronchoalveolar lavage cells and lung sections under a high magnification, and correlative light and electron microscopy revealed large cells with fluorescence corresponding to both particle types and small cells with fluorescence of individual particle types, indicating a cell-subset-dependent particle size effect. Rh280, Rh420, and Rh640 exhibited significant size effects and were taken up by alveolar macrophages. Extracellular particles were observed, indicating that saturation exceeded the particle dose threshold in the alveoli. F140 taken up by small and large macrophages colocalized with CD68, CD11c, and CD11b and correlated with CD11c. The size effect, intracellular localization, and extracellular distribution of particles provide insights into lung and systemic drug delivery.
Collapse
Affiliation(s)
- Yasuo Shiohama
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
2
|
Rinderknecht CH, Ning M, Wu C, Wilson MS, Gampe C. Designing inhaled small molecule drugs for severe respiratory diseases: an overview of the challenges and opportunities. Expert Opin Drug Discov 2024; 19:493-506. [PMID: 38407117 DOI: 10.1080/17460441.2024.2319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Inhaled drugs offer advantages for the treatment of respiratory diseases over oral drugs by delivering the drug directly to the lung, thus improving the therapeutic index. There is an unmet medical need for novel therapies for lung diseases, exacerbated by a multitude of challenges for the design of inhaled small molecule drugs. AREAS COVERED The authors review the challenges and opportunities for the design of inhaled drugs for respiratory diseases with a focus on new target discovery, medicinal chemistry, and pharmacokinetic, pharmacodynamic, and toxicological evaluation of drug candidates. EXPERT OPINION Inhaled drug discovery is facing multiple unique challenges. Novel biological targets are scarce, as is the guidance for medicinal chemistry teams to design compounds with inhalation-compatible features. It is exceedingly difficult to establish a PK/PD relationship given the complexity of pulmonary PK and the impact of physical properties of the drug substance on PK. PK, PD and toxicology studies are technically challenging and require large amounts of drug substance. Despite the current challenges, the authors foresee that the design of inhaled drugs will be facilitated in the future by our increasing understanding of pathobiology, emerging medicinal chemistry guidelines, advances in drug formulation, PBPK models, and in vitro toxicology assays.
Collapse
Affiliation(s)
| | - Miaoran Ning
- Drug Metabolism and Pharmacokinetics, gRED, Genentech, South San Francisco, CA, USA
| | - Connie Wu
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | - Mark S Wilson
- Discovery Immunology, gRED, Genentech, South San Francisco, CA, USA
| | - Christian Gampe
- Discovery Chemistry, gRED, Genentech, South San Francisco, CA, USA
| |
Collapse
|
3
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
4
|
Xu H, Wu L, Xue Y, Yang T, Xiong T, Wang C, He S, Sun H, Cao Z, Liu J, Wang S, Li Z, Naeem A, Yin X, Zhang J. Advances in Structure Pharmaceutics from Discovery to Evaluation and Design. Mol Pharm 2023; 20:4404-4429. [PMID: 37552597 DOI: 10.1021/acs.molpharmaceut.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Drug delivery systems (DDSs) play an important role in delivering active pharmaceutical ingredients (APIs) to targeted sites with a predesigned release pattern. The chemical and biological properties of APIs and excipients have been extensively studied for their contribution to DDS quality and effectiveness; however, the structural characteristics of DDSs have not been adequately explored. Structure pharmaceutics involves the study of the structure of DDSs, especially the three-dimensional (3D) structures, and its interaction with the physiological and pathological structure of organisms, possibly influencing their release kinetics and targeting abilities. A systematic overview of the structures of a variety of dosage forms, such as tablets, granules, pellets, microspheres, powders, and nanoparticles, is presented. Moreover, the influence of structures on the release and targeting capability of DDSs has also been discussed, especially the in vitro and in vivo release correlation and the structure-based organ- and tumor-targeting capabilities of particles with different structures. Additionally, an in-depth discussion is provided regarding the application of structural strategies in the DDSs design and evaluation. Furthermore, some of the most frequently used characterization techniques in structure pharmaceutics are briefly described along with their potential future applications.
Collapse
Affiliation(s)
- Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ting Yang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeying Cao
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siwen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xianzhen Yin
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 201602, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
5
|
Ruzycki CA, Montoya D, Irshad H, Cox J, Zhou Y, McDonald JD, Kuehl PJ. Inhalation delivery of nucleic acid gene therapies in preclinical drug development. Expert Opin Drug Deliv 2023; 20:1097-1113. [PMID: 37732957 DOI: 10.1080/17425247.2023.2261369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Inhaled gene therapy programs targeting diseases of the lung have seen increasing interest in recent years, though as of yet no product has successfully entered the market. Preclinical research to support such programs is critically important in maximizing the chances of developing successful candidates. AREAS COVERED Aspects of inhalation delivery of gene therapies are reviewed, with a focus on preclinical research in animal models. Various barriers to inhalation delivery of gene therapies are discussed, including aerosolization stresses, aerosol behavior in the respiratory tract, and disposition processes post-deposition. Important aspects of animal models are considered, including determinations of biologically relevant determinations of dose and issues related to translatability. EXPERT OPINION Development of clinically-efficacious inhaled gene therapies has proven difficult owing to numerous challenges. Fit-for-purpose experimental and analytical methods are necessary for determinations of biologically relevant doses in preclinical animal models. Further developments in disease-specific animal models may aid in improving the translatability of results in future work, and we expect to see accelerated interests in inhalation gene therapies for various diseases. Sponsors, researchers, and regulators are encouraged to engage in early and frequent discussion regarding candidate therapies, and additional dissemination of preclinical methodologies would be of immense value in avoiding common pitfalls.
Collapse
Affiliation(s)
- Conor A Ruzycki
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Derek Montoya
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Jason Cox
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Yue Zhou
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | | | - Philip J Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
6
|
Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Kåredal M, Mudway I, Larsson-Callerfelt AK, Shaw M. Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221426. [PMID: 37063998 PMCID: PMC10090883 DOI: 10.1098/rsos.221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Camilla Dondi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nilofar Faruqui
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nazia S. Siddiqui
- Faculty of Medical Sciences, University College London, London, UK
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, UK
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Rissler
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Monica Kåredal
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Michael Shaw
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
7
|
Boucher M, Henry C, Bossé Y. Force adaptation through the intravenous route in naïve mice. Exp Lung Res 2023; 49:131-141. [PMID: 37477352 DOI: 10.1080/01902148.2023.2237127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Aim of the study: Force adaptation is a process whereby the contractile capacity of the airway smooth muscle increases during a sustained contraction (aka tone). Tone also increases the response to a nebulized challenge with methacholine in vivo, presumably through force adaptation. Yet, due to its patchy pattern of deposition, nebulized methacholine often spurs small airway narrowing heterogeneity and closure, two important enhancers of the methacholine response. This raises the possibility that the potentiating effect of tone on the methacholine response is not due to force adaptation but by furthering heterogeneity and closure. Herein, methacholine was delivered homogenously through the intravenous (i.v.) route. Materials and Methods: Female and male BALB/c mice were subjected to one of two i.v. methacholine challenges, each of the same cumulative dose but starting by a 20-min period either with or without tone induced by serial i.v. boluses. Changes in respiratory mechanics were monitored throughout by oscillometry, and the response after the final dose was compared between the two challenges to assess the effect of tone. Results: For the elastance of the respiratory system (Ers), tone potentiated the methacholine response by 64 and 405% in females (37.4 ± 10.7 vs. 61.5 ± 15.1 cmH2O/mL; p = 0.01) and males (33.0 ± 14.3 vs. 166.7 ± 60.6 cmH2O/mL; p = 0.0004), respectively. For the resistance of the respiratory system (Rrs), tone potentiated the methacholine response by 129 and 225% in females (9.7 ± 3.5 vs. 22.2 ± 4.3 cmH2O·s/mL; p = 0.0003) and males (10.7 ± 3.1 vs. 34.7 ± 7.9 cmH2O·s/mL; p < 0.0001), respectively. Conclusions: As previously reported with nebulized challenges, tone increases the response to i.v. methacholine in both sexes; albeit sexual dimorphisms were obvious regarding the relative resistive versus elastic nature of this potentiation. This represents further support that tone increases the lung response to methacholine through force adaptation.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| |
Collapse
|
8
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
9
|
Pinkert-Leetsch D, Rost JU, Schmiedeknecht MUH, Stadelmann C, Alves F, Missbach-Guentner J. The murine male reproductive organ at a glance: Three-dimensional insights and virtual histology using label-free light sheet microcopy. Andrology 2022; 10:1660-1672. [PMID: 36082398 DOI: 10.1111/andr.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The unique anatomy of the male reproductive organ reflects its complex function from sperm maturation to their storage for months until emission. Since light microscopy in two dimensions (2d) cannot sufficiently demonstrate its complex morphology, a comprehensive visualization is required to identify pathologic alterations in its entire anatomical context. OBJECTIVES Aim of this study was to use three-dimensional (3d) light sheet fluorescence microscopy (LSFM) to visualize entire murine testes in 3d, label-free and at subcellular resolution, and to assign local autofluorescence to testicular and deferent structures. MATERIALS AND METHODS Murine testes were fixed with four different fixatives and subsequently cleared with benzoic acid/benzyl benzoate. Hereafter, complete murine testes were scanned with LSFM with different fluorescence filter sets and subsequently embedded in paraffin for further conventional planar histology. RESULTS Autofluorescence signals of the murine reproductive organ allowed the unambiguous identification of the testicular anatomy from the seminiferous tubules to the vas deferens with their specific stratification independent of the used fixative. Blood vessels were visualized from the pampiniform plexus to the small capillaries of single tubules. Moreover, due to the specific intrinsic fluorescence properties of the efferent ducts and the epididymis, luminal caliber, the epithelial stratification and retronuclear cytoplasmic inclusions gave a unique insight into the interface of both morphological structures. Subsequent 2d histology confirmed the identified morphological structures. DISCUSSION LSFM analysis of the murine reproductive organ allows due to its intrinsic fluorescence a simple, label-free 3d assessment of its entire duct morphology, the epithelial composition and the associated blood supply in its anatomical relation. CONCLUSION LSFM provides the technical basis for comprehensive analyses of pathologically altered murine testes in its entirety by depicting specific autofluorescence. Thereby it facilitates mouse studies of testicular disease or their drug related alterations in more detail potentially for clinical translation assessing human testicular biopsies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - John Uwe Rost
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Department of Hematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Jeannine Missbach-Guentner
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
10
|
Aerosol-Cell Exposure System Applied to Semi-Adherent Cells for Aerosolization of Lung Surfactant and Nanoparticles Followed by High Quality RNA Extraction. NANOMATERIALS 2022; 12:nano12081362. [PMID: 35458071 PMCID: PMC9028274 DOI: 10.3390/nano12081362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Nanoparticle toxicity assessments have moved closer to physiological conditions while trying to avoid the use of animal models. An example of new in vitro exposure techniques developed is the exposure of cultured cells at the air-liquid interface (ALI), particularly in the case of respiratory airways. While the commercially available VITROCELL® Cloud System has been applied for the delivery of aerosolized substances to adherent cells under ALI conditions, it has not yet been tested on lung surfactant and semi-adherent cells such as alveolar macrophages, which are playing a pivotal role in the nanoparticle-induced immune response. OBJECTIVES In this work, we developed a comprehensive methodology for coating semi-adherent lung cells cultured at the ALI with aerosolized surfactant and subsequent dose-controlled exposure to nanoparticles (NPs). This protocol is optimized for subsequent transcriptomic studies. METHODS Semi-adherent rat alveolar macrophages NR8383 were grown at the ALI and coated with lung surfactant through nebulization using the VITROCELL® Cloud 6 System before being exposed to TiO2 NM105 NPs. After NP exposures, RNA was extracted and its quantity and quality were measured. RESULTS The VITROCELL® Cloud system allowed for uniform and ultrathin coating of cells with aerosolized surfactant mimicking physiological conditions in the lung. While nebulization of 57 μL of 30 mg/mL TiO2 and 114 μL of 15 mg/mL TiO2 nanoparticles yielded identical cell delivered dose, the reproducibility of dose as well as the quality of RNA extracted were better for 114 μL.
Collapse
|
11
|
Dong J, Yang Y, Zhu Y. Recent advances in the understanding of alveolar flow. BIOMICROFLUIDICS 2022; 16:021502. [PMID: 35464135 PMCID: PMC9010052 DOI: 10.1063/5.0084415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Understanding the dynamics of airflow in alveoli and its effect on the behavior of particle transport and deposition is important for understanding lung functions and the cause of many lung diseases. The studies on these areas have drawn substantial attention over the last few decades. This Review discusses the recent progress in the investigation of behavior of airflow in alveoli. The information obtained from studies on the structure of the lung airway tree and alveolar topology is provided first. The current research progress on the modeling of alveoli is then reviewed. The alveolar cell parameters at different generation of branches, issues to model real alveolar flow, and the current numerical and experimental approaches are discussed. The findings on flow behavior, in particular, flow patterns and the mechanism of chaotic flow generation in the alveoli are reviewed next. The different flow patterns under different geometrical and flow conditions are discussed. Finally, developments on microfluidic devices such as lung-on-a-chip devices are reviewed. The issues of current devices are discussed.
Collapse
Affiliation(s)
| | | | - Yonggang Zhu
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Sznitman J. Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics. Chem Rev 2021; 122:7182-7204. [PMID: 34964615 DOI: 10.1021/acs.chemrev.1c00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dynamics of respiratory airflows and the associated transport mechanisms of inhaled aerosols characteristic of the deep regions of the lungs are of broad interest in assessing both respiratory health risks and inhalation therapy outcomes. In the present review, we present a comprehensive discussion of our current understanding of airflow and aerosol transport phenomena that take place within the unique and complex anatomical environment of the deep lungs, characterized by submillimeter 3D alveolated airspaces and nominally slow resident airflows, known as low-Reynolds-number flows. We exemplify the advances brought forward by experimental efforts, in conjunction with numerical simulations, to revisit past mechanistic theories of respiratory airflow and particle transport in the distal acinar regions. Most significantly, we highlight how microfluidic-based platforms spanning the past decade have accelerated opportunities to deliver anatomically inspired in vitro solutions that capture with sufficient realism and accuracy the leading mechanisms governing both respiratory airflow and aerosol transport at true scale. Despite ongoing challenges and limitations with microfabrication techniques, the efforts witnessed in recent years have provided previously unattainable in vitro quantifications on the local transport properties in the deep pulmonary acinar airways. These may ultimately provide new opportunities to explore improved strategies of inhaled drug delivery to the deep acinar regions by investigating further the mechanistic interactions between airborne particulate carriers and respiratory airflows at the pulmonary microscales.
Collapse
Affiliation(s)
- Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
13
|
Richardson DS, Guan W, Matsumoto K, Pan C, Chung K, Ertürk A, Ueda HR, Lichtman JW. TISSUE CLEARING. NATURE REVIEWS. METHODS PRIMERS 2021; 1:84. [PMID: 35128463 PMCID: PMC8815095 DOI: 10.1038/s43586-021-00080-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Tissue clearing of gross anatomical samples was first described over a century ago and has only recently found widespread use in the field of microscopy. This renaissance has been driven by the application of modern knowledge of optical physics and chemical engineering to the development of robust and reproducible clearing techniques, the arrival of new microscopes that can image large samples at cellular resolution and computing infrastructure able to store and analyze large data volumes. Many biological relationships between structure and function require investigation in three dimensions and tissue clearing therefore has the potential to enable broad discoveries in the biological sciences. Unfortunately, the current literature is complex and could confuse researchers looking to begin a clearing project. The goal of this Primer is to outline a modular approach to tissue clearing that allows a novice researcher to develop a customized clearing pipeline tailored to their tissue of interest. Further, the Primer outlines the required imaging and computational infrastructure needed to perform tissue clearing at scale, gives an overview of current applications, discusses limitations and provides an outlook on future advances in the field.
Collapse
Affiliation(s)
- Douglas S. Richardson
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Katsuhiko Matsumoto
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Chenchen Pan
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Nano Biomedical Engineering (Nano BME) Graduate Program, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Jeff W. Lichtman
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Haberthür D, Yao E, Barré SF, Cremona TP, Tschanz SA, Schittny JC. Pulmonary acini exhibit complex changes during postnatal rat lung development. PLoS One 2021; 16:e0257349. [PMID: 34748555 PMCID: PMC8575188 DOI: 10.1371/journal.pone.0257349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
Pulmonary acini represent the functional gas-exchanging units of the lung. Due to technical limitations, individual acini cannot be identified on microscopic lung sections. To overcome these limitations, we imaged the right lower lobes of instillation-fixed rat lungs from postnatal days P4, P10, P21, and P60 at the TOMCAT beamline of the Swiss Light Source synchrotron facility at a voxel size of 1.48 μm. Individual acini were segmented from the three-dimensional data by closing the airways at the transition from conducting to gas exchanging airways. For a subset of acini (N = 268), we followed the acinar development by stereologically assessing their volume and their number of alveoli. We found that the mean volume of the acini increases 23 times during the observed time-frame. The coefficients of variation dropped from 1.26 to 0.49 and the difference between the mean volumes of the fraction of the 20% smallest to the 20% largest acini decreased from a factor of 27.26 (day 4) to a factor of 4.07 (day 60), i.e. shows a smaller dispersion at later time points. The acinar volumes show a large variation early in lung development and homogenize during maturation of the lung by reducing their size distribution by a factor of 7 until adulthood. The homogenization of the acinar sizes hints at an optimization of the gas-exchange region in the lungs of adult animals and that acini of different size are not evenly distributed in the lungs. This likely leads to more homogeneous ventilation at later stages in lung development.
Collapse
Affiliation(s)
| | - Eveline Yao
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Yuan YS, Yu F, Niu SP, Lu H, Kou YH, Xu HL. Combining CUBIC Optical Clearing and Thy1-YFP-16 Mice to Observe Morphological Axon Changes During Wallerian Degeneration. Curr Med Sci 2021; 41:944-952. [PMID: 34693494 DOI: 10.1007/s11596-021-2438-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/26/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Wallerian degeneration is a pathological process closely related to peripheral nerve regeneration following injury, and includes the disintegration and phagocytosis of peripheral nervous system cells. Traditionally, morphological changes are observed by performing immunofluorescence staining after sectioning, which results in the loss of some histological information. The purpose of this study was to explore a new, nondestructive, and systematic method for observing axonal histological changes during Wallerian degeneration. METHODS Thirty male Thy1-YFP-16 mice (SPF grade, 6 weeks old, 20±5 g) were randomly selected and divided into clear, unobstructed brain imaging cocktails and computational analysis (CUBIC) optical clearing (n=15) and traditional method groups (n=15). Five mice in each group were sacrificed at 1st, 3rd, and 5th day following a crush operation. The histological axon changes were observed by CUBIC light optical clearing treatment, direct tissue section imaging, and HE staining. RESULTS The results revealed that, compared with traditional imaging methods, there was no physical damage to the samples, which allowed for three-dimensional and deep-seated tissue imaging through CUBIC. Local image information could be nicely obtained by direct fluorescence imaging and HE staining, but it was difficult to obtain image information of the entire sample. At the same time, the image information obtained by fluorescence imaging and HE staining was partially lost. CONCLUSION The combining of CUBIC and Thy1-YFP transgenic mice allowed for a clear and comprehensive observation of histological changes of axons in Wallerian degeneration.
Collapse
Affiliation(s)
- Yu-Song Yuan
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Fei Yu
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Su-Ping Niu
- Office of Academic Research, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Hao Lu
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Yu-Hui Kou
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China.
| | - Hai-Lin Xu
- Department of Trauma and Orthopaedics, Peking University People's Hospital, Peking University, Beijing, 100044, China.
- Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
16
|
Kostrikov S, Johnsen KB, Braunstein TH, Gudbergsson JM, Fliedner FP, Obara EAA, Hamerlik P, Hansen AE, Kjaer A, Hempel C, Andresen TL. Optical tissue clearing and machine learning can precisely characterize extravasation and blood vessel architecture in brain tumors. Commun Biol 2021; 4:815. [PMID: 34211069 PMCID: PMC8249617 DOI: 10.1038/s42003-021-02275-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Precise methods for quantifying drug accumulation in brain tissue are currently very limited, challenging the development of new therapeutics for brain disorders. Transcardial perfusion is instrumental for removing the intravascular fraction of an injected compound, thereby allowing for ex vivo assessment of extravasation into the brain. However, pathological remodeling of tissue microenvironment can affect the efficiency of transcardial perfusion, which has been largely overlooked. We show that, in contrast to healthy vasculature, transcardial perfusion cannot remove an injected compound from the tumor vasculature to a sufficient extent leading to considerable overestimation of compound extravasation. We demonstrate that 3D deep imaging of optically cleared tumor samples overcomes this limitation. We developed two machine learning-based semi-automated image analysis workflows, which provide detailed quantitative characterization of compound extravasation patterns as well as tumor angioarchitecture in large three-dimensional datasets from optically cleared samples. This methodology provides a precise and comprehensive analysis of extravasation in brain tumors and allows for correlation of extravasation patterns with specific features of the heterogeneous brain tumor vasculature.
Collapse
Affiliation(s)
- Serhii Kostrikov
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kasper B Johnsen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas H Braunstein
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johann M Gudbergsson
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Laboratory for Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Frederikke P Fliedner
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth A A Obara
- Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Bispebjerg, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anders E Hansen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Casper Hempel
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| | - Thomas L Andresen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
17
|
Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 64:292-307. [PMID: 33095997 PMCID: PMC7909340 DOI: 10.1165/rcmb.2020-0306tr] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Department of Pediatrics, College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
18
|
New Look at RSV Infection: Tissue Clearing and 3D Imaging of the Entire Mouse Lung at Cellular Resolution. Viruses 2021; 13:v13020201. [PMID: 33525646 PMCID: PMC7912480 DOI: 10.3390/v13020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) is the major cause of severe acute respiratory tract illness in young children worldwide and a main pathogen for the elderly and immune-compromised people. In the absence of vaccines or effective treatments, a better characterization of the pathogenesis of RSV infection is required. To date, the pathophysiology of the disease and its diagnosis has mostly relied on chest X-ray and genome detection in nasopharyngeal swabs. The development of new imaging approaches is instrumental to further the description of RSV spread, virus-host interactions and related acute respiratory disease, at the level of the entire lung. METHODS By combining tissue clearing, 3D microscopy and image processing, we developed a novel visualization tool of RSV infection in undissected mouse lungs. RESULTS Whole tissue analysis allowed the identification of infected cell subtypes, based on both morphological traits and position within the cellular network. Furthermore, 3D imaging was also valuable to detect the cytoplasmic viral factories, also called inclusion bodies, a hallmark of RSV infection. CONCLUSIONS Whole lung clearing and 3D deep imaging represents an unprecedented visualization method of infected lungs to allow insight into RSV pathophysiology and improve the 2D histology analyses.
Collapse
|
19
|
Fiedler S, Wünnemann H, Hofmann I, Theobalt N, Feuchtinger A, Walch A, Schwaiger J, Wanke R, Blutke A. A practical guide to unbiased quantitative morphological analyses of the gills of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2020; 15:e0243462. [PMID: 33296424 PMCID: PMC7725368 DOI: 10.1371/journal.pone.0243462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Wünnemann
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
20
|
Montigaud Y, Pourchez J, Leclerc L, Tillement O, Clotagatide A, Bal C, Pinaud N, Ichinose N, Zhang B, Perinel S, Lux F, Crémillieux Y, Prevot N. Nebulised Gadolinium-Based Nanoparticles for a Multimodal Approach: Quantitative and Qualitative Lung Distribution Using Magnetic Resonance and Scintigraphy Imaging in Isolated Ventilated Porcine Lungs. Int J Nanomedicine 2020; 15:7251-7262. [PMID: 33061379 PMCID: PMC7533906 DOI: 10.2147/ijn.s260640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose This study aims at determining lung distribution of gadolinium-based polysiloxane nanoparticles, AGuIX® (small rigid platform - SRP), as a potential theranostic approach by the pulmonary route. Methods First, the aerodynamic size distribution and the aerosol output rate were thoroughly characterized. Then, a multimodal approach using magnetic resonance (MR) and gamma-camera (GC) imaging allows to assess the deposition of the aerosolised nanoparticles in the respiratory tract using isolated ventilated porcine lungs. Results The SRP has proven to be radiolabelled by radioisotope with a good yield. Crude SRP or radiolabelled ones showed the same aerodynamic size distribution and output as a conventional molecular tracer, as sodium fluoride. With MR and GC imaging approaches, the nebulised dose represented about 50% of the initial dose of nanoparticles placed in the nebuliser. Results expressed as proportions of the deposited aerosol showed approximately a regional aerosol deposition of 50% of the deposited dose in the lungs and 50% in the upper airways. Each technique assessed a homogeneous pattern of deposited nanoparticles in Lungs. MR observed a strong signal enhancement with the SRP, similar to the one obtained with a commonly used MRI contrast agent, gadoterate meglumine. Conclusion As a known theranostic approach by intravenous administration, SRP appeared to be easily aerosolised with a conventional nebuliser. The present work proves that pulmonary administration of SRP is feasible in a human-like model and allows multimodal imaging with MR and GC imaging. This work presents the proof of concept of SRP nebulisation and aims to generate preclinical data for the potential clinical transfer of SRP for pulmonary delivery.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | | | - Anthony Clotagatide
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| | | | | | | | - Bei Zhang
- Canon Medical Systems Europe, Zoetermeer, Netherlands
| | - Sophie Perinel
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| | - François Lux
- Institut Lumière Matière, Université de Lyon, Villeurbanne, France.,Institut Universitaire de France (IUF), Paris, France
| | | | - Nathalie Prevot
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France.,CHU Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
21
|
Wagner DE, Ikonomou L, Gilpin SE, Magin CM, Cruz F, Greaney A, Magnusson M, Chen YW, Davis B, Vanuytsel K, Rolandsson Enes S, Krasnodembskaya A, Lehmann M, Westergren-Thorsson G, Stegmayr J, Alsafadi HN, Hoffman ET, Weiss DJ, Ryan AL. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Res 2020; 6:00123-2020. [PMID: 33123557 PMCID: PMC7569162 DOI: 10.1183/23120541.00123-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung. This selection of topics represents some of the most dynamic research areas in which incredible progress continues to be made. The workshop also included active discussion on the regulation and commercialisation of regenerative medicine products and concluded with an open discussion to set priorities and recommendations for future research directions in basic and translation lung biology.
Collapse
Affiliation(s)
- Darcy E. Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- These authors contributed equally
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- These authors contributed equally
| | - Sarah E. Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Chelsea M. Magin
- Depts of Medicine and Bioengineering, University of Colorado, Denver, Aurora, CO, USA
| | - Fernanda Cruz
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allison Greaney
- Dept of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mattias Magnusson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Sara Rolandsson Enes
- Dept of Medicine, University of Vermont, Burlington, VT, USA
- Dept of Experimental Medical Science, Division of Lung Biology, Lund University, Lund, Sweden
| | | | - Mareike Lehmann
- Comprehensive Pneumology Center, Lung Repair and Regeneration Unit, Helmholtz Center Munich, Munich, Germany
| | | | - John Stegmayr
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Evan T. Hoffman
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Daniel J. Weiss
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
- Dept of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Wagner DE, Ubags ND, Troosters T, Alejandre Alcazar MA. Fostering the integration of basic respiratory science and translational pulmonary medicine for the future. Am J Physiol Lung Cell Mol Physiol 2020; 319:L538-L540. [PMID: 32755303 DOI: 10.1152/ajplung.00361.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Darcy E Wagner
- Lung Bioengineering and Regeneration (LBR), Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Center, Lund University, Lund, Sweden
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland
| | - Thierry Troosters
- Department of Rehabilitation Sciences, KU Leuven and Pulmonary Rehabilitation, University Hospital Gasthuisberg, Leuven, Belgium
| | - Miguel A Alejandre Alcazar
- Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
23
|
Ehrmann S, Schmid O, Darquenne C, Rothen-Rutishauser B, Sznitman J, Yang L, Barosova H, Vecellio L, Mitchell J, Heuze-Vourc’h N. Innovative preclinical models for pulmonary drug delivery research. Expert Opin Drug Deliv 2020; 17:463-478. [PMID: 32057260 PMCID: PMC8083945 DOI: 10.1080/17425247.2020.1730807] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Pulmonary drug delivery is a complex field of research combining physics which drive aerosol transport and deposition and biology which underpins efficacy and toxicity of inhaled drugs. A myriad of preclinical methods, ranging from in-silico to in-vitro, ex-vivo and in-vivo, can be implemented.Areas covered: The present review covers in-silico mathematical and computational fluid dynamics modelization of aerosol deposition, cascade impactor technology to estimated drug delivery and deposition, advanced in-vitro cell culture methods and associated aerosol exposure, lung-on-chip technology, ex-vivo modeling, in-vivo inhaled drug delivery, lung imaging, and longitudinal pharmacokinetic analysis.Expert opinion: No single preclinical model can be advocated; all methods are fundamentally complementary and should be implemented based on benefits and drawbacks to answer specific scientific questions. The overall best scientific strategy depends, among others, on the product under investigations, inhalation device design, disease of interest, clinical patient population, previous knowledge. Preclinical testing is not to be separated from clinical evaluation, as small proof-of-concept clinical studies or conversely large-scale clinical big data may inform preclinical testing. The extend of expertise required for such translational research is unlikely to be found in one single laboratory calling for the setup of multinational large-scale research consortiums.
Collapse
Affiliation(s)
- Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep network, Tours France
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC0623A, La Jolla, CA 92093-0623, United States
| | | | - Josue Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Julius Silver building, Office 246, Haifa 32000, Israel
| | - Lin Yang
- Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hana Barosova
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland
| | - Laurent Vecellio
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| | - Jolyon Mitchell
- Jolyon Mitchell Inhaler Consulting Services Inc., 1154 St. Anthony Road, London, Ontario, Canada, N6H 2R1
| | - Nathalie Heuze-Vourc’h
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
24
|
Umstead TM, Hewage EK, Mathewson M, Beaudoin S, Chroneos ZC, Wang M, Halstead ES. Lower respiratory tract delivery, airway clearance, and preclinical efficacy of inhaled GM-CSF in a postinfluenza pneumococcal pneumonia model. Am J Physiol Lung Cell Mol Physiol 2020; 318:L571-L579. [PMID: 31994895 DOI: 10.1152/ajplung.00296.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Inhaled granulocyte/macrophage colony-stimulating factor (GM-CSF) shows promise as a therapeutic to treat viral and bacterial pneumonia, but no mouse model of inhaled GM-CSF has been described. We sought to 1) develop a mouse model of aerosolized recombinant mouse GM-CSF administration and 2) investigate the protection conferred by inhaled GM-CSF during influenza A virus (IAV) infection against secondary bacterial infection with pneumococcus. To assess lower respiratory tract delivery of aerosolized therapeutics, mice were exposed to aerosolized fluorescein (FITC)-labeled dextran noninvasively via an aerosolization tower or invasively using a rodent ventilator. The efficiency of delivery to the lower respiratory tracts of mice was 0.01% noninvasively compared with 0.3% invasively. The airway pharmacokinetics of inhaled GM-CSF fit a two-compartment model with a terminal phase half-life of 1.3 h. To test if lower respiratory tract levels were sufficient for biological effect, mice were infected intranasally with IAV, treated with aerosolized recombinant mouse GM-CSF, and then secondarily infected with Streptococcus pneumoniae. Inhaled GM-CSF conferred a significant survival benefit to mice against secondary challenge with S. pneumoniae (P < 0.05). Inhaled GM-CSF did not reduce airway or lung parenchymal bacterial growth but significantly reduced the incidence of S. pneumoniae bacteremia (P < 0.01). However, GM-CSF overexpression during influenza virus infection did not affect lung epithelial permeability to FITC-dextran ingress into the bloodstream. Therefore, the mechanism of protection conferred by inhaled GM-CSF appears to be locally mediated improved lung antibacterial resistance to systemic bacteremia during IAV infection.
Collapse
Affiliation(s)
- Todd M Umstead
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Eranda Kurundu Hewage
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Margaret Mathewson
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sarah Beaudoin
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zissis C Chroneos
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ming Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - E Scott Halstead
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
25
|
Bauer C, Krueger M, Lamm WJE, Glenny RW, Beichel RR. lapdMouse: associating lung anatomy with local particle deposition in mice. J Appl Physiol (1985) 2019; 128:309-323. [PMID: 31774357 DOI: 10.1152/japplphysiol.00615.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To facilitate computational toxicology, we developed an approach for generating high-resolution lung-anatomy and particle-deposition mouse models. Major processing steps of our method include mouse preparation, serial block-face cryomicrotome imaging, and highly automated image analysis for generating three-dimensional (3D) mesh-based models and volume-based models of lung anatomy (airways, lobes, sublobes, and near-acini structures) that are linked to local particle-deposition measurements. Analysis resulted in 34 mouse models covering 4 different mouse strains (B6C3F1: 8, BALB/C: 11, C57Bl/6: 8, and CD-1: 7) as well as both sexes (16 male and 18 female) and different particle sizes [2 μm (n = 15), 1 μm (n = 16), and 0.5 μm (n = 3)]. On average, resulting mouse airway models had 1,616.9 ± 298.1 segments, a centerline length of 597.6 ± 59.8 mm, and 1,968.9 ± 296.3 outlet regions. In addition to 3D geometric lung models, matching detailed relative particle-deposition measurements are provided. All data sets are available online in the lapdMouse archive for download. The presented approach enables linking relative particle deposition to anatomical structures like airways. This will in turn improve the understanding of site-specific airflows and how they affect drug, environmental, or biological aerosol deposition.NEW & NOTEWORTHY Computer simulations of particle deposition in mouse lungs play an important role in computational toxicology. Until now, a limiting factor was the lack of high-resolution mouse lung models and measured local particle-deposition information, which are required for developing accurate modeling approaches (e.g., computational fluid dynamics). With the developed imaging and analysis approach, we address this issue and provide all of the raw and processed data in a publicly accessible repository.
Collapse
Affiliation(s)
- Christian Bauer
- University of Iowa, Department of Electrical and Computer Engineering, Iowa City, Iowa
| | - Melissa Krueger
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Wayne J E Lamm
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Robb W Glenny
- Departments of Medicine and of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington
| | - Reinhard R Beichel
- University of Iowa, Department of Electrical and Computer Engineering, Iowa City, Iowa
| |
Collapse
|