1
|
Malik N, Shimon LJW, Houben L, Kossoy A, Pinkas I, Kaplan-Ashiri I, Bendikov T, Lahav M, van der Boom ME. Morphological Evolution of Metal-Organic Frameworks into Hedrite, Sheaf and Spherulite Superstructures with Localized Different Coloration. Chemistry 2024:e202403577. [PMID: 39551711 DOI: 10.1002/chem.202403577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The branched metal-organic frameworks (MOFs) are the first superstructures of this kind, and the growth mechanism may explain crystal shapes of other materials. The mechanism of the formation of fascinating structures having a hedrite, sheaf or spherulite appearance are detailed. The branching can be controlled, resulting in crystals that either exhibit multiple generations of branching or a single generation. These structures might result from an increasing number of defects on fast-grown rods. As the basal facets become less reactive, material is added to the prism facets, leading to secondary nucleation and triangular branches. These triangular structures are connected to the rod surface, growing longer than the central rod. Electron diffraction analyses show that the sheafs are polycrystalline structures with their fantails consisting of single-crystalline nanorods deviating gradually from each other in their orientation. The crystallographic structure consists of channels with opposite handedness. The accessibility of the nanochannels and the porosity of the superstructures are demonstrated by chromophore diffusion into the channels. The confinement and alignment of the chromophores inside the channels resulted in polarized-light dependent coloration of the crystals; the polycrystallinity generated areas having different optical properties.
Collapse
Affiliation(s)
- Naveen Malik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anna Kossoy
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Lahav
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Milko E van der Boom
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
2
|
Yu MQ, Yang CY, Dong LJ, Yan Y, Feng YJ, Chen Z, Xiao HP, Wang HY, Ge JY. Metal Effect on the Proton Conduction of Three Isostructural Metal-Organic Frameworks and Pseudo-Capacitance Behavior of the Cobalt Analogue. Inorg Chem 2024; 63:19287-19298. [PMID: 39344080 DOI: 10.1021/acs.inorgchem.4c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three isostructural transition metal-organic frameworks, [M(bta)0.5(bpt)(H2O)2]·2H2O (M = Co (1), Ni (2), Zn (3), H4bta = 1,2,4,5-benzenetetracarboxylic acid, bpt = 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole), were successfully constructed using different metal cations. These frameworks exhibit a three-dimensional network structure with multiple coordinated and lattice water molecules within the framework, contributing to high stability and a rich hydrogen-bond network. Proton conduction studies revealed that, at 333 K and 98% relative humidity, the proton conductivities (σ) of MOFs 1-3 reached 1.42 × 10-2, 1.02 × 10-2, and 6.82 × 10-3 S cm-1, respectively. Compared to the proton conductivity of the initial ligands, the σ values of the complexes increased by 2 orders of magnitude, with the activation energies decreasing from 0.36 to 0.18 eV for 1, 0.09 eV for 2, and 0.12 eV for 3. An in-depth analysis of the correlation between different metal centers and proton conduction performance indicated that the varying coordination abilities of the metal cations and the water absorption capacities of the frameworks might account for the differences in conductivity. Additionally, the potential of 1 as a supercapacitor electrode material was assessed. 1 exhibited a specific capacitance of 61.13 F g-1 at a current density of 0.5 A g-1, with a capacitance retention of 82.4% after 5000 cycles, making it a promising candidate for energy storage applications.
Collapse
Affiliation(s)
- Meng-Qian Yu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Cai-Yi Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Lian-Jun Dong
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yong Yan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yu-Jie Feng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hong-Ping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hai-Ying Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
3
|
Wu Y, Xu H, Li X, Rao Y, Yuan S, Yan Y, Zhang YB, Li Q. Topology Prediction of Gas-Separating Metal-Organic Frameworks with Low Symmetry Vertices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402314. [PMID: 38708815 DOI: 10.1002/smll.202402314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Topology serves as a blueprint for the construction of reticular structures such as metal-organic frameworks, especially for those based on building blocks with highly symmetrical shapes. However, it remains a challenge to predict the topology of the frameworks from less symmetrical units, because their corresponding vertex figures are largely deformed from the perfect geometries with no "default" net embedding. Furthermore, vertices involving flexible units may have multiple shape choices, and the competition among their designated topologies makes the structure prediction in large uncertainty. Herein, the deformation index is proposed to characterize the symmetry loss of the vertex figure by comparing it with its ideal geometry. The mathematical index is employed to predict the shapes of two in situ formed Co-based metalloligands (pseudo-tetrahedron and pseudo-square), which further dictate the framework topology (flu and scu) when they are joined with the [Zr6O8]-based cuboid units. The two frameworks with very similar constituents provide an ideal platform to investigate how the pore shapes and interconnectivity influence the gas separation. The net with cylindrical channels outperforms the other with discreate cages in C3H8/C2H6/CH4 separation, benefiting from the facile accessibility of its interaction sites to the guests imposed by the specific framework topology.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Huoshu Xu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xinhao Li
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yin Rao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Sailin Yuan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yu Yan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yue-Biao Zhang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Xiong M, Lu Y, Zhong M, Chen L, Liu G, Ju W. Superlong Metal-Organic Framework Micro-/Nanofibers for Selective Vitamin Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012911 DOI: 10.1021/acs.langmuir.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Superlong MOF-74-type micro/nanofibers, which have aspect ratios much higher than 200, are synthesized via nanoparticulate MOF-mediated recrystallization. Co-MOF-74 microfibers have high crystallinity, whereas Co-MOF-74-II nanofibers are composed of nanocrystals and amorphous phases, even though they have nanofibrous morphology. Both MOFs consist of plenty of micropores with diameters in the range of 1.0 to 2.0 nm, and they exhibit high thermal stability with a decomposition temperature higher than 260.0 °C. The MOFs are demonstrated for selective absorption of some vitamins including riboflavin, folic acid, and 5-methyltetrahydrofolate. Co-MOF-74-II nanofibers can efficiently absorb riboflavin and folic acid from their aqueous solution with absorption percentages approaching 90.0%, and they have enhanced capability for absorbing tocopherol in methanol. The micro/nanofibrous morphology, together with the capability for selective vitamin absorption, makes the novel MOFs highly promising for applications in micro-solid-phase extraction.
Collapse
Affiliation(s)
- Mingxuan Xiong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Youli Lu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs, Shanghai 200031, China
- Institute of Clinical Mass Spectrometry, Shanghai Academy of Experimental Medicine, Shanghai 200031, China
| | - Mingzhu Zhong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liyu Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gangyi Liu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs, Shanghai 200031, China
- Institute of Clinical Mass Spectrometry, Shanghai Academy of Experimental Medicine, Shanghai 200031, China
| | - Wenbo Ju
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
5
|
Park KC, Lim J, Thaggard GC, Shustova NB. Mining for Metal-Organic Systems: Chemistry Frontiers of Th-, U-, and Zr-Materials. J Am Chem Soc 2024; 146:18189-18204. [PMID: 38943655 DOI: 10.1021/jacs.4c06088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
The conceptual framework presented in this Perspective overviews the design principles of innovative thorium-based materials that could address urgent needs of the medicinal, nuclear energy, and waste remediation sectors from the lens of zirconium and uranium analogs. We survey the intersections of Zr, Th, and U chemistry with a focus on how the intrinsic behavior of each metal translates to broader material properties, including, but not limited to, structural and topological diversity, preferential metal-ligand binding, and reactivity. On the example of several classes of materials, including organometallic complexes, polyoxometalates, and the primary focus of this Perspective, metal-organic frameworks (MOFs), the design principles that govern the preparation of Zr-, Th-, and U-compounds, including oxophilicity, variation in oxidation states, and stable coordination environments have been considered. Further, we highlight how the impact of the mentioned variables may shift throughout the progression from discrete molecular systems to extended structures. We discuss the common assumption that zirconium-organic materials are typically considered a close analog of thorium-based congeners in areas such as material design and preparation. Through consideration of fundamental chemistry principles, we shed light on the relationships between Zr-, Th-, and U-based materials and highlight how a critical analysis of their distinct properties can be used to target a desired material performance. As a result, we provide a detailed understanding of Th-based materials chemistry by anchoring their fundamental properties between two well-studied reference points, zirconium- and uranium-containing analogs.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
6
|
González D, Pazo-Carballo C, Camú E, Hidalgo-Rosa Y, Zarate X, Escalona N, Schott E. Adsorption properties of M-UiO-66 (M = Zr(IV); Hf(IV) or Ce(IV)) with BDC or PDC linker. Dalton Trans 2024; 53:10486-10498. [PMID: 38840533 DOI: 10.1039/d4dt00941j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The increasing CO2 emissions and their direct impact on climate change due to the greenhouse effect are environmental issues that must be solved as soon as possible. Metal-organic frameworks (MOFs) are one class of crystalline adsorbent materials that are thought to have enormous potential in CO2 capture applications. In this research, the effect of changing the metal center between Zr(IV), Ce(IV), and Hf(IV), and the linker between BDC and PDC has been fully studied. Thus, the six UiO-66 isoreticular derivatives have been synthesized and characterized by FTIR, PXRD, TGA, and N2 adsorption. We also report the BET surface area, CO2 adsorption capacities, kinetics, and the adsorption isosteric heat (Qst) of the UiO-66 derivatives mentioned family. The CO2 adsorption kinetics were evaluated using pseudo-first order, pseudo-second order, Avrami's kinetic models, and the rate-limiting step with Boyd's film diffusion, interparticle diffusion, and intraparticle diffusion models. The isosteric heats of CO2 adsorption using various MOFs are in the range 20-65 kJ mol-1 observing differences in adsorption capacities between 1.15 and 4.72 mmol g-1 at different temperatures due to the electrostatic interactions between CO2 and extra-framework metal ions. The isosteric heat of adsorption calculation in this report, which accounts for the unexpectedly high heat released from Zr-UiO-66-PDC, is finally represented as an increase in the interaction of CO2 with the PDC linker and an increase in Qst with defects.
Collapse
Affiliation(s)
- Diego González
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| | - Cesar Pazo-Carballo
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Esteban Camú
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Yoan Hidalgo-Rosa
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | - Néstor Escalona
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| |
Collapse
|
7
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
8
|
Kulandaivel S, Yang CC, Yeh YC, Lin CH. Defect Induced Structural Transition and Lipase Immobilization in Mesoporous Aluminum Metal-Organic Frameworks. Chemistry 2024; 30:e202400603. [PMID: 38613137 DOI: 10.1002/chem.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
The transition from disorder to order and structural transformation are distinctive metal-organic framework (MOF) features. How to adapt or control both behaviors in MOF has rarely been studied. In this case, we demonstrate that our successful synthesis of [Al(OH)(PDA)]n (AlPDA-53-DEF, AlPDA-53-H, and AlPDA-68) with H2PDA=4,4'-[1,4-phenylenebis(ethyne-2,1-diyl)]-di benzoic acid has shown the intricate world of Aluminum Metal-Organic Frameworks (Al-MOFs). It offers profound insights into defect structures to order and transformations. AlPDA-53-DEF, in particular, revealed a fascinating interplay of various pore sizes within both micro and mesoporous regions, unveiling a unique lattice rearrangement phenomenon upon solvent desorption. Defects and disorders emerged as crucial impacts of transforming AlPDA-53-DEF, with its initially imperfect crystallinity, into the highly crystalline, hierarchically porous AlPDA-53-H.
Collapse
Affiliation(s)
| | - Chun-Chuen Yang
- Department of Physics, National Central University, Taoyuan City, 32023, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| |
Collapse
|
9
|
Salazar J, Hidalgo-Rosa Y, Burboa PC, Wu YN, Escalona N, Leiva A, Zarate X, Schott E. UiO-66(Zr) as drug delivery system for non-steroidal anti-inflammatory drugs. J Control Release 2024; 370:392-404. [PMID: 38663750 DOI: 10.1016/j.jconrel.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The toxicity for the human body of non-steroidal anti-inflammatory drugs (NSAIDs) overdoses is a consequence of their low water solubility, high doses, and facile accessibility to the population. New drug delivery systems (DDS) are necessary to overcome the bioavailability and toxicity related to NSAIDs. In this context, UiO-66(Zr) metal-organic framework (MOF) shows high porosity, stability, and load capacity, thus being a promising DDS. However, the adsorption and release capability for different NSAIDs is scarcely described. In this work, the biocompatible UiO-66(Zr) MOF was used to study the adsorption and release conditions of ibuprofen, naproxen, and diclofenac using a theoretical and experimental approximation. DFT results showed that the MOF-drug interaction was due to an intermolecular hydrogen bond between protons of the groups in the defect sites, (μ3 - OH, and - OH2) and a lone pair of oxygen carboxyl functional group of the NSAIDs. Also, the experimental results suggest that the solvent where the drug is dissolved affects the adsorption process. The adsorption kinetics are similar between the drugs, but the maximum load capacity differs for each drug. The release kinetics assay showed a solvent dependence kinetics whose maximum liberation capacity is affected by the interaction between the drug and the material. Finally, the biological assays show that none of the systems studied are cytotoxic for HMVEC. Additionally, the wound healing assay suggests that the UiO-66(Zr) material has potential application on the wound healing process. However, further studies should be done.
Collapse
Affiliation(s)
- Javier Salazar
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Yoan Hidalgo-Rosa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Facultad de Ingeniería, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago 7500000, Chile
| | - Pia C Burboa
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China
| | - Néstor Escalona
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Macul, Santiago 8320000, Chile; Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8320000, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile.
| |
Collapse
|
10
|
Agamendran N, Uddin M, Yesupatham MS, Shanmugam M, Augustin A, Kundu T, Kandasamy R, Sasaki K, Sekar K. Nanoarchitectonics Design Strategy of Metal-Organic Framework and Bio-Metal-Organic Framework Composites for Advanced Wastewater Treatment through Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38323568 DOI: 10.1021/acs.langmuir.3c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Freshwater depletion is an alarm for finding an eco-friendly solution to treat wastewater for drinking and domestic applications. Though several methods like chlorination, filtration, and coagulation-sedimentation are conventionally employed for water treatment, these methods need to be improved as they are not environmentally friendly, rely on chemicals, and are ineffective for all kinds of pollutants. These problems can be addressed by employing an alternative solution that is effective for efficient water treatment and favors commercial aspects. Metal organic frameworks (MOFs), an emerging porous material, possess high stability, pore size tunability, greater surface area, and active sites. These MOFs can be tailored; thus, they can be customized according to the target pollutant. Hence, MOFs can be employed as adsorbents that effectively target different pollutants. Bio-MOFs are a kind of MOFs that are incorporated with biomolecules, which also possess properties of MOFs and are used as a nontoxic adsorbent. In this review, we elaborate on the interaction between MOFs and target pollutants, the role of linkers in the adsorption of contaminants, tailoring strategy that can be employed on MOFs and Bio-MOFs to target specific pollutants, and we also highlight the effect of environmental matrices on adsorption of pollutants by MOFs.
Collapse
Affiliation(s)
- Nithish Agamendran
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Maseed Uddin
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Manova Santhosh Yesupatham
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Mariyappan Shanmugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashil Augustin
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Tanay Kundu
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ramani Kandasamy
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
11
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
12
|
Alhashem H, Sengupta D, Bose S, Wang X, Sha F, Islamoglu T, Farha OK. Effective Strategy toward Obtaining Reliable Breakthrough Curves of Solid Adsorbents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5093-5102. [PMID: 38236238 DOI: 10.1021/acsami.3c15859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metal-organic frameworks (MOFs) have demonstrated their versatility in a wide range of applications, including chemical separation, gas capture, and storage. In industrial adsorption processes, MOFs are integral to the creation of selective gas adsorption fixed beds. In this context, the assessment of their separation performance under relevant conditions often relies on breakthrough experiments. One aspect frequently overlooked in these experiments is the shaping of MOF powders, which can significantly impact the accuracy of breakthrough results. In this study, we present an approach for immobilizing MOF particles on the surface of glass beads (GBs) utilizing trimethylolpropane triglycidyl ether (TMPTGE) as a binder, leading to the creation of MOF@GB materials. We successfully synthesized five targeted MOF composites, namely, SIFSIX-3-Ni@GB, CALF-20@GB, UiO-66@GB, HKUST-1@GB, and MOF-808@GB, each possessing distinct pore sizes and structural topologies. Characterization studies employing powder X-ray diffraction and adsorption isotherm analyses demonstrated that MOFs@GB retained their crystallinity and 73-90% of the Brunauer-Emmett-Teller area of their parent MOFs. Dynamic breakthrough experiments revealed that, in comparison to their parent MOFs, MOF@GB configurations enhanced the accuracy of breakthrough measurements by mitigating pressure buildup and minimizing reductions in the gas flow rate. This work underscores the significance of meticulous experimental design, specifically in shaping MOF powders, to optimize the efficacy of breakthrough experiments. Our proposed strategy aims to provide a versatile platform for MOF powder processing, thereby facilitating more reliable breakthrough experiments.
Collapse
Affiliation(s)
- Hussain Alhashem
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debabrata Sengupta
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Saptasree Bose
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaoliang Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Iqbal MZ, Zakir A, Shaheen M, Khizar A, Yusuf K, Iqbal MJ, Ahmad Z, Sharif S. Elucidating the redox activity of cobalt-1,2,3,4-cyclopentane-tetracarboxylic acid and 1,2,4,5-benzene-tetracarboxylic acid-based metal-organic frameworks for a hybrid supercapacitor. RSC Adv 2024; 14:1655-1664. [PMID: 38187454 PMCID: PMC10767483 DOI: 10.1039/d3ra05820d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/14/2023] [Indexed: 01/09/2024] Open
Abstract
The development of electrode materials with extraordinary energy densities or high power densities has experienced a spectacular upsurge because of significant advances in energy storage technology. In recent years, the family of metal-organic frameworks (MOFs) has become an essential contender for electrode materials. Herein, two cobalt-based MOFs are synthesized with distinct linkers named 1,2,4,5-benzene-tetra-carboxylic acid (BTCA) and 1,2,3,4-cyclopentane-tetracarboxylic acid (CPTC). Investigations have been rigorously conducted to fully understand the effect of linkers on the electrochemical properties of Co-based MOFs. The best sample among the MOFs was used with activated carbon to create a battery-supercapacitor hybrid device. Due to its noteworthy results, specific capacity (100.3 C g-1), energy density (23 W h kg-1), power density (3400 W kg-1) and with the lowest ESR value of 0.4 Ω as well as its 95.4% capacity retention, the fabricated hybrid device was discovered to be very appealing for applications demanding energy storage. An approach for evaluating battery-supercapacitors was employed by quantifying the capacitive and diffusive contributions using Dunn's model to reflect the bulk and surface processes occurring during charge storage. This study fills the gap between supercapacitors and batteries, as well as providing a roadmap for creating a new generation of energy storage technologies with improved features.
Collapse
Affiliation(s)
- Muhammad Zahir Iqbal
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Ayesha Zakir
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Misbah Shaheen
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Asma Khizar
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Muhammad Javaid Iqbal
- Centre of Excellence in Solid State Physics, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Shahzad Sharif
- Department of Chemistry, Materials Chemistry Laboratory, Govt. College University 54000 Lahore Pakistan
| |
Collapse
|
14
|
Zheng Z, Zhang O, Nguyen HL, Rampal N, Alawadhi AH, Rong Z, Head-Gordon T, Borgs C, Chayes JT, Yaghi OM. ChatGPT Research Group for Optimizing the Crystallinity of MOFs and COFs. ACS CENTRAL SCIENCE 2023; 9:2161-2170. [PMID: 38033801 PMCID: PMC10683477 DOI: 10.1021/acscentsci.3c01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
We leveraged the power of ChatGPT and Bayesian optimization in the development of a multi-AI-driven system, backed by seven large language model-based assistants and equipped with machine learning algorithms, that seamlessly orchestrates a multitude of research aspects in a chemistry laboratory (termed the ChatGPT Research Group). Our approach accelerated the discovery of optimal microwave synthesis conditions, enhancing the crystallinity of MOF-321, MOF-322, and COF-323 and achieving the desired porosity and water capacity. In this system, human researchers gained assistance from these diverse AI collaborators, each with a unique role within the laboratory environment, spanning strategy planning, literature search, coding, robotic operation, labware design, safety inspection, and data analysis. Such a comprehensive approach enables a single researcher working in concert with AI to achieve productivity levels analogous to those of an entire traditional scientific team. Furthermore, by reducing human biases in screening experimental conditions and deftly balancing the exploration and exploitation of synthesis parameters, our Bayesian search approach precisely zeroed in on optimal synthesis conditions from a pool of 6 million within a significantly shortened time scale. This work serves as a compelling proof of concept for an AI-driven revolution in the chemistry laboratory, painting a future where AI becomes an efficient collaborator, liberating us from routine tasks to focus on pushing the boundaries of innovation.
Collapse
Affiliation(s)
- Zhiling Zheng
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| | - Oufan Zhang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
| | - Ha L. Nguyen
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
| | - Nakul Rampal
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| | - Ali H. Alawadhi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
| | - Zichao Rong
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Christian Borgs
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Jennifer T. Chayes
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Department
of Mathematics, University of California, Berkeley, California 94720, United States
- Department
of Statistics, University of California, Berkeley, California 94720, United States
- School
of Information, University of California, Berkeley, California 94720, United States
| | - Omar M. Yaghi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
- KACST−UC Berkeley Center of Excellence for Nanomaterials for
Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
15
|
Torbina VV, Salaev MA, Paukshtis EA, Liotta LF, Vodyankina OV. Effect of Linker Substituent Nature on Performance of Active Sites in UiO-66: Combined FT-IR and DFT Study. Int J Mol Sci 2023; 24:14893. [PMID: 37834340 PMCID: PMC10573255 DOI: 10.3390/ijms241914893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The nature of organic linker substituents plays an important role in gas sorption and separation as well as in catalytic applications of metal-organic frameworks. Zirconium-based UiO-66 is one of the most tunable members of this class of materials. However, the prediction of its properties is still not a fully solved problem. Here, the infrared spectroscopic measurements using highly sensitive CO probe molecules, combined with DFT calculations, are used in order to characterize the performance of different acidic sites caused by the presence of different organic linker substituents. The proposed model allowed differentiation between various active sites over the UiO-66 and clarification of their behavior. The experimental IR bands related to CO adsorption can be unambiguously assigned to one type of site or another. The previously undescribed highly red-shifted band is attributed to CO adsorbed on coordinatively unsaturated zirconium sites through an O atom. The results confirm the lower and higher Lewis's acidity of coordinatively unsaturated Zr sites on linker defects in the UiO-66 structure when electron-withdrawing and electron-donating groups are, respectively, included in a terephthalate moiety, whilst the Brønsted acidity of zirconium oxo-cluster remains almost unchanged.
Collapse
Affiliation(s)
- Viktoriia V. Torbina
- Laboratory of Catalytic Research, Tomsk State University, 36, Lenin Ave., 634050 Tomsk, Russia; (V.V.T.); (M.A.S.)
| | - Mikhail A. Salaev
- Laboratory of Catalytic Research, Tomsk State University, 36, Lenin Ave., 634050 Tomsk, Russia; (V.V.T.); (M.A.S.)
| | - Evgeniy A. Paukshtis
- Boreskov Institute of Catalysis, SB RAS, 5, Ak. Lavrentieva Ave., 630090 Novosibirsk, Russia;
| | - Leonarda F. Liotta
- Institute for the Study of Nanostructured Materials (ISMN), National Research Council (CNR), 90146 Palermo, Italy
| | - Olga V. Vodyankina
- Laboratory of Catalytic Research, Tomsk State University, 36, Lenin Ave., 634050 Tomsk, Russia; (V.V.T.); (M.A.S.)
| |
Collapse
|
16
|
López-Cervantes VB, Obeso JL, Yañez-Aulestia A, Islas-Jácome A, Leyva C, González-Zamora E, Sánchez-González E, Ibarra IA. MFM-300(Sc): a chemically stable Sc(III)-based MOF material for multiple applications. Chem Commun (Camb) 2023; 59:10343-10359. [PMID: 37563983 DOI: 10.1039/d3cc02987e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Developing robust multifunctional metal-organic frameworks (MOFs) is the key to advancing the further deployment of MOFs into relevant applications. Since the first report of MFM-300(Sc) (MFM = Manchester Framework Material, formerly known as NOTT-400), the development of applications of this robust microporous MOF has only grown. In this review, a summary of the applications of MFM-300(Sc), as well as some emerging advanced applications, have been discussed. The adsorption properties of MFM-300(Sc) are presented systematically. Particularly, this contribution is focused on acid and corrosive gas adsorption. In addition, recent applications for catalysis based on the outstanding hemilabile Sc-O bond character are highlighted. Finally, some new research areas are introduced, such as host-guest chemistry and biomedical applications. This highlight aims to showcase the recent advances and the potential for developing new applications of this promising material.
Collapse
Affiliation(s)
- Valeria B López-Cervantes
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694 Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
| | - Ana Yañez-Aulestia
- UAM-Azcapotzalco, San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, C.P. 02200, Ciudad de México, Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, Ciudad de México, Mexico
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694 Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, Ciudad de México, Mexico
| | - Elí Sánchez-González
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
17
|
Sahoo R, Mondal S, Chand S, Das MC. Highly Robust Metal-Organic Framework for Efficiently Catalyzing Knoevenagel Condensation and the Strecker Reaction under Solvent-Free Conditions. Inorg Chem 2023; 62:12989-13000. [PMID: 37530642 DOI: 10.1021/acs.inorgchem.3c01767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Metal-organic frameworks (MOFs) have been recognized as one of the most promising porous materials and offer great opportunities for the rational design of new catalytic solids having great structural diversity and functional tunability. Despite numerous inherent merits, their chemical environment instability limits their practical usage and demands further exploration. Herein, by employing the mixed-ligand approach, we have designed and developed a robust 3D Co-MOF, [Co2(μ2-O)(TDC)2(L)(H2O)2]·2DMF (H2TDC = 2,5-thiophenedicarboxylic acid, L = 3,3'-azobispyridine), IITKGP-50 (IITKGP stands for the Indian Institute of Technology Kharagpur), which exhibited excellent framework robustness not only in water but also in a wide range of aqueous pH solutions (pH = 2-12). Taking advantage of superior framework robustness and the presence of high-density open metal sites, IITKGP-50 was further explored in catalyzing the two-component Knoevenagel condensation reaction and three-component Strecker reactions. Moreover, to verify the size selectivity of IITKGP-50, smaller to bulkier substrates in comparison with the MOF's pore cavity (8.1 × 5.6 Å2) were employed, in which relatively lesser conversions for the sterically bulkier aldehyde derivatives confirmed that the catalytic cycle occurs inside the pore cavity. The easy scalability, lower catalyst loading compared to that of benchmark MOFs, magnificent conversion rate over a wide range of substrates, and excellent recyclability without significant performance loss made IITKGP-50 a promising heterogeneous catalyst candidate.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB India
| |
Collapse
|