1
|
Li X, Jin K, Cheng TC, Liao YC, Lee WJ, Bhullar AS, Chen LC, Rychahou P, Phelps MA, Ho YS, Guo P. RNA four-way junction (4WJ) for spontaneous cancer-targeting, effective tumor-regression, metastasis suppression, fast renal excretion and undetectable toxicity. Biomaterials 2024; 305:122432. [PMID: 38176263 PMCID: PMC10994150 DOI: 10.1016/j.biomaterials.2023.122432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
The field of RNA therapeutics has been emerging as the third milestone in pharmaceutical drug development. RNA nanoparticles have displayed motile and deformable properties to allow for high tumor accumulation with undetectable healthy organ accumulation. Therefore, RNA nanoparticles have the potential to serve as potent drug delivery vehicles with strong anti-cancer responses. Herein, we report the physicochemical basis for the rational design of a branched RNA four-way junction (4WJ) nanoparticle that results in advantageous high-thermostability and -drug payload for cancer therapy, including metastatic tumors in the lung. The 4WJ nanostructure displayed versatility through functionalization with an anti-cancer chemical drug, SN38, for the treatment of two different cancer models including colorectal cancer xenograft and orthotopic lung metastases of colon cancer. The resulting 4WJ RNA drug complex spontaneously targeted cancers effectively for cancer inhibition with and without ligands. The 4WJ displayed fast renal excretion, rapid body clearance, and little organ accumulation with undetectable toxicity and immunogenicity. The safety parameters were documented by organ histology, blood biochemistry, and pathological analysis. The highly efficient cancer inhibition, undetectable drug toxicity, and favorable Chemical, Manufacturing, and Control (CMC) production of RNA nanoparticles document a candidate with high potential for translation in cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Kai Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan
| | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110031, Taiwan
| | - Wen-Jui Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Abhjeet S Bhullar
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Li-Ching Chen
- Department of Biological Science & Technology, China Medical University, Taichung, 406040, Taiwan
| | - Piotr Rychahou
- Markey Cancer Center, Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuan Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Ma X, Zhang Y, Huang K, Zhu L, Xu W. Multifunctional rolling circle transcription-based nanomaterials for advanced drug delivery. Biomaterials 2023; 301:122241. [PMID: 37451000 DOI: 10.1016/j.biomaterials.2023.122241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Bohmer M, Bhullar AS, Weitao T, Zhang L, Lee JH, Guo P. Revolving hexameric ATPases as asymmetric motors to translocate double-stranded DNA genome along one strand. iScience 2023; 26:106922. [PMID: 37305704 PMCID: PMC10250835 DOI: 10.1016/j.isci.2023.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
DsDNA translocation through nanoscale pores is generally accomplished by ATPase biomotors. The discovery of the revolving dsDNA translocation mechanism, as opposed to rotation, in bacteriophage phi29 elucidated how ATPase motors move dsDNA. Revolution-driven, hexameric dsDNA motors have been reported in herpesvirus, bacterial FtsK, Streptomyces TraB, and T7 phage. This review explores the common relationship between their structure and mechanisms. Commonalities include moving along the 5'→3' strand, inchworm sequential action leading to an asymmetrical structure, channel chirality, channel size, and 3-step channel gating for controlling motion direction. The revolving mechanism and contact with one of the dsDNA strands addresses the historic controversy of dsDNA packaging using nicked, gapped, hybrid, or chemically modified DNA. These controversies surrounding dsDNA packaging activity using modified materials can be answered by whether the modification was introduced into the 3'→5' or 5'→3' strand. Perspectives concerning solutions to the controversy of motor structure and stoichiometry are also discussed.
Collapse
Affiliation(s)
- Margaret Bohmer
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Abhjeet S. Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Weitao
- Center for the Genetics of Host Defense UT Southwestern Medical Center, Dallas, TX, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Li X, Bhullar AS, Binzel DW, Guo P. The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Adv Drug Deliv Rev 2022; 186:114316. [PMID: 35526663 DOI: 10.1016/j.addr.2022.114316] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
Besides mRNA, rRNA, and tRNA, cells contain many other noncoding RNA that display critical roles in the regulation of cellular functions. Human genome sequencing revealed that the majority of non-protein-coding DNA actually codes for non-coding RNAs. The dynamic nature of RNA results in its motile and deformative behavior. These conformational transitions such as the change of base-pairing, breathing within complemented strands, and pseudoknot formation at the 2D level as well as the induced-fit and conformational capture at the 3D level are important for their biological functions including regulation, translation, and catalysis. The dynamic, motile and catalytic activity has led to a belief that RNA is the origin of life. We have recently reported that the deformative property of RNA nanoparticles enhances their penetration through the leaky blood vessel of cancers which leads to highly efficient tumor accumulation. This special deformative property also enables RNA nanoparticles to pass the glomerulus, overcoming the filtration size limit, resulting in fast renal excretion and rapid body clearance, thus low or no toxicity. The biodistribution of RNA nanoparticles can be further improved by the incorporation of ligands for cancer targeting. In addition to the favorable biodistribution profiles, RNA nanoparticles possess other properties including self-assembly, negative charge, programmability, and multivalency; making it a great material for pharmaceutical applications. The intrinsic negative charge of RNA nanoparticles decreases the toxicity of drugs by preventing nonspecific binding to the negative charged cell membrane and enhancing the solubility of hydrophobic drugs. The polyvalent property of RNA nanoparticles allows the multi-functionalization which can apply to overcome drug resistance. This review focuses on the summary of these unique properties of RNA nanoparticles, which describes the mechanism of RNA dynamic, motile and deformative properties, and elucidates and prepares to welcome the RNA therapeutics as the third milestone in pharmaceutical drug development.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Abhjeet S Bhullar
- Interdisciplinary Biophysics Graduate Program, College of Art and Science, The Ohio State University, Columbus, OH 43210, United States
| | - Daniel W Binzel
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Peixuan Guo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States; College of Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
5
|
Kim D, Han S, Ji Y, Moon S, Nam H, Lee JB. Multimeric RNAs for efficient RNA-based therapeutics and vaccines. J Control Release 2022; 345:770-785. [PMID: 35367477 PMCID: PMC8970614 DOI: 10.1016/j.jconrel.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
There has been a growing interest in RNA therapeutics globally, and much progress has been made in this area, which has been further accelerated by the clinical applications of RNA-based vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Following these successful clinical trials, various technologies have been developed to improve the efficacy of RNA-based drugs. Multimerization of RNA therapeutics is one of the most attractive approaches to ensure high stability, high efficacy, and prolonged action of RNA-based drugs. In this review, we offer an overview of the representative approaches for generating repetitive functional RNAs by chemical conjugation, structural self-assembly, enzymatic elongation, and self-amplification. The therapeutic and vaccine applications of engineered multimeric RNAs in various diseases have also been summarized. By outlining the current status of multimeric RNAs, the potential of multimeric RNA as a promising treatment strategy is highlighted.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Hyangsu Nam
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| |
Collapse
|
6
|
Guo L, Shi D, Shang M, Sun X, Meng D, Liu X, Zhou X, Li J. Utilizing RNA nanotechnology to construct negatively charged and ultrasound-responsive nanodroplets for targeted delivery of siRNA. Drug Deliv 2022; 29:316-327. [PMID: 35037525 PMCID: PMC8765274 DOI: 10.1080/10717544.2022.2026532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ultrasound nanodroplets (NDs) have been reported as a promising nanocarrier for siRNA delivery depending on its unique strengths of sonoporation. Presently, common means for NDs-mediated siRNA delivery is through electrostatic interaction, but challenges like cationic toxicity still exist. In this study, we demonstrated a novel strategy to construct negatively charged and ultrasound (US)-responsive O-carboxymethyl chitosan (O-CMS) NDs as a siRNA targeted delivery system through three-way junction of bacteriophage phi29 DNA packaging motor (3WJ-pRNA) nanotechnology. 39nt A10-3.2 aptamer targeting prostate specific membrane antigen (PSMA) and 21nt siRNA against cationic amino acid transporter 1 (siCAT-1) were annealed to 3WJ-pRNA scaffold via complementation with an extended sequence. The cholesterol molecule attached to one branch facilitates the 3WJ-pRNA nanoparticles anchoring onto NDs. The desired O-CMS NDs with siRNA-loading and RNA-aptamer modification (A10-3.2/siCAT-1/3WJ-NDs) were successfully prepared, which were with spherical shapes, core–shell structures and uniform in sizes (198 nm with PDI 0.3). As a main proportion of shell, O-CMC showed a certain anti-tumor effects. In vitro studies demonstrated that A10-3.2/siCAT-1/3WJ-NDs exhibited good contrast-enhanced US imaging, buffering capacity and high bio-safety, were able to deliver siCAT-1 to PSMA-overexpressed prostate cancer cells under US irradiation, thus silence the CAT-1 expression, and consequently suppressing 22RV1 cell proliferation and migration. Taken overall, our findings provide a promising strategy to develop negatively charged and US-responsive NDs for tumor-targeted siRNA delivery.
Collapse
Affiliation(s)
- Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Tang Y, Liao X, Wang C, Liu Y, Pan J, Tian Y, Teng Z, Lu G. Self-assembled small messenger RNA nanospheres for efficient therapeutic apoptin expression and synergistic Gene-Chemotherapy of breast cancer. J Colloid Interface Sci 2021; 603:191-198. [PMID: 34192626 DOI: 10.1016/j.jcis.2021.06.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
In this work, small self-assembled messenger RNA nanospheres (mRNA-NSs) were successfully prepared by rolling circle transcription on a constructed apoptin plasmid. The self-assembled mRNA-NSs have a uniform diameter of approximately 65 nm, good dispersity in solution, and efficient therapeutic apoptin expression ability. In addition, the mRNA-NSs have a high loading capacity of 8.2% for the antitumor drug doxorubicin (Dox), which can effectively deliver the loaded Dox into 4 T1 cells. Cellular experiments show that Dox-loaded self-assembled messenger RNA nanospheres (mRNA-NSs@Dox) can reduce the viability of 4 T1 breast cancer cells by significantly upregulating Bax protein, thereby inducing the activation of Caspase 3 in 4 T1 cells. In vivo experiments show that mRNA-NSs@Dox can effectively increase the necrosis of tumor tissue, reduce the expression of Ki67, and exhibit a synergistic gene-chemotherapy effect in breast cancer-bearing mice. Taken together, this study successfully prepared self-assembled apoptin messenger RNA nanospheres (mRNA-NSs), which can improve the expression of the therapeutic protein apoptin and exhibit excellent synergistic antitumor effects after loading Dox, providing new ideas for the gene treatment and chemotherapy of breast cancer.
Collapse
Affiliation(s)
- Yuxia Tang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, China
| | - Xiang Liao
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, China
| | - Chunyan Wang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, China
| | - Ying Liu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, China
| | - Jing Pan
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, China.
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, 210002 Jiangsu, China.
| |
Collapse
|
9
|
Dönmüş B, Ünal S, Kirmizitaş FC, Türkoğlu Laçin N. Virus-associated ribozymes and nano carriers against COVID-19. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:204-218. [PMID: 33645342 DOI: 10.1080/21691401.2021.1890103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoo tonic, highly pathogenic virus. The new type of coronavirus with contagious nature spread from Wuhan (China) to the whole world in a very short time and caused the new coronavirus disease (COVID-19). COVID-19 has turned into a global public health crisis due to spreading by close person-to-person contact with high transmission capacity. Thus, research about the treatment of the damages caused by the virus or prevention from infection increases everyday. Besides, there is still no approved and definitive, standardized treatment for COVID-19. However, this disaster experienced by human beings has made us realize the significance of having a system ready for use to prevent humanity from viral attacks without wasting time. As is known, nanocarriers can be targeted to the desired cells in vitro and in vivo. The nano-carrier system targeting a specific protein, containing the enzyme inhibiting the action of the virus can be developed. The system can be used by simple modifications when we encounter another virus epidemic in the future. In this review, we present a potential treatment method consisting of a nanoparticle-ribozyme conjugate, targeting ACE-2 receptors by reviewing the virus-associated ribozymes, their structures, types and working mechanisms.
Collapse
Affiliation(s)
- Beyza Dönmüş
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Sinan Ünal
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Fatma Ceren Kirmizitaş
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| | - Nelisa Türkoğlu Laçin
- Molecular Biology and Genetics Department, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
10
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
11
|
Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 2021; 168:79-98. [PMID: 32712197 DOI: 10.1016/j.addr.2020.07.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Deoxyribonucleic acid (DNA) is a promising synthesizer for precisely constructing almost arbitrary geometry in two and three dimensions. Among various DNA-based soft materials, DNA hydrogels are comprised of hydrophilic polymeric networks of crosslinked DNA chains. For their properties of biocompatibility, porosity, sequence programmability and tunable multifunctionality, DNA hydrogels have been widely studied in bioanalysis and biomedicine. In this review, recent developments in DNA hydrogels and their applications in drug delivery systems are highlighted. First, physical and chemical crosslinking methods for constructing DNA hydrogels are introduced. Subsequently, responses of DNA hydrogels to nonbiological and biological stimuli are described. Finally, DNA hydrogel-based delivery platforms for different types of drugs are detailed. With the emergence of gene therapy, this review also gives future prospects for combining DNA hydrogels with the gene editing toolbox.
Collapse
|
12
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
13
|
Kasprzak WK, Ahmed NA, Shapiro BA. Modeling ligand docking to RNA in the design of RNA-based nanostructures. Curr Opin Biotechnol 2020; 63:16-25. [DOI: 10.1016/j.copbio.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|
14
|
Chandler M, Panigaj M, Rolband LA, Afonin KA. Challenges to optimizing RNA nanostructures for large scale production and controlled therapeutic properties. Nanomedicine (Lond) 2020; 15:1331-1340. [PMID: 32452262 PMCID: PMC7304434 DOI: 10.2217/nnm-2020-0034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleic acids have been utilized to construct an expansive collection of nanoarchitectures varying in design, physicochemical properties, cellular processing and biomedical applications. However, the broader therapeutic adaptation of nucleic acid nanoassemblies in general, and RNA-based nanoparticles in particular, have faced several challenges in moving towards (pre)clinical settings. For one, the large-batch synthesis of nucleic acids is still under development, with multi-stranded and chemically modified assemblies requiring greater production capacity while maintaining consistent medical-grade outputs. Furthermore, the unknown immunostimulation by these nanomaterials poses additional challenges, necessary to be overcome for optimizing future development of clinically approved RNA nanoparticles.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Martin Panigaj
- Institute of Biology & Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic
| | - Lewis A Rolband
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
15
|
Jin JO, Kim G, Hwang J, Han KH, Kwak M, Lee PCW. Nucleic acid nanotechnology for cancer treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188377. [PMID: 32418899 DOI: 10.1016/j.bbcan.2020.188377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Cancer is one of the most prevalent potentially lethal diseases. With the increase in the number of investigations into the uses of nanotechnology, many nucleic acid (NA)-based nanostructures such as small interfering RNA, microRNA, aptamers, and immune adjuvant NA have been applied to treat cancer. Here, we discuss studies on the applications of NA in cancer treatment, recent research trends, and the limitations and prospects of specific NA-mediated gene therapy and immunotherapy for cancer treatment. The NA structures used for cancer therapy consist only of NA or hybrids comprising organic or inorganic substances integrated with functional NA. We also discuss delivery vehicles for therapeutic NA and anti-cancer agents, and recent trends in NA-based gene therapy and immunotherapy against cancer.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea.
| | - Gyurin Kim
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Juyoung Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Kyung Ho Han
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea; DWI-Leibniz Institute for Interactive Materials, Aachen 52056, Germany.
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
16
|
Li J, Mohammed-Elsabagh M, Paczkowski F, Li Y. Circular Nucleic Acids: Discovery, Functions and Applications. Chembiochem 2020; 21:1547-1566. [PMID: 32176816 DOI: 10.1002/cbic.202000003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Circular nucleic acids (CNAs) are nucleic acid molecules with a closed-loop structure. This feature comes with a number of advantages including complete resistance to exonuclease degradation, much better thermodynamic stability, and the capability of being replicated by a DNA polymerase in a rolling circle manner. Circular functional nucleic acids, CNAs containing at least a ribozyme/DNAzyme or a DNA/RNA aptamer, not only inherit the advantages of CNAs but also offer some unique application opportunities, such as the design of topology-controlled or enabled molecular devices. This article will begin by summarizing the discovery, biogenesis, and applications of naturally occurring CNAs, followed by discussing the methods for constructing artificial CNAs. The exploitation of circular functional nucleic acids for applications in nanodevice engineering, biosensing, and drug delivery will be reviewed next. Finally, the efforts to couple functional nucleic acids with rolling circle amplification for ultra-sensitive biosensing and for synthesizing multivalent molecular scaffolds for unique applications in biosensing and drug delivery will be recapitulated.
Collapse
Affiliation(s)
- Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Mostafa Mohammed-Elsabagh
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Freeman Paczkowski
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
17
|
RNA nanotechnology in synthetic biology. Curr Opin Biotechnol 2020; 63:135-141. [PMID: 32035339 DOI: 10.1016/j.copbio.2019.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
We review recent advances in the design and expression of synthetic RNA sequences inside cells, to regulate gene expression and to achieve spatial localization of components. We focus on approaches that exploit the programmability of the secondary and tertiary structure of RNA to build scalable and modular devices that fold spontaneously and have the capacity to respond to environmental inputs.
Collapse
|
18
|
Dobrovolskaia MA. Nucleic Acid Nanoparticles at a Crossroads of Vaccines and Immunotherapies. Molecules 2019; 24:molecules24244620. [PMID: 31861154 PMCID: PMC6943637 DOI: 10.3390/molecules24244620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Vaccines and immunotherapies involve a variety of technologies and act through different mechanisms to achieve a common goal, which is to optimize the immune response against an antigen. The antigen could be a molecule expressed on a pathogen (e.g., a disease-causing bacterium, a virus or another microorganism), abnormal or damaged host cells (e.g., cancer cells), environmental agent (e.g., nicotine from a tobacco smoke), or an allergen (e.g., pollen or food protein). Immunogenic vaccines and therapies optimize the immune response to improve the eradication of the pathogen or damaged cells. In contrast, tolerogenic vaccines and therapies retrain or blunt the immune response to antigens, which are recognized by the immune system as harmful to the host. To optimize the immune response to either improve the immunogenicity or induce tolerance, researchers employ different routes of administration, antigen-delivery systems, and adjuvants. Nanocarriers and adjuvants are of particular interest to the fields of vaccines and immunotherapy as they allow for targeted delivery of the antigens and direct the immune response against these antigens in desirable direction (i.e., to either enhance immunogenicity or induce tolerance). Recently, nanoparticles gained particular attention as antigen carriers and adjuvants. This review focuses on a particular subclass of nanoparticles, which are made of nucleic acids, so-called nucleic acid nanoparticles or NANPs. Immunological properties of these novel materials and considerations for their clinical translation are discussed.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|