1
|
Chen J, Patel A, Mir M, Hudock MR, Pinezich MR, Guenthart B, Bacchetta M, Vunjak-Novakovic G, Kim J. Enhancing Cytoplasmic Expression of Exogenous mRNA Through Dynamic Mechanical Stimulation. Adv Healthc Mater 2025; 14:e2401918. [PMID: 39440644 DOI: 10.1002/adhm.202401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Ionizable lipid nanoparticles (LNPs) are pivotal in combating COVID-19, and numerous preclinical and clinical studies have highlighted their potential in nucleic acid-based therapies and vaccines. However, the effectiveness of endosomal escape for the nucleic acid cargos encapsulated in LNPs is still low, leading to suboptimal treatment outcomes and side effects. Hence, improving endosomal escape is crucial for enhancing the efficacy of nucleic acid delivery using LNPs. Here, a mechanical oscillation (frequency: 65 Hz) is utilized to prompt the LNP-mediated endosomal escape. The results reveal this mechanical oscillation can induce the combination and fusion between LNPs with opposite surface charges, enhance endosomal escape of mRNA, and increase the transfection efficiency of mRNA. Additionally, cell viability remains high at 99.3% after treatment with oscillation, which is comparable to that of untreated cells. Furthermore, there is no obvious damage to mitochondrial membrane potential and Golgi apparatus integrity. Thus, this work presents a user-friendly and safe approach to enhancing endosomal escape of mRNA and boosting gene expression. As a result, this work can be potentially utilized in both research and clinical fields to facilitate LNP-based delivery by enabling more effective release of LNP-encapsulated cargos from endosomes.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Aneri Patel
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Maria R Hudock
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Brandon Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94304, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
2
|
Mao Z, Shi B, Wu J, Gao X. Mechanically mediated cargo delivery to cells using microfluidic devices. BIOMICROFLUIDICS 2024; 18:061302. [PMID: 39649102 PMCID: PMC11624913 DOI: 10.1063/5.0240667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Drug delivery technologies, which are a crucial area of research in the field of cell biology, aim to actively or passively deliver drugs to target cells to enhance therapeutic efficacy and minimize off-target effects. In recent years, with advances in drug development, particularly, the increasing demand for macromolecular drugs (e.g., proteins and nucleic acids), novel drug delivery technologies and intracellular cargo delivery systems have emerged as promising tools for cell and gene therapy. These systems include various viral- and chemical-mediated methods as well as physical delivery strategies. Physical methods, such as electroporation and microinjection, have shown promise in early studies but have not been widely adopted due to concerns regarding efficiency and cellular viability. Recently, microfluidic technologies have provided new opportunities for cargo delivery by allowing for precise control of fluid dynamic parameters to achieve efficient and safe penetration of cell membranes, as well as for foreign material transport. Microfluidics-based mechanical delivery methods utilize biophysical phenomena, such as cell constriction and fluid shear, and are associated with high throughput and high transfection efficiency. In this review, we summarize the latest advancements in microfluidic mechanical delivery technologies, and we discuss constriction- and fluid shear-induced delivery strategies. Furthermore, we explore the potential application of artificial intelligence in optimizing cargo delivery technologies, aiming to provide theoretical support and practical guidance for the future development of novel cellular drug delivery technologies.
Collapse
Affiliation(s)
- Zhiyu Mao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Bori Shi
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Thouvenot E, Charnay L, Burshtein N, Guigner JM, Dec L, Loew D, Silva AKA, Lindner A, Wilhelm C. High-Yield Bioproduction of Extracellular Vesicles from Stem Cell Spheroids via Millifluidic Vortex Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412498. [PMID: 39530646 DOI: 10.1002/adma.202412498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) are emerging as novel therapeutics, particularly in cancer and degenerative diseases. Nevertheless, from both market and clinical viewpoints, high-yield production methods using minimal cell materials are still needed. Herein, a millifluidic cross-slot chip is proposed to induce high-yield release of biologically active EVs from less than three million cells. Depending on the flow rate, a single vortex forms in the outlet channels, exposing transported cellular material to high viscous stresses. Importantly, the chip accommodates producer cells within their physiological environment, such as human mesenchymal stem cells (hMSCs) spheroids, while facilitating their visualization and individual tracking within the vortex. This precise control of viscous stresses at the spheroid level allows for the release of up to 30000 EVs per cell at a Reynolds number of ≈400, without compromising cellular integrity. Additionally, it reveals a threshold initiating EV production, providing evidence for a stress-dependent mechanism governing vesicle secretion. EVs mass-produced at high Reynolds displayed pro-angiogenic and wound healing capabilities, as confirmed by proteomic and cytometric analysis of their cargo. These distinct molecular signatures of these EVs, compared to those derived from monolayers, underscore the critical roles of the production method and the 3D cellular environment in EV generation.
Collapse
Affiliation(s)
- Elliot Thouvenot
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| | - Laura Charnay
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| | - Noa Burshtein
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS UMR7636, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, Paris, 75005, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, MNHN, IRD UR 206, Campus Jussieu, Sorbonne Université, Case courrier 115, 4 Place Jussieu, 75252, Paris, Cedex 05, France
| | - Léonie Dec
- Institut Curie, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris, France
| | - Damarys Loew
- Institut Curie, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris, France
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes, MSC, CNRS UMR7057, Université Paris Cité, Paris, 75006, France
| | - Anke Lindner
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS UMR7636, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, Paris, 75005, France
| | - Claire Wilhelm
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| |
Collapse
|
4
|
Tong S, Niu J, Wang Z, Jiao Y, Fu Y, Li D, Pan X, Sheng N, Yan L, Min P, Chen D, Cui S, Liu Y, Lin S. The Evolution of Microfluidic-Based Drug-Loading Techniques for Cells and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403422. [PMID: 39152940 DOI: 10.1002/smll.202403422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.
Collapse
Affiliation(s)
- Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Peiru Min
- Shanghai 9th People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, 200240, China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Chen J, Patel A, Mir M, Hudock MR, Pinezich MR, Guenthart B, Bacchetta M, Vunjak-Novakovic G, Kim J. Enhancing Cytoplasmic Expression of Exogenous mRNA through Dynamic Mechanical Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599708. [PMID: 38948864 PMCID: PMC11212954 DOI: 10.1101/2024.06.19.599708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Ionizable lipid nanoparticles (LNPs) have been pivotal in combating COVID-19, and numerous preclinical and clinical studies have highlighted their potential in nucleic acid-based therapies and vaccines. However, the effectiveness of endosomal escape for the nucleic acid cargos encapsulated in LNPs is still low, leading to suboptimal treatment outcomes and side effects. Hence, improving endosomal escape is crucial for enhancing the efficacy of nucleic acid delivery using LNPs. Here, a mechanical oscillation (frequency: 65 Hz) is utilized to prompt the LNP-mediated endosomal escape. The results reveal this mechanical oscillation can induce the combination and fusion between LNPs with opposite surface charges, enhance endosomal escape of mRNA, and increase the transfection efficiency of mRNA. Additionally, cell viability remains high at 99.3% after treatment with oscillation, which is comparable to that of untreated cells. Furthermore, there is no obvious damage to mitochondrial membrane potential and Golgi apparatus integrity. Thus, this work presents a user-friendly and safe approach to enhancing endosomal escape of mRNA and boosting gene expression. As a result, our work can be potentially utilized in both research and clinical fields to facilitate LNP-based delivery by enabling more effective release of LNP-encapsulated cargos from endosomes.
Collapse
|
6
|
Kim YJ, Yun D, Lee JK, Jung C, Chung AJ. Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation. Nat Commun 2024; 15:8099. [PMID: 39284842 PMCID: PMC11405868 DOI: 10.1038/s41467-024-52493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based editing tools have transformed the landscape of genome editing. However, the absence of a robust and safe CRISPR delivery method continues to limit its potential for therapeutic applications. Despite the emergence of various methodologies aimed at addressing this challenge, issues regarding efficiency and editing operations persist. We introduce a microfluidic gene delivery system, called droplet cell pincher (DCP), designed for highly efficient and safe genome editing. This approach combines droplet microfluidics with cell mechanoporation, enabling encapsulation and controlled passage of cells and CRISPR systems through a microscale constriction. Discontinuities created in cell and nuclear membranes upon passage facilitate the rapid CRISPR-system internalization into the nucleus. We demonstrate the successful delivery of various macromolecules, including mRNAs (~98%) and plasmid DNAs (~91%), using this platform, underscoring the versatility of the DCP and leveraging it to achieve successful genome engineering through CRISPR-Cas9 delivery. Our platform outperforms electroporation, the current state-of-the-art method, in three key areas: single knockouts (~6.5-fold), double knockouts (~3.8-fold), and knock-ins (~3.8-fold). These results highlight the potential of our platform as a next-generation tool for CRISPR engineering, with implications for clinical and biological cell-based research.
Collapse
Affiliation(s)
- You-Jeong Kim
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul, Republic of Korea
| | - Dayoung Yun
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jungjoon K Lee
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Cheulhee Jung
- Department of Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, Seoul, Republic of Korea.
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.
- MxT Biotech, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Saito M, Arai F, Yamanishi Y, Sakuma S. Spatiotemporally controlled microvortices provide advanced microfluidic components. Proc Natl Acad Sci U S A 2024; 121:e2306182121. [PMID: 39102543 PMCID: PMC11331141 DOI: 10.1073/pnas.2306182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
Microvortices are emerging components that impart functionality to microchannels by exploiting inertia effects such as high shear stress, effective fluid diffusion, and large pressure loss. Exploring the dynamic generation of vortices further expands the scope of microfluidic applications, including cell stimulation, fluid mixing, and transport. Despite the crucial role of vortices' development within sub-millisecond timescales, previous studies in microfluidics did not explore the modulation of the Reynolds number (Re) in the range of several hundred. In this study, we modulated high-speed flows (54 < [Formula: see text] < 456) within sub-millisecond timescales using a piezo-driven on-chip membrane pump. By applying this method to microchannels with asymmetric geometries, we successfully controlled the spatiotemporal development of vortices, adjusting their behavior in response to oscillatory flow directions. These different vortices induced different pressure losses, imparting the microchannels with direction-dependent flow resistance, mimicking a diode-like behavior. Through precise control of vortex development, we managed to regulate this direction-dependent resistance, enabling the rectification of oscillatory flow resembling a diode and the ability to switch its rectification direction. This component facilitated bidirectional flow control without the need for mechanical valves. Moreover, we demonstrated its application in microfluidic cell pipetting, enabling the isolation of single cells. Consequently, based on modulating high-speed flow, our approach offers precise control over the spatiotemporal development of vortices in microstructures, thereby introducing innovative microfluidic functionalities.
Collapse
Affiliation(s)
- Makoto Saito
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Fumihito Arai
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku113-8656, Japan
| | - Yoko Yamanishi
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka819-0395, Japan
| | - Shinya Sakuma
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka819-0395, Japan
| |
Collapse
|
8
|
Lu R, Yu P, Sui Y. A computational study of cell membrane damage and intracellular delivery in a cross-slot microchannel. SOFT MATTER 2024; 20:4057-4071. [PMID: 38578041 DOI: 10.1039/d4sm00047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
We propose a three-dimensional computational framework to simulate the flow-induced cell membrane damage and the resulting enhanced intracellular mass transport in a cross-slot microchannel. We model the cell as a liquid droplet enclosed by a viscoelastic membrane and solve the cell deformation using a well-tested immersed-boundary lattice-Boltzmann method. The cell membrane damage, which is directly related to the membrane permeability, is considered using continuum damage mechanics. The transport of the diffusive solute into the cell is solved by a lattice-Boltzmann model. After validating the computational framework against several benchmark cases, we consider a cell flowing through a cross-slot microchannel, focusing on the effects of the flow strength, channel fluid viscosity and cell membrane viscosity on the membrane damage and enhanced intracellular transport. Interestingly, we find that under a comparable pressure drop across the device, for cells with low membrane viscosity, the inertial flow regime, which can be achieved by driving a low-viscosity liquid at a high speed, often leads to much larger membrane damage, compared with the high-viscosity low-speed viscous flow regime. However, the enhancement can be significantly reduced or even reversed by an increase of the cell membrane viscosity, which limits cell deformation, particularly in the inertial flow regime. Our computational framework and simulation results may guide the design and optimisation of microfluidic devices, which use cross-slot geometry to disrupt cell membranes to enhance intracellular delivery of solutes.
Collapse
Affiliation(s)
- Ruixin Lu
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - Peng Yu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Sui
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
9
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
10
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
11
|
Sevenler D, Toner M. High throughput intracellular delivery by viscoelastic mechanoporation. Nat Commun 2024; 15:115. [PMID: 38167490 PMCID: PMC10762167 DOI: 10.1038/s41467-023-44447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Brief pulses of electric field (electroporation) and/or tensile stress (mechanoporation) have been used to reversibly permeabilize the plasma membrane of mammalian cells and deliver materials to the cytosol. However, electroporation can be harmful to cells, while efficient mechanoporation strategies have not been scalable due to the use of narrow constrictions or needles which are susceptible to clogging. Here we report a high throughput approach to mechanoporation in which the plasma membrane is stretched and reversibly permeabilized by viscoelastic fluid forces within a microfluidic chip without surface contact. Biomolecules are delivered directly to the cytosol within seconds at a throughput exceeding 250 million cells per minute. Viscoelastic mechanoporation is compatible with a variety of biomolecules including proteins, RNA, and CRISPR-Cas9 ribonucleoprotein complexes, as well as a range of cell types including HEK293T cells and primary T cells. Altogether, viscoelastic mechanoporation appears feasible for contact-free permeabilization and delivery of biomolecules to mammalian cells ex vivo.
Collapse
Affiliation(s)
- Derin Sevenler
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Children's, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Yu T, Jhita N, Shankles P, Fedanov A, Kramer N, Raikar SS, Sulchek T. Development of a microfluidic cell transfection device into gene-edited CAR T cell manufacturing workflow. LAB ON A CHIP 2023; 23:4804-4820. [PMID: 37830228 PMCID: PMC10701762 DOI: 10.1039/d3lc00311f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Genetic reprogramming of immune cells to recognize and target tumor cells offers a possibility of long-term cure. Cell therapies, however, lack simple and affordable manufacturing workflows, especially to genetically edit immune cells to more effectively target cancer cells and avoid immune suppression mechanisms. Microfluidics is a pathway to improve the manufacturing precision of gene modified cells. However, to date, it remains to be demonstrated that microfluidic treatment preserves the functionality of T cell products in a complete workflow. In this study, we used microfluidics to perform CRISPR/Cas9 gene editing of CD5, a negative T-cell regulator, followed by the insertion of a chimeric antigen receptor (CAR) transgene via lentiviral vector transduction to generate CAR T cells targeted against the B cell antigen CD19. As part of the workflow, we have optimized a microfluidic device that relies on convective volume exchange between cells and surrounding fluid to deliver guide RNA and Cas9 ribonucleoprotein to primary T cells. We comprehensively tested critical design features of the device to improve the gene-edited product yield. By combining high-speed video and cell mechanics measurements using the atomic force microscope, we validate a model that relates the device design features to cell properties. Our findings showed enhanced performance was obtained by focusing the cells to counteract the flow resistance caused by the ridge constrictions, providing a ridge layout that allows sufficient cycles of compression and time for volume recovery, and including a gutter to clear aggregates that could reduce cell viability. The optimized device was used in a workflow to generate CD5-knockout CD19 CAR T cells. The microfluidics approach resulted in >60% CD5 editing efficiency, ≥80% cell viability, similar memory phenotype composition as unprocessed cells, and superior cell growth. The microfluidics workflow yielded 4-fold increase of edited T cells compared to an electroporation workflow post-expansion. The transduced CAR T cells showed similar transduction efficiency and cytotoxicity against CD19-positive leukemia cells. Moreover, patient-derived T cells showed the ability to be similarly edited, though their distinct biomechanics resulted in slightly lower outcomes. Microfluidics-based manufacturing is a promising path towards more productive clinical manufacturing of gene edited CAR T cells.
Collapse
Affiliation(s)
- Tong Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Navdeep Jhita
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Peter Shankles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30318, USA.
| | - Andrew Fedanov
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Noah Kramer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Sunil S Raikar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30318, USA.
| |
Collapse
|
13
|
Frost I, Mendoza AM, Chiou TT, Kim P, Aizenberg J, Kohn DB, De Oliveira SN, Weiss PS, Jonas SJ. Fluorinated Silane-Modified Filtroporation Devices Enable Gene Knockout in Human Hematopoietic Stem and Progenitor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41299-41309. [PMID: 37616579 PMCID: PMC10485797 DOI: 10.1021/acsami.3c07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Intracellular delivery technologies that are cost-effective, non-cytotoxic, efficient, and cargo-agnostic are needed to enable the manufacturing of cell-based therapies as well as gene manipulation for research applications. Current technologies capable of delivering large cargoes, such as plasmids and CRISPR-Cas9 ribonucleoproteins (RNPs), are plagued with high costs and/or cytotoxicity and often require substantial specialized equipment and reagents, which may not be available in resource-limited settings. Here, we report an intracellular delivery technology that can be assembled from materials available in most research laboratories, thus democratizing access to intracellular delivery for researchers and clinicians in low-resource areas of the world. These filtroporation devices permeabilize cells by pulling them through the pores of a cell culture insert by the application of vacuum available in biosafety cabinets. In a format that costs less than $10 in materials per experiment, we demonstrate the delivery of fluorescently labeled dextran, expression plasmids, and RNPs for gene knockout to Jurkat cells and human CD34+ hematopoietic stem and progenitor cell populations with delivery efficiencies of up to 40% for RNP knockout and viabilities of >80%. We show that functionalizing the surfaces of the filters with fluorinated silane moieties further enhances the delivery efficiency. These devices are capable of processing 500,000 to 4 million cells per experiment, and when combined with a 3D-printed vacuum application chamber, this throughput can be straightforwardly increased 6-12-fold in parallel experiments.
Collapse
Affiliation(s)
- Isaura
M. Frost
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- UCLA
Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexandra M. Mendoza
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Tzu-Ting Chiou
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Philseok Kim
- John A. Paulson
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- John A. Paulson
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Donald B. Kohn
- Department
of Molecular and Medical Pharmacology, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli
and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Satiro N. De Oliveira
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Steven J. Jonas
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Eli
and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children’s
Discovery and Innovation Institute, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
14
|
Hur J, Kim H, Kim U, Kim GB, Kim J, Joo B, Cho D, Lee DS, Chung AJ. Genetically Stable and Scalable Nanoengineering of Human Primary T Cells via Cell Mechanoporation. NANO LETTERS 2023; 23:7341-7349. [PMID: 37506062 DOI: 10.1021/acs.nanolett.3c01720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Effective tumor regression has been observed with chimeric antigen receptor (CAR) T cells; however, the development of an affordable, safe, and effective CAR-T cell treatment remains a challenge. One of the major obstacles is that the suboptimal genetic modification of T cells reduces their yield and antitumor activity, necessitating the development of a next-generation T cell engineering approach. In this study, we developed a nonviral T cell nanoengineering system that allows highly efficient delivery of diverse functional nanomaterials into primary human T cells in a genetically stable and scalable manner. Our platform leverages the unique cell deformation and restoration process induced by the intrinsic inertial flow in a microchannel to create nanopores in the cellular membrane for macromolecule internalization, leading to effective transfection with high scalability and viability. The proposed approach demonstrates considerable potential as a practical alternative technique for improving the current CAR-T cell manufacturing process.
Collapse
Affiliation(s)
- Jeongsoo Hur
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyelee Kim
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul 02841, Republic of Korea
| | - Uijin Kim
- Department of Life Sciences, University of Seoul, Seoul 02504, Republic of Korea
| | - Gi-Beom Kim
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- MxT Biotech, Seoul 04785, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| | | | - Duck Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03063, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Sciences, University of Seoul, Seoul 02504, Republic of Korea
| | - Aram J Chung
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul 02841, Republic of Korea
- MxT Biotech, Seoul 04785, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Shokouhi AR, Chen Y, Yoh HZ, Murayama T, Suu K, Morikawa Y, Brenker J, Alan T, Voelcker NH, Elnathan R. Electroactive nanoinjection platform for intracellular delivery and gene silencing. J Nanobiotechnology 2023; 21:273. [PMID: 37592297 PMCID: PMC10433684 DOI: 10.1186/s12951-023-02056-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Nanoinjection-the process of intracellular delivery using vertically configured nanostructures-is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell's intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. RESULTS Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells' viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. CONCLUSIONS We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing.
Collapse
Affiliation(s)
- Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Jason Brenker
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Melbourne, VIC, 3216, Australia.
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Melbourne, VIC, 3216, Australia.
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC, 3216, Australia.
| |
Collapse
|
16
|
Campelo SN, Huang PH, Buie CR, Davalos RV. Recent Advancements in Electroporation Technologies: From Bench to Clinic. Annu Rev Biomed Eng 2023; 25:77-100. [PMID: 36854260 PMCID: PMC11633374 DOI: 10.1146/annurev-bioeng-110220-023800] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Over the past decade, the increased adoption of electroporation-based technologies has led to an expansion of clinical research initiatives. Electroporation has been utilized in molecular biology for mammalian and bacterial transfection; for food sanitation; and in therapeutic settings to increase drug uptake, for gene therapy, and to eliminate cancerous tissues. We begin this article by discussing the biophysics required for understanding the concepts behind the cell permeation phenomenon that is electroporation. We then review nano- and microscale single-cell electroporation technologies before scaling up to emerging in vivo applications.
Collapse
Affiliation(s)
- Sabrina N Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA;
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA;
| |
Collapse
|
17
|
Sevenler D, Toner M. High throughput intracellular delivery by viscoelastic mechanoporation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538131. [PMID: 37163007 PMCID: PMC10168280 DOI: 10.1101/2023.04.24.538131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Brief and intense electric fields (electroporation) and/or tensile stresses (mechanoporation) have been used to temporarily permeabilize the plasma membrane of mammalian cells for the purpose of delivering materials to the cytosol. However, electroporation can be harmful to cells, while efficient mechanoporation strategies have not been scalable due to the use of narrow constrictions or needles which are susceptible to clogging. Here we report a method of mechanoporation in which cells were stretched and permeabilized by viscoelastic flow forces without surface contact. Inertio-elastic cell focusing aligned cells to the center of the device, avoiding direct contact with walls and enabling efficient (95%) intracellular delivery to over 200 million cells per minute. Functional biomolecules such as proteins, RNA, and ribonucleoprotein complexes were successfully delivered to Jurkat cells. Efficient intracellular delivery to HEK293T cells and primary activated T cells was also demonstrated. Contact-free mechanoporation using viscoelastic fluid forces appears to be feasible method for efficient and high throughput intracellular delivery of biomolecules to mammalian cells ex vivo.
Collapse
Affiliation(s)
- Derin Sevenler
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| |
Collapse
|
18
|
Pathak N, Patino CA, Ramani N, Mukherjee P, Samanta D, Ebrahimi SB, Mirkin CA, Espinosa HD. Cellular Delivery of Large Functional Proteins and Protein-Nucleic Acid Constructs via Localized Electroporation. NANO LETTERS 2023; 23:3653-3660. [PMID: 36848135 PMCID: PMC10433461 DOI: 10.1021/acs.nanolett.2c04374] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Delivery of proteins and protein-nucleic acid constructs into live cells enables a wide range of applications from gene editing to cell-based therapies and intracellular sensing. However, electroporation-based protein delivery remains challenging due to the large sizes of proteins, their low surface charge, and susceptibility to conformational changes that result in loss of function. Here, we use a nanochannel-based localized electroporation platform with multiplexing capabilities to optimize the intracellular delivery of large proteins (β-galactosidase, 472 kDa, 75.38% efficiency), protein-nucleic acid conjugates (protein spherical nucleic acids (ProSNA), 668 kDa, 80.25% efficiency), and Cas9-ribonucleoprotein complex (160 kDa, ∼60% knock-out and ∼24% knock-in) while retaining functionality post-delivery. Importantly, we delivered the largest protein to date using a localized electroporation platform and showed a nearly 2-fold improvement in gene editing efficiencies compared to previous reports. Furthermore, using confocal microscopy, we observed enhanced cytosolic delivery of ProSNAs, which may expand opportunities for detection and therapy.
Collapse
Affiliation(s)
- Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Namrata Ramani
- Department of Materials Science and Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Kwon C, Chung AJ. Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering. LAB ON A CHIP 2023; 23:1758-1767. [PMID: 36727443 DOI: 10.1039/d2lc01115h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the past few years, messenger RNA (mRNA) has emerged as a promising therapeutic agent for the treatment and prevention of various diseases. Clinically, mRNA-based drugs have been used for cancer immunotherapy, infectious diseases, and genomic disorders. To maximize the therapeutic efficacy of mRNA, the exact amount of mRNAs must be delivered to the target locations without degradation; however, traditional delivery modalities, such as lipid carriers and electroporation, are suboptimal because of their high cost, cell-type sensitivity, low scalability, transfection/delivery inconsistency, and/or loss of cell functionality. Therefore, new effective and stable delivery methods are required. Accordingly, we present a novel nonlinear microfluidic cell stretching (μ-cell stretcher) platform that leverages viscoelastic fluids, i.e., methylcellulose (MC) solutions, and cell mechanoporation for highly efficient and robust intracellular mRNA delivery. In the proposed platform, cells suspended in MC solutions with mRNAs were injected into a microchannel where they rapidly passed through a single constriction. Owing to the use of viscoelastic MC solutions, a high shear force was applied to the cells, effectively creating transient nanopores. This feature allows mRNAs to be effectively internalized through generated membrane discontinuities. Using this platform, high delivery efficiency (∼97%), high throughput (∼3.5 × 105 cells per min), cell-type-/cargo-size-insensitive delivery, simple operation (single-step), low analyte consumption, low-cost operation (<$1), and nearly clogging-free operation were demonstrated, demonstrating the high potential of the proposed platform for application in mRNA-based cellular engineering research.
Collapse
Affiliation(s)
- Chan Kwon
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
20
|
Zhang G, Kang D, Zhang Z, Li Y, Jiang J, Tu Q, Du J, Wang J. Verification and Analysis of Filter Paper-Based Intracellular Delivery of Exogenous Substances. Anal Chem 2023; 95:4353-4361. [PMID: 36623324 DOI: 10.1021/acs.analchem.2c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The intracellular delivery of exogenous substances is an essential technical means in the field of biomedical research, including cell therapy and gene editing. Although many delivery technologies and strategies are present, each technique has its own limitations. The delivery cost is usually a major limiting factor for general laboratories. In addition, simplifying the operation process and shortening the delivery time are key challenges. Here, we develop a filter paper-syringe (FPS) delivery method, a new type of cell permeation approach based on filter paper. The cells in a syringe are forced to pass through the filter paper quickly. During this process, external pressure forces the cells to collide and squeeze with the fiber matrix of the filter paper, causing the cells to deform rapidly, thereby enhancing the permeability of the cell membrane and realizing the delivery of exogenous substances. Moreover, the large gap between the fiber networks of filter paper can prevent the cells from bearing high pressure, thus maintaining high cell vitality. Results showed that the slow-speed filter paper used can realize efficient intracellular delivery of various exogenous substances, especially small molecular substances (e.g., 3-5 kDa dextran and siRNA). Meanwhile, we found that the FPS method not only does not require a lengthy operating step compared with the widely used liposomal delivery of siRNA but also that the delivery efficiency is similar. In conclusion, the FPS approach is a simple, easy-to-operate, and fast (about 2 s) delivery method and may be an attractive alternative to membrane destruction-based transfection.
Collapse
Affiliation(s)
- Guorui Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Di Kang
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Zhonghui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Yuanchang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jingjing Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
21
|
Alhmoud H, Alkhaled M, Kaynak BE, Hanay MS. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery. LAB ON A CHIP 2023; 23:714-726. [PMID: 36472226 DOI: 10.1039/d2lc00692h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the rapid development of microfluidic based cell therapeutics systems, the need arises for compact, modular, and microfluidics-compatible intracellular delivery platforms with small footprints and minimal operational requirements. Physical deformation of cells passing through a constriction in a microfluidic channel has been shown to create transient membrane perturbations that allow passive diffusion of materials from the outside to the interior of the cell. This mechanical approach to intracellular delivery is simple to implement and fits the criteria outlined above. However, available microfluidic platforms that operate through this mechanism are traditionally constructed from rigid channels with fixed dimensions that suffer from irreversible clogging and incompatibility with larger size distributions of cells. Here we report a flexible and elastically deformable microfluidic channel, and we leverage this elasticity to dynamically generate temporary constrictions with any given size within the channel width parameters. Additionally, clogging is prevented by increasing the size of the constriction momentarily to allow clogs to pass. By tuning the size of the constriction appropriately, we show the successful delivery of GFP-coding plasmids to the interior of three mammalian cell lines and fluorescent gold nanoparticles to HEK293 FT cells all the while maintaining a high cell viability rate. We also demonstrate the device capabilities by systematically identifying the optimum constriction size that maximizes the intracellular delivery efficiency of FITC-dextran for three different cell lines. This development will no doubt lead to miniaturized intracellular delivery microfluidic components that can be easily integrated into larger lab-on-a-chip systems for future cell modification devices.
Collapse
Affiliation(s)
- Hashim Alhmoud
- Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey.
- Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Mohammed Alkhaled
- Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey.
- Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Batuhan E Kaynak
- Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey.
- Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - M Selim Hanay
- Department of Mechanical Engineering, Bilkent University, 06800 Ankara, Turkey.
- Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
22
|
Zhang W, Yao F, Li WF, Liu HF, Wang FC. Effect of Chamber Depth Modifications on Flow Regimes and Mixing Performance in Cross-Shaped Mixers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wei Zhang
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai200237, China
| | - Feng Yao
- Shanghai Engineering Research Center of Space Engine, Shanghai Institute of Space Propulsion, Shanghai201112, China
| | - Wei-feng Li
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai200237, China
| | - Hai-feng Liu
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai200237, China
| | - Fu-chen Wang
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai200237, China
| |
Collapse
|
23
|
He S, Pang W, Wu X, Yang Y, Li W, Qi H, Sun C, Duan X, Wang Y. A targeted hydrodynamic gold nanorod delivery system based on gigahertz acoustic streaming. NANOSCALE 2022; 14:15281-15290. [PMID: 36112106 DOI: 10.1039/d2nr03222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hydrodynamic method mimics the in vivo environment of the mechanical effect on cell stimulation, which not only modulates cell physiology but also shows excellent intracellular delivery ability. Herein, a hydrodynamic intracellular delivery system based on the gigahertz acoustic streaming (AS) effect is proposed, which presents powerful targeted delivery capabilities with high efficiency and universality. Results indicate that the range of cells with AuNR introduction is related to that of AS, enabling a tunable delivery range due to the adjustability of the AS radius. Moreover, with the assistance of AS, the organelle localization delivery of AuNRs with different modifications is enhanced. AuNRs@RGD is inclined to accumulate in the nucleus, while AuNRs@BSA tend to enter the mitochondria and AuNRs@PEGnK tend to accumulate in the lysosome. Finally, the photothermal effect is proved based on the large quantities of AuNRs introduced via AS. The abundant introduction of AuNRs under the action of AS can achieve rapid cell heating with the irradiation of a 785 nm laser, which has great potential in shortening the treatment cycle of photothermal therapy (PTT). Thereby, an efficient hydrodynamic technology in AuNR introduction based on AS has been demonstrated. The outstanding location delivery and organelle targeting of this method provides a new idea for precise medical treatment.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wenjun Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
24
|
Foley RA, Sims RA, Duggan EC, Olmedo JK, Ma R, Jonas SJ. Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Front Bioeng Biotechnol 2022; 10:973326. [PMID: 36225598 PMCID: PMC9549251 DOI: 10.3389/fbioe.2022.973326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats associated protein 9 (CRISPR/Cas9) has transformed our ability to edit the human genome selectively. This technology has quickly become the most standardized and reproducible gene editing tool available. Catalyzing rapid advances in biomedical research and genetic engineering, the CRISPR/Cas9 system offers great potential to provide diagnostic and therapeutic options for the prevention and treatment of currently incurable single-gene and more complex human diseases. However, significant barriers to the clinical application of CRISPR/Cas9 remain. While in vitro, ex vivo, and in vivo gene editing has been demonstrated extensively in a laboratory setting, the translation to clinical studies is currently limited by shortfalls in the precision, scalability, and efficiency of delivering CRISPR/Cas9-associated reagents to their intended therapeutic targets. To overcome these challenges, recent advancements manipulate both the delivery cargo and vehicles used to transport CRISPR/Cas9 reagents. With the choice of cargo informing the delivery vehicle, both must be optimized for precision and efficiency. This review aims to summarize current bioengineering approaches to applying CRISPR/Cas9 gene editing tools towards the development of emerging cellular therapeutics, focusing on its two main engineerable components: the delivery vehicle and the gene editing cargo it carries. The contemporary barriers to biomedical applications are discussed within the context of key considerations to be made in the optimization of CRISPR/Cas9 for widespread clinical translation.
Collapse
Affiliation(s)
- Ruth A. Foley
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Ruby A. Sims
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
| | - Emily C. Duggan
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Jessica K. Olmedo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Rachel Ma
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Steven J. Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Paul R, Zhang KS, Kurosu Jalil M, Castaño N, Kim S, Tang SKY. Hydrodynamic dissection of Stentor coeruleus in a microfluidic cross junction. LAB ON A CHIP 2022; 22:3508-3520. [PMID: 35971861 DOI: 10.1039/d2lc00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stentor coeruleus, a single-cell ciliated protozoan, is a model organism for wound healing and regeneration studies. Despite Stentor's large size (up to 2 mm in extended state), microdissection of Stentor remains challenging. In this work, we describe a hydrodynamic cell splitter, consisting of a microfluidic cross junction, capable of splitting Stentor cells in a non-contact manner at a high throughput of ∼500 cells per minute under continuous operation. Introduction of asymmetry in the flow field at the cross junction leads to asymmetric splitting of the cells to generate cell fragments as small as ∼8.5 times the original cell size. Characterization of cell fragment viability shows reduced 5-day survival as fragment size decreases and as the extent of hydrodynamic stress imposed on the fragments increases. Our results suggest that cell fragment size and composition, as well as mechanical stress, play important roles in the long-term repair of Stentor cells and warrant further investigations. Nevertheless, the hydrodynamic splitter can be useful for studying phenomena immediately after cell splitting, such as the closure of wounds in the plasma membrane which occurs on the order of 100-1000 seconds in Stentor.
Collapse
Affiliation(s)
- Rajorshi Paul
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Myra Kurosu Jalil
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Nicolas Castaño
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sungu Kim
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Patino CA, Pathak N, Mukherjee P, Park SH, Bao G, Espinosa HD. Multiplexed high-throughput localized electroporation workflow with deep learning-based analysis for cell engineering. SCIENCE ADVANCES 2022; 8:eabn7637. [PMID: 35867793 PMCID: PMC9307252 DOI: 10.1126/sciadv.abn7637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/07/2022] [Indexed: 05/06/2023]
Abstract
Manipulation of cells for applications such as biomanufacturing and cell-based therapeutics involves introducing biomolecular cargoes into cells. However, successful delivery is a function of multiple experimental factors requiring several rounds of optimization. Here, we present a high-throughput multiwell-format localized electroporation device (LEPD) assisted by deep learning image analysis that enables quick optimization of experimental factors for efficient delivery. We showcase the versatility of the LEPD platform by successfully delivering biomolecules into different types of adherent and suspension cells. We also demonstrate multicargo delivery with tight dosage distribution and precise ratiometric control. Furthermore, we used the platform to achieve functional gene knockdown in human induced pluripotent stem cells and used the deep learning framework to analyze protein expression along with changes in cell morphology. Overall, we present a workflow that enables combinatorial experiments and rapid analysis for the optimization of intracellular delivery protocols required for genetic manipulation.
Collapse
Affiliation(s)
- Cesar A. Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, USA
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
27
|
Mukherjee P, Patino CA, Pathak N, Lemaitre V, Espinosa HD. Deep Learning-Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hard-to-Transfect Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107795. [PMID: 35315229 PMCID: PMC9119920 DOI: 10.1002/smll.202107795] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Indexed: 05/03/2023]
Abstract
Genome engineering of cells using CRISPR/Cas systems has opened new avenues for pharmacological screening and investigating the molecular mechanisms of disease. A critical step in many such studies is the intracellular delivery of the gene editing machinery and the subsequent manipulation of cells. However, these workflows often involve processes such as bulk electroporation for intracellular delivery and fluorescence activated cell sorting for cell isolation that can be harsh to sensitive cell types such as human-induced pluripotent stem cells (hiPSCs). This often leads to poor viability and low overall efficacy, requiring the use of large starting samples. In this work, a fully automated version of the nanofountain probe electroporation (NFP-E) system, a nanopipette-based single-cell electroporation method is presented that provides superior cell viability and efficiency compared to traditional methods. The automated system utilizes a deep convolutional network to identify cell locations and a cell-nanopipette contact algorithm to position the nanopipette over each cell for the application of electroporation pulses. The automated NFP-E is combined with microconfinement arrays for cell isolation to demonstrate a workflow that can be used for CRISPR/Cas9 gene editing and cell tracking with potential applications in screening studies and isogenic cell line generation.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| | - Nibir Pathak
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | | | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
- iNfinitesimal LLC, Skokie, IL, 60077, USA
| |
Collapse
|
28
|
Chakrabarty P, Gupta P, Illath K, Kar S, Nagai M, Tseng FG, Santra TS. Microfluidic mechanoporation for cellular delivery and analysis. Mater Today Bio 2022; 13:100193. [PMID: 35005598 PMCID: PMC8718663 DOI: 10.1016/j.mtbio.2021.100193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Highly efficient intracellular delivery strategies are essential for developing therapeutic, diagnostic, biological, and various biomedical applications. The recent advancement of micro/nanotechnology has focused numerous researches towards developing microfluidic device-based strategies due to the associated high throughput delivery, cost-effectiveness, robustness, and biocompatible nature. The delivery strategies can be carrier-mediated or membrane disruption-based, where membrane disruption methods find popularity due to reduced toxicity, enhanced delivery efficiency, and cell viability. Among all of the membrane disruption techniques, the mechanoporation strategies are advantageous because of no external energy source required for membrane deformation, thereby achieving high delivery efficiencies and increased cell viability into different cell types with negligible toxicity. The past two decades have consequently seen a tremendous boost in mechanoporation-based research for intracellular delivery and cellular analysis. This article provides a brief review of the most recent developments on microfluidic-based mechanoporation strategies such as microinjection, nanoneedle arrays, cell-squeezing, and hydroporation techniques with their working principle, device fabrication, cellular delivery, and analysis. Moreover, a brief discussion of the different mechanoporation strategies integrated with other delivery methods has also been provided. Finally, the advantages, limitations, and future prospects of this technique are discussed compared to other intracellular delivery techniques.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, Cambridge, CB30FA, UK
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
29
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
30
|
Zhang P, Shao N, Qin L. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005944. [PMID: 34270839 DOI: 10.1002/adma.202005944] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 06/13/2023]
Abstract
Cell-based living materials, including single cells, cell-laden fibers, cell sheets, organoids, and organs, have attracted intensive interests owing to their widespread applications in cancer therapy, regenerative medicine, drug development, and so on. Significant progress in materials, microfabrication, and cell biology have promoted the development of numerous promising microfluidic platforms for programming these cell-based living materials with a high-throughput, scalable, and efficient manner. In this review, the recent progress of novel microfluidic platforms for programming cell-based living materials is presented. First, the unique features, categories, and materials and related fabrication methods of microfluidic platforms are briefly introduced. From the viewpoint of the design principles of the microfluidic platforms, the recent significant advances of programming single cells, cell-laden fibers, cell sheets, organoids, and organs in turns are then highlighted. Last, by providing personal perspectives on challenges and future trends, this review aims to motivate researchers from the fields of materials and engineering to work together with biologists and physicians to promote the development of cell-based living materials for human healthcare-related applications.
Collapse
Affiliation(s)
- Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
31
|
Zhang W, Shi Z, Xu X, Li W, Liu H, Wang F. Oscillation induced by vortex ring shedding in a cross-shaped channel. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Joo B, Hur J, Kim GB, Yun SG, Chung AJ. Highly Efficient Transfection of Human Primary T Lymphocytes Using Droplet-Enabled Mechanoporation. ACS NANO 2021; 15:12888-12898. [PMID: 34142817 DOI: 10.1021/acsnano.0c10473] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Whole-cell-based therapy has been extensively used as an effective disease treatment approach, and it has rapidly changed the therapeutic paradigm. To fully accommodate this shift, advances in genome modification and cell reprogramming methodologies are critical. Traditionally, molecular tools such as viral and polymer nanocarriers and electroporation have been the norm for internalizing external biomolecules into cells for cellular engineering. However, these approaches are not fully satisfactory considering their cytotoxicity, high cost, low scalability, and/or inconsistent and ineffective delivery and transfection. To address these challenges, we present an approach that leverages droplet microfluidics with cell mechanoporation, bringing intracellular delivery to the next level. In our approach, cells and external cargos such as mRNAs and plasmid DNAs are coencapsulated into droplets, and as they pass through a series of narrow constrictions, the cell membrane is mechanically permeabilized where the cargos in the vicinity are internalized via convective solution exchange enhanced by recirculation flows developed in the droplets. Using this principle, we demonstrated a high level of functional macromolecule delivery into various immune cells, including human primary T cells. By utilizing droplets, the cargo consumption was drastically reduced, and near-zero clogging was realized. Furthermore, high scalability without sacrificing cell viability and superior delivery over state-of-the-art methods and benchtop techniques were demonstrated. Notably, the droplet-based intracellular delivery strategy presented here can be further applied to other mechanoporation microfluidic techniques, highlighting its potential for cellular engineering and cell-based therapies.
Collapse
Affiliation(s)
- Byeongju Joo
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
| | - Jeongsoo Hur
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
| | - Gi-Beom Kim
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 02841 Seoul, Republic of Korea
| | - Seung Gyu Yun
- Department of Laboratory Medicine, College of Medicine, Korea University, 02841 Seoul, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 02841 Seoul, Republic of Korea
| |
Collapse
|
33
|
Hur J, Chung AJ. Microfluidic and Nanofluidic Intracellular Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004595. [PMID: 34096197 PMCID: PMC8336510 DOI: 10.1002/advs.202004595] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Indexed: 05/05/2023]
Abstract
Innate cell function can be artificially engineered and reprogrammed by introducing biomolecules, such as DNAs, RNAs, plasmid DNAs, proteins, or nanomaterials, into the cytosol or nucleus. This process of delivering exogenous cargos into living cells is referred to as intracellular delivery. For instance, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing begins with internalizing Cas9 protein and guide RNA into cells, and chimeric antigen receptor-T (CAR-T) cells are prepared by delivering CAR genes into T lymphocytes for cancer immunotherapies. To deliver external biomolecules into cells, tools, including viral vectors, and electroporation have been traditionally used; however, they are suboptimal for achieving high levels of intracellular delivery while preserving cell viability, phenotype, and function. Notably, as emerging solutions, microfluidic and nanofluidic approaches have shown remarkable potential for addressing this open challenge. This review provides an overview of recent advances in microfluidic and nanofluidic intracellular delivery strategies and discusses new opportunities and challenges for clinical applications. Furthermore, key considerations for future efforts to develop microfluidics- and nanofluidics-enabled next-generation intracellular delivery platforms are outlined.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringInterdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
34
|
Uvizl A, Goswami R, Gandhi SD, Augsburg M, Buchholz F, Guck J, Mansfeld J, Girardo S. Efficient and gentle delivery of molecules into cells with different elasticity via Progressive Mechanoporation. LAB ON A CHIP 2021; 21:2437-2452. [PMID: 33977944 PMCID: PMC8204113 DOI: 10.1039/d0lc01224f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 05/08/2023]
Abstract
Intracellular delivery of cargo molecules such as membrane-impermeable proteins or drugs is crucial for cell treatment in biological and medical applications. Recently, microfluidic mechanoporation techniques have enabled transfection of previously inaccessible cells. These techniques create transient pores in the cell membrane by shear-induced or constriction contact-based rapid cell deformation. However, cells deform and recover differently from a given extent of shear stress or compression and it is unclear how the underlying mechanical properties affect the delivery efficiency of molecules into cells. In this study, we identify cell elasticity as a key mechanical determinant of delivery efficiency leading to the development of "progressive mechanoporation" (PM), a novel mechanoporation method that improves delivery efficiency into cells of different elasticity. PM is based on a multistage cell deformation, through a combination of hydrodynamic forces that pre-deform cells followed by their contact-based compression inside a PDMS-based device controlled by a pressure-based microfluidic controller. PM allows processing of small sample volumes (about 20 μL) with high-throughput (>10 000 cells per s), while controlling both operating pressure and flow rate for a reliable and reproducible cell treatment. We find that uptake of molecules of different sizes is correlated with cell elasticity whereby delivery efficiency of small and big molecules is favoured in more compliant and stiffer cells, respectively. A possible explanation for this opposite trend is a different size, number and lifetime of opened pores. Our data demonstrates that PM reliably and reproducibly delivers impermeable cargo of the size of small molecule inhibitors such as 4 kDa FITC-dextran with >90% efficiency into cells of different mechanical properties without affecting their viability and proliferation rates. Importantly, also much larger cargos such as a >190 kDa Cas9 protein-sgRNA complex are efficiently delivered high-lighting the biological, biomedical and clinical applicability of our findings.
Collapse
Affiliation(s)
- Alena Uvizl
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| | | | - Martina Augsburg
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany and The Institute of Cancer Research, London SW7 3RP, UK.
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| |
Collapse
|
35
|
Rahman MH, Wong CHN, Lee MM, Chan MK, Ho YP. Efficient encapsulation of functional proteins into erythrocytes by controlled shear-mediated membrane deformation. LAB ON A CHIP 2021; 21:2121-2128. [PMID: 34002198 DOI: 10.1039/d0lc01077d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Red blood cells (RBCs) are attractive carriers of biomolecular payloads due to their biocompatibility and the ability to shelter their encapsulated cargo. Commonly employed strategies to encapsulate payloads into RBCs, such as hypotonic shock, membrane fusion or electroporation, often suffer from low throughput and unrecoverable membrane impairment. This work describes an investigation of a method to encapsulate protein payloads into RBCs by controlling membrane deformation either transiently or extendedly in a microfluidic channel. Under the optimized conditions, the loading efficiency of enhanced green fluorescent protein into mouse RBCs increased was about 2.5- and 4-fold compared to that with osmotic entrapment using transient and extended deformation, respectively. Significantly, mouse RBCs loaded with human arginase exhibit higher enzymatic activity and membrane integrity compared to their counterparts loaded by osmotic entrapment. These features together with the fact that this shear-mediated encapsulation strategy allows loading with physiological buffers highlight the key advantages of this approach compared to traditional osmotic entrapment.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. and Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chung Hong Nathaniel Wong
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Marianne M Lee
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Michael K Chan
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. and Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and The Ministry of Education Key Laboratory of Regeneration Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
36
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
37
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
38
|
Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS NANO 2020; 14:15094-15106. [PMID: 33034446 DOI: 10.1021/acsnano.0c05169] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell therapy and cellular engineering begin with internalizing synthetic biomolecules and functional nanomaterials into primary cells. Conventionally, electroporation, lipofection, or viral transduction has been used; however, these are limited by their cytotoxicity, low scalability, cost, and/or preparation complexity, especially in primary cells. Thus, a universal intracellular delivery method that outperforms the existing methods must be established. Here, we present a versatile intracellular delivery platform that leverages intrinsic inertial flow developed in a T-junction microchannel with a cavity. The elongational recirculating flows exerted in the channel substantially stretch the cells, creating discontinuities on cell membranes, thereby enabling highly effective internalization of nanomaterials, such as plasmid DNA (7.9 kbp), mRNA, siRNA, quantum dots, and large nanoparticles (300 nm), into different cell types, including hard-to-transfect primary stem and immune cells. We identified that the internalization mechanism of external cargos during the cell elongation-restoration process is achieved by both passive diffusion and convection-based rapid solution exchange across the cell membrane. Using fluidic cell mechanoporation, we demonstrated a transfection yield superior to that of other state-of-the-art microfluidic platforms as well as current benchtop techniques, including lipofectamine and electroporation. In summary, the intracellular delivery platform developed in the present study enables a high delivery efficiency (up to 98%), easy operation (single-step), low material cost (<$1), high scalability (1 × 106 cells/min), minimal cell perturbation (up to 90%), and cell type/cargo insensitive delivery, providing a practical and robust approach anticipated to critically impact cell-based research.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Inae Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
39
|
Zhao C, Man T, Xu X, Yang Q, Liu W, Jonas SJ, Teitell MA, Chiou PY, Weiss PS. Photothermal Intracellular Delivery Using Gold Nanodisk Arrays. ACS MATERIALS LETTERS 2020; 2:1475-1483. [PMID: 34708213 PMCID: PMC8547743 DOI: 10.1021/acsmaterialslett.0c00428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Local heating using pulsed laser-induced photothermal effects on plasmonic nanostructured substrates can be used for intracellular delivery applications. However, the fabrication of plasmonic nanostructured interfaces is hampered by complex nanomanufacturing schemes. Here, we demonstrate the fabrication of large-area plasmonic gold (Au) nanodisk arrays that enable photothermal intracellular delivery of biomolecular cargo at high efficiency. The Au nanodisks (350 nm in diameter) were fabricated using chemical lift-off lithography (CLL). Nanosecond laser pulses were used to excite the plasmonic nanostructures, thereby generating transient pores at the outer membranes of targeted cells that enable the delivery of biomolecules via diffusion. Delivery efficiencies of >98% were achieved using the cell impermeable dye calcein (0.6 kDa) as a model payload, while maintaining cell viabilities at >98%. The highly efficient intracellular delivery approach demonstrated in this work will facilitate translational studies targeting molecular screening and drug testing that bridge laboratory and clinical investigations.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiaobin Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qing Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pediatrics, David Geffen School of Medicine, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Children's Discovery and Innovation Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael A Teitell
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
40
|
Lissandrello CA, Santos JA, Hsi P, Welch M, Mott VL, Kim ES, Chesin J, Haroutunian NJ, Stoddard AG, Czarnecki A, Coppeta JR, Freeman DK, Flusberg DA, Balestrini JL, Tandon V. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing. Sci Rep 2020; 10:18045. [PMID: 33093518 PMCID: PMC7582186 DOI: 10.1038/s41598-020-73755-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Implementation of gene editing technologies such as CRISPR/Cas9 in the manufacture of novel cell-based therapeutics has the potential to enable highly-targeted, stable, and persistent genome modifications without the use of viral vectors. Electroporation has emerged as a preferred method for delivering gene-editing machinery to target cells, but a major challenge remaining is that most commercial electroporation machines are built for research and process development rather than for large-scale, automated cellular therapy manufacturing. Here we present a microfluidic continuous-flow electrotransfection device designed for precise, consistent, and high-throughput genetic modification of target cells in cellular therapy manufacturing applications. We optimized our device for delivery of mRNA into primary human T cells and demonstrated up to 95% transfection efficiency with minimum impact on cell viability and expansion potential. We additionally demonstrated processing of samples comprising up to 500 million T cells at a rate of 20 million cells/min. We anticipate that our device will help to streamline the production of autologous therapies requiring on the order of 10[Formula: see text]-10[Formula: see text] cells, and that it is well-suited to scale for production of trillions of cells to support emerging allogeneic therapies.
Collapse
Affiliation(s)
| | - Jose A Santos
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Peter Hsi
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Michaela Welch
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Vienna L Mott
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Ernest S Kim
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Jordan Chesin
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | - Aaron G Stoddard
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | - Andrew Czarnecki
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | - Daniel K Freeman
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA
| | | | | | - Vishal Tandon
- The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
| |
Collapse
|
41
|
Belling JN, Heidenreich LK, Park JH, Kawakami LM, Takahashi J, Frost IM, Gong Y, Young TD, Jackman JA, Jonas SJ, Cho NJ, Weiss PS. Lipid-Bicelle-Coated Microfluidics for Intracellular Delivery with Reduced Fouling. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45744-45752. [PMID: 32940030 PMCID: PMC8188960 DOI: 10.1021/acsami.0c11485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Innovative technologies for intracellular delivery are ushering in a new era for gene editing, enabling the utilization of a patient's own cells for stem cell and immunotherapies. In particular, cell-squeezing platforms provide unconventional forms of intracellular delivery, deforming cells through microfluidic constrictions to generate transient pores and to enable effective diffusion of biomolecular cargo. While these devices are promising gene-editing platforms, they require frequent maintenance due to the accumulation of cellular debris, limiting their potential for reaching the throughputs necessary for scalable cellular therapies. As these cell-squeezing technologies are improved, there is a need to develop next-generation platforms with higher throughput and longer lifespan, importantly, avoiding the buildup of cell debris and thus channel clogging. Here, we report a versatile strategy to coat the channels of microfluidic devices with lipid bilayers based on noncovalent lipid bicelle technology, which led to substantial improvements in reducing cell adhesion and protein adsorption. The antifouling properties of the lipid bilayer coating were evaluated, including membrane uniformity, passivation against nonspecific protein adsorption, and inhibition of cell attachment against multiple cell types. This surface functionalization approach was applied to coat constricted microfluidic channels for the intracellular delivery of fluorescently labeled dextran and plasmid DNA, demonstrating significant reductions in the accumulation of cell debris. Taken together, our work demonstrates that lipid bicelles are a useful tool to fabricate antifouling lipid bilayer coatings in cell-squeezing devices, resulting in reduced nonspecific fouling and cell clogging to improve performance.
Collapse
Affiliation(s)
- Jason N Belling
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Liv K Heidenreich
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jae Hyeon Park
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Lisa M Kawakami
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jack Takahashi
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Isaura M Frost
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yao Gong
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas D Young
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Steven J Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children's Discovery and Innovation Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nam-Joon Cho
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|