1
|
Tateishi I, Kuwahara S, Furukawa M, Katsumata H, Kaneco S. O-doped g-C 3N 4 prepared in pyridine for efficiently photocatalytic hydrogen production. ENVIRONMENTAL TECHNOLOGY 2024; 45:5063-5073. [PMID: 38032269 DOI: 10.1080/09593330.2023.2283799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023]
Abstract
Oxygen-doped g-C3N4 with pyridine ring (POCN) was synthesized by easily thermal polymerization of urea, pyridine solution, and ammonium acetate to improve photocatalytic hydrogen production. The experimental results indicate that pyridine was incorporated into the tri-s-triazine structure of g-C3N4. The O atoms were modified to g-C3N4 by replacing the N atoms (C-N=C) of the triazine ring. The photocatalytic activity for the hydrogen production rate of optimized POCN was 1018 µmol g-1 h-1, approximately 30 times higher than that of bulk g-C3N4 (CN) under visible light irradiation (λ > 420 nm). The high stability of POCN was confirmed through cycling tests for 30-h, XRD patterns, and SEM images. The pyridine incorporation can significantly enhance surface charge transfer efficiency. The oxygen modification can greatly promote visible light absorption (600 nm) and photogenerated electron-hole pairs separation. This work provides a suitable strategy to synthesize g-C3N4 based on metal-free photocatalysts for highly efficient photocatalytic hydrogen generation performance.
Collapse
Affiliation(s)
- Ikki Tateishi
- Global Environment Center for Education and Research, Mie University, Tsu, Japan
| | - Shuhei Kuwahara
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Mai Furukawa
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Hideyuki Katsumata
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Satoshi Kaneco
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| |
Collapse
|
2
|
Panwar S, Kumar V, Purohit LP. Solar light driven enhanced in photocatalytic activity of novel Gd incorporated ZnO/SnO 2 heterogeneous nanocomposites. Sci Rep 2024; 14:21341. [PMID: 39266647 PMCID: PMC11393090 DOI: 10.1038/s41598-024-72186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
The Gd-doped ZnO/SnO2 nanocomposites with various atomic percentages (0, 0.5, 0.8, and 1.2 at%) of gadolinium (coded as GdZS0, GdZS1, GdZS2, and GdZS3) was synthesis via the sol-gel method and explored for photodegradation against dye solutions exposing solar light irradiation. The synthesized nanocomposites were characterized employing the XRD, FTIR, FE-SEM, Raman spectroscopy, BET analysis and UV-Vis spectrophotometer. The FE-SEM results indicated that the formation of nanoparticles to nanoflowers covered with Gd ions was observed with an increased doping concentration of Gd. The optical bandgap was evaluated and found in the range of 3.21-3.27 eV for GdZS nanocomposites. The GdZS nano-photocatalysts were investigated against the degradation of different organic dyes and GdZS3 shows the highest degradation efficiencies of 99.3%, 98.3% and 99.4% towards MO, MB and RhB dyes, respectively at neutral pH in aqueous media. Before and after photodegradation. Biological oxygen demand and chemical oxygen demand tests to make estimations of mineralization. The investigations are very promising for the degradation process in rare earth doped metal oxide nanocomposites. A plausible photodegradation mechanism of synthesized nanocomposites under investigation has also been proposed.
Collapse
Affiliation(s)
- Sagar Panwar
- Semiconductor Research Lab, Department of Physics, Gurukula Kangri (Deemed University), Haridwar, India
| | - Vinod Kumar
- Department of Physics, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - L P Purohit
- Semiconductor Research Lab, Department of Physics, Gurukula Kangri (Deemed University), Haridwar, India.
| |
Collapse
|
3
|
Gomathi A, Ramesh Kumar KA, Maadeswaran P. CeO 2 nanospheres incorporated with Bi 2MoO 6/g-C 3N 4 enhanced photocatalysis towards environmental pollutant Rhodamine B removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48103-48121. [PMID: 39017869 DOI: 10.1007/s11356-024-34073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
We have adopted a novel CeO2/Bi2MoO6/g-C3N4-based ternary nanocomposite that was synthesized via hydrothermal technique. The physiochemical characterization of as-prepared samples was examined through various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy TEM, photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. In addition, the photocatalytic performance was carried out by degradation of Rhodamine B dye under visible light irradiation using this nanocatalyst. The ternary nanocomposite achieved 94% of the degradation efficiency within 100 min which is higher than the pristine and binary composites under the predetermined condition pH = 7, Rhodamine B dye = 5 mg/L, and catalyst concentration = 150 mg/L. The experimental synergetic effect of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite has been ascribed to the interfacial charge carrier migration between CeO2, Bi2MoO6, and g-C3N4. The optical absorption range of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite was enhanced, and the band gap was reduced up to 2.2 eV. In addition, scavenger trapping experiment proves that the super oxide anions (O2-.) and photogenerated holes are the major active species. The reusability and stability experiment proved the CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite keeps good durability during the photocatalytic degradation process after the five successive cycles. Furthermore, based on the results, the charge carrier transfer photocatalytic mechanism was also discussed. This CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite may offer the cheapest material and extend the great opportunity for clean and environmental remediation approach under the visible light irradiation.
Collapse
Affiliation(s)
- Abimannan Gomathi
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem, 636011, India
| | - Kandasamy Athiyanan Ramesh Kumar
- Advanced Bioenergy and Biofuels Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem, 636011, India
| | - Palanisamy Maadeswaran
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem, 636011, India.
- Center for Instrumentation and Maintenance Facility, Periyar University, 636011, Salem, Tamil Nadu, India.
| |
Collapse
|
4
|
Ghamarpoor R, Fallah A, Jamshidi M. A Review of Synthesis Methods, Modifications, and Mechanisms of ZnO/TiO 2-Based Photocatalysts for Photodegradation of Contaminants. ACS OMEGA 2024; 9:25457-25492. [PMID: 38911730 PMCID: PMC11191136 DOI: 10.1021/acsomega.3c08717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The environment being surrounded by accumulated durable waste organic compounds has become a critical crisis for human societies. Generally, organic effluents of industrial plants released into the water source and air are removed by some physical and chemical processes. Utilizing photocatalysts as cost-effective, accessible, thermally/mechanically stable, nontoxic, reusable, and powerful UV-absorber compounds creates a new gateway toward the removal of dissolved, suspended, and gaseous pollutants even in trace amounts. TiO2 and ZnO are two prevalent photocatalysts in the field of removing contaminants from wastewater and air. Structural modification of the photocatalysts with metals, nonmetals, metal ions, and other semiconductors reduces the band gap energy and agglomeration and increases the affinity toward organic compounds in the composite structures to expand their usability on an industrial scale. This increases the extent of light absorbance and improves the photocatalytic efficiency. Selecting a suitable synthesis method is necessary to prepare a target photocatalyst with distinct properties such as high specific surface area, numerous surface functional groups, and an appropriate crystalline phase. In this Review, significant parameters for the synthesis and modification of TiO2- and ZnO-based photocatalysts are discussed in detail. Several proposed mechanistic routes according to photocatalytic composite structures are provided. Some electrochemical analyses using charge carrier trapping agents and delayed recombination help to plot mechanistic routes according to the direction of photoexcited species (electron-hole pairs) and design more effective photocatalytic processes in terms of cost-effective photocatalysts, saving time and increasing productivity.
Collapse
Affiliation(s)
- Reza Ghamarpoor
- Department
of Petroleum Engineering, Faculty of Engineering, University of Garmsar, Garmsar 3588115589, Iran
- Constructional
Polymers and Composites Research Lab, School of Chemical, Petroleum
and Gas Engineering, Iran University of
Science and Technology (IUST), Tehran 1311416846, Iran
| | - Akram Fallah
- Department
of Chemical Technologies, Iranian Research
Organization for Science and Technology (IROST), Tehran 3313193685, Iran
| | - Masoud Jamshidi
- Constructional
Polymers and Composites Research Lab, School of Chemical, Petroleum
and Gas Engineering, Iran University of
Science and Technology (IUST), Tehran 1311416846, Iran
| |
Collapse
|
5
|
Escareño-Torres GA, Pinedo-Escobar JA, De Haro-Del Río DA, Becerra-Castañeda P, Araiza DG, Inchaurregui-Méndez H, Carrillo-Martínez CJ, González-Rodríguez LM. Enhanced degradation of ciprofloxacin in water using ternary photocatalysts TiO 2/SnO 2/g-C 3N 4 under UV, visible, and solar light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40174-40189. [PMID: 37597150 DOI: 10.1007/s11356-023-29166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
In this study, we report on the synthesis of ternary photocatalysts comprising TiO2/SnO2/g-C3N4 for the degradation of ciprofloxacin (CIP) in water. SnO2 nanoparticles were synthesized via the sol-gel method, while g-C3N4 was obtained through melamine calcination. Commercial TiO2 and SnO2 nanopowders were also used. The heterojunctions were synthesized via the wet impregnation method. The photocatalysts were characterized via various techniques, including XRD, TEM, STEM, FTIR, N2 adsorption, UV-Vis DR, and hole tests. Photocatalytic degradation tests of CIP were carried out under UV, visible, and solar radiation. The P25/npA/g-C3N4 (90/10) material exhibited the best performance, achieving CIP degradation of over 97%. The synthesized materials demonstrated excellent initial adsorption of CIP, around 30%, which facilitated subsequent degradation. Notably, the CIP photocatalytic degradation tests performed under solar radiation showed a synergistic effect between the base materials and carbon nitride in highly energetic environments. These results highlight the effectiveness of ternary photocatalysts TiO2/SnO2/g-C3N4 for CIP degradation, particularly under solar radiation.
Collapse
Affiliation(s)
- Gonzalo Alejandro Escareño-Torres
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Calle Circuito Cerro del Gato No. 202, Col. Cd Administrativa, 98160, Zacatecas, Zac., C.P, Mexico
| | - José Alfonso Pinedo-Escobar
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI Edificio 6, Carr. a Gdl Km 6.0, Ejido La Escondida, 98160, Zacatecas, Zac., C.P, Mexico
| | - David Alejandro De Haro-Del Río
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N., 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Patricia Becerra-Castañeda
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI Edificio 6, Carr. a Gdl Km 6.0, Ejido La Escondida, 98160, Zacatecas, Zac., C.P, Mexico
| | - Daniel G Araiza
- Instituto de Ciencias Aplicadas Y Tecnología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, C.P, Mexico
| | - Horacio Inchaurregui-Méndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Calle Circuito Cerro del Gato No. 202, Col. Cd Administrativa, 98160, Zacatecas, Zac., C.P, Mexico
| | - Cristina Jared Carrillo-Martínez
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI Edificio 6, Carr. a Gdl Km 6.0, Ejido La Escondida, 98160, Zacatecas, Zac., C.P, Mexico
| | - Luis Mario González-Rodríguez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Calle Circuito Cerro del Gato No. 202, Col. Cd Administrativa, 98160, Zacatecas, Zac., C.P, Mexico.
| |
Collapse
|
6
|
Chang YC, Bi JN, Pan KY, Chiao YC. Microwave-Assisted Synthesis of SnO 2@ZnIn 2S 4 Composites for Highly Efficient Photocatalytic Hydrogen Evolution. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2367. [PMID: 38793432 PMCID: PMC11123309 DOI: 10.3390/ma17102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This research successfully synthesized SnO2@ZnIn2S4 composites for photocatalytic tap water splitting using a rapid two-step microwave-assisted synthesis method. This study investigated the impact of incorporating a fixed quantity of SnO2 nanoparticles and combining them with various materials to form composites, aiming to enhance photocatalytic hydrogen production. Additionally, different weights of SnO2 nanoparticles were added to the ZnIn2S4 reaction precursor to prepare SnO2@ZnIn2S4 composites for photocatalytic hydrogen production. Notably, the photocatalytic efficiency of SnO2@ZnIn2S4 composites is substantially higher than that of pure SnO2 nanoparticles and ZnIn2S4 nanosheets: 17.9-fold and 6.3-fold, respectively. The enhancement is credited to the successful use of visible light and the facilitation of electron transfer across the heterojunction, leading to the efficient dissociation of electron-hole pairs. Additionally, evaluations of recyclability demonstrated the remarkable longevity of SnO2@ZnIn2S4 composites, maintaining high levels of photocatalytic hydrogen production over eight cycles without significant efficiency loss, indicating their impressive durability. This investigation presents a promising strategy for crafting and producing environmentally sustainable SnO2@ZnIn2S4 composites with prospective implementations in photocatalytic hydrogen generation.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; (J.-N.B.); (K.-Y.P.); (Y.-C.C.)
| | - Jia-Ning Bi
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; (J.-N.B.); (K.-Y.P.); (Y.-C.C.)
| | - Kuan-Yin Pan
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; (J.-N.B.); (K.-Y.P.); (Y.-C.C.)
| | - Yung-Chang Chiao
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; (J.-N.B.); (K.-Y.P.); (Y.-C.C.)
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
7
|
Gomathi A, Priyadharsan A, Handayani M, Kumar KAR, Saranya K, Kumar AS, Srividhya B, Murugesan K, Maadeswaran P. Pioneering superior efficiency in Methylene blue and Rhodamine b dye degradation under solar light irradiation using CeO 2/Co 3O 4/g-C 3N 4 ternary photocatalysts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124125. [PMID: 38461561 DOI: 10.1016/j.saa.2024.124125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
In this research work, we have successfully synthesized the CeO2/Co3O4/g-C3N4 ternary nanocomposite for hydrothermal method for photocatalytic applications. The synthesized nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy TEM, Photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer- Emmett-Teller (BET) and Ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. As per the optical spectroscopic investigations CeO2/Co3O4/g-C3N4 ternary nanocomposite exhibited the high optical absorption range and its band gap is reduced from 2.95 eV to1.83 eV. The PL spectra showed the lowered emission peak intensity of ternary nanocomposite which is revealed that the better charge separation and slow recombination of electron hole pairs. The highest photocatalytic degradation efficiency of CeO2/Co3O4/g-C3N4 ternary nanocomposite showed 93 % and 86 % towards the pollutant methylene blue and Rhodamine B. Moreover, photodegradation of the pollutants followed pseudo-first order kinetics with a very high-rate constant of 0.02211 min-1 and 0.017756 min-1. Additionally, the ternary nano catalyst was delivered the remarkable stability performance even after five cycles. This research may provide a low-cost approach for synthesized visible light responsive catalysts for use in environmental remediation applications.
Collapse
Affiliation(s)
- Abimannan Gomathi
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India
| | - Arumugam Priyadharsan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India; Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia
| | - Murni Handayani
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Puspiptek Area, Tangerang Selatan, Banten 15314, Indonesia
| | - K A Ramesh Kumar
- Advanced Bioenergy and Biofuels Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India
| | - K Saranya
- Department of Physics, Government College of Engineering, Thanjavur 613402, Tamil Nadu, India
| | - A Senthil Kumar
- Department of Applied Science, PSG College of Technology, Coimbatore 641004, Tamilnadu, India
| | - Balakrishnan Srividhya
- Department of Chemistry, KSR College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - K Murugesan
- Department of Environmental Science, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Palanisamy Maadeswaran
- Advanced Nanomaterials and Energy Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
8
|
Truong HB, Doan TTL, Hoang NT, Van Tam N, Nguyen MK, Trung LG, Gwag JS, Tran NT. Tungsten-based nanocatalysts with different structures for visible light responsive photocatalytic degradation of bisphenol A. J Environ Sci (China) 2024; 139:569-588. [PMID: 38105077 DOI: 10.1016/j.jes.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Environmental pollution, such as water contamination, is a critical issue that must be absolutely addressed. Here, three different morphologies of tungsten-based photocatalysts (WO3 nanorods, WO3/WS2 nanobricks, WO3/WS2 nanorods) are made using a simple hydrothermal method by changing the solvents (H2O, DMF, aqueous HCl solution). The as-prepared nanocatalysts have excellent thermal stability, large porosity, and high hydrophilicity. The results show all materials have good photocatalytic activity in aqueous media, with WO3/WS2 nanorods (NRs) having the best activity in the photodegradation of bisphenol A (BPA) under visible-light irradiation. This may originate from increased migration of charge carriers and effective prevention of electron‒hole recombination in WO3/WS2 NRs, whereby this photocatalyst is able to generate more reactive •OH and •O2- species, leading to greater photocatalytic activity. About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO3/WS2 NRs and 5.0 mg/L BPA at pH 7.0. Additionally, the optimal conditions (pH, catalyst dosage, initial BPA concentration) for WO3/WS2 NRs are also elaborately investigated. These rod-like heterostructures are expressed as potential catalysts with excellent photostability, efficient reusability, and highly active effectivity in different types of water. In particular, the removal efficiency of BPA by WO3/WS2 NRs reduces by only 1.5% after five recycling runs and even reaches 89.1% in contaminated lake water. This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources, which is advantageous to various applications in environmental remediation.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam, E-mail: (Hai Bang Truong); Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Thu Loan Doan
- The University of Da Nang, University of Science and Technology, 54 Nguyen Luong Bang, Da Nang, Viet Nam
| | - Nguyen Tien Hoang
- The University of Da Nang, University of Science and Education, 459 Ton Duc Thang St., Lien Chieu, Da Nang 550000, Viet Nam
| | - Nguyen Van Tam
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam
| | - Minh Kim Nguyen
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam.
| | - Le Gia Trung
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
9
|
Dash P, Panda PK, Su C, Lin YC, Sakthivel R, Chen SL, Chung RJ. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment. J Mater Chem B 2024; 12:3881-3907. [PMID: 38572601 DOI: 10.1039/d3tb01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Sung-Lung Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
10
|
Yea Y, Elanchezhiyan SS, Saravanakumar R, Jagan G, Choi JU, Saravanakumar K, Park CM. All-solid-state Z-scheme ZnFe-LDH/rGO/g-C 3N 5 heterojunction for enhanced sonophotocatalytic degradation of ciprofloxacin: Performance and mechanistic insights. ENVIRONMENTAL RESEARCH 2024; 247:118209. [PMID: 38237757 DOI: 10.1016/j.envres.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
The fabrication of all-solid-state Z-scheme sonophotocatalysts is vital for improving the transfer rate of photogenerated electrons to remove antibiotics present in wastewater. Herein, a novel indirect Z-scheme ZnFe-layered double hydroxide (LDH)/reduced graphene oxide (rGO)/graphitic carbon nitride (g-C3N5) heterojunction was synthesized using a simple strategy. The ZnFe-LDH/rGO/g-C3N5 (ZF@rGCN) ternary composites were systematically characterized using different techniques. Results revealed that the 15%ZF@rGCN catalyst achieved a ciprofloxacin (CIP) degradation efficiency of 95% via the synergistic effect of sonocatalysis and photocatalysis. The improved sonophotocatalytic performance of the ZF@rGCN heterojunction was attributed to an increase in the number of active sites, a Z-scheme charge-transfer channel in ZF@rGCN, and an extended visible light response range. The introduction of rGO further enhanced the charge-transfer rate and preserved the reductive and oxidative sites of the ZF@rGCN system, thereby affording additional reactive species to participate in CIP removal. In addition, owing to its unique properties, rGO possibly increased the absorption of incident light and served as an electronic bridge in the as-formed ZF@rGCN catalyst. Finally, the possible CIP degradation pathways and the sonophotocatalytic Z-scheme charge-migration route of ZF@rGCN were proposed. This study presents a new approach for fabricating highly efficient Z-scheme sonophotocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Yeonji Yea
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - S Sd Elanchezhiyan
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virudhunagar District, Tamil Nadu, India.
| | - R Saravanakumar
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virudhunagar District, Tamil Nadu, India.
| | - Govindan Jagan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Jong Uk Choi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
11
|
Machín A, Morant C, Soto-Vázquez L, Resto E, Ducongé J, Cotto M, Berríos-Rolón PJ, Martínez-Perales C, Márquez F. Synergistic Effects of Co 3O 4-gC 3N 4-Coated ZnO Nanoparticles: A Novel Approach for Enhanced Photocatalytic Degradation of Ciprofloxacin and Hydrogen Evolution via Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1059. [PMID: 38473530 DOI: 10.3390/ma17051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
This research evaluates the efficacy of catalysts based on Co3O4-gC3N4@ZnONPs in the degradation of ciprofloxacin (CFX) and the photocatalytic production of H2 through water splitting. The results show that CFX experiences prompt photodegradation, with rates reaching up to 99% within 60 min. Notably, the 5% (Co3O4-gC3N4)@ZnONPs emerged as the most potent catalyst. The recyclability studies of the catalyst revealed a minimal activity loss, approximately 6%, after 15 usage cycles. Using gas chromatography-mass spectrometry (GC-MS) techniques, the by-products of CFX photodegradation were identified, which enabled the determination of the potential degradation pathway and its resultant products. Comprehensive assessments involving photoluminescence, bandgap evaluations, and the study of scavenger reactions revealed a degradation mechanism driven primarily by superoxide radicals. Moreover, the catalysts demonstrated robust performance in H2 photocatalytic production, with some achieving outputs as high as 1407 µmol/hg in the visible spectrum (around 500 nm). Such findings underline the potential of these materials in environmental endeavors, targeting both water purification from organic pollutants and energy applications.
Collapse
Affiliation(s)
- Abniel Machín
- Environmental Catalysis Research Lab, Division of Science, Technology and Environment, Cupey Campus, Universidad Ana G. Méndez, Cupey, PR 00926, USA
| | - Carmen Morant
- Department of Applied Physics, Autonomous University of Madrid, and Instituto de Ciencia de Materiales Nicolás Cabrera, 28049 Madrid, Spain
| | - Loraine Soto-Vázquez
- Materials Characterization Center Inc., Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Edgard Resto
- Materials Characterization Center Inc., Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - José Ducongé
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - María Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - Pedro J Berríos-Rolón
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - Cristian Martínez-Perales
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA
| |
Collapse
|
12
|
Arputharaj E, Singh S, Pasupuleti RR, Kuo CA, Ya WJ, Huang YH, Wu YR, Chao YY, Huang YL. A phosphonium ionic liquid conjugated magnetic graphitic carbon nitride nanocomposite: an effective sample pretreatment tool for selenium separation and determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6531-6540. [PMID: 37990560 DOI: 10.1039/d3ay01312j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We established an innovative and easy-to-use methodology for selenium (Se) extraction and determination from real water samples utilizing a magnetic nanocomposite adsorbent (MNC-SPE) aided by an inductively coupled plasma mass spectrometry (ICP-MS) approach. The MNC-SPE adsorbent was fabricated by hybridizing Fe3O4 nanoparticles on the surface of carbon nitride nanosheets (GCN NSs) that were coated with 1-hexyl-3-methylimidazolium hexafluorophosphate ionic liquid (P-IL). A variety of techniques were used to thoroughly analyze the structural and chemical characteristics of MNC-SPE, and appear to have a great number of diverse active surface functional units (imidazole ring and -NH3+). In order to optimize the key factors affecting the Se extraction, parameters including the adsorbent dosage, contact time, eluent type, eluent volume, eluent time, and reusability of adsorbent were extensively studied. The proposed approach was validated under the optimal reaction conditions, and it showed good linearity between 0.15 and 100 pg μL-1 with a significant R2 value (R2 = 0.9994) toward Se metal. Besides, the Se limit of detection (LOD) and limit of quantification (LOQ) are 0.063 pg μL-1 and 0.147 pg μL-1, respectively. Further, by utilizing tap and river water samples, the applicability of the validated method was tested; the approach showed high Se recovery values in the range of 87.6-115.5% for the spiked real-world samples and the interday and intraday precision (RSD%) values of the approach were 4.8% (n = 6). The MNC-SPE can be regenerated and reused for four consecutive extraction-desorption cycles by employing 0.5 M NaOH eluent.
Collapse
Affiliation(s)
- Emmanuvel Arputharaj
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shivangi Singh
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chun-An Kuo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wei-Jyun Ya
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yu-Hui Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - You-Rong Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yu-Ying Chao
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeou-Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Rezaei F, Alinezhad H, Maleki B. Captopril supported on magnetic graphene nitride, a sustainable and green catalyst for one-pot multicomponent synthesis of 2-amino-4H-chromene and 1,2,3,6-tetrahydropyrimidine. Sci Rep 2023; 13:20562. [PMID: 37996476 PMCID: PMC10667485 DOI: 10.1038/s41598-023-47794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Captopril (CAP) is a safe, cost-effective, and environmentally organic compound that can be used as an effective organo-catalyst. Functional groups of captopril make it capable to attach to solid support and acting as promoters in organic transformations. In this work, captopril was attached to the surface of magnetic graphene nitride by employing a linker agent. The synthesized composite efficiently catalyzed two multicomponent reactions including the synthesis of 1,2,3,6-tetrahydropyrimidine and 2-amino-4H-chromene derivatives. A large library of functional targeted products was synthesized in mild reaction conditions. More importantly, this catalyst was stable and magnetically recycled and reused for at least five runs without losing catalytic activity.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Heshmatollah Alinezhad
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
14
|
Rajavaram R, Vattikuti SVP, Shim J, Liu X, Hoai NT, Nguyen Dang N. Enriched photocatalytic and photoelectrochemical activities of a 2D/0D g-C 3N 4/CeO 2 nanostructure. NANOSCALE ADVANCES 2023; 5:6489-6500. [PMID: 38024314 PMCID: PMC10662080 DOI: 10.1039/d3na00774j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
Sunlight-powered photocatalysts made from CeO2 nanosized particles and g-C3N4 nanostructures were produced through a thermal decomposition process with urea and cerium nitrate hexahydrate. The preparation of g-C3N4, CeO2, and a binary nanostructured g-C3N4/CeO2 photocatalyst was done through a facile thermal decomposition method. The structural properties were analyzed using powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). Photocatalyst properties were characterized by using crystal violet (CV), a UV-Vis spectrophotometer, photocurrent and electron impedance spectroscopy (EIS). The structural and morphological analyses revealed that the g-C3N4/CeO2 nanostructures significantly enhanced the photoactivity for CV dye degradation under simulated sunlight, with a degradation rate of 94.5% after 105 min, compared to 82.5% for pure g-C3N4 and 45% for pure CeO2. This improvement was attributed to the noticeable visible light absorption and remarkable charge separation abilities of the nanostructures. Additionally, the g-C3N4/CeO2 nanostructures showed notable PEC performance under simulated sunlight. This study presents an easy and efficient method for producing g-C3N4 photocatalysts decorated with semiconductor materials and provides insights for designing nanostructures for photocatalytic and energy applications.
Collapse
Affiliation(s)
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong 83 Tat Chee Avenue Hong Kong 999077 China
| | - Nguyen To Hoai
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 700000 Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University Danang 550000 Vietnam
| | - Nam Nguyen Dang
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 700000 Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University Danang 550000 Vietnam
| |
Collapse
|
15
|
Velmurugan G, Ganapathi Raman R, Sivaprakash P, Viji A, Cho SH, Kim I. Functionalization of Fluorine on the Surface of SnO 2-Mg Nanocomposite as an Efficient Photocatalyst for Toxic Dye Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2494. [PMID: 37687002 PMCID: PMC10489931 DOI: 10.3390/nano13172494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
This work reports on the photocatalytic activity of tin oxide (SnO2)-doped magnesium (Mg) and fluorine (F) nanoparticles for methyl orange and safranin dye degradation under sunlight irradiation. Nanocatalysis-induced dye degradation was examined using UV-visible spectroscopy and a pseudo-first-order kinetics model. The results indicate that the prepared nanoparticles exhibit superior photocatalytic activity, and the degradation of methyl orange (MO) dye is approximately 82%. In contrast, the degradation of safranin dye is 96% in the same time interval of 105 min. The calculated crystallite size of the SnO2-Mg-F nanocomposite is 29.5 nm, which respects the particle size found in the DLS analysis with a tetragonal structure and spherical morphology affirmed. The optical characteristics were assessed, and their respective bandgap energies were determined to be 3.6 eV. The influence of F in Mg and SnO2 is recognized with the XRD and FT-IR spectra of the prepared particles.
Collapse
Affiliation(s)
- G. Velmurugan
- Department of Physics, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari 629180, Tamil Nadu, India;
| | - R. Ganapathi Raman
- Department of Physics, Saveetha Engineering College (Autonomous), Chennai 602105, Tamil Nadu, India
| | - P. Sivaprakash
- Department of Mechanical Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| | - A. Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam 621215, Tamil Nadu, India;
| | - Shin Hum Cho
- Department of Chemical Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| | - Ikhyun Kim
- Department of Mechanical Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| |
Collapse
|
16
|
Al-Saeedi SI. Photoelectrochemical Green Hydrogen Production Utilizing ZnO Nanostructured Photoelectrodes. MICROMACHINES 2023; 14:mi14051047. [PMID: 37241670 DOI: 10.3390/mi14051047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
One of the emerging and environmentally friendly technologies is the photoelectrochemical generation of green hydrogen; however, the cheap cost of production and the need for customizing photoelectrode properties are thought to be the main obstacles to the widespread adoption of this technology. The primary players in hydrogen production by photoelectrochemical (PEC) water splitting, which is becoming more common on a worldwide basis, are solar renewable energy and widely available metal oxide based PEC electrodes. This study attempts to prepare nanoparticulate and nanorod-arrayed films to better understand how nanomorphology can impact structural, optical, and PEC hydrogen production efficiency, as well as electrode stability. Chemical bath deposition (CBD) and spray pyrolysis are used to create ZnO nanostructured photoelectrodes. Various characterization methods are used to investigate morphologies, structures, elemental analysis, and optical characteristics. The crystallite size of the wurtzite hexagonal nanorod arrayed film was 100.8 nm for the (002) orientation, while the crystallite size of nanoparticulate ZnO was 42.1 nm for the favored (101) orientation. The lowest dislocation values for (101) nanoparticulate orientation and (002) nanorod orientation are 5.6 × 10-4 and 1.0 × 10-4 dislocation/nm2, respectively. By changing the surface morphology from nanoparticulate to hexagonal nanorod arrangement, the band gap is decreased to 2.99 eV. Under white and monochromatic light irradiation, the PEC generation of H2 is investigated using the proposed photoelectrodes. The solar-to-hydrogen conversion rate of ZnO nanorod-arrayed electrodes was 3.72% and 3.12%, respectively, under 390 and 405 nm monochromatic light, which is higher than previously reported values for other ZnO nanostructures. The output H2 generation rates for white light and 390 nm monochromatic illuminations were 28.43 and 26.11 mmol.h-1cm-2, respectively. The nanorod-arrayed photoelectrode retains 96.6% of its original photocurrent after 10 reusability cycles, compared to 87.4% for the nanoparticulate ZnO photoelectrode. The computation of conversion efficiencies, H2 output rates, Tafel slope, and corrosion current, as well as the application of low-cost design methods for the photoelectrodes, show how the nanorod-arrayed morphology offers low-cost, high-quality PEC performance and durability.
Collapse
Affiliation(s)
- Sameerah I Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
17
|
Chen Y, Cheng M, Lai C, Wei Z, Zhang G, Li L, Tang C, Du L, Wang G, Liu H. The Collision between g-C 3 N 4 and QDs in the Fields of Energy and Environment: Synergistic Effects for Efficient Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205902. [PMID: 36592425 DOI: 10.1002/smll.202205902] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Recently, graphitic carbon nitride (g-C3 N4 ) has attracted increasing interest due to its visible light absorption, suitable energy band structure, and excellent stability. However, low specific surface area, finite visible light response range (<460 nm), and rapid photogenerated electron-hole (e- -h+ ) pairs recombination of the pristine g-C3 N4 limit its practical applications. The small size of quantum dots (QDs) endows the properties of abundant active sites, wide absorption spectrum, and adjustable bandgap, but inevitable aggregation. Studies have confirmed that the integration of g-C3 N4 and QDs not only overcomes these limitations of individual component, but also successfully inherits each advantage. Encouraged by these advantages, the synthetic strategies and the fundamental of QDs/g-C3 N4 composites are briefly elaborated in this review. Particularly, the synergistic effects of QDs/g-C3 N4 composites are analyzed comprehensively, including the enhancement of the photocatalytic performance and the avoidance of aggregation. Then, the photocatalytic applications of QDs/g-C3 N4 composites in the fields of environment and energy are described and further combined with DFT calculation to further reveal the reaction mechanisms. Moreover, the stability and reusability of QDs/g-C3 N4 composites are analyzed. Finally, the future development of these composites and the solution of existing problems are prospected.
Collapse
Affiliation(s)
- Yongxi Chen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Zhen Wei
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Gaoxia Zhang
- Carbon Neutrality Research Institute of Power China Jiangxi Electric Power Construction Co., Ltd., Nanchang, 330001, China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Chensi Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| | - Hongda Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
18
|
Hasija V, Singh P, Thakur S, Nguyen VH, Van Le Q, Ahamad T, Alshehri SM, Raizada P, Matsagar BM, Wu KCW. O and S co-doping induced N-vacancy in graphitic carbon nitride towards photocatalytic peroxymonosulfate activation for sulfamethoxazole degradation. CHEMOSPHERE 2023; 320:138015. [PMID: 36746247 DOI: 10.1016/j.chemosphere.2023.138015] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Doping-induced vacancy engineering of graphitic carbon nitride (GCN) is beneficial for bandgap modulation, efficient electronic excitation, and facilitated charge carrier migration. In this study, synthesis of oxygen and sulphur co-doped induced N vacancies (OSGCN) by the hydrothermal method was performed to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) antibiotic degradation and H2 production. The results from experimental and DFT simulation studies validate the synergistic effects of co-dopants and N-vacancies, i.e., bandgap lowering, electron-hole pairs separation, and high solar energy utilization. The substitution of sp2 N atom by O and S co-dopants causes strong delocalization of HOMO-LUMO distribution, enhancing carrier mobility, increasing reactive sites, and facilitating charge-carrier separation. Remarkably, OSGCN/PMS photocatalytic system achieved 99.4% SMX degradation efficiency and a high H2 generation rate of 548.23 μ mol g-1 h-1 within 60 min and 36 h, respectively under visible light irradiations. The SMX degradation kinetics was pseudo-first-order with retained recycling efficiency up to 4 catalytic cycles. The results of EPR and chemical scavenging experiments revealed the redox action of reactive oxidative species, wherein 1O2 was the dominant reactive species in SMX degradation. The identification of formed intermediates and the SMX stepwise degradation pathway was investigated via LC-MS analysis and DFT studies, respectively. The results from this work anticipated deepening the understanding of PMS activation by substitutional co-doping favoring N-vacancy formation in GCN lattice for improved photocatalytic activity.
Collapse
Affiliation(s)
- Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Faculty of Department of Materials Science and Engineering, Korea University, 145, Anamro Seongbuk-gu, Seoul, 02841, South Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia.
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
19
|
Lafta MA, Ammar SH, Khadim HJ, Jabbar ZH. Improved photocatalytic degradation of methyl violet dye and pathogenic bacteria using g-C3N4 supported phosphotungstic acid heterojunction. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Preparation of S-Scheme g-C3N4/ZnO Heterojunction Composite for Highly Efficient Photocatalytic Destruction of Refractory Organic Pollutant. Catalysts 2023. [DOI: 10.3390/catal13030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
In this study, graphitic carbon nitride (g-C3N4)-based ZnO heterostructure was synthesized using a facile calcination method with urea and zinc nitrate hexahydrate as the initiators. According to the scanning electron microscopic (SEM) images, spherical ZnO particles can be seen along the g-C3N4 nanosheets. Additionally, the X-ray diffraction (XRD) analysis reveals the successful synthesis of the g-C3N4/ZnO. The photocatalytic activity of the synthesized catalyst was tested for the decolorization of crystal violet (CV) as an organic refractory contaminant. The impacts of ZnO molar ratio, catalyst amount, CV concentration, and H2O2 concentration on CV degradation efficiency were investigated. The obtained outcomes conveyed that the ZnO molar ratio in the g-C3N4 played a prominent role in the degradation efficiency, in which the degradation efficiency reached 95.9% in the presence of 0.05 mmol of ZnO and 0.10 g/L of the catalyst in 10 mg/L of CV through 120 min under UV irradiation. Bare g-C3N4 was also tested for dye decolorization, and a 76.4% dye removal efficiency was obtained. The g-C3N4/ZnO was also tested for adsorption, and a 32.3% adsorption efficiency was obtained. Photocatalysis, in comparison to adsorption, had a dominant role in the decolorization of CV. Lastly, the results depicted no significant decrement in the CV degradation efficiency in the presence of the g-C3N4/ZnO photocatalyst after five consecutive runs.
Collapse
|
21
|
Fang X, Feng C, Li T, Wang Y, Zhu S, Ren H, Huang H. g-C 3N 4/polyvinyl alcohol-sodium alginate aerogel for removal of typical heterocyclic drugs from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121057. [PMID: 36634858 DOI: 10.1016/j.envpol.2023.121057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Heterocyclic drugs (HCDs) detected at high frequencies in wastewater have raised great concerns and their advanced removal has been the hotspot for safe water reuse in recent years. Two-dimensional graphitic carbon nitride (g-C3N4) and its photocatalytic systems are increasingly emerging, however, there are inevitable drawbacks of stacking and difficulty in recycling, resulting in decreased pollutant removal and limited application. Herein, for the first time, this paper reported a three-dimensional g-C3N4/polyvinyl alcohol-sodium alginate aerogel (g-C3N4/PVA-SA aerogel) photocatalyst synthesized by ultrasonic exfoliation and in-situ polymerization for typical HCDs (sulfadiazine (SDZ), sulfamethoxazole (SMX), and carbamazepine (CBZ)) removal in water. The reduced stacking of g-C3N4 dispersed in PVA-SA aerogel was achieved as revealed by scanning electron microscopy (SEM) and X-ray diffractometer (XRD) analysis, and g-C3N4/PVA-SA aerogel was observed to possess encouraging degradation efficiencies and rates for SDZ (100%, 0.0249 min-1), SMX (100%, 0.1762 min-1) and CBZ (69.8%, 0.0056 min-1), which were improved by 50%-60% and 133%-216% compared to those of g-C3N4, respectively. Meanwhile, environmental impact factors such as pH and coexisting ions had less impact on the degradation of SDZ and SMX by g-C3N4/PVA-SA aerogel. The novel aerogel also had a good recyclability, with less than 5% reduction in degradation efficiency after five cycles observed. The photodegradation of SDZ, SMX and CBZ was confirmed to be driven by ⋅O2- and h+ through scavenger-quenching experiments. The new low carbon and recyclable g-C3N4/PVA-SA aerogel reported in this study indicated a good potential for efficient removal of HCDs from water, which provides an alternative strategy for advanced purification and safe reuse of wastewater.
Collapse
Affiliation(s)
- Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Chuanzhe Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Tong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Shanshan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
22
|
Trung LG, Nguyen MK, Hang Nguyen TD, Tran VA, Gwag JS, Tran NT. Highly efficient degradation of reactive black KN-B dye by ultraviolet light responsive ZIF-8 photocatalysts with different morphologies. RSC Adv 2023; 13:5908-5924. [PMID: 36816065 PMCID: PMC9936357 DOI: 10.1039/d2ra08312d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Zeolitic imidazolate framework ZIF-8, a type of metal-organic framework, has diverse applications in multiple catalytic fields due to its outstanding properties. Herein, ZIF-8 photocatalysts with three different morphologies (dodecahedral, pitaya-like, and leaf-like) are successfully synthesized under ambient conditions from zinc salts by altering the volume ratio of methanol and water used as a solvent. The as-synthesized ZIFs have high crystallinity with distinct BET surface areas. The experiments indicate that the ZIFs have high photocatalytic efficiency, in which the leaf-like structure (ZIF-8-F3) is the most efficient in the degradation of reactive black KN-B dye (RB5) under 365 nm UV irradiation. This is due to the efficient inhibition of electron-hole recombination or the higher migration of charge carriers in ZIF-8-F3, thus producing more reactive oxygen species, resulting in greater photocatalytic efficiency. At pH = 11, more than 95% of RB5 is degraded within 2 hours when using 1.0 g L-1 of ZIF-8-F3. Besides, the photocatalytic and kinetic performances of ZIF-8-F3 are also investigated by optimizing the pH, initial RB5 concentration, and dosage of the used catalyst. These ZIF-8-F3 plates have been shown to be a promising material with high photostability and effective reusability, beneficial to various potential applications in environmental remediation issues.
Collapse
Affiliation(s)
- Le Gia Trung
- Department of Physics, Yeungnam University Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Minh Kim Nguyen
- College of Pharmacy, Chungnam National UniversityYuseongDaejeon 34134Republic of Korea
| | - Thi Dieu Hang Nguyen
- The University of Da Nang, University of Science and Technology (DUT)54 Nguyen Luong BangDa Nang550000Vietnam
| | - Vy Anh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh UniversityHo Chi Minh City 700000Vietnam,Faculty of Environmental and Food Engineering, Nguyen Tat Thanh UniversityHo Chi Minh City 700000Vietnam
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam .,Faculty of Natural Sciences, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam
| |
Collapse
|
23
|
Photodegradation of POPs-containing wastewater using sunlight driven Ce-doped-ZnO/g-C3N4 photocatalyst: optimization, and cost-efficiency analysis. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Munawar T, Nadeem MS, Mukhtar F, Rehman MNU, Riaz M, Batool S, Hasan M, Iqbal F. Transition metal-doped SnO 2 and graphene oxide (GO) supported nanocomposites as efficient photocatalysts and antibacterial agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90995-91016. [PMID: 35881296 DOI: 10.1007/s11356-022-22144-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In the present work, pristine and transition metal (TM) (W, Ag, Zn)-doped SnO2 nanocrystals using a facile sol-gel approach were synthesized. The grown products were anchored on graphene oxide (GO) sheets via a simple ultrasonication technique to fabricate binary nanocomposites. The structural, optical, and morphological properties of as-synthesized samples were studied by XRD, FTIR, Raman, EDX, UV-Visible, PL, and FE-SEM. The charge transferability of graphene oxide-based samples was investigated by EIS. The XRD exhibited the TM doping in SnO2 and the development of GO-based nanocomposite. FTIR data evidenced the existence of the metal-oxygen bonds. Raman spectra presented the optical phonon modes of SnO2 and the existence of oxygen vacancy defects. FE-SEM images demonstrated the anchoring of particles on the GO sheet, and EDX further approved the existence of desired dopants. The integration of SnO2 with TM doping remarkably reduced optical bandgap (3.65-3.10 eV), which was further decreased (3.10-2.99 eV) by making composite with GO. The photodegradation results exhibited that GO-based nanocomposites have the higher potential to degrade synthetic dyes (methyl red (MR), and methyl orange (MO) and SnZnO2/GO have shown superb photocatalytic performance after 80-min sunlight illumination (99.9% MR and 95.0% MO dyes) with the higher rate constant and superior stability up to 6th cycle against MR dye. The grown samples were tested for bacterial disinfection, and SnZnO2/GO sample showed a higher zone of inhibition towards S. aureus and K. pneumoniae bacteria strains. The greater charge transfer rate and lower recombination of charge carriers in GO-based composites were also observed by EIS and PL analysis. Moreover, the present article ascribed that the photocatalytic and antibacterial properties of bare SnO2 could be improved by TM doping and fabricating their composite with GO.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Riaz
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sana Batool
- Institute of Bio-Chemistry, Bio-Technology, and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Institute of Bio-Chemistry, Bio-Technology, and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
25
|
Preparation of a Z-system photocatalyst (oxygen-doped carbon nitride/nitrogen-doped carbon dots/bismuth tetroxide) and its application in a photocatalytic fuel cell. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Luo Y, Peng R, Zhang H, Cui Q, Niu P, Li L. Graphitic carbon nitride colloid as one photoinitiator for two-step polymerization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Altowyan AS, Shaban M, Abdelkarem K, El Sayed AM. The Impact of Co Doping and Annealing Temperature on the Electrochemical Performance and Structural Characteristics of SnO 2 Nanoparticulate Photoanodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6534. [PMID: 36233873 PMCID: PMC9572947 DOI: 10.3390/ma15196534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Obtaining H2 energy from H2O using the most abundant solar radiation is an outstanding approach to zero pollution. This work focuses on studying the effect of Co doping and calcination on the structure, morphology, and optical properties of spin-coated SnO2 films as well as their photoelectrochemical (PEC) efficiency. The structures and morphologies of the films were investigated by XRD, AFM, and Raman spectra. The results confirmed the preparation of SnO2 of the rutile phase, with crystallite sizes in the range of 18.4-29.2 nm. AFM showed the granular structure and smooth surfaces having limited roughness. UV-Vis spectroscopy showed that the absorption spectra depend on the calcination temperature and the Co content, and the films have optical bandgap (Eg) in the range of 3.67-3.93 eV. The prepared samples were applied for the PEC hydrogen generation after optimizing the sample doping ratio, using electrolyte (HCl, Na2SO4, NaOH), electrode reusability, applied temperature, and monochromatic illumination. Additionally, the electrode stability, thermodynamic parameters, conversion efficiency, number of hydrogen moles, and PEC impedance were evaluated and discussed, while the SnO2 films were used as working electrodes and platinum sheet as an auxiliary or counter electrode (2-electrode system) and both were dipped in the electrolyte. The highest photocurrent (21.25 mA/cm2), number of hydrogen moles (20.4 mmol/h.cm2), incident photon-to-current change efficiency (6.892%@307 nm and +1 V), and the absorbed photon-to-current conversion efficiency (4.61% at ~500 nm and +1 V) were recorded for the 2.5% Co-doped SnO2 photoanode that annealed at 673 K.
Collapse
Affiliation(s)
- Abeer S. Altowyan
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Shaban
- Physics Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Al Madinah Al Monawara 42351, Saudi Arabia
- Nanophotonics and Applications (NPA) Lab, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khaled Abdelkarem
- Nanophotonics and Applications (NPA) Lab, Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Adel M. El Sayed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum 63514, Egypt
| |
Collapse
|
28
|
Hernández-Del Castillo PC, Oliva J, Rodriguez-Gonzalez V. An eco-friendly and sustainable support of agave-fibers functionalized with graphene/TiO2:SnO2 for the photocatalytic degradation of the 2,4-D herbicide from the drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115514. [PMID: 35751295 DOI: 10.1016/j.jenvman.2022.115514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In this research, we evaluated the photocatalytic performance of biodegradable composites for the removal of the 2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide. The composite was composed by agave fibers (AgF), graphene-microplates (GM) and titanium dioxide TiO2/SnO2 (TSn) nanoparticles (NPs) and was named TSn + AgF/GM. Both, the TSn NPs and the GM were deposited on the AgF using the Dip-coating method. According to the analysis by X-Ray Diffraction (XRD), the crystalline phase for the TiO2 and SnO2 was anatase and tetragonal-rutile, respectively. The Scanning Electron Microscopy (SEM) images demonstrated that the AgF were completely saturated by the GM (which had average dimensions of 15 μm × 22 μm) and by conglomerations of TSn NPs with average size of 642 nm. The TSn NPs and the TSn + AgF/GM composite were evaluated for the photocatalytic degradation of the 2,4-D herbicide under ultraviolet-visible (UV-Vis) light and found a maximum degradation of 98.4 and 93.7% (after 4 h) for the TSn NPs and the TSn + AgF/GM composite, respectively. Reuse cycles were also performed and the degradation percentage decreased by 13.1% and by 7.8% (after 3 cycles of reuse) when the TSn NPs and the TSn + AgF/GM composite are employed, respectively. Scavenger experiments were also carried out and found that the oxidizing agents are mainly produced in the order of: •OH>•O2- > h+; then, the main oxidizing agents generated during the photocatalytic reaction were the hydroxyl radicals. Thus, the photocatalytic system studied in this work for the degradation of 2,4-D could pave the way for the development of new eco-friendly/floatable photocatalysts, which can be applied in wastewater-treatment plants.
Collapse
Affiliation(s)
- P C Hernández-Del Castillo
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico
| | - J Oliva
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico.
| | - V Rodriguez-Gonzalez
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
29
|
Maruthupandy M, Muneeswaran T, Chackaravarthi G, Vennila T, Anand M, Cho WS, Quero F. Synthesis of chitosan/SnO2 nanocomposites by chemical precipitation for enhanced visible light photocatalytic degradation efficiency of congo red and rhodamine-B dye molecules. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Wongtawee W, Amornpitoksuk P, Randorn C, Rattana T, Suwanboon S. Photocatalytic activity under visible light illumination of organic dyes over g-C3N4/MgAl2O4 nanocomposite. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Nivetha MRS, Kumar JV, Ajarem JS, Allam AA, Manikandan V, Arulmozhi R, Abirami N. Construction of SnO 2/g-C 3N 4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. ENVIRONMENTAL RESEARCH 2022; 209:112809. [PMID: 35104479 DOI: 10.1016/j.envres.2022.112809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The current study mainly focused on the fabrication of 2D graphitic carbon nitride-supported tin oxide nanoparticles (SnO2/g-C3N4) for the effective degradation of Amoxicillin (AMX). Tin oxide (SnO2) NPs were prepared by green and easy modification technique, and then it is decorated over g-C3N4 nanosheets. The structural morphology and surface composition of the synthesized SnO2/g-C3N4 nanocomposite were fully analysed by UV-Vis, XRD, XPS, and HR-SEM with EDAX, FT-IR, and BET analysis. The (HR-TEM) microscopy, the size of SnO2 NPs which as a diameter is about 6.2 nm. The Raman analysis revealed that the SnO2/g-C3N4 composite had a moderate graphitic structure, with a measured ID/Ig value of 0.79. The degradation efficiency of antibiotic pollutant AMX and pharma effluent treatment was monitored by UV spectroscopy. The optical band gap of SnO2 (2.9 eV) and g-C3N4 (2.8 eV) photocatalyst was measured by Tauc plots. To investigate the mechanism through the photodegradation efficiency of the catalyst was analysed by using different Scavenger EDTA-2Na holes (h+) has a greater contribution towards the degradation process. Under visible irradiation, SnO2/g-C3N4 nanocomposite has exhibited an excellent degradation performance of 92.1% against AMX and 90.8% for pharmaceutical effluent in 80 min.
Collapse
Affiliation(s)
- Michael Raj Sherlin Nivetha
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Jothi Vinoth Kumar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Velu Manikandan
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Rajaram Arulmozhi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Natarajan Abirami
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
32
|
Alves Fávaro M, Ditz D, Yang J, Bergwinkl S, Ghosh AC, Stammler M, Lorentz C, Roeser J, Quadrelli EA, Thomas A, Palkovits R, Canivet J, Wisser FM. Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14182-14192. [PMID: 35293203 DOI: 10.1021/acsami.1c24713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent triazine frameworks (CTFs) are a class of porous organic polymers that continuously attract growing interest because of their outstanding chemical and physical properties. However, the control of extended porous organic framework structures at the molecular scale for a precise adjustment of their properties has hardly been achieved so far. Here, we present a series of bipyridine-based CTFs synthesized through polycondensation, in which the sequence of specific building blocks is well controlled. The reported synthetic strategy allows us to tailor the physicochemical features of the CTF materials, including the nitrogen content, the apparent specific surface area, and optoelectronic properties. Based on a comprehensive analytical investigation, we demonstrate a direct correlation of the CTF bipyridine content with the material features such as the specific surface area, band gap, charge separation, and surface wettability with water. The entirety of these parameters dictates the catalytic activity as demonstrated for the photocatalytic hydrogen evolution reaction (HER). The material with the optimal balance between optoelectronic properties and highest hydrophilicity enables HER production rates of up to 7.2 mmol/(h·g) under visible light irradiation and in the presence of a platinum cocatalyst.
Collapse
Affiliation(s)
- Marcelo Alves Fávaro
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Daniel Ditz
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jin Yang
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Sebastian Bergwinkl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ashta C Ghosh
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Michael Stammler
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Chantal Lorentz
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Jérôme Roeser
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Elsje Alessandra Quadrelli
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Arne Thomas
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jérôme Canivet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Florian M Wisser
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Xu P, Deng L. Fabrication of orderly changed ZnO hierarchical structures by calcining different zinc precursors and morphology-depended photocatalytic property. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Sayadi MH, Ghollasimood S, Ahmadpour N, Homaeigohar S. Biosynthesis of the ZnO/SnO2 nanoparticles and characterization of their photocatalytic potential for removal of organic water pollutants. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Alaghmandfard A, Ghandi K. A Comprehensive Review of Graphitic Carbon Nitride (g-C 3N 4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:294. [PMID: 35055311 PMCID: PMC8779993 DOI: 10.3390/nano12020294] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
g-C3N4 has drawn lots of attention due to its photocatalytic activity, low-cost and facile synthesis, and interesting layered structure. However, to improve some of the properties of g-C3N4, such as photochemical stability, electrical band structure, and to decrease charge recombination rate, and towards effective light-harvesting, g-C3N4-metal oxide-based heterojunctions have been introduced. In this review, we initially discussed the preparation, modification, and physical properties of the g-C3N4 and then, we discussed the combination of g-C3N4 with various metal oxides such as TiO2, ZnO, FeO, Fe2O3, Fe3O4, WO3, SnO, SnO2, etc. We summarized some of their characteristic properties of these heterojunctions, their optical features, photocatalytic performance, and electrical band edge positions. This review covers recent advances, including applications in water splitting, CO2 reduction, and photodegradation of organic pollutants, sensors, bacterial disinfection, and supercapacitors. We show that metal oxides can improve the efficiency of the bare g-C3N4 to make the composites suitable for a wide range of applications. Finally, this review provides some perspectives, limitations, and challenges in investigation of g-C3N4-metal-oxide-based heterojunctions.
Collapse
Affiliation(s)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
36
|
Rapid and green combustion synthesis of nanocomposites based on Zn–Co–O nanostructures as photocatalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119841] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Choudhury S, Sahoo U, Pattnayak S, Padhiari S, Tripathy M, Hota G. Hematite nanoparticles decorated nitrogen-doped reduced graphene oxide/graphitic carbon nitride multifunctional heterostructure photocatalyst towards environmental applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj01301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carcinogenic heavy metals and aromatic organic compounds linger as wastewater pollutants implying great menace to the ecological balance. To solve these environmental pollution problems, the photocatalytic process is an...
Collapse
|
38
|
Revathi M, Pricilla jeyakumari A, Saravanan S. Design and Fabrication of ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Investigation of Fe-Doped Graphitic Carbon Nitride-Silver Tungstate as a Ternary Visible Light Active Photocatalyst. J CHEM-NY 2021. [DOI: 10.1155/2021/4660423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The rapid population growth and economic development have largely contributed to environmental pollution. Various advanced oxidation processes have been used as the most viable solution for the reduction of recalcitrant pollutants and wastewater treatment. Heterogeneous photocatalysis is one of the broadly used technologies for wastewater treatment among all advanced oxidation processes. Graphitic carbon nitride alone or in combination with various other semiconductor metal oxide materials acts as a competent visible light active photocatalyst for the removal of recalcitrant organic pollutants from wastewater. Rational designing of an environment-friendly photocatalyst through a facile synthetic approach encounters various challenges in photocatalytic technologies dealing with semiconductor metal oxides. Doping in g-C3N4 and subsequent coupling with metal oxides have shown remarkable enhancement in the photodegradation activity of g-C3N4-based nanocomposites owing to the modulation in g-C3N4 bandgap structuring and surface area. In the current study, a novel ternary Fe-doped g-C3N4/Ag2WO4 visible light active photocatalyst was fabricated through an ultrasonic-assisted facile hydrothermal method. Characterization analysis included SEM analysis, FTIR, XRD, XPS, and UV-Visible techniques to elucidate the morphology and chemical structuring of the as-prepared heterostructure. The bandgap energies were assessed using the Tauc plot. The ternary nanocomposite (Fe-CN-AW) showed increased photodegradation efficiency (97%) within 120 minutes, at optimal conditions of pH = 8, catalyst dose = 50 mg/100 ml, an initial RhB concentration of 10 ppm, and oxidant dose 5 mM under sunlight irradiation. The enhanced photodegradation of rhodamine B dye by ternary Fe-CN-AW was credited to multielectron transfer pathways due to insertion of a Fe dopant in graphitic carbon nitride and subsequent coupling with silver tungstate. The data were statistically assessed by the response surface methodology.
Collapse
|
40
|
Wang X, Xue M, Li X, Qin L, Kang SZ. Boosting the photocatalytic H2 production performance and stability of C3N4 nanosheets via the synergistic effect between SnO2 nanoparticles and Pt nanoclusters. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Hu X, Guo R, Hong L, Ji X, Pan W. Recent Progress in Quantum Dots Modified g‐C
3
N
4
‐based Composite Photocatalysts. ChemistrySelect 2021. [DOI: 10.1002/slct.202102952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xing Hu
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
| | - Rui‐tang Guo
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
- Shanghai Engineering Research Center of Power Generation Environment Protection Shanghai China 200090
| | - Long‐fei Hong
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
| | - Xiang‐yin Ji
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
| | - Wei‐guo Pan
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
- Shanghai Engineering Research Center of Power Generation Environment Protection Shanghai China 200090
| |
Collapse
|
42
|
Isotypic heterojunction based on Fe-doped and terephthalaldehyde-modified carbon nitride for improving photocatalytic degradation with simultaneous hydrogen production. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Sahu BK, Juine RN, Sahoo M, Kumar R, Das A. Interface of GO with SnO 2 quantum dots as an efficient visible-light photocatalyst. CHEMOSPHERE 2021; 276:130142. [PMID: 33744649 DOI: 10.1016/j.chemosphere.2021.130142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) with beneficial functional groups regulates the surface chemistry for catalytic applications. However, the low electrical conductivity of GO invokes further treatments that compromise the above-valued properties. We report an interfacial engineering of GO decorated with SnO2 quantum dots (QDs) for the visible-light-driven catalysis of dye degradation. Retention of beneficial functional features of GO and QDs in the GO-SnO2 composite is established by using TEM, FTIR, and Raman spectroscopy techniques. Further, investigations with EXAFS and lifetime-measurements provide the local structure and defects distributions in QDs which are correlated with the improved conductivity. PL and electrochemical impedance spectroscopic measurements help unraveling the charge-transfer across the interface of the GO-SnO2 composite. The unique ability of ∼94% degradation of MB using only 0.5 mg of GO-SnO2 catalyst within half an hour under the visible light is demonstrated for the first time with insights on the photocatalytic mechanism.
Collapse
Affiliation(s)
- Binaya Kumar Sahu
- Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, India.
| | - Rabindra Nath Juine
- Health Physics Unit, Nuclear Recycle Board, Bhabha Atomic Research Centre Facilities, HBNI, Kalpakkam, 603102, India
| | - Madhusmita Sahoo
- Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, India
| | - Ravi Kumar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A Das
- Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, India.
| |
Collapse
|
44
|
Ahmad N, Anae J, Khan MZ, Sabir S, Yang XJ, Thakur VK, Campo P, Coulon F. Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113362. [PMID: 34346390 DOI: 10.1016/j.jenvman.2021.113362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This review compiles recent advances and challenges on photocatalytic treatment of wastewater using nanoparticles, nanocomposites, and polymer nanocomposites as photocatalyst. The review provides an overview of the fundamental principles of photocatalytic treatment along the recent advances on photocatalytic treatment, especially on the modification strategies and operational conditions to enhance treatment efficiency and removal of recalcitrant organic contaminants. The different types of photocatalysts along the key factors influencing their performance are also critically discussed and recommendations for future research are provided.
Collapse
Affiliation(s)
- Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK; Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK.
| |
Collapse
|
45
|
El-Shafai NM, Abdelfatah M, El-Mehasseb IM, Ramadan MS, Ibrahim MM, El-Shaer A, El-Kemary MA, Masoud MS. Enhancement of electrochemical properties and photocurrent of copper oxide by heterojunction process as a novel hybrid nanocomposite for photocatalytic anti-fouling and solar cell applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Mondal S, Das S, Gautam UK. Defect-rich, negatively-charged SnS 2 nanosheets for efficient photocatalytic Cr(VI) reduction and organic dye adsorption in water. J Colloid Interface Sci 2021; 603:110-119. [PMID: 34186388 DOI: 10.1016/j.jcis.2021.06.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Nanostructures of layered materials have gained increasing attention in photocatalytic and water-treatment processes. Herein, we report on sub-30 nm SnS2 nanosheets (NSs) which can perform photocatalytic reduction of Cr(VI) to Cr(III) quite efficiently on one hand, while removes large quantities of toxic organic dye molecules by choosing an adsorption mode of operation over photo-degradation on the other hand, unlike most other SnS2 nanostructures. The NSs have a highly extended crystallinity growing perpendicular to the (001) lattice direction but exhibit poor X-ray diffraction for the 10 l (1 = 1,2,3…) lattice planes. With such defects, the NSs have a narrow bandgap of 2.21 eV and exhibit a significant photocurrent density at near band-edge illumination. Cr(VI) photo-reduction using the SnS2 NSs follows a first-order reaction kinetics (rate constant of 0.10 min-1), five-fold higher than commercial TiO2 (P-25). Furthermore, the NSs adsorb Rhodamine B dye molecules from an aqueous solution by forming a monolayer of dye molecules following a pseudo-second-order kinetic model and exhibit an adsorption capacity of ∼ 53.28 mg/g. We show that the NSs have a Zeta potential of ∼ -22 eV and preferably adsorb cationic dyes only. Thus the SnS2 NSs can be effective for Cr(VI) contaminated waste-water treatment in a photocatalytic manner and can also act as a potential adsorbent for polluting dye molecules either in the presence or absence of sunlight. While both these activities are known for SnS2 as well as other materials, the competitive nature of the two mechanisms while each of them is a possibility has never been investigated. Therefore, besides the high activities, the study highlights the presence of different active sites on the material surface that can respond preferentially to either inorganic or organic impurities.
Collapse
Affiliation(s)
- Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Sandita Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
47
|
Elavarasan M, Uma K, Yang TCK. Nanocubes phase adaptation of In2O3/TiO2 heterojunction photocatalysts for the dye degradation and tracing of adsorbed species during photo-oxidation of ethanol. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Biomass-derived active Carbon@ZnO/SnO2 novel visible-light photocatalyst for rapid degradation of linezolid antibiotic and imidacloprid insecticide. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Saifi A, Joseph JP, Singh AP, Pal A, Kumar K. Complexation of an Azo Dye by Cyclodextrins: A Potential Strategy for Water Purification. ACS OMEGA 2021; 6:4776-4782. [PMID: 33644585 PMCID: PMC7905815 DOI: 10.1021/acsomega.0c05684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The chemistry of the host-guest complex formation has received much attention as a highly efficient approach for use to develop economical adsorbents for water purification. In the present study, the synthesis of three β-cyclodextrin (β-CD) inclusion complexes with the oil orange SS (OOSS) azo dye as a guest molecule and their potential applications in water purification are described. The complexes were synthesized by the coprecipitation method and characterized by Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR and thermal analyses confirmed the encapsulation of OOSS dye within the hydrophobic cavity of β-CD. The encapsulation of hydrophobic dye inside the β-CD cavity was mainly due to the hydrophobic-hydrophobic interaction. The results showed that the stability of the OOSS dye had been improved after the complexation. The effect of three different compositions of the host-guest complexes was analyzed. The present study demonstrated that the hydrophobic dye could be removed from aqueous solution via inclusion complex formation. Thus, it can play a significant role in removing the highly toxic OOSS dye from the industrial effluent.
Collapse
Affiliation(s)
- Anas Saifi
- CSIR-Central
Scientific Instruments Organisation, Sector 30, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jojo P. Joseph
- Institute
of Nano Science and Technology, Sector 64, Mohali 160062, Punjab, India
| | - Atul Pratap Singh
- Department
of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Asish Pal
- Institute
of Nano Science and Technology, Sector 64, Mohali 160062, Punjab, India
| | - Kamlesh Kumar
- CSIR-Central
Scientific Instruments Organisation, Sector 30, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
50
|
Lei L, Huang D, Chen S, Zhang C, Chen Y, Deng R. Metal chalcogenide/oxide-based quantum dots decorated functional materials for energy-related applications: Synthesis and preservation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|