1
|
Rehman MU, He F, Shu X, Guo J, Liu Z, Cao S, Long S. Antibacterial and antifungal pyrazoles based on different construction strategies. Eur J Med Chem 2025; 282:117081. [PMID: 39608204 DOI: 10.1016/j.ejmech.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
The growing prevalence of microbial infections, and antimicrobial resistance (AMR) stemming from the overuse and misuse of antibiotics, call for novel therapeutic agents, particularly ones targeting resistant microbial strains. Scientists are striving to develop innovative agents to tackle the rising microbial infections and abate the risk of AMR. Pyrazole, a five-membered heterocyclic compound belonging to the azole family, is a versatile scaffold and serves as a core structure in many drugs with antimicrobial and other therapeutic effects. In this review, we have updated pyrazole-based antibacterial and antifungal agents mainly developed between 2016 and 2024, by combining with diverse pharmacophores such as coumarin, thiazole, oxadiazole, isoxazole, indole, etc. Meanwhile, the various strategies (molecular hybridization, bioisosterism, scaffold hopping, multicomponent reactions, and catalyst-free synthesis) for integrating different functional groups with the pyrazole ring are discussed. Additionally, structure-activity relationships of these pyrazole derivatives, i.e., how structural modifications impact their selectivity and therapeutic potential against bacterial and fungal strains, are highlighted. This review provides insights into designing next-generation antimicrobials to combat AMR, and offers valuable perspectives to the scientists working on heterocyclic compounds with diverse bioactivities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Fang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Xi Shu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
2
|
Monroy-Cárdenas M, Almarza C, Valenzuela-Hormazábal P, Ramírez D, Urra FA, Martínez-Cifuentes M, Araya-Maturana R. Identification of Antioxidant Methyl Derivatives of Ortho-Carbonyl Hydroquinones That Reduce Caco-2 Cell Energetic Metabolism and Alpha-Glucosidase Activity. Int J Mol Sci 2024; 25:8334. [PMID: 39125904 PMCID: PMC11313435 DOI: 10.3390/ijms25158334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone series, whose members differ only in the number and position of methyl groups on a common scaffold, on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by density functional theory (DFT) analysis. These compounds' effect on enzymatic activity, their molecular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs) than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport flux. Additionally, menadione-induced ROS production was prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new drugs for T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
| | - Cristopher Almarza
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Paulina Valenzuela-Hormazábal
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - Félix A. Urra
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Ramiro Araya-Maturana
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
3
|
Halim SA, Lodhi HW, Waqas M, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. Targeting α-amylase enzyme through multi-fold structure-based virtual screening and molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:5617-5630. [PMID: 37378513 DOI: 10.1080/07391102.2023.2227721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
α-Amylase play important role in hydrolyses of α-bonds of large α-linked polysaccharides; thus, it is a potential drug target in diabetes mellites (DM) and its inhibition is one of the therapeutic strategies in DM. With the aim to discover novel and safer therapeutic molecules to combat diabetes, a huge dataset of ∼0.69 billion compounds from ZINC20 database were screened against α-amylase using multi-fold structure-based virtual screening protocol. Based on receptor-based pharmacophore model, docking results, pharmacokinetic profile, molecular interactions with α-amylase, several compounds were retrieved as lead candidates to be further scrutinized in the in vitro assay and in vivo animal testing. Among the selected hits, CP26 exhibited the highest binding free energy in MMGB-SA analysis, followed by CP7 and CP9, which is higher than the binding free energy of acarbose. While CP20 and CP21 showed comparative binding free energy to acarbose. All the selected ligands showed acceptable binding energy range, therefore, several molecules with enhanced efficacy can be designed by derivatizing these molecules. The in-silico results indicates that the selected molecules could serve as potential selective α-amylase inhibitors and can be used for the treatment of diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | | | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
4
|
Le TKD, Hioki Y, Duong TH, Kita M, Chavasiri W. Globunoids A-D, undescribed bichalconoid and biflavanoids with α-glucosidase and α-amylase inhibitory activities from Knema globularia stems. PHYTOCHEMISTRY 2024; 221:114066. [PMID: 38494085 DOI: 10.1016/j.phytochem.2024.114066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
A bichalconoid, globunoid A (1) and three biflavanones, globunoids B-D (2-4), previously undescribed, were isolated from the stems of Knema globularia, along with fourteen known analogues 5-18. The chemical structures of 1-4 were elucidated by the comprehensive spectroscopic analysis including UV, IR, HRESIMS, and NMR; the absolute configurations were determined based on their NOESY data, DP4+ statistical analysis, and ECD calculation. Up to now, compounds 2 and 3 represent the first 3,3″-linked biflavanone structures. Among the isolated compounds, 2, 3, and 2,3-dihydrocalodenin B (6) potently inhibited α-glucosidase and α-amylase activities, with IC50 values in the range 1.1-7.5 μM. Furthermore, the most active compound 6 was found to be a non-competitive inhibitor against these two enzymes.
Collapse
Affiliation(s)
- Thi-Kim-Dung Le
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Yusuke Hioki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Thuc-Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education, 280 an Duong Vuong Street, District 5, Ho Chi Minh City, 748342, Viet Nam
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Islam WU, Khan A, Khan F, Ullah S, Waqas M, Khan H, Khan M, Rahman SM, Ali S, Mateen A, Khalid A, Khan A, Al-Harrasi A. Synthesis of novel hydrazide Schiff bases with anti-diabetic and anti-hyperlipidemic effects: in-vitro, in-vivo and in-silico approaches. J Biomol Struct Dyn 2024:1-12. [PMID: 38533896 DOI: 10.1080/07391102.2024.2329296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
The increasing global incidence of non-insulin-dependent diabetes mellitus (NIDDM) necessitates innovative therapeutic solutions. This study focuses on the design, synthesis and biological evaluation of Schiff base derivatives from 2-bromo-2-(2-chlorophenyl) acetic acid, particularly hydrazone compounds 4a and 4b. Both in-vitro and in-vivo assays demonstrate these derivatives' strong antidiabetic and anti-hyperlipidemic properties. In a 15-d experiment, we administered 4a and 4b at doses of 2.5 and 5 mg/kg body weight, which effectively improved symptoms of alloxan-induced diabetes in mice. These symptoms included weight loss, increased water consumption and high blood glucose levels. The compounds also normalized abnormal levels of total cholesterol (TC), triacylglycerol (TG) and low-density lipoprotein cholesterol (LDL-C), while raising the levels of high-density lipoprotein cholesterol (HDLC). Computational analysis showed that these compounds effectively inhibited the α-glucosidase enzyme by interacting with key catalytic residues, specifically Asp214 and Asp349. These computational results were confirmed through in-vitro tests, where 4a and 4b showed strong α-glucosidase inhibitory activity, with IC50 values of 0.70 ± 0.11 and 10.29 ± 0.30 µM, respectively. These compounds were more effective than the standard drug, acarbose, which had an IC50 value of 873.34 ± 1.67 µM. Mechanistic studies further indicated competitive inhibition, reinforcing the therapeutic potential of 4a and 4b for NIDDM treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Waseem Ul Islam
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Hammad Khan
- Organic Synthesis and Catalysis Research Laboratory, Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan Mardan, Mardan, Pakistan
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Shaukat Ali
- Organic Synthesis and Catalysis Research Laboratory, Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Mateen
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
6
|
Ullah S, Halim SA, Waqas M, Mansoor F, Avula SK, Khan FA, Perviaz M, Ogaly HA, Khan A, Al-Harrasi A. Biochemical and computational inhibition of α-glucosidase by novel metronidazole-linked 1 H-1,2,3-triazole and carboxylate moieties: kinetics and dynamic investigations. J Biomol Struct Dyn 2024:1-21. [PMID: 38433423 DOI: 10.1080/07391102.2024.2322622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In the current study, metronidazole derivatives containing 1H-1,2,3-triazole and carboxylate moieties were evaluated in vitro and by computational methods for their anti-diabetic potential to insight into their medicinal use for the management of type II diabetes mellitus. Interestingly all 14 compounds displayed high to significant inhibitory capability against the key carbohydrate's digestive enzyme α-glucosidase with IC50 values in range of 9.73-56.39 μM, as compared to marketed drug acarbose (IC50 = 873.34 ± 1.67 μM). Compounds 5i and 7c exhibited the highest inhibition, therefore, these two compounds were further evaluated for their mechanistic studies to explore its type of inhibition. Compounds 5i and 7c both displayed a concentration-dependent (competitive type of inhibition) with Ki values 7.14 ± 0.01, 6.15 ± 0.02 μM, respectively, which conclude their favourable interactions with the active site residues of the α-glucosidase. Interestingly all compounds are non-cytotoxic against BJ cell line. To further validate our findings, in-silico approaches like molecular docking, and molecular dynamic simulations were applied to investigate the mode of bindings of compounds with the enzyme and identifies their inhibition mechanism, which strongly complements our experimental findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Farheen Mansoor
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Farhan A Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, Pakistan
| | - Muhammad Perviaz
- Department of Basic & Applied Chemistry, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
7
|
Rajan R, Karthikeyan S, Desikan R. Synthesis, Structural Elucidation, In Silico and In Vitro Studies of New Class of Methylenedioxyphenyl-Based Amide Derivatives as Potential Myeloperoxidase Inhibitors for Cardiovascular Protection. ACS OMEGA 2024; 9:7850-7868. [PMID: 38405500 PMCID: PMC10882620 DOI: 10.1021/acsomega.3c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
Novel methylenedioxyphenyl-based amides, especially N-(4-methoxybenzyl)-6-nitrobenzo-[1,3]-dioxole-5-carboxamide (MDC) and N-(3-acetylphenyl)-6-nitrobenzo-[1,3]-dioxole-5-carboxamide (ADC), potential cardiovascular preventive agents, are successfully synthesized, and their chemical structures are verified by 1H and 13C NMR, Fourier transform infrared (FT-IR), high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction (SC-XRD) analyses. Data obtained from SC-XRD reveal that MDC and ADC are both monoclinic molecules with Z = 2 and 4, respectively. From density functional theory (DFT) calculations, 3.54 and 3.96 eV are the energy gaps of the optimized MDC and ADC structures, respectively. MDC and ADC exhibit an electrophilicity index value of more than 1.5 eV, suggesting that they can act as an electrophile, facilitating bond formation with biomolecules. Hirshfeld surface analysis demonstrates that more than 25% of atomic interactions in both MDC and ADC are from H···H interactions. Based on pharmacokinetic predictions, MDC and ADC exhibit drug-like properties, and molecular docking simulations revealed favorable interactions with active site pockets. Both MDC and ADC achieved higher docking scores of -7.74 and -7.79 kcal/mol, respectively, with myeloperoxidase (MPO) protein. From docking results, MPO was found to be most favorable followed by dipeptidyl peptidase-4 (DPP-4) and α-glucosidase (α-GD). Antioxidant, anti-inflammatory, and in vitro enzymatic studies of MDC and ADC indicate that MDC is more selective toward MPO and more potent than ADC. The application of MDC to inhibit myeloperoxidase could be ascertained to reduce the cardiovascular risk factor. This can be supported from the results of computational docking (based on hydrogen bonding and docking score), in vitro antioxidant and anti-inflammatory properties, and MPO enzymatic inhibition (based on the percentage of inhibition and IC50 values).
Collapse
Affiliation(s)
- Reshma Rajan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| | - Sambantham Karthikeyan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| | - Rajagopal Desikan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| |
Collapse
|
8
|
Yoon D, Jung HJ, Lee J, Kim HJ, Park HS, Park YJ, Kang MK, Kim GY, Kang D, Park Y, Chun P, Chung HY, Moon HR. In vitro and in vivo anti-pigmentation effects of 2-mercaptobenzimidazoles as nanomolar tyrosinase inhibitors on mammalian cells and zebrafish embryos: Preparation of pigment-free zebrafish embryos. Eur J Med Chem 2024; 266:116136. [PMID: 38244374 DOI: 10.1016/j.ejmech.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Recently, 10 2-mercaptobenzo[d]imidazole (2-MBI) compounds (1-10) were synthesized. Although all 2-MBI compounds are tyrosinase inhibitors that inhibit mushroom tyrosinase at extremely low concentrations (IC50 values: 20-740 nM) and effectively inhibit the browning of apples, to our knowledge, no studies have determined whether 2-MBI compounds inhibit mammalian tyrosinase. Mammalian tyrosinase is different from mushroom tyrosinase in its distribution within the cell and has structural characteristics that are different from mushroom tyrosinase in amino acid sequence and in the presence of a quaternary structure. Thus, the effect of the 10 2-MBI compounds on mammalian tyrosinase activity was investigated in B16F10 cells. Six compounds (1-6) exhibited stronger intracellular tyrosinase inhibition than that of kojic acid and phenylthiourea (PTU), which are known to be the most potent tyrosinase inhibitors; their strong tyrosinase inhibitory activity robustly inhibited intracellular melanin production in B16F10 cells. None of the tested 2-MBI compounds exhibited appreciable cytotoxicity in HaCaT and B16F10 cells. To confirm the anti-melanogenic efficacy of the 2-MBI compounds in vivo, a zebrafish embryo model was used. At concentrations 100 times lower than kojic acid, most 2-MBI compounds demonstrated much stronger depigmentation efficacy than that of kojic acid, and three 2-MBI compounds (2-4) showed depigmentation activity similar to or more potent than that of PTU, resulting in nearly pigment-free zebrafish embryos. These results suggest that 2-MBI compounds may be potential therapeutic agents for hyperpigmentation-related disorders.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ga Young Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Mishra AK, Thajudeen KY, Singh M, Rasool G, Kumar A, Singh H, Sharma K, Mishra A. In-silico based Designing of benzo [d]thiazol-2-amine Derivatives as Analgesic and Anti-inflammatory Agents. Antiinflamm Antiallergy Agents Med Chem 2024; 23:230-260. [PMID: 39162282 DOI: 10.2174/0118715230296273240725065839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Benzo[d]thiazoles represent a significant class of heterocyclic compounds renowned for their diverse pharmacological activities, including analgesic and antiinflammatory properties. This molecular scaffold holds substantial interest among medicinal chemists owing to its structural versatility and therapeutic potential. Incorporating the benzo[d]thiazole moiety into drug molecules has been extensively investigated as a strategy to craft novel therapeutics with heightened efficacy and minimized adverse effects. AIMS The aim of the present research work was to design, synthesize and characterize the new benzo[d]thiazol-2-amine derivatives as potent analgesic and anti-inflammatory agents. MATERIALS AND METHODS The synthesis of the presented benzo[d]thiazol-2-amine derivatives was performed by condensing-(4-chlorobenzylidene) benzo[d]thiazol-2-amine with a number of substituted phenols in the presence of potassium iodide and anhydrous potassium carbonate in dry acetone. IR spectroscopy, 1HNMR spectroscopy, 13CNMR spectroscopy and Mass spectroscopy methods were used to characterize the structural properties of all 13 newly synthesized derivatives. The molecular properties of these newly synthesized derivatives were estimated to study the attributes of drug-like candidates. Benzo[d]thiazol-2-amine derivatives were molecularly docked with selective enzymes COX-1 and COX-2. Analgesic and anti-inflammatory activities of synthesized compounds were evaluated by using albino rats. RESULTS Findings of the research suggested that compounds G3, G4, G6, G8 and G11 possess higher binding affinity than diclofenac sodium, when docking was performed with enzyme COX-1. Compounds G1, G3, G6, G8 and G10 showed lower binding affinity than Indomethacin when docking was performed with enzyme COX-2. In vitro evaluation of the COX-1 and COX-2 enzyme inhibitory activities was performed for synthesized compounds. DISCUSSION Compounds G10 and G11 exhibited significant COX-1 and COX-2 enzyme inhibitory action with an IC50 value of 5.0 and 10 μM, respectively. Using the hot plate method and the carrageenan-induced rat paw edema model, the synthesized compounds were screened for their biological activities, including analgesic and anti-inflammatory activities. Highest analgesic action was exhibited by derivative G11 and the compound G10 showed the highest anti-inflammatory response. Inhibition of COX may be considered as a mechanism of action of these compounds. CONCLUSION It was concluded that synthesized derivatives G10 and G11 exhibited significant analgesic and anti-inflammatory effect; therefore, the said compounds may be subjected to further clinical investigation for establishing these as future compounds for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Arun K Mishra
- Central Facility of Instrumentation, SOS School of Pharmacy, IFTM University, 244001, Moradabad, India
| | - Kamal Y Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mhaveer Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, 244102, India
| | - Gulam Rasool
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Arvind Kumar
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Harpreet Singh
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, India
| | - Kalicharan Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, 110017, New Delhi, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, 110017, New Delhi, India
| |
Collapse
|
10
|
Tariq HZ, Saeed A, Ullah S, Fatima N, Halim SA, Khan A, El-Seedi HR, Ashraf MZ, Latif M, Al-Harrasi A. Synthesis of novel coumarin-hydrazone hybrids as α-glucosidase inhibitors and their molecular docking studies. RSC Adv 2023; 13:26229-26238. [PMID: 37670997 PMCID: PMC10475976 DOI: 10.1039/d3ra03953f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder and more than 90% of diabetic patients suffer from type-2 diabetes, which is characterized by hyperglycemia. α-Glucosidase inhibition has become an appropriate approach to tackle high blood glucose levels. The current study was focused on synthesizing coumarin-hydrazone hybrids (7a-i) by using facile chemical reactions. The synthesized compounds were characterized by using 1H-NMR, 13C-NMR, and IR. To evaluate their anti-diabetic capability, all of the conjugates were screened for in vitro α-glucosidase inhibitory activity to reveal their therapeutic importance. All of the compounds (except 7b) demonstrated significant enzyme inhibitory potential with IC50 values ranging between 2.39-57.52 μM, as compared to the standard inhibitor, acarbose (IC50 = 873.34 ± 1.67 μM). Among them, compound 7c is the most potent α-glucosidase inhibitor (IC50 = 2.39 ± 0.05 μM). Additionally, molecular docking was employed to scrutinize the binding pattern of active compounds within the α-glucosidase binding site. The in silico analysis reflects that hydrazone moiety is an essential pharmacophore for the binding of compounds with the active site residues of the enzyme. This study demonstrates that compounds 7c and 7f deserve further molecular optimization for potential application in diabetic management.
Collapse
Affiliation(s)
- Hafiza Zara Tariq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Noor Fatima
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-51-9064-2128
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Hesham R El-Seedi
- School of Food and Biological Engineering, Jiangsu University Zhenjiang 212013 China
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
| | | | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| |
Collapse
|
11
|
Aziz S, Waqas M, Iqbal A, Halim SA, Abdellattif MH, Khan A, Al-Harrasi A. Structure-based identification of potential substrate antagonists for isethionate sulfite-lyase enzyme of Bilophila Wadsworthia: Towards novel therapeutic intervention to curb gut-associated illness. Int J Biol Macromol 2023; 240:124428. [PMID: 37062383 DOI: 10.1016/j.ijbiomac.2023.124428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Bilophila wadsworthia is one of the prominent sources of hydrogen sulfide (H2S) production in appendices, excessive levels of which can result in a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Isethionate sulfite-lyase (IslA) enzyme catalyzes H2S production by cleaving CS bond in isethionate, producing acetaldehyde and sulfite. In this study, we aimed to identify potential substrate antagonists for IsIA using a structure-based drug design. Initially, pharmacophore-based computational screening of the ZINC20 database yielded 66 hits that were subjected to molecular docking targeting the isethionate binding site of IsIA. Based on striking docking scores, nine compounds showed strong interaction with critical IsIA residues (Arg189, Gln193, Glu470, Cys468, and Arg678), drug-like features, appropriate adsorption, metabolism, excretion, and excretion profile with non-toxicity. Molecular dynamics simulations uncovered the significant impact of binding the compounds on protein conformational dynamics. Finally, binding free energies revealed substantial binding affinity (ranging from -35.23 to -53.88 kcal/mol) of compounds (ZINC913876497, ZINC913856647, ZINC914263733, ZINC914137795, ZINC915757996, ZINC914357083, ZINC913934833, ZINC9143362047, and ZINC913854740) for IsIA. The compounds proposed herein through a multi-faceted computational strategy can be experimentally validated as potential substrate antagonists of B. wadsworthia's IsIA for developing new medications to curb gut-associated illness in the future.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan; Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman.
| |
Collapse
|