1
|
Babar M, Viswanathan V. Modeling Scanning Electrochemical Cell Microscopy (SECCM) in Twisted Bilayer Graphene. J Phys Chem Lett 2024; 15:7371-7378. [PMID: 38995158 DOI: 10.1021/acs.jpclett.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Twisted 2D-flat band materials host exotic quantum phenomena and novel moiré patterns, showing immense promise for advanced spintronic and quantum applications. Here, we evaluate the nanostructure-activity relationship in twisted bilayer graphene by modeling it under the scanning electrochemical cell microscopy setup to resolve its spatial moiré domains. We solve the steady state ion transport inside a 3D nanopipette to isolate the current response at AA and AB domains. Interfacial reaction rates are obtained from a modified Marcus-Hush-Chidsey theory combining input from a tight binding model that describes the electronic structure of bilayer graphene. High rates of redox exchange are observed at the AA domains, an effect that reduces with diminished flat bands or a larger cross-sectional area of the nanopipette. Using voltammograms, we identify an optimal voltage that maximizes the current difference between the domains. Our study lays down the framework to electrochemically capture prominent features of the band structure that arise from spatial domains and deformations in 2D flat-band materials.
Collapse
Affiliation(s)
- Mohammad Babar
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Venkatasubramanian Viswanathan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Jayamaha G, Tegg L, Bentley CL, Kang M. High Throughput Correlative Electrochemistry-Microscopy Analysis on a Zn-Al Alloy. ACS PHYSICAL CHEMISTRY AU 2024; 4:375-384. [PMID: 39069978 PMCID: PMC11274284 DOI: 10.1021/acsphyschemau.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 07/30/2024]
Abstract
Conventional electrodes and electrocatalysts possess complex compositional and structural motifs that impact their overall electrochemical activity. These motifs range from defects and crystal orientation on the electrode surface to layers and composites with other electrode components, such as binders. Therefore, it is vital to identify how these individual motifs alter the electrochemical activity of the electrode. Scanning electrochemical cell microscopy (SECCM) is a powerful tool that has been developed for investigating the electrochemical properties of complex structures. An example of a complex electrode surface is Zn-Al alloys, which are utilized in various sectors ranging from cathodic protection of steel to battery electrodes. Herein, voltammetric SECCM and correlative microstructure analysis are deployed to probe the electrochemical activities of a range of microstructural features, with 651 independent voltammetric measurements made in six distinctive areas on the surface of a Zn-Al alloy. Energy-dispersive X-ray spectroscopy (EDS) mapping reveals that specific phases of the alloy structure, particularly the α-phase Zn-Al, favor the early stages of metal dissolution (i.e., oxidation) and electrochemical reduction processes such as the oxygen reduction reaction (ORR) and redeposition of dissolved metal ions. A correlative analysis performed by comparing high-resolution quantitative elemental composition (i.e., EDS) with the corresponding spatially resolved cyclic voltammograms (i.e., SECCM) shows that the nanospot α-phase of the Zn-Al alloy contains high Al content (30-50%), which may facilitate local Al dissolution as the local pH increases during the ORR in unbuffered aqueous media. Overall, SECCM-based high-throughput electrochemical screening, combined with microstructure analysis, conclusively demonstrates that structure-composition heterogeneity significantly influences the local electrochemical activity on complex electrode surfaces. These insights are invaluable for the rational design of advanced electromaterials.
Collapse
Affiliation(s)
- Gunani Jayamaha
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Levi Tegg
- School
of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Cameron L. Bentley
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Minkyung Kang
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
3
|
Gaudin LF, Wright IR, Harris-Lee TR, Jayamaha G, Kang M, Bentley CL. Five years of scanning electrochemical cell microscopy (SECCM): new insights and innovations. NANOSCALE 2024; 16:12345-12367. [PMID: 38874335 DOI: 10.1039/d4nr00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) is a nanopipette-based technique which enables measurement of localised electrochemistry. SECCM has found use in a wide range of electrochemical applications, and due to the wider uptake of this technique in recent years, new applications and techniques have been developed. This minireview has collected all SECCM research articles published in the last 5 years, to demonstrate and celebrate the recent advances, and to make it easier for SECCM researchers to remain well-informed. The wide range of SECCM applications is demonstrated, which are categorised here into electrocatalysis, electroanalysis, photoelectrochemistry, biological materials, energy storage materials, corrosion, electrosynthesis, and instrumental development. In the collection of this library of SECCM studies, a few key trends emerge. (1) The range of materials and processes explored with SECCM has grown, with new applications emerging constantly. (2) The instrumental capabilities of SECCM have grown, with creative techniques being developed from research groups worldwide. (3) The SECCM research community has grown significantly, with adoption of the SECCM technique becoming more prominent.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - India R Wright
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - Thom R Harris-Lee
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - Gunani Jayamaha
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Minkyung Kang
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
4
|
Mesa CA, Sachs M, Pastor E, Gauriot N, Merryweather AJ, Gomez-Gonzalez MA, Ignatyev K, Giménez S, Rao A, Durrant JR, Pandya R. Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging. Nat Commun 2024; 15:3908. [PMID: 38724495 PMCID: PMC11082147 DOI: 10.1038/s41467-024-47870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Photo(electro)catalysts use sunlight to drive chemical reactions such as water splitting. A major factor limiting photocatalyst development is physicochemical heterogeneity which leads to spatially dependent reactivity. To link structure and function in such systems, simultaneous probing of the electrochemical environment at microscopic length scales and a broad range of timescales (ns to s) is required. Here, we address this challenge by developing and applying in-situ (optical) microscopies to map and correlate local electrochemical activity, with hole lifetimes, oxygen vacancy concentrations and photoelectrode crystal structure. Using this multi-modal approach, we study prototypical hematite (α-Fe2O3) photoelectrodes. We demonstrate that regions of α-Fe2O3, adjacent to microstructural cracks have a better photoelectrochemical response and reduced back electron recombination due to an optimal oxygen vacancy concentration, with the film thickness and extended light exposure also influencing local activity. Our work highlights the importance of microscopic mapping to understand activity, in even seemingly homogeneous photoelectrodes.
Collapse
Affiliation(s)
- Camilo A Mesa
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
- Institute of Advanced Materials (INAM) Universitat Jaume I, 12006, Castelló, Spain
- Sociedad de Doctores e Investigadores de Colombia, Grupo de Investigación y Desarrollo en Ciencia Tecnología e Innovación - BioGRID, Bogotá, 111011, Colombia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, UAB Campus, 08193, Bellaterra, Barcelona, Spain
| | - Michael Sachs
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Ernest Pastor
- Institute of Advanced Materials (INAM) Universitat Jaume I, 12006, Castelló, Spain
- CNRS, Univ Rennes, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000, Rennes, France
| | - Nicolas Gauriot
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Alice J Merryweather
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Miguel A Gomez-Gonzalez
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Konstantin Ignatyev
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, 12006, Castelló, Spain
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
- Department of Materials Science and Engineering, Swansea University, Swansea, SA2 7AX, United Kingdom
| | - Raj Pandya
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK.
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005, Paris, France.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
5
|
Makogon A, Noël JM, Kanoufi F, Shkirskiy V. Deciphering the Interplay between Local and Global Dynamics of Anodic Metal Oxidation. Anal Chem 2024; 96:1129-1137. [PMID: 38197168 DOI: 10.1021/acs.analchem.3c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The stark difference between global and local metal oxidation dynamics underscores the need for methodologies capable of performing precise sub-μm-scale and wide-field measurements. In this study, we present reflective microscopy as a tool developed to address this challenge, illustrated by the example of chronoamperometric Fe oxidation in a NaCl solution. Analysis at a local scale of 10 s of μm has revealed three distinct periods of Fe oxidation: the initial covering of the metal interface with a surface film, followed by the electrochemical conversion of the formed surface film, and finally, the in-depth oxidation of Fe. In addition, thermodynamic calculations and the quantitative analysis of changes in optical signal (light intensity), correlated with variations in refractive indexes, suggest the initial formation of maghemite, followed by its subsequent conversion to magnetite. The reactivity maps for all three periods are heterogeneous, which can be attributed to the preferential oxidation of certain crystallographic grains. Notably, at the global scale of 100 s of μm, reactivity initiates at the electrode border and progresses toward its center, demonstrating a unique pattern that is independent of the local metal structure. This finding underscores the significance of simultaneously employing sub-μm-precise, quantitative, and wide-field measurements for a comprehensive description of metal oxidation processes.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- ITODYS, CNRS, Université Paris Cité, 75013 Paris, France
| | | | | |
Collapse
|
6
|
Wu ZF, Sun PZ, Wahab OJ, Tan YT, Barry D, Periyanagounder D, Pillai PB, Dai Q, Xiong WQ, Vega LF, Lulla K, Yuan SJ, Nair RR, Daviddi E, Unwin PR, Geim AK, Lozada-Hidalgo M. Proton and molecular permeation through the basal plane of monolayer graphene oxide. Nat Commun 2023; 14:7756. [PMID: 38012200 PMCID: PMC10682477 DOI: 10.1038/s41467-023-43637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Two-dimensional (2D) materials offer a prospect of membranes that combine negligible gas permeability with high proton conductivity and could outperform the existing proton exchange membranes used in various applications including fuel cells. Graphene oxide (GO), a well-known 2D material, facilitates rapid proton transport along its basal plane but proton conductivity across it remains unknown. It is also often presumed that individual GO monolayers contain a large density of nanoscale pinholes that lead to considerable gas leakage across the GO basal plane. Here we show that relatively large, micrometer-scale areas of monolayer GO are impermeable to gases, including helium, while exhibiting proton conductivity through the basal plane which is nearly two orders of magnitude higher than that of graphene. These findings provide insights into the key properties of GO and demonstrate that chemical functionalization of 2D crystals can be utilized to enhance their proton transparency without compromising gas impermeability.
Collapse
Affiliation(s)
- Z F Wu
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - P Z Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
| | - O J Wahab
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Y T Tan
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - D Barry
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - D Periyanagounder
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - P B Pillai
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Q Dai
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - W Q Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - L F Vega
- Research and Innovation Center on CO2 and Hydrogen (RICH Center) and Chemical Engineering Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
- Research and Innovation Center for graphene and 2D materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - K Lulla
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - S J Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - R R Nair
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - E Daviddi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - P R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - A K Geim
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
| | - M Lozada-Hidalgo
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
- Research and Innovation Center for graphene and 2D materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Lee H, Kim J, Hwang M, Kim J. Galvanic Bipolar Electrode Arrays with Self-Driven Optical Readouts. ACS Sens 2023; 8:4374-4383. [PMID: 37857596 DOI: 10.1021/acssensors.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
In this work, we report a bipolar electrode (BPE) array system with self-driven optical readouts of the faradic current flowing through the BPEs. The BPE array system is based on the spontaneous redox reactions that are respectively occurring at opposite poles of the BPEs with appropriate electrocatalysts on the poles; this system is analogous to one consisting of galvanic electrochemical cells. The galvanic BPE array system operates in a self-powered mode that requires there to be neither a direct electrical connection nor external electrical polarization to each BPE. Importantly, the appropriate electrocatalysts on the poles play a critical role in the galvanic BPE array system to induce the spontaneous redox reactions occurring at the poles of BPEs. Moreover, the galvanic BPE array system provides self-driven optical readouts, including fluorometric and colorimetric ones, to report the faradaic current resulting from the spontaneous redox reactions on the BPE poles. Based on the unique benefits that the galvanic BPE array system has over conventional BPEs, we demonstrated the promising potential of galvanic BPE arrays for the simple yet rapid and quantitative screening of electrocatalysts for the oxygen reduction reaction as well as sensitive sensing of H2O2 in parallel.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiwoo Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Misol Hwang
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Kang M, Bentley CL, Mefford JT, Chueh WC, Unwin PR. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS NANO 2023; 17:21493-21505. [PMID: 37883688 PMCID: PMC10655184 DOI: 10.1021/acsnano.3c06335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Nanostructured electrocatalysts exhibit variations in electrochemical properties across different length scales, and the intrinsic catalytic characteristics measured at the nanoscale often differ from those at the macro-level due to complexity in electrode structure and/or composition. This aspect of electrocatalysis is addressed herein, where the oxygen evolution reaction (OER) activity of β-Co(OH)2 platelet particles of well-defined structure is investigated in alkaline media using multiscale scanning electrochemical cell microscopy (SECCM). Microscale SECCM probes of ∼50 μm diameter provide voltammograms from small particle ensembles (ca. 40-250 particles) and reveal increasing dispersion in the OER rates for samples of the same size as the particle population within the sample decreases. This suggests the underlying significance of heterogeneous activity at the single-particle level that is confirmed through single-particle measurements with SECCM probes of ∼5 μm diameter. These measurements of multiple individual particles directly reveal significant variability in the OER activity at the single-particle level that do not simply correlate with the particle size, basal plane roughness, or exposed edge plane area. In combination, these measurements demarcate a transition from an "individual particle" to an "ensemble average" response at a population size of ca. 130 particles, above which the OER current density closely reflects that measured in bulk at conventional macroscopic particle-modified electrodes. Nanoscale SECCM probes (ca. 120 and 440 nm in diameter) enable measurements at the subparticle level, revealing that there is selective OER activity at the edges of particles and highlighting the importance of the three-phase boundary where the catalyst, electrolyte, and supporting carbon electrode meet, for efficient electrocatalysis. Furthermore, subparticle measurements unveil heterogeneity in the OER activity among particles that appear superficially similar, attributable to differences in defect density within the individual particles, as well as to variations in electrical and physical contact with the support material. Overall this study provides a roadmap for the multiscale analysis of nanostructured electrocatalysts, directly demonstrating the importance of multilength scale factors, including particle structure, particle-support interaction, presence of defects, etc., in governing the electrochemical activities of β-Co(OH)2 platelet particles and ultimately guiding the rational design and optimization of these materials for alkaline water electrolysis.
Collapse
Affiliation(s)
- Minkyung Kang
- School
of Chemistry, The University of Sydney, Camperdown 2006 NSW, Australia
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | | | - J. Tyler Mefford
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - William C. Chueh
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Patrick R. Unwin
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
9
|
Lai Z, Liu M, Bi P, Huang F, Jin Y. Perspectives on Corrosion Studies Using Scanning Electrochemical Cell Microscopy: Challenges and Opportunities. Anal Chem 2023; 95:15833-15850. [PMID: 37844123 DOI: 10.1021/acs.analchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) allows for electrochemical imaging at the micro- or nanoscale by confining the electrochemical reaction cell in a small meniscus formed at the end of a micro- or nanopipette. This technique has gained popularity in electrochemical imaging due to its high-throughput nature. Although it shows considerable application potential in corrosion science, there are still formidable and exciting challenges to be faced, particularly relating to the high-throughput characterization and analysis of microelectrochemical big data. The objective of this perspective is to arouse attention and provide opinions on the challenges, recent progress, and future prospects of the SECCM technique to the electrochemical society, particularly from the viewpoint of corrosion scientists. Specifically, four main topics are systematically reviewed and discussed: (1) the development of SECCM; (2) the applications of SECCM for corrosion studies; (3) the challenges of SECCM in corrosion studies; and (4) the opportunities of SECCM for corrosion science.
Collapse
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| | - Min Liu
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Peng Bi
- Laboratory for Nuclear Materials, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| |
Collapse
|
10
|
Sun X, Liu S, Hu P, Sun S, Xie Z, Hu G, Hu D, Zhang M. Microscale Corrosion Inhibition Behavior of Four Corrosion Inhibitors (BTA, MBI, MBT, and MBO) on Archeological Silver Artifacts Based on Scanning Electrochemical Cell Microscopy. Anal Chem 2023; 95:14686-14694. [PMID: 37713524 DOI: 10.1021/acs.analchem.3c02704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The problem of corrosion-induced discoloration and embrittlement in silverware is a significant concern for the long-term preservation of excavated archeological silver artifacts, even after thermal restoration. The key to addressing this issue lies in the meticulous selection and evaluation of corrosion inhibitors that possess targeted corrosion inhibition capabilities. This study focuses on the evaluation of corrosion inhibitors for archeological silver artifacts using scanning electrochemical cell microscopy (SECCM) and X-ray photoelectron spectroscopy (XPS). The researchers aimed to compare the inhibition effects of four corrosion inhibitors [1,2,3-benzotriazole (BTA), 2-mercaptobenzimidazole (MBI), 2-mercaptobenzothiazole (MBT), and 2-mercaptobenzoxazole (MBO)] on a simulated Ag-Cu alloy sample and understand their mechanisms. The results showed that MBT exhibited better corrosion inhibition for microstructural regions with higher silver content due to its ability to form stable chelation structures with Ag(I). MBO exhibited better corrosion inhibition for microstructural regions with higher copper content due to its strong affinity with Cu(I). The targeted corrosion inhibition ability for the β-phase was ranked as MBO > BTA ≈ MBI > MBT, while for the α-phase the ranking was MBT > MBO > MBI > BTA. The study demonstrated the feasibility and capabilities of SECCM in the targeted screening of corrosion inhibitors for different compositions and microstructural regions in archeological metal artifacts. This study highlights the potential of SECCM in corrosion inhibitor research for archeological metal artifacts and wider applications in metal material corrosion protection.
Collapse
Affiliation(s)
- Xiangyu Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shengyu Liu
- The International Center for Chinese Heritage and Archaeology, Key Laboratory of Archaeological Science, Ministry of Education, School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Pei Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100020, China
- Institute of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Siyuan Sun
- The International Center for Chinese Heritage and Archaeology, Key Laboratory of Archaeological Science, Ministry of Education, School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Zhenda Xie
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Gang Hu
- The International Center for Chinese Heritage and Archaeology, Key Laboratory of Archaeological Science, Ministry of Education, School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Dongbo Hu
- The International Center for Chinese Heritage and Archaeology, Key Laboratory of Archaeological Science, Ministry of Education, School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Mohammed M, Jones BA, Liarou E, Wilson P. Localised polymerisation of acrylamide using single-barrel scanning electrochemical cell microscopy. Chem Commun (Camb) 2023; 59:10992-10995. [PMID: 37622460 DOI: 10.1039/d3cc03582d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Single-barrel scanning electrochemical cell microscopy has been adapted for polymerisation of acrylamide in droplet cells formed at gold electrode surfaces. Localised electrochemical atom transfer radical polymerisation enables controlled synthesis and deposition of polyacrylamide or synthesis of polyacrylamide brushes from initiator-functionalised electrode surfaces.
Collapse
Affiliation(s)
- Mahir Mohammed
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Bryn A Jones
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Evelina Liarou
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
Wahab OJ, Daviddi E, Xin B, Sun PZ, Griffin E, Colburn AW, Barry D, Yagmurcukardes M, Peeters FM, Geim AK, Lozada-Hidalgo M, Unwin PR. Proton transport through nanoscale corrugations in two-dimensional crystals. Nature 2023; 620:782-786. [PMID: 37612394 PMCID: PMC10447238 DOI: 10.1038/s41586-023-06247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/23/2023] [Indexed: 08/25/2023]
Abstract
Defect-free graphene is impermeable to all atoms1-5 and ions6,7 under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom2,5. Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium6,7. By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms8,9. There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability10-14 or even on whether it requires defects in graphene's crystal lattice6,8,15-17. Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials.
Collapse
Affiliation(s)
- O J Wahab
- Department of Chemistry, University of Warwick, Coventry, UK
| | - E Daviddi
- Department of Chemistry, University of Warwick, Coventry, UK
| | - B Xin
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - P Z Sun
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - E Griffin
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - A W Colburn
- Department of Chemistry, University of Warwick, Coventry, UK
| | - D Barry
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - M Yagmurcukardes
- Department of Photonics, Izmir Institute of Technology, Urla, Turkey
| | - F M Peeters
- Departement Fysica, Universiteit Antwerpen, Antwerp, Belgium
- Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, Brazil
| | - A K Geim
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
| | - M Lozada-Hidalgo
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
| | - P R Unwin
- Department of Chemistry, University of Warwick, Coventry, UK.
| |
Collapse
|
13
|
Jin R, Zhou W, Xu Y, Jiang D, Fang D. Electrochemical Visualization of Membrane Proteins in Single Cells at a Nanoscale Using Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37358933 DOI: 10.1021/acs.analchem.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The electrochemical visualization of proteins in the plasma membrane of single fixed cells was achieved with a spatial resolution of 160 nm using scanning electrochemical cell microscopy. The model protein, the carcinoembryonic antigen (CEA), is linked with a ruthenium complex (Ru(bpy)32+)-tagged antibody, which exhibits redox peaks in its cyclic voltammetry curves after a nanopipette tip contacts the cellular membrane. Based on the potential-resolved oxidation or reduction currents, an uneven distribution of membrane CEAs on the cells is electrochemically visualized, which could only be achieved previously using super-resolution optical microscopy. Compared with current electrochemical microscopy, the single-cell scanning electrochemical cell microscopy (SECCM) strategy not only improves the spatial resolution but also utilizes the potential-resolved current from the antibody-antigen complex to increase electrochemical imaging accuracy. Eventually, the electrochemical visualization of cellular proteins at the nanoscale enables the super-resolution study of cells to provide more biological information.
Collapse
Affiliation(s)
- Rong Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenting Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| |
Collapse
|
14
|
Godeffroy L, Makogon A, Gam Derouich S, Kanoufi F, Shkirskiy V. Imaging and Quantifying the Chemical Communication between Single Particles in Metal Alloys. Anal Chem 2023. [PMID: 37327768 DOI: 10.1021/acs.analchem.3c01258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The communication within particle agglomerates in industrial alloys can have a significant impact on the macroscopic reactivity, putting a high demand on the adaptation of wide-field methodologies to clarify this phenomenon. In this work, we report the application of correlated optical microscopies probing operando both local pH and local surface chemical transformation correlated with identical location scanning electron microscopy to quantify in situ the structure reactivity of particle agglomerates of foreign elements in the Al alloy. The optical operando analyses allow us (i) to reveal and quantify the local production of OH- from proton and oxygen reduction at individual Si- or Fe-rich microparticles and (ii) to quantify (and model) the chemical communication between these active sites, within a few micrometer range, on the local chemical transformation of the material. Wide-field image analysis highlights the statistical importance of chemical communication that may introduce a new conceptual framework for the understanding of the mechanisms in related fields of charge transfer, electrocatalysis, and corrosion.
Collapse
|
15
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
16
|
Electrochemical Aptasensor Based on ZnO-Au Nanocomposites for the Determination of Ochratoxin A in Wine and Beer. Processes (Basel) 2023. [DOI: 10.3390/pr11030864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Ochratoxin A (OTA) is positively correlated with an increased risk of developing cancer in nephrotoxic and hepatotoxic patients. Therefore, it is of great significance for the highly sensitive, highly selective, and timely detection of OTA. We described here an electrochemical aptasensor for OTA analysis, which took advantage of the favorable properties of gold nanoparticles (AuNPs) functionalized zinc oxide (ZnO) composites and the intercalative binding between methylene blue (MB) and nucleic acid. There were two label-free aptamers: one to capture OTA and another serving as complementary DNA (cDNA), enabling connection to the ZnO-Au composite’s immobilized electrode. Once OTA was present, the aptamer could capture OTA and detach from the electrode interface, thus, preventing MB from accessing electrode surface for efficient electron transfer; a decreased peak current was monitored by differential pulse voltammetry. The aptasensor presented nice analytical performance for OTA detection in the range of 0.1–30,000 pg·mL−1, with a detection limit of 0.05 pg·mL−1. Moreover, the developed biosensor could be applied to actual sample (wine and beer) analysis.
Collapse
|
17
|
Gaudin LF, Kang M, Bentley CL. Facet-Dependent Electrocatalysis and Surface Electrochemical Processes on Polycrystalline Platinum. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
18
|
Tao B, McPherson IJ, Daviddi E, Bentley CL, Unwin PR. Multiscale Electrochemistry of Lithium Manganese Oxide (LiMn 2O 4): From Single Particles to Ensembles and Degrees of Electrolyte Wetting. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1459-1471. [PMID: 36743391 PMCID: PMC9890564 DOI: 10.1021/acssuschemeng.2c06075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) facilitates single particle measurements of battery materials using voltammetry at fast scan rates (1 V s-1), providing detailed insight into intrinsic particle kinetics, otherwise obscured by matrix effects. Here, we elucidate the electrochemistry of lithium manganese oxide (LiMn2O4) particles, using a series of SECCM probes of graded size to determine the evolution of electrochemical characteristics from the single particle to ensemble level. Nanometer scale control over the SECCM meniscus cell position and height further allows the study of variable particle/substrate electrolyte wetting, including comparison of fully wetted particles (where contact is also made with the underlying glassy carbon substrate electrode) vs partly wetted particles. We find ensembles of LiMn2O4 particles show voltammograms with much larger peak separations than those of single particles. In addition, if the SECCM meniscus is brought into contact with the substrate electrode, such that the particle-support contact changes from dry to wet, a further dramatic increase in peak separation is observed. Finite element method modeling of the system reveals the importance of finite electronic conductivity of the particles, contact resistance, surface kinetics, particle size, and contact area with the electrode surface in determining the voltammetric waveshape at fast scan rates, while the responses are relatively insensitive to Li+ diffusion coefficients over a range of typical values. The simulation results explain the variability in voltammetric responses seen at the single particle level and reveal some of the key factors responsible for the evolution of the response, from ensemble, contact, and wetting perspectives. The variables and considerations explored herein are applicable to any single entity (nanoscale) electrochemical study involving low conductivity materials and should serve as a useful guide for further investigations of this type. Overall, this study highlights the potential of multiscale measurements, where wetting, electronic contact, and ionic contact can be varied independently, to inform the design of practical composite electrodes.
Collapse
Affiliation(s)
- Binglin Tao
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J. McPherson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
20
|
Direct measuring of single-heterogeneous bubble nucleation mediated by surface topology. Proc Natl Acad Sci U S A 2022; 119:e2205827119. [PMID: 35858338 PMCID: PMC9303989 DOI: 10.1073/pnas.2205827119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.
Collapse
|
21
|
Wahab OJ, Kang M, Daviddi E, Walker M, Unwin PR. Screening Surface Structure-Electrochemical Activity Relationships of Copper Electrodes under CO 2 Electroreduction Conditions. ACS Catal 2022; 12:6578-6588. [PMID: 35692254 PMCID: PMC9171721 DOI: 10.1021/acscatal.2c01650] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Indexed: 01/10/2023]
Abstract
Understanding how crystallographic orientation influences the electrocatalytic performance of metal catalysts can potentially advance the design of catalysts with improved efficiency. Although single crystal electrodes are typically used for such studies, the one-at-a-time preparation procedure limits the range of secondary crystallographic orientations that can be profiled. This work employs scanning electrochemical cell microscopy (SECCM) together with co-located electron backscatter diffraction (EBSD) as a screening technique to investigate how surface crystallographic orientations on polycrystalline copper (Cu) correlate to activity under CO2 electroreduction conditions. SECCM measures spatially resolved voltammetry on polycrystalline copper covering low overpotentials of CO2 conversion to intermediates, thereby screening the different activity from low-index facets where H2 evolution is dominant to high-index facets where more reaction intermediates are expected. This approach allows the acquisition of 2500 voltammograms on approximately 60 different Cu surface facets identified with EBSD. The results show that the order of activity is (111) < (100) < (110) among the Cu primary orientations. The collection of data over a wide range of secondary orientations leads to the construction of an "electrochemical-crystallographic stereographic triangle" that provides a broad comprehension of the trends among Cu secondary surface facets rarely studied in the literature, [particularly (941) and (741)], and clearly shows that the electroreduction activity scales with the step and kink density of these surfaces. This work also reveals that the electrochemical stripping of the passive layer that is naturally formed on Cu in air is strongly grain-dependent, and the relative ease of stripping on low-index facets follows the order of (100) > (111) > (110). This allows a procedure to be implemented, whereby the oxide is removed (to an electrochemically undetectable level) prior to the kinetic analyses of electroreduction activity. SECCM screening allows for the most active surfaces to be ranked and prompts in-depth follow-up studies.
Collapse
Affiliation(s)
| | - Minkyung Kang
- Institute for Frontier Materials Deakin University, Burwood, Victoria 3125, Australia
| | - Enrico Daviddi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
22
|
Bentley CL, Kang M, Bukola S, Creager SE, Unwin PR. High-Resolution Ion-Flux Imaging of Proton Transport through Graphene|Nafion Membranes. ACS NANO 2022; 16:5233-5245. [PMID: 35286810 PMCID: PMC9047657 DOI: 10.1021/acsnano.1c05872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 05/18/2023]
Abstract
In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (e.g., cracks, holes, etc.) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm2 area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.
Collapse
Affiliation(s)
- Cameron L. Bentley
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Saheed Bukola
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen E. Creager
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
23
|
Murphy JG, Raybin JG, Sibener SJ. Correlating polymer structure, dynamics, and function with atomic force microscopy. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia G. Murphy
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Jonathan G. Raybin
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Steven J. Sibener
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| |
Collapse
|
24
|
Wahab O, Kang M, Meloni GN, Daviddi E, Unwin PR. Nanoscale Visualization of Electrochemical Activity at Indium Tin Oxide Electrodes. Anal Chem 2022; 94:4729-4736. [PMID: 35255211 PMCID: PMC9007413 DOI: 10.1021/acs.analchem.1c05168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/11/2022] [Indexed: 01/08/2023]
Abstract
Indium tin oxide (ITO) is a popular electrode choice, with diverse applications in (photo)electrocatalysis, organic photovoltaics, spectroelectrochemistry and sensing, and as a support for cell biology studies. Although ITO surfaces exhibit heterogeneous local electrical conductivity, little is known as to how this translates to electrochemistry at the same scale. This work investigates nanoscale electrochemistry at ITO electrodes using high-resolution scanning electrochemical cell microscopy (SECCM). The nominally fast outer-sphere one-electron oxidation of 1,1'-ferrocenedimethanol (FcDM) is used as an electron transfer (ET) kinetic marker to reveal the charge transfer properties of the ITO/electrolyte interface. SECCM measures spatially resolved linear sweep voltammetry at an array of points across the ITO surface, with the topography measured synchronously. Presentation of SECCM data as current maps as a function of potential reveals that, while the entire surface of ITO is electroactive, the ET activity is highly spatially heterogeneous. Kinetic parameters (standard rate constant, k0, and transfer coefficient, α) for FcDM0/+ are assigned from 7200 measurements at sites across the ITO surface using finite element method modeling. Differences of 3 orders of magnitude in k0 are revealed, and the average k0 is about 20 times larger than that measured at the macroscale. This is attributed to macroscale ET being largely limited by lateral conductivity of the ITO electrode under electrochemical operation, rather than ET kinetics at the ITO/electrolyte interface, as measured by SECCM. This study further demonstrates the considerable power of SECCM for direct nanoscale characterization of electrochemical processes at complex electrode surfaces.
Collapse
Affiliation(s)
- Oluwasegun
J. Wahab
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute
for Frontier Materials Deakin University, Burwood, Victoria 3125, Australia
| | - Gabriel N. Meloni
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
25
|
Li M, Ye KH, Qiu W, Wang Y, Ren H. Heterogeneity between and within Single Hematite Nanorods as Electrocatalysts for Oxygen Evolution Reaction. J Am Chem Soc 2022; 144:5247-5252. [PMID: 35298886 DOI: 10.1021/jacs.2c00506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the structural nature of the active sites in electrocatalysis is central to discovering general design rules for better catalysts in fuel cells and electrolyzers. Nanostructures are widely used as electrocatalysts, but the location and structure of the active sites within the nanostructure are often unknown. This information is hidden in conventional bulk measurements due to ensemble averaging, hindering direct structure-activity correlation. Herein, we use a single-entity electrochemical approach to reveal the heterogeneity in electrocatalysts via scanning electrochemical cell microscopy (SECCM). Using hematite (α-Fe2O3) nanorods as the model catalyst for oxygen evolution reaction (OER), the electrocatalytic activity is measured at individual nanorods. Finer mapping within a single nanorod shows that the OER activity is consistently higher at the body portion vs the tip of the nanorod. Our results directly suggest the benefit of synthesizing longer hematite nanorods for better OER performance. The origin of the enhanced local activity is explained by the larger fraction of {001} facet exposed on the body compared to the tip. The finding goes beyond OER on hematite nanorods, highlighting the critical role of single-entity activity mapping and colocalized structural characterization in revealing active sites in electrocatalysis.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kai-Hang Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weitao Qiu
- School of Chemical Biology and Biotechnology, Peking University, Shenzhen 518055, China
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
27
|
Tolbert CL, Hill CM. Electrochemically probing exciton transport in monolayers of two-dimensional semiconductors. Faraday Discuss 2021; 233:163-174. [PMID: 34897331 DOI: 10.1039/d1fd00052g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional semiconductors (2DSCs) are attractive for a variety of optoelectronic and catalytic applications due to their ability to be fabricated as wide-area, monolayer-thick films and their unique optical and electronic properties which emerge at this scale. One important class of 2DSCs are the transition metal dichalcogenides (TMDs), which are of particular interest as absorbing layers in ultrathin optoelectronic devices. While TMDs are known to exhibit excellent photovoltaic properties at the bulk level, it is not yet clear how carriers are transported in these materials at thicknesses approaching the monolayer limit, where distinct changes in band structure and the nature of photogenerated carriers occur. Here, it is demonstrated that electrochemical microscopy techniques can be employed as powerful tools for visualizing these processes in 2DSCs, even within individual monolayers. Carrier generation-tip collection scanning electrochemical cell microscopy (CG-TC SECCM), which utilizes spatially-offset optical and pipet-based electrochemical probes to locally generate and detect photogenerated carriers, was applied to visualize carrier generation and transport within well-defined n-WSe2 samples prepared via mechanical exfoliation. Data from these experiments directly reveal how carrier transport varies within complex 2DSC structures as layer thicknesses approach the monolayer limit. These results not only provide valuable new insights into carrier transport within monolayer TMD materials, but also demonstrate electrochemical imaging to be a powerful, yet underutilized approach for visualizing solid-state processes in semiconducting materials.
Collapse
Affiliation(s)
- Chloe L Tolbert
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA.
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA.
| |
Collapse
|
28
|
Oswald E, Gaus AL, Kund J, Küllmer M, Romer J, Weizenegger S, Ullrich T, Mengele AK, Petermann L, Leiter R, Unwin PR, Kaiser U, Rau S, Kahnt A, Turchanin A, von Delius M, Kranz C. Cobaloxime Complex Salts: Synthesis, Patterning on Carbon Nanomembranes and Heterogeneous Hydrogen Evolution Studies. Chemistry 2021; 27:16896-16903. [PMID: 34713512 PMCID: PMC9299159 DOI: 10.1002/chem.202102778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/26/2022]
Abstract
Cobaloximes are promising, earth‐abundant catalysts for the light‐driven hydrogen evolution reaction (HER). Typically, these cobalt(III) complexes are prepared in situ or employed in their neutral form, for example, [Co(dmgH)2(py)Cl], even though related complex salts have been reported previously and could, in principle, offer improved catalytic activity as well as more efficient immobilization on solid support. Herein, we report an interdisciplinary investigation into complex salts [Co(dmgH)2(py)2]+[Co(dmgBPh2)2Cl2]−, TBA+[Co(dmgBPh2)2Cl2]-
and [Co(dmgH)2(py)2]+BArF−. We describe their strategic syntheses from the commercially available complex [Co(dmgH)2(py)Cl] and demonstrate that these double and single complex salts are potent catalysts for the light‐driven HER. We also show that scanning electrochemical cell microscopy can be used to deposit arrays of catalysts [Co(dmgH)2(py)2]+[Co(dmgBPh2)2Cl2]−, TBA+[Co(dmgBPh2)2Cl2]-
and [Co(dmgH)2(py)Cl] on supported and free‐standing amino‐terminated ∼1‐nm‐thick carbon nanomembranes (CNMs). Photocatalytic H2 evolution at such arrays was quantified with Pd microsensors by scanning electrochemical microscopy, thus providing a new approach for catalytic evaluation and opening up novel routes for the creation and analysis of “designer catalyst arrays”, nanoprinted in a desired pattern on a solid support.
Collapse
Affiliation(s)
- Eva Oswald
- Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Anna-Laurine Gaus
- Institute of Organic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Julian Kund
- Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maria Küllmer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 10, 07743, Jena, Germany
| | - Jan Romer
- Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Simon Weizenegger
- Institute of Organic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tobias Ullrich
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lydia Petermann
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Robert Leiter
- Central Facility Electron Microscopy, Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Ute Kaiser
- Central Facility Electron Microscopy, Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Axel Kahnt
- Leibniz-Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 10, 07743, Jena, Germany
| | - Max von Delius
- Institute of Organic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
29
|
Yu S, Ratcliff EL. Tuning Organic Electrochemical Transistor (OECT) Transconductance toward Zero Gate Voltage in the Faradaic Mode. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50176-50186. [PMID: 34644052 DOI: 10.1021/acsami.1c13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we investigate material design criteria for low-powered/self-powered and efficient organic electrochemical transistors (OECTs) to be operated in the faradaic mode (detection at the gate electrode occurs via electron transfer events). To rationalize device design principles, we adopt a Marcus-Gerischer perspective for electrochemical processes at both the gate and channel interfaces. This perspective considers density of states (DOS) for the semiconductor channel, the gate electrode, and the electrolyte. We complement our approach with energy band offsets of relevant electrochemical potentials that can be independently measured from transistor geometry using conventional electrochemical methods as well as an approach to measure electrolyte potential in an operating OECT. By systematically changing the relative redox property offsets between the redox-active electrolyte and semiconducting polymer channel, we demonstrate a first-order design principle that necessary gate voltage is minimized by good DOS overlap of the two redox processes at the gate and channel. Specifically, for p-type turn-on OECTs, the voltage-dependent, electrochemically active semiconductor DOS should overlap with the oxidant form of the electrolyte to minimize the onset voltage for transconductance. A special case where the electrolyte can be used to spontaneously dope the polymer via charge transfer is also considered. Collectively, our results provide material design pathways toward the development of simple, robust, power-saving, and high-throughput OECT biosensors.
Collapse
Affiliation(s)
- Songyan Yu
- Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E Rogers Way, Tucson, Arizona 85721, United States
| | - Erin L Ratcliff
- Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E Rogers Way, Tucson, Arizona 85721, United States
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E Rogers Way, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Way, Tucson, Arizona 85721, United States
| |
Collapse
|
30
|
Liu Y, Lu X, Peng Y, Chen Q. Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy. Anal Chem 2021; 93:12337-12345. [PMID: 34460230 DOI: 10.1021/acs.analchem.1c02099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic gas evolution reactions, where gaseous molecules are electrogenerated by reduction or oxidation of a species, play a central role in many energy conversion systems. Superaerophobic electrodes, usually constructed by their surface microstructures, have demonstrated excellent performance for electrochemical gas evolution reactions due to their bubble-repellent properties. Understanding and quantification of the gas bubble behavior including nucleation and dynamics on such microstructured electrodes is an important but underexplored issue. In this study, we reported a scanning electrochemical cell microscopy (SECCM) investigation of individual gas bubble nucleation and dynamics on nanoscale electrodes. A classic Pt film and a nonconventional transition-metal dichalcogenide MoS2 film with different surface topologies were employed as model substrates for both H2 and N2 bubble electrochemical studies. Interestingly, the nanostructured catalyst surface exhibit significantly less supersaturation for gas bubble nucleation and a notable increase of bubble detachment compared to its flat counterpart. Electrochemical mapping results reveal that there is no clear correlation between bubble nucleation and hydrogen evolution reaction (HER) activity, regardless of local electrode surface microstructures. Our results also indicate that while the hydrophobicity of the nanostructured MoS2 surface promotes bubble nucleation, it has little effect on bubble dynamics. This work introduces a new method for nanobubble electrochemistry on broadly interesting catalysts and suggests that the deliberate microstructure on a catalyst surface is a promising strategy for improving electrocatalytic gas evolution both in terms of bubble nucleation and elimination.
Collapse
Affiliation(s)
- Yulong Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoxi Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
31
|
Saha P, Rahman MM, Hill CM. Borohydride oxidation electrocatalysis at individual, shape‐controlled Au nanoparticles. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Partha Saha
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| | | | - Caleb M. Hill
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| |
Collapse
|
32
|
Marianov AN, Kochubei AS, Roman T, Conquest OJ, Stampfl C, Jiang Y. Modeling and Experimental Study of the Electron Transfer Kinetics for Non-ideal Electrodes Using Variable-Frequency Square Wave Voltammetry. Anal Chem 2021; 93:10175-10186. [PMID: 34264072 DOI: 10.1021/acs.analchem.1c01286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The knowledge of nonequilibrium electron transfer rates is paramount for the design of modern hybrid electrocatalysts. Herein, we propose a general simulation-based approach to interpret variable-frequency square wave voltammetry (VF-SWV) for heterogeneous materials featuring reversible redox behavior. The resistive and capacitive corrections, inclusion of the frequency domain, and statistical treatment of the surface redox kinetics are used to account for the non-ideal nature of electrodes. This approach has been validated in our study of CoII/CoI redox transformation for Co tetraphenylporphyrin (CoTPP) immobilized on carbon cloth and multiwalled carbon nanotubes (CNTs) - one of the most active heterogeneous molecular catalysts in carbon dioxide (CO2) electroreduction. It is demonstrated that the modeling of experimental data furnishes the capacitance of the surface double layer C, uncompensated resistance Ru, symmetry coefficients α, kinetic constants k0, and equilibrium redox potentials E0 in one experiment. Moreover, the proposed method yields a stochastic map of the redox kinetics rather than a single value, thus exposing the inhomogeneous nature of the electrochemically active layer. The computed parameters are in excellent agreement with the results of the classic methods such as cyclic voltammetry and fall in line with the reported CoTPP catalytic activity. Thus, VF-SWV is suitable for the study of high-level composites such as covalent organic frameworks and organometallic-CNT mixtures. The resulting insights into the electron transfer mechanisms are especially useful for the rational development of the catalyst-support interfaces and immobilization methods.
Collapse
Affiliation(s)
- Aleksei N Marianov
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alena S Kochubei
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Tanglaw Roman
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Oliver J Conquest
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Catherine Stampfl
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
33
|
Bentley CL. Scanning electrochemical cell microscopy for the study of (nano)particle electrochemistry: From the sub‐particle to ensemble level. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
34
|
Liu Y, Jin C, Liu Y, Ruiz KH, Ren H, Fan Y, White HS, Chen Q. Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates. ACS Sens 2021; 6:355-363. [PMID: 32449344 DOI: 10.1021/acssensors.0c00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS2. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H2 concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS2 substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.
Collapse
Affiliation(s)
- Yulong Liu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Cheng Jin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yuwen Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Karla Hernandez Ruiz
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hang Ren
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Henry S. White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
35
|
Hill JW, Hill CM. Directly visualizing carrier transport and recombination at individual defects within 2D semiconductors. Chem Sci 2021; 12:5102-5112. [PMID: 34163749 PMCID: PMC8179556 DOI: 10.1039/d0sc07033e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Two-dimensional semiconductors (2DSCs) are promising materials for a wide range of optoelectronic applications. While the fabrication of 2DSCs with thicknesses down to the monolayer limit has been demonstrated through a variety of routes, a robust understanding of carrier transport within these materials is needed to guide the rational design of improved practical devices. In particular, the influence of different types of structural defects on transport is critical, but difficult to interrogate experimentally. Here, a new approach to visualizing carrier transport within 2DSCs, Carrier Generation-Tip Collection Scanning Electrochemical Cell Microscopy (CG-TC SECCM), is described which is capable of providing information at the single-defect level. In this approach, carriers are locally generated within a material using a focused light source and detected as they drive photoelectrochemical reactions at a spatially-offset electrolyte interface created through contact with a pipet-based probe, allowing carrier transport across well-defined, µm-scale paths within a material to be directly interrogated. The efficacy of this approach is demonstrated through studies of minority carrier transport within mechanically-exfoliated n-type WSe2 nanosheets. CG-TC SECCM imaging experiments carried out within pristine basal planes revealed highly anisotropic hole transport, with in-plane and out-of-plane hole diffusion lengths of 2.8 µm and 5.8 nm, respectively. Experiments were also carried out to probe recombination across individual step edge defects within n-WSe2 which suggest a significant surface charge (∼5 mC m-2) exists at these defects, significantly influencing carrier transport. Together, these studies demonstrate a powerful new approach to visualizing carrier transport and recombination within 2DSCs, down to the single-defect level.
Collapse
Affiliation(s)
- Joshua W Hill
- Department of Chemistry, University of Wyoming, 1000 E University Ave Laramie WY 82071 USA
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, 1000 E University Ave Laramie WY 82071 USA
| |
Collapse
|
36
|
Bentley CL, Agoston R, Tao B, Walker M, Xu X, O'Mullane AP, Unwin PR. Correlating the Local Electrocatalytic Activity of Amorphous Molybdenum Sulfide Thin Films with Microscopic Composition, Structure, and Porosity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44307-44316. [PMID: 32880446 DOI: 10.1021/acsami.0c11759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thin-film electrodes, produced by coating a conductive support with a thin layer (nanometer to micrometer) of active material, retain the unique properties of nanomaterials (e.g., activity, surface area, conductivity, etc.) while being economically scalable, making them highly desirable as electrocatalysts. Despite the ever-increasing methods of thin-film deposition (e.g., wet chemical synthesis, electrodeposition, chemical vapor deposition, etc.), there is insufficient understanding on the nanoscale electrochemical activity of these materials in relation to structure/composition, particularly for those that lack long-range order (i.e., amorphous thin-film materials). In this work, scanning electrochemical cell microscopy (SECCM) is deployed in tandem with complementary, colocated compositional/structural analysis to understand the microscopic factors governing the electrochemical activity of amorphous molybdenum sulfide (a-MoSx) thin films, a promising class of hydrogen evolution reaction (HER) catalyst. The a-MoSx thin films, produced under ambient conditions by electrodeposition, possess spatially heterogeneous electrocatalytic activity on the tens-of-micrometer scale, which is not attributable to microscopic variations in elemental composition or chemical structure (i.e., Mo and/or S bonding environments), shown through colocated, local energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis. A new SECCM protocol is implemented to directly correlate electrochemical activity to the electrochemical surface area (ECSA) in a single measurement, revealing that the spatially heterogeneous HER response of a-MoSx is predominantly attributable to variations in the nanoscale porosity of the thin film, with surface roughness ruled out as a major contributing factor by complementary atomic force microscopy (AFM). As microscopic composition, structure, and porosity (ECSA) are all critical factors dictating the functional properties of nanostructured materials in electrocatalysis and beyond (e.g., battery materials, electrochemical sensors, etc.), this work further cements SECCM as a premier tool for structure-function studies in (electro)materials science.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Roland Agoston
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Binglin Tao
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Xiangdong Xu
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
37
|
Wu Z, Adekoya D, Huang X, Kiefel MJ, Xie J, Xu W, Zhang Q, Zhu D, Zhang S. Highly Conductive Two-Dimensional Metal-Organic Frameworks for Resilient Lithium Storage with Superb Rate Capability. ACS NANO 2020; 14:12016-12026. [PMID: 32833424 DOI: 10.1021/acsnano.0c05200] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Redox-active organic cathode materials have drawn growing attention because of the broad availability of raw materials, eco-friendliness, scalable production, and diverse structural flexibility. However, organic materials commonly suffer from fragile stability in organic solvents, poor electrochemical stability in charge/discharge processes, and insufficient electrical conductivity. To address these issues, using Cu(II) salt and benzenehexathiolate (BHT) as the precursors, we synthesized a robust and redox-active 2D metal-organic framework (MOF), [Cu3(C6S6)]n, namely, Cu-BHT. The Cu-BHT MOFs have a highly conjugated structure, affording a high electronic conductivity of 231 S cm-1, which could further be increased upon lithiation in lithium-ion battery (LIB) applications. A reversible four-electron reaction reveals the Li storage mechanism of the Cu-BHT for a theoretical capacity of 236 mAh g-1. The as-prepared Cu-BHT cathode delivers an excellent reversible capacity of 175 mAh g-1 with ultralow capacity deterioration (0.048% per cycle) upon 500 cycles at a high current density of 300 mA g-1. Therefore, we believe this work would provide a practical strategy for the development of high-power energy storage materials.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - David Adekoya
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
| | - Xing Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Milton J Kiefel
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
| | - Jian Xie
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong S.A.R., China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
| |
Collapse
|
38
|
Bentley CL, Kang M, Unwin PR. Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications. Anal Chem 2020; 92:11673-11680. [PMID: 32521997 DOI: 10.1021/acs.analchem.0c01540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage of the "tunable" physicochemical properties (e.g., proton availability and/or electrochemical stability) of nonaqueous (e.g., aprotic) electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) in aprotic solvent electrolyte media to address contemporary structure-electrochemical activity problems. Using the simple outer-sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipitation/crystallization on the scanning (minutes to hours) time scale. When applied to perform microfabrication-specifically the electrosynthesis of the conductive polymer, polypyrrole-the optimized SECCM set up produces highly reproducible arrays of synthesized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic activity-specifically the electro-oxidation of iodide at polycrystalline platinum-reveals unique (i.e., structure-dependent) patterns of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation identified as potential electrocatalytic "hot spots". The work herein further cements SECCM as a premier technique for structure-function-activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion, and beyond.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|