1
|
Damena D, Barry A, Morrison R, Gaoussou S, Mahamar A, Attaher O, Issiaka D, Dicko Y, Dicko A, Duffy P, Fried M. A novel locus in CSMD1 gene is associated with increased susceptibility to severe malaria in Malian children. Front Genet 2024; 15:1390786. [PMID: 38854427 PMCID: PMC11157005 DOI: 10.3389/fgene.2024.1390786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Background Plasmodium falciparum malaria is still a leading cause of child mortality in sub-Saharan Africa. The clinical manifestations of malaria range from asymptomatic infection to severe disease. The variation in clinical presentation is partly attributed to host genetic factors with estimated narrow-sense heritability of 23%. Here, we investigate the associations between candidate gene polymorphisms and the likelihood of severe malaria (SM) in a cohort of Malian children. Methods Based on our previous genome-wide association studies (GWAS) analysis, candidate genes were selected for in-depth analysis using several criteria including gene-level GWAS scores, functional overlap with malaria pathogenesis, and evidence of association with protection or susceptibility to other infectious or inflammatory diseases. Single Nucleotide Polymorphisms (SNPs) residing within these genes were selected mainly based on p-values from previous severe malaria susceptibility GWAS studies and minor allele frequency (MAF) in West African populations. Results Of 182 candidate genes reported in our previous study, 11 genes and 22 SNPs residing in these genes were selected. The selected SNPs were genotyped using KASP technology in 477 DNA samples (87 SM and 390 controls). Logistic regression analysis revealed that a common intron variant, rs13340578 in CUB and Sushi Multi Domain (CSMD1) gene, is associated with increased odds of SM in recessive mode of inheritance (MAF = 0.42, OR = 1.8, 95% CI = [1.78, 1.84], p = 0.029). The SNP is in linkage disequilibrium (LD) with multiple variants with regulatory features. Conclusion Taken together, the current study showed that an intron variant rs13340578, residing in CSMD1 gene, is associated with increased susceptibility to malaria. This finding suggests that modified regulation of complement may contribute to malaria disease severity. Further studies are needed to identify the causal variants and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Delesa Damena
- Molecular Pathogenesis and Biomarkers Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Amadou Barry
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Robert Morrison
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Santara Gaoussou
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Djibrilla Issiaka
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Yahia Dicko
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Alassane Dicko
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Patrick Duffy
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michal Fried
- Molecular Pathogenesis and Biomarkers Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Bhardwaj M, Kour D, Rai G, Bhattacharya S, Manhas D, Vij B, Kumar A, Mukherjee D, Ahmed Z, Gandhi SG, Nandi U. EIDD-1931 Treatment Tweaks CYP3A4 and CYP2C8 in Arthritic Rats to Expedite Drug Interaction: Implication in Oral Therapy of Molnupiravir. ACS OMEGA 2024; 9:13982-13993. [PMID: 38559969 PMCID: PMC10976394 DOI: 10.1021/acsomega.3c09287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
EIDD-1931 is the active form of molnupiravir, an orally effective drug approved by the United States Food and Drug Administration (USFDA) against COVID-19. Pharmacokinetic alteration can cause untoward drug interaction (drug-drug/disease-drug), but hardly any information is known about this recently approved drug. Therefore, we first investigated the impact of the arthritis state on the oral pharmacokinetics of EIDD-1931 using a widely accepted complete Freund's adjuvant (CFA)-induced rat model of rheumatoid arthritis (RA) after ascertaining the disease occurrence by paw swelling measurement and X-ray examination. Comparative oral pharmacokinetic assessment of EIDD-1931 (normal state vs arthritis state) showed that overall plasma exposure was augmented (1.7-fold) with reduced clearance (0.54-fold), suggesting its likelihood of dose adjustment in arthritis conditions. In order to elucidate the effect of EIDD-1931 treatment at a therapeutic regime (normal state vs arthritis state) on USFDA-recommended panel of cytochrome P450 (CYP) enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) for drug interaction using the same disease model, we monitored protein and mRNA expressions (rat homologs) in liver tissue by western blotting (WB) and real time-polymerase chain reaction (RT-PCR), respectively. Results reveal that EIDD-1931 treatment could strongly influence CYP3A4 and CYP2C8 among experimental proteins/mRNAs. Although CYP2C8 regulation upon EIDD-1931 treatment resembles similar behavior under the arthritis state, results dictate a potentially reverse phenomenon for CYP3A4. Moreover, the lack of any CYP inhibitory effect by EIDD-1931 in human/rat liver microsomes (HLM/RLM) helps to ascertain EIDD-1931 treatment-mediated disease-drug interaction and the possibility of drug-drug interaction with disease-modifying antirheumatic drugs (DMARDs) upon coadministration. As elevated proinflammatory cytokine levels are prevalent in RA and nuclear factor-kappa B (NF-kB) and nuclear receptors control CYP expressions, further studies should focus on understanding the regulation of affected CYPs to subside unexpected drug interaction.
Collapse
Affiliation(s)
- Mahir Bhardwaj
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilpreet Kour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Garima Rai
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Srija Bhattacharya
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavna Vij
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debaraj Mukherjee
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Department
of Chemical Sciences, Bose institute, Kolkata 700091, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit G. Gandhi
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
4
|
Schrott R, Feinberg JI, Newschaffer CJ, Hertz-Picciotto I, Croen LA, Fallin MD, Volk HE, Ladd-Acosta C, Feinberg AP. Exposure to air pollution is associated with DNA methylation changes in sperm. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae003. [PMID: 38559770 PMCID: PMC10980975 DOI: 10.1093/eep/dvae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
Exposure to air pollutants has been associated with adverse health outcomes in adults and children who were prenatally exposed. In addition to reducing exposure to air pollutants, it is important to identify their biologic targets in order to mitigate the health consequences of exposure. One molecular change associated with prenatal exposure to air pollutants is DNA methylation (DNAm), which has been associated with changes in placenta and cord blood tissues at birth. However, little is known about how air pollution exposure impacts the sperm epigenome, which could provide important insights into the mechanism of transmission to offspring. In the present study, we explored whether exposure to particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, nitrogen dioxide (NO2), or ozone (O3) was associated with DNAm in sperm contributed by participants in the Early Autism Risk Longitudinal Investigation prospective pregnancy cohort. Air pollution exposure measurements were calculated as the average exposure for each pollutant measured within 4 weeks prior to the date of sample collection. Using array-based genome-scale methylation analyses, we identified 80, 96, 35, and 67 differentially methylated regions (DMRs) significantly associated with particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, NO2, and O3, respectively. While no DMRs were associated with exposure to all four pollutants, we found that genes overlapping exposure-related DMRs had a shared enrichment for gene ontology biological processes related to neurodevelopment. Together, these data provide compelling support for the hypothesis that paternal exposure to air pollution impacts DNAm in sperm, particularly in regions implicated in neurodevelopment.
Collapse
Affiliation(s)
- Rose Schrott
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Craig J Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, State College, PA 16802, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA 95616, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Center for Epigenetics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Chung IH, Huang YS, Fang TH, Chen CH. Whole Genome Sequencing Revealed Inherited Rare Oligogenic Variants Contributing to Schizophrenia and Major Depressive Disorder in Two Families. Int J Mol Sci 2023; 24:11777. [PMID: 37511534 PMCID: PMC10380944 DOI: 10.3390/ijms241411777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Schizophrenia and affective disorder are two major complex mental disorders with high heritability. Evidence shows that rare variants with significant clinical impacts contribute to the genetic liability of these two disorders. Also, rare variants associated with schizophrenia and affective disorders are highly personalized; each patient may carry different variants. We used whole genome sequencing analysis to study the genetic basis of two families with schizophrenia and major depressive disorder. We did not detect de novo, autosomal dominant, or recessive pathogenic or likely pathogenic variants associated with psychiatric disorders in these two families. Nevertheless, we identified multiple rare inherited variants with unknown significance in the probands. In family 1, with singleton schizophrenia, we detected four rare variants in genes implicated in schizophrenia, including p.Arg1627Trp of LAMA2, p.Pro1338Ser of CSMD1, p.Arg691Gly of TLR4, and Arg182X of AGTR2. The p.Arg691Gly of TLR4 was inherited from the father, while the other three were inherited from the mother. In family 2, with two affected sisters diagnosed with major depressive disorder, we detected three rare variants shared by the two sisters in three genes implicated in affective disorders, including p.Ala4551Gly of FAT1, p.Val231Leu of HOMER3, and p.Ile185Met of GPM6B. These three rare variants were assumed to be inherited from their parents. Prompted by these findings, we suggest that these rare inherited variants may interact with each other and lead to psychiatric conditions in these two families. Our observations support the conclusion that inherited rare variants may contribute to the heritability of psychiatric disorders.
Collapse
Affiliation(s)
- I-Hang Chung
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
- Department of Psychiatry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Hsuan Fang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Frasch MG, Yoon BJ, Helbing DL, Snir G, Antonelli MC, Bauer R. Autism Spectrum Disorder: A Neuro-Immunometabolic Hypothesis of the Developmental Origins. BIOLOGY 2023; 12:914. [PMID: 37508346 PMCID: PMC10375982 DOI: 10.3390/biology12070914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Fetal neuroinflammation and prenatal stress (PS) may contribute to lifelong neurological disabilities. Astrocytes and microglia, among the brain's non-neuronal "glia" cell populations, play a pivotal role in neurodevelopment and predisposition to and initiation of disease throughout lifespan. One of the most common neurodevelopmental disorders manifesting between 1-4 years of age is the autism spectrum disorder (ASD). A pathological glial-neuronal interplay is thought to increase the risk for clinical manifestation of ASD in at-risk children, but the mechanisms remain poorly understood, and integrative, multi-scale models are needed. We propose a model that integrates the data across the scales of physiological organization, from genome to phenotype, and provides a foundation to explain the disparate findings on the genomic level. We hypothesize that via gene-environment interactions, fetal neuroinflammation and PS may reprogram glial immunometabolic phenotypes that impact neurodevelopment and neurobehavior. Drawing on genomic data from the recently published series of ovine and rodent glial transcriptome analyses with fetuses exposed to neuroinflammation or PS, we conducted an analysis on the Simons Foundation Autism Research Initiative (SFARI) Gene database. We confirmed 21 gene hits. Using unsupervised statistical network analysis, we then identified six clusters of probable protein-protein interactions mapping onto the immunometabolic and stress response networks and epigenetic memory. These findings support our hypothesis. We discuss the implications for ASD etiology, early detection, and novel therapeutic approaches. We conclude with delineation of the next steps to verify our model on the individual gene level in an assumption-free manner. The proposed model is of interest for the multidisciplinary community of stakeholders engaged in ASD research, the development of novel pharmacological and non-pharmacological treatments, early prevention, and detection as well as for policy makers.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Byung-Jun Yoon
- Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dario Lucas Helbing
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Gal Snir
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748 Garching, Germany
| | - Reinhard Bauer
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
7
|
Ermis Akyuz E, Bell SM. The Diverse Role of CUB and Sushi Multiple Domains 1 (CSMD1) in Human Diseases. Genes (Basel) 2022; 13:genes13122332. [PMID: 36553598 PMCID: PMC9778380 DOI: 10.3390/genes13122332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
CUB and Sushi Multiple Domains 1 (CSMD1), a tumour suppressor gene, encodes a large membrane-bound protein including a single transmembrane domain. This transmembrane region has a potential tyrosine phosphorylation site, suggesting that CSMD1 is involved in controlling cellular functions. Although the specific mechanisms of action for CSMD1 have not yet been uncovered, it has been linked to a number of processes including development, complement control, neurodevelopment, and cancer progression. In this review, we summarise CSMD1 functions in the cellular processes involved in the complement system, metastasis, and Epithelial mesenchymal transition (EMT) and also in the diseases schizophrenia, Parkinson's disease, and cancer. Clarifying the association between CSMD1 and the aforementioned diseases will contribute to the development of new diagnosis and treatment methods for these diseases. Recent studies in certain cancer types, e.g., gastric cancer, oesophageal cancer, and head and neck squamous cell carcinomas, have indicated the involvement of CSMD1 in response to immunotherapy.
Collapse
|
8
|
Sharma R, Frasch MG, Zelgert C, Zimmermann P, Fabre B, Wilson R, Waldenberger M, MacDonald JW, Bammler TK, Lobmaier SM, Antonelli MC. Maternal-fetal stress and DNA methylation signatures in neonatal saliva: an epigenome-wide association study. Clin Epigenetics 2022; 14:87. [PMID: 35836289 PMCID: PMC9281078 DOI: 10.1186/s13148-022-01310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Maternal stress before, during and after pregnancy has profound effects on the development and lifelong function of the infant's neurocognitive development. We hypothesized that the programming of the central nervous system (CNS), hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) induced by prenatal stress (PS) is reflected in electrophysiological and epigenetic biomarkers. In this study, we aimed to find noninvasive epigenetic biomarkers of PS in the newborn salivary DNA. RESULTS A total of 728 pregnant women were screened for stress exposure using Cohen Perceived Stress Scale (PSS), 164 women were enrolled, and 114 dyads were analyzed. Prenatal Distress Questionnaire (PDQ) was also administered to assess specific pregnancy worries. Transabdominal fetal electrocardiograms (taECG) were recorded to derive coupling between maternal and fetal heart rates resulting in a 'Fetal Stress Index' (FSI). Upon delivery, we collected maternal hair strands for cortisol measurements and newborn's saliva for epigenetic analyses. DNA was extracted from saliva samples, and DNA methylation was measured using EPIC BeadChip array (850 k CpG sites). Linear regression was used to identify associations between PSS/PDQ/FSI/Cortisol and DNA methylation. We found epigenome-wide significant associations for 5 CpG with PDQ and cortisol at FDR < 5%. Three CpGs were annotated to genes (Illumina Gene annotation file): YAP1, TOMM20 and CSMD1, and two CpGs were located approximately lay at 50 kb from SSBP4 and SCAMP1. In addition, two differentiated methylation regions (DMR) related to maternal stress measures PDQ and cortisol were found: DAXX and ARL4D. CONCLUSIONS Genes annotated to these CpGs were found to be involved in secretion and transportation, nuclear signaling, Hippo signaling pathways, apoptosis, intracellular trafficking and neuronal signaling. Moreover, some CpGs are annotated to genes related to autism, post-traumatic stress disorder (PTSD) and schizophrenia. However, our results should be viewed as hypothesis generating until replicated in a larger sample. Early assessment of such noninvasive PS biomarkers will allow timelier detection of babies at risk and a more effective allocation of resources for early intervention programs to improve child development. A biomarker-guided early intervention strategy is the first step in the prevention of future health problems, reducing their personal and societal impact.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - Martin G Frasch
- Department of Obstetrics and Gynecology and Center On Human Development and Disability (CHDD), University of Washington, Seattle, WA, USA
| | - Camila Zelgert
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter Zimmermann
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bibiana Fabre
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum Munich, Munich, Germany
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Silvia M Lobmaier
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marta C Antonelli
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|