1
|
Carvalho I, Peixoto D, Ferreira I, Robledo D, Ramos-Pinto L, Silva RM, Gonçalves JF, Machado M, Tafalla C, Costas B. Exploring the effects of dietary methionine supplementation on European seabass mucosal immune responses against Tenacibaculum maritimum. Front Immunol 2025; 16:1513516. [PMID: 39911390 PMCID: PMC11794538 DOI: 10.3389/fimmu.2025.1513516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Dietary methionine supplementation has been shown to enhance immunity and disease resistance in fish. However, excessive intake may lead to adverse effects. The present study aimed to evaluate the immune status of European seabass (Dicentrarchus labrax) fed increasing levels of dietary methionine supplementation and to investigate the early immune response to Tenacibaculum maritimum. Methods For this purpose, juvenile European seabass were fed one of three experimental diets containing methionine at 8.6 mg/g (CTRL), 18.5 mg/g (MET2), and 29.2 mg/g (MET3) for four weeks, followed by a bath challenge with T. maritimum. Results While higher methionine intake reduced hemoglobin levels, no other significant changes in the immune status were observed. However, after infection, fish fed higher methionine levels exhibited a dose-dependent decrease in the mRNA expression of some proinflammatory genes. Similarly, RNA sequencing analysis of skin tissue revealed an attenuated immune response in the MET2 group at 24 hours post-infection, with few proinflammatory genes upregulated, which intensified at 48 h, potentially due to advanced tissue colonization by T. maritimum. The MET3 group displayed the least pronounced immune response, along with the enrichment of some immune-related pathways among the downregulated transcripts. These findings, together with the lower mRNA expression of proinflammatory genes in the head kidney and the higher mortality rates observed in this group, suggest a potential impairment of the immune response.`. Discussion Overall, these findings indicate that dietary methionine supplementation may significantly influence both systemic and local immune responses in European seabass, highlighting the need for careful consideration when supplementing diets with methionine.
Collapse
Affiliation(s)
- Inês Carvalho
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diogo Peixoto
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Inês Ferreira
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lourenço Ramos-Pinto
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Rodolfo Miguel Silva
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Technología Agraria y Alimentaria (CISA-INIA-CSIC), Madrid, Spain
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Mamy D, Boateng ID, Chen X. Metabolomic changes in Citrus reticulata peel after conventional and ultrasound-assisted solid-state fermentation with Aspergillus niger: A focus on flavonoid metabolism. Food Chem 2024; 467:142224. [PMID: 39632168 DOI: 10.1016/j.foodchem.2024.142224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
This study explored the changes in nutrients, metabolites, and enzyme activity in Citrus reticulata peel powders (CRPP) under conventional or ultrasound-assisted solid-state fermentation (SSF) using Aspergillus niger CGMCC 3.6189. Compared to nonfermented CRPP (NF-CRPP), ultrasound-assisted fermented CRPP (UIS-CRPP) significantly increased total protein and carotenoid levels by 85.26 % and 179.68 %, respectively, surpassing conventionally-fermented CRPP (FO-CRPP). Among the 521 identified differential metabolites, organic acids, lipids, and flavonoids were predominant. Flavonoid accumulation was primarily driven by the flavone and flavonol biosynthesis pathway, with 90.47 % and 90.00 % of differential flavonoids upregulated in FO-CRPP and UIS-CRPP, respectively. SSF significantly increased phenylalanine, tyrosine, and methionine levels, and tyrosine ammonia-lyase and β-D-glucosidase activities, with higher levels in UIS-CRPP. These findings suggest that conventional and ultrasound-assisted fermentation enhances flavonoid levels in CRPP by modulating key enzyme activities in flavonoid biosynthesis and biotransformation. Our study offers a feasible approach for producing value-added products from citrus peel waste.
Collapse
Affiliation(s)
- Daniel Mamy
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; Higher Institutes of Sciences and Veterinary Medicine (ISSMV) of Dalaba, Dalaba, Tangama P.O. Box 09, Guinea
| | - Isaac Duah Boateng
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; International Joint Research Laboratories of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Barker SN, Jackson TC, Burdick Sanchez NC, Carroll JA, Broadway PR, Hales KE, Ducharme G, Legako JF, Richeson JT. The effect of methionine supplementation on receiving beef steers following a lipopolysaccharide challenge. Transl Anim Sci 2024; 8:txae147. [PMID: 39463887 PMCID: PMC11503211 DOI: 10.1093/tas/txae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
The objective of this study was to evaluate the effects of methionine supplementation prior to and during a lipopolysaccharide (LPS) challenge on the performance and inflammatory biomarkers of receiving beef steers. Steers (n = 65; 295.8 ± 46.5 kg) were randomly assigned to 3 treatment groups: L0 = Control, receiving no supplement; L1 = 10 g/hd/d rumen-protected methionine (MetaSmart, Adisseo USA Inc., Alpharetta, GA); and L2 = 20 g/hd/d rumen-protected methionine and fed for 40 d at the West Texas A&M University Research Feedlot. On day 40, a subset of steers (n = 32; L0 = 10; L1 = 11; L2 = 11) were transported to the USDA Livestock Issues Research Unit, and on day 41 steers were weighed and fitted with indwelling rectal thermometers and jugular catheters. On day 42, steers were challenged i.v. with LPS (0.25 µg/kg BW). Blood samples were collected at -2, 0, 2, 4, 6, 8, 10, 12, 18, 24, 36, and 48 h relative to the LPS administration at 0 h. Serum was isolated to determine serum chemistry and inflammatory marker concentrations. Whole blood was used for hematology analysis. There were no differences in DMI or ADG (P ≥ 0.75) during 35 d of supplementation. A treatment × time interaction (P = 0.01) occurred for rectal temperature, where L2 steers had the greatest temperature following the challenge (P ≤ 0.05) compared to L1 and L0 steers. There was a treatment × time interaction (P = 0.03) for the change in white blood cells where L0 steers had the greatest change compared to L1 and L2 steers at various timepoints. There was a treatment × time interaction (P = 0.02) for the change in tumor necrosis factor-α concentration, where there was a greater increase in concentration in L0 compared to L1 and L2 steers. Additionally, there was a treatment × time interaction (P < 0.01) for Macrophage Inflammatory Protein-1β (MIP-1β) concentrations, where concentrations were greater in L0 compared with L1 and L2 steers from 2 to 4 h post-challenge. There was a treatment × time interaction for plasma total protein concentration (P < 0.01) where L0 steers had less plasma total protein compared with L1 and L2 steers, while L1 steers had less plasma total protein than L2 steers at -2 h prior to LPS challenge. These data suggest that methionine supplementation may have an immunomodulatory effect in beef steers that may improve response to pathogens.
Collapse
Affiliation(s)
- Samantha N Barker
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79413, USA
| | - Treylr C Jackson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA
| | | | | | - Paul R Broadway
- USDA-ARS, Livestock Issues Research Unit, Lubbock, TX 79403, USA
| | - Kristin E Hales
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79413, USA
| | | | - Jerrad F Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79413, USA
| | - John T Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA
| |
Collapse
|
4
|
Wang Y, Feng S, Du Q, Liu Y, Qin C, Wu B. The Protective Effects of Methionine on Nickel-Induced Oxidative Stress via NF-κB Pathway in the Kidneys of Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04408-w. [PMID: 39377958 DOI: 10.1007/s12011-024-04408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Nickel (Ni) is a human carcinogen that causes oxidative damage to many organs, and methionine has been studied to protect mammals from similar toxic effects by other heavy metals possibly through sulfur metabolism. This study aimed to investigate the protective effects of methionine on Ni-induced injuries to the kidneys. In this study, the mice were randomly divided into BC (normal diet), MD (methionine deficiency diet), MN (methionine plus nickel diet), and MDN (methionine deficiency plus nickel diet) treatment groups. Their renal function, histological changes, cell cycle, apoptosis, oxidative damage, and NF-κB inflammatory cytokines were detected after 21 days by HE, immunohistochemistry, TUNEL staining, and biochemical and ELISA methods. The results showed that serum Cr, BUN, and the NAG content increased in MDN (P < 0.01), MN (P < 0.05), and MD (P < 0.05) group mice compared to BC group mice. Glomerulus atrophy and renal tubular atrophy were observed in the MDN, MN, and MD groups but less severe in MN group mice. The PCNA protein content was the highest in BC group mice followed by MD, MN, and MDN. The activities of antioxidant enzymes (SOD, CAT, GSH, GSH-Px, and GSH-ST) were lower significantly in MD, MN, and MDN group mice, and the oxidant products content (MDA, LPO, and ROS) in the BC group were higher than those in other groups with a similar trend. The contents of NF-κB, TNF-α, IFN-γ, IL-1a, and IL-6 in the BC group were found to increase significantly in MD, MN, and MDN groups. In conclusion, Ni-induced kidney injury was indicated by renal tissue and cell damage, increased kidney metabolism products release in the serum, and renal oxidative stress while methionine addition helped alleviate the injury. In addition, the NF-κB signal pathway was involved in the renal inflammatory reaction induced by Ni where methionine helped mitigate it.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China
| | - Qian Du
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China
| | - Yiwei Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China.
- Nanchong Key Laboratory of Wildlife Nutritional Ecology and Disease Prevention and Control, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
5
|
He Y, Wu P, Jiang W, Liu Y, Jin X, Ren H, Zhang R, Zhou X, Feng L. Methionine deficiency inhibited pyroptosis in primary hepatocytes of grass carp (Ctenopharyngodon idella): possibly via activating the ROS-AMPK-autophagy axis. J Anim Sci Biotechnol 2024; 15:116. [PMID: 39218924 PMCID: PMC11368015 DOI: 10.1186/s40104-024-01069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Methionine (Met) is the only sulfur-containing amino acid among animal essential amino acids, and methionine deficiency (MD) causes tissue damage and cell death in animals. The common modes of cell death include apoptosis, autophagy, pyroptosis, necroptosis. However, the studies about the major modes of cell death caused by MD have not been reported, which worth further study. METHODS Primary hepatocytes from grass carp were isolated and treated with different doses of Met (0, 0.5, 1, 1.5, 2, 2.5 mmol/L) to examine the expression of apoptosis, pyroptosis, autophagy and necroptosis-related proteins. Based on this, we subsequently modeled pyroptosis using lipopolysaccharides and nigericin sodium salt, then autophagy inhibitors chloroquine (CQ), AMP-activated protein kinase (AMPK) inhibitors compound C (CC) and reactive oxygen species (ROS) scavengers N-acetyl-L-cysteine (NAC) were further used to examine the expression of proteins related to pyroptosis, autophagy and AMPK pathway in MD-treated cells respectively. RESULTS MD up-regulated B-cell lymphoma protein 2 (Bax), microtubule-associated protein 1 light chain 3 II (LC3 II), and down-regulated the protein expression levels of B-cell lymphoma-2 (Bcl-2), sequestosome 1 (p62), cleaved-caspase-1, cleaved-interleukin (IL)-1β, and receptor-interacting protein kinase (RIP) 1 in hepatocytes, while it did not significantly affect RIP3. In addition, MD significantly increased the protein expression of liver kinase B1 (LKB1), p-AMPK, and Unc-51-like kinase 1 (ULK1) without significant effect on p-target of rapamycin. Subsequently, the use of CQ increased the protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved-caspase-1, and cleaved-IL-1β inhibited by MD; the use of CC significantly decreased the protein expression of MD-induced LC3 II and increased the protein expression of MD-suppressed p62; then the use of NAC decreased the MD-induced p-AMPK protein expression. CONCLUSION MD promoted autophagy and apoptosis, but inhibited pyroptosis and necroptosis. MD inhibited pyroptosis may be related regarding the promotion of autophagy. MD activated AMPK by inducing ROS production which in turn promoted autophagy. These results could provide partial theoretical basis for the possible mechanisms of Met in ensuring the normal structure and function of animal organs. Furthermore, ferroptosis is closely related to redox states, it is worth investigating whether MD affects ferroptosis in hepatocytes.
Collapse
Affiliation(s)
- Yuanlin He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruinan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Biji CA, Balde A, Nazeer RA. Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review. Inflamm Res 2024; 73:1203-1221. [PMID: 38769154 DOI: 10.1007/s00011-024-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Inflammation serves as our body's immune response to combat infections, pathogens, viruses, and external stimuli. Inflammation can be classified into two types: acute inflammation and chronic inflammation. Non-steroidal anti-inflammatory medications (NSAIDs) are used to treat both acute and chronic inflammatory disorders. However, these treatments have various side effects such as reduced healing efficiency, peptic ulcers, gastrointestinal toxicities, etc. METHOD: This review assesses the potential of anti-inflammatory peptides (AIPs) derived from various natural sources, such as algae, fungi, plants, animals, and marine organisms. Focusing on peptides rich in cysteines and methionine, sulphur-containing amino acids known for their role in suppression of inflammation. RESULT Due to their varied biological activity, ability to penetrate cells, and low cytotoxicity, bioactive peptides have garnered interest as possible therapeutic agents. The utilisation of AIPs has shown great potential in the treatment of disorders associated with inflammation. AIPs can be obtained from diverse natural sources such as algae, fungi, plants, and animals. Cysteine and methionine are sulphur-containing amino acids that aid in the elimination of free radicals, hence assisting in the treatment of inflammatory diseases. CONCLUSION This review specifically examines several sources of AIPs including peptides that contain numerous cysteines and methionine. In addition, the biological characteristics of these amino acids and advancements in peptide delivery are also discussed.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India.
| |
Collapse
|
7
|
Xiao Y, Han C, Li X, Zhu X, Li S, Jiang N, Yu C, Liu Y, Liu F. S-Adenosylmethionine (SAM) diet promotes innate immunity via histone H3K4me3 complex. Int Immunopharmacol 2024; 131:111837. [PMID: 38471365 DOI: 10.1016/j.intimp.2024.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
S-adenosylmethionine (SAM) was a methyl donor for modifying histones, which had crucial roles in lipid accumulation, tissue injury, and immune responses. SAM fluctuation might be linked to variations in histone methylation. However, the underlying molecular mechanisms of whether the SAM diet influenced the immune response via histone modification remained obscure. In this study, we utilized the Caenorhabditis elegans as a model to investigate the role of SAM diet in innate immunity. We found that 50 μM SAM increased resistance to Gram-negative pathogen Pseudomonas aeruginosa PA14 by reducing the bacterial burden in the intestine. Furthermore, through the genetic screening in C. elegans, we found that SAM functioned in germline to enhance innate immunity via an H3K4 methyltransferase complex to upregulate the immune response genes, including irg-1 and T24B8.5. Intriguingly, SAM also protected mice from P. aeruginosa PA14 infection by reducing the bacterial burden in lung. These findings provided insight into the mechanisms of molecular connections among SAM diet, histone modifications and innate immunity.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Chao Han
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xiaocong Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
8
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
9
|
Kemnitz N, Fuchs P, Remy R, Ruehrmund L, Bartels J, Klemenz AC, Trefz P, Miekisch W, Schubert JK, Sukul P. Effects of Contagious Respiratory Pathogens on Breath Biomarkers. Antioxidants (Basel) 2024; 13:172. [PMID: 38397770 PMCID: PMC10886173 DOI: 10.3390/antiox13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Due to their immediate exhalation after generation at the cellular/microbiome levels, exhaled volatile organic compounds (VOCs) may provide real-time information on pathophysiological mechanisms and the host response to infection. In recent years, the metabolic profiling of the most frequent respiratory infections has gained interest as it holds potential for the early, non-invasive detection of pathogens and the monitoring of disease progression and the response to therapy. Using previously unpublished data, randomly selected individuals from a COVID-19 test center were included in the study. Based on multiplex PCR results (non-SARS-CoV-2 respiratory pathogens), the breath profiles of 479 subjects with the presence or absence of flu-like symptoms were obtained using proton-transfer-reaction time-of-flight mass spectrometry. Among 223 individuals, one respiratory pathogen was detected in 171 cases, and more than one pathogen in 52 cases. A total of 256 subjects had negative PCR test results and had no symptoms. The exhaled VOC profiles were affected by the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Rhinovirus. The endogenous ketone, short-chain fatty acid, organosulfur, aldehyde, and terpene concentrations changed, but only a few compounds exhibited concentration changes above inter-individual physiological variations. Based on the VOC origins, the observed concentration changes may be attributed to oxidative stress and antioxidative defense, energy metabolism, systemic microbial immune homeostasis, and inflammation. In contrast to previous studies with pre-selected patient groups, the results of this study demonstrate the broad inter-individual variations in VOC profiles in real-life screening conditions. As no unique infection markers exist, only concentration changes clearly above the mentioned variations can be regarded as indicative of infection or colonization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
10
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
11
|
Meng Q, Liu Y, Yao L, Ma Z, Guo L, Hu T, Luo Y, Chen J, Dang E, Li Z. Serine deficiency exacerbates psoriatic skin inflammation by regulating S-adenosyl methionine-dependent DNA methylation and NF-κB signalling activation in keratinocytes. J Eur Acad Dermatol Venereol 2024; 38:145-156. [PMID: 37669859 DOI: 10.1111/jdv.19492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Serine metabolism is crucial for tumour oncogenesis and immune responses. S-adenosyl methionine (SAM), a methyl donor, is typically derived from serine-driven one-carbon metabolism. However, the involvement of serine metabolism in psoriatic skin inflammation remains unclear. OBJECTIVES To investigate the association between serine metabolism and psoriatic skin inflammation. METHODS Clinical samples were collected from patients with psoriasis and the expression of serine biosynthesis enzymes was evaluated. The HaCaT human keratinocyte cell line was transfected with small interfering RNA (siRNA) of key enzyme or treated with inhibitors. RNA sequencing and DNA methylation assays were performed to elucidate the mechanisms underlying serine metabolism-regulated psoriatic keratinocyte inflammation. An imiquimod (IMQ)-induced psoriasis mouse model was established to determine the effect of the SAM administration on psoriatic skin inflammation. RESULTS The expression of serine synthesis pathway enzymes, including the first rate-limiting enzyme in serine biosynthesis, phosphoglycerate dehydrogenase (PHGDH), was downregulated in the epidermal lesions of patients with psoriasis compared with that in healthy controls. Suppressing PHGDH in keratinocytes promoted the production of proinflammatory cytokines and enrichment of psoriatic-related signalling pathways, including the tumour necrosis factor-alpha (TNF-α) signalling pathway, interleukin (IL)-17 signalling pathway and NF-κB signalling pathway. In particular, PHGDH inhibition markedly promoted the secretion of IL-6 in keratinocytes with or without IL-17A, IL-22, IL-1α, oncostatin M and TNF-α (mix) stimulation. Mechanistically, PHGDH inhibition upregulated the expression of IL-6 by inhibiting SAM-dependent DNA methylation at the promoter and increasing the binding of myocyte enhancer factor 2A. Furthermore, PHGDH inhibition increased the secretion of IL-6 by increasing the activation of NF-κB via SAM inhibition. SAM treatment effectively alleviated IMQ-induced psoriasis-like skin inflammation in mice. CONCLUSIONS Our study revealed the crucial role of PHGDH in antagonising psoriatic skin inflammation and indicated that targeting serine metabolism may represent a novel therapeutic strategy for treating psoriasis.
Collapse
Affiliation(s)
- Qinqin Meng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Leiqing Yao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhimiao Ma
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Huang X, Yang X, Xiang L, Chen Y. Serine metabolism in macrophage polarization. Inflamm Res 2024; 73:83-98. [PMID: 38070057 DOI: 10.1007/s00011-023-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Emerging studies have revealed that macrophages possess different dependences on the uptake, synthesis, and metabolism of serine for their activation and functionalization, necessitating our insight into how serine availability and utilization impact macrophage activation and inflammatory responses. METHODS This article summarizes the reports published domestically and internationally about the serine uptake, synthesis, and metabolic flux by the macrophages polarizing with distinct stimuli and under different pathologic conditions, and particularly analyzes how altered serine metabolism rewires the metabolic behaviors of polarizing macrophages and their genetic and epigenetic reprogramming. RESULTS Macrophages dynamically change serine metabolism to orchestrate their anabolism, redox balance, mitochondrial function, epigenetics, and post-translation modification, and thus match the distinct needs for both classical and alternative activation. CONCLUSION Serine metabolism coordinates multiple metabolic pathways to tailor macrophage polarization and their responses to different pathogenic attacks and thus holds the potential as therapeutic target for types of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Xue Yang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Li Xiang
- Hengyang Medical School, Hengyang, China
| | - Yuping Chen
- Hengyang Medical School, Hengyang, China.
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Gong L, Mahmood T, Mercier Y, Xu H, Zhang X, Zhao Y, Luo Y, Guo Y. Dietary methionine sources and levels modulate the intestinal health status of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:242-255. [PMID: 38033606 PMCID: PMC10684994 DOI: 10.1016/j.aninu.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 12/02/2023]
Abstract
Given the key role of methionine in biological processes, adequate methionine should be provided to meet the nutritional requirements. DL-2-hydroxy-4-(methylthio)-butanoic acid (DL-HMTBA) has been considered as an important source of methionine. However, the effects of different sources and levels of methionine on the intestinal health status have not been clarified yet. An experiment was carried out to investigate the effects of different dietary sources and levels of methionine on the intestinal epithelial barrier, inflammatory cytokines expression, ileal morphology, microbiota composition, and cecal short chain fatty acids (SCFA) profiles. For this purpose, 720 male Arbor Acre broiler chicks at 1 d old were randomly assigned to a 2 × 3 factorial arrangement with 2 methionine sources (DL-methionine and DL-HMTBA) and 3 total sulfur amino acids (TSAA) levels (80%, 100%, and 120% of Arbor Acre recommendation). The results showed that DL-HMTBA supplementation promoted intestinal physical barrier at both gene expression level of claudin-1 and serum diamine oxidase level (P < 0.05), and the inflammatory cytokine IL-6 mRNA expression was down-regulated by dietary DL-HMTBA supplementation compared with the DL-methionine group (P < 0.05). Meanwhile, an upregulated gene expression of claudin-1 and zonula occluden-1 (ZO-1) were observed in the low-TSAA treatment on d 14 (P < 0.05), whereas this treatment increased the expression of IL-1β and IL-6 (P < 0.05). Villus height to crypt depth ratio was high (P < 0.05) in the middle-level TSAA group. Furthermore, DL-HMTBA supplementation optimized the microbiota of the ileum especially the relative abundance of Lactobacillus, where the digestion and absorption were completed, and elevated the concentrations of SCFA (acetate, propionate, and butyrate) in the cecal content on d 21 (P < 0.01). In conclusion, dietary DL-HMTBA supplementation improved the intestinal barrier function, immune homeostasis and optimized the microbiota to promote intestinal health status in broiler chickens.
Collapse
Affiliation(s)
- Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | - Huiping Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yimeng Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Jiachen Z, Paul Kwong Hang T, Kenneth Kak Yuen W, Vincent Chi Hang L. Pathological role of methionine in the initiation and progression of biliary atresia. Front Pediatr 2023; 11:1263836. [PMID: 37772039 PMCID: PMC10522914 DOI: 10.3389/fped.2023.1263836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Methionine (Met) is an essential amino acid, and its excessive dietary intake and/or its metabolism disturbance could lead to accumulation/depletion of hepatic Met and some of the key intermediates of these pathways, which would interfere normal liver function and would be associated with liver diseases. Biliary atresia (BA) is a life-threatening disease characterized by inflammatory fibrosclerosing changes of the intrahepatic and extrahepatic biliary systems and is the primary cause of obstructive neonatal cholestasis with a rapid course of liver failure. However, its pathogenesis remains unknown. Previous studies reported elevated Met level in patients with obstructive cholestasis, suggesting a potential link between Met and BA. This paper reviews the Met metabolism in normal conditions and its dysregulation under abnormal conditions, the possible causes of hypermethioninemia, and its connection to BA pathogenesis: Abnormal hepatic level of Met could lead to a perturbation of redox homeostasis and mitochondrial functions of hepatocytes, enhancement of viral infectivity, and dysregulation of innate and adaptative immune cells in response to infection/damage of the liver contributing to the initiation/progression of BA.
Collapse
Affiliation(s)
- Zheng Jiachen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tam Paul Kwong Hang
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Wong Kenneth Kak Yuen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lui Vincent Chi Hang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Ooi TC, Ahmad A, Rajab NF, Sharif R. The Effects of 12 Weeks Colostrum Milk Supplementation on the Expression Levels of Pro-Inflammatory Mediators and Metabolic Changes among Older Adults: Findings from the Biomarkers and Untargeted Metabolomic Analysis. Nutrients 2023; 15:3184. [PMID: 37513601 PMCID: PMC10384749 DOI: 10.3390/nu15143184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Senescence is a normal biological process that is accompanied with a series of deteriorations in physiological function. This study aimed to investigate the effects of bovine colostrum milk supplementation on metabolic changes and the expression of various biomarkers on inflammation, antioxidant and oxidative damage, nutrient metabolism, and genomic stability among older adults. Older adults (50-69 years old) who participated in the 12-week randomized, double-blinded, placebo-controlled trial were instructed to consume the IgCo bovine colostrum-enriched skim milk or regular skim milk (placebo) twice daily. Following 12 weeks of intervention, participants in the intervention group had lower expression levels in pro-inflammatory mediators (CRP, IL-6, and TNF-α), with significant (p < 0.05) interaction effects of the group and time observed. However, no significant interaction effect was observed in the vitamin D, telomerase, 8-OHdG, MDA, and SOD activities. UPLC-MS-based untargeted metabolomics analysis revealed that 22 metabolites were upregulated and 11 were downregulated in the intervention group compared to the placebo group. Glycerophospholipid metabolism, along with cysteine and methionine metabolism were identified as the potential metabolic pathways that are associated with bovine colostrum milk consumption. In conclusion, consuming bovine colostrum milk may induce metabolic changes and reduce the expression of various pro-inflammatory mediators, thus improving the immune function in older adults.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Centre for Healthy Ageing and Wellness, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Azizan Ahmad
- School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nor Fadilah Rajab
- Centre for Healthy Ageing and Wellness, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Razinah Sharif
- Centre for Healthy Ageing and Wellness, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
16
|
Gonciarz W, Piątczak E, Chmiela M. The influence of Salvia cadmica Boiss. extracts on the M1/M2 polarization of macrophages primed with Helicobacter pylori lipopolysaccharide in conjunction with NF-kappa B activation, production of cytokines, phagocytic activity and total DNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116386. [PMID: 36921911 DOI: 10.1016/j.jep.2023.116386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The large number of secondary derivatives have been isolated from the genus Salvia with about 700 species, and used in the pharmacopoeia throughout the world. Various biological properties of Salvia formulations have been reported including as antioxidant, antimicrobial, hypotensive, anti-hyperglycemia, anti-hyperlipidemia, anti-cancer, and skin curative. Salvia cadmica Boiss. root and aerial part extracts enriched with polyphenols are bactericidal towards gastric pathogen Helicobacter pylori (Hp) and diminish deleterious effects induced by Hp lipopolysaccharide (LPS) towards gastric epithelial cells. AIM OF THIS STUDY To examine the influence of S. cadmica extracts on the M1/M2 polarization of macrophages primed with Hp LPS vs standard LPS Escherichia coli (Ec), and the macrophage cytokine as well as phagocytic activity, which are affected during Hp infection. MATERIAL AND METHODS Macrophages derived from THP-1 human monocytes primed with LPS Hp/Ec and/or S. cadmica extracts, were examined for the biomarkers of activation (surface, cytoplasmic or soluble), and phagocytic capacity. The bone marrow macrophages of Caviaporcellus were used to determine the engulfment of Hp. RESULTS Priming of THP-1 cells (24h) with LPS Hp/Ec resulted in polarization of M1 macrophages, activation of nuclear factor kappa B, secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1 beta, macrophage chemotactic protein (MCP)-1, immunoregulatory IL-10, and production of reactive oxygen species. These effects were diminished after restimulation of cells with S. cadmica extracts. THP-1 macrophages exposed to studied extracts showed an increased phagocytic capacity, in conjunction with elevated CD11b/CD11d expression and enhanced production of inducible nitric oxide synthase. They also increased Hp engulfment by bone marrow macrophages. These effects were not related to a global DNA methylation. CONCLUSIONS S. cadmica extracts possess an immunomodulating activity, which might be useful in control of H. pylori LPS driven activity of macrophages.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1 St., 90-151, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| |
Collapse
|
17
|
Chou PJ, Sarwar MS, Wang L, Wu R, Li S, Hudlikar RR, Wang Y, Su X, Kong AN. Metabolomic, DNA Methylomic, and Transcriptomic Profiling of Suberoylanilide Hydroxamic Acid Effects on LPS-Exposed Lung Epithelial Cells. Cancer Prev Res (Phila) 2023; 16:321-332. [PMID: 36867722 PMCID: PMC10238674 DOI: 10.1158/1940-6207.capr-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor with anticancer effects via epigenetic and non-epigenetic mechanisms. The role of SAHA in metabolic rewiring and epigenomic reprogramming to inhibit pro-tumorigenic cascades in lung cancer remains unknown. In this study, we aimed to investigate the regulation of mitochondrial metabolism, DNA methylome reprogramming, and transcriptomic gene expression by SAHA in lipopolysaccharide (LPS)-induced inflammatory model of lung epithelial BEAS-2B cells. LC/MS was used for metabolomic analysis, while next-generation sequencing was done to study epigenetic changes. The metabolomic study reveals that SAHA treatment significantly regulated methionine, glutathione, and nicotinamide metabolism with alteration of the metabolite levels of methionine, S-adenosylmethionine, S-adenosylhomocysteine, glutathione, nicotinamide, 1-methylnicotinamide, and nicotinamide adenine dinucleotide in BEAS-2B cells. Epigenomic CpG methyl-seq shows SAHA revoked a list of differentially methylated regions in the promoter region of the genes, such as HDAC11, miR4509-1, and miR3191. Transcriptomic RNA sequencing (RNA-seq) reveals SAHA abrogated LPS-induced differentially expressed genes encoding proinflammatory cytokines, including interleukin 1α (IL1α), IL1β, IL2, IL6, IL24, and IL32. Integrative analysis of DNA methylome-RNA transcriptome displays a list of genes, of which CpG methylation correlated with changes in gene expression. qPCR validation of transcriptomic RNA-seq data shows that SAHA treatment significantly reduced the LPS-induced mRNA levels of IL1β, IL6, DNA methyltransferase 1 (DNMT1), and DNMT3A in BEAS-2B cells. Altogether, SAHA treatment alters the mitochondrial metabolism, epigenetic CpG methylation, and transcriptomic gene expression to inhibit LPS-induced inflammatory responses in lung epithelial cells, which may provide novel molecular targets to inhibit the inflammation component of lung carcinogenesis. PREVENTION RELEVANCE Inflammation increases the risk of lung cancer and blocking inflammation could reduce the incidence of lung cancer. Herein, we demonstrate that histone deacetylase inhibitor suberoylanilide hydroxamic acid regulates metabolic rewiring and epigenetic reprogramming to attenuate lipopolysaccharide-driven inflammation in lung epithelial cells.
Collapse
Affiliation(s)
- Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika R Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
19
|
Jinno C, Kim K, Wong B, Wall E, Sripathy R, Liu Y. Dietary Supplementation with Botanical Blends Modified Intestinal Microbiota and Metabolomics of Weaned Pigs Experimentally Infected with Enterotoxigenic Escherichia coli. Microorganisms 2023; 11:microorganisms11020320. [PMID: 36838285 PMCID: PMC9963532 DOI: 10.3390/microorganisms11020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The objective of this study was to investigate supplementation of botanical blends (BB) comprised of 0.3% capsicum oleoresin and 12% garlic oil on gut microbiota and metabolomic profiles in serum and ileal mucosa of Escherichia coli infected pigs. Sixty weaned pigs were assigned to one of five treatments: negative control (CON-), positive control (CON+), dietary supplementation of 100 ppm BB1, 50 or 100 ppm BB2. All pigs, except CON-, were orally inoculated with 1010 CFU F18 ETEC/3-mL dose for 3 consecutive days after 7 d adaption. Feces, ileal digesta and cecal content were collected for 16S rRNA amplicon sequencing. Serum and ileal mucosa underwent primary metabolomics analysis. Supplementing 100 ppm BB1 increased (p < 0.05) relative abundances of Enterobacteriaceae and Escherichia-Shigella in ileum, and the relative abundances of Bacteroidota and Prevotellaceae in cecum than CON+ on d 5 post-inoculation (PI). Supplementing 100 ppm BB2 upregulated serum pinitol on d 4 PI and serum cholesterol and aminomalonic acids on d 21 PI, while supplementing 50 ppm BB2 reduced asparagine in ileal mucosa on d 5 PI than CON+. Supplementation with botanical blends modulated ileal and cecal microbiota and serum metabolomics profiles in weaned pigs under Escherichia coli challenge.
Collapse
Affiliation(s)
- Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Braden Wong
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Emma Wall
- AVT Natural, Vazhakkulam, Aluva 680017, Kerala, India
| | | | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
20
|
Das Gupta K, Ramnath D, von Pein JB, Curson JEB, Wang Y, Abrol R, Kakkanat A, Moradi SV, Gunther KS, Murthy AMV, Stocks CJ, Kapetanovic R, Reid RC, Iyer A, Ilka ZC, Nauseef WM, Plan M, Luo L, Stow JL, Schroder K, Karunakaran D, Alexandrov K, Shakespear MR, Schembri MA, Fairlie DP, Sweet MJ. HDAC7 is an immunometabolic switch triaging danger signals for engagement of antimicrobial versus inflammatory responses in macrophages. Proc Natl Acad Sci U S A 2023; 120:e2212813120. [PMID: 36649417 PMCID: PMC9942870 DOI: 10.1073/pnas.2212813120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023] Open
Abstract
The immune system must be able to respond to a myriad of different threats, each requiring a distinct type of response. Here, we demonstrate that the cytoplasmic lysine deacetylase HDAC7 in macrophages is a metabolic switch that triages danger signals to enable the most appropriate immune response. Lipopolysaccharide (LPS) and soluble signals indicating distal or far-away danger trigger HDAC7-dependent glycolysis and proinflammatory IL-1β production. In contrast, HDAC7 initiates the pentose phosphate pathway (PPP) for NADPH and reactive oxygen species (ROS) production in response to the more proximal threat of nearby bacteria, as exemplified by studies on uropathogenic Escherichia coli (UPEC). HDAC7-mediated PPP engagement via 6-phosphogluconate dehydrogenase (6PGD) generates NADPH for antimicrobial ROS production, as well as D-ribulose-5-phosphate (RL5P) that both synergizes with ROS for UPEC killing and suppresses selective inflammatory responses. This dual functionality of the HDAC7-6PGD-RL5P axis prioritizes responses to proximal threats. Our findings thus reveal that the PPP metabolite RL5P has both antimicrobial and immunomodulatory activities and that engagement of enzymes in catabolic versus anabolic metabolic pathways triages responses to different types of danger for generation of inflammatory versus antimicrobial responses, respectively.
Collapse
Affiliation(s)
- Kaustav Das Gupta
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Divya Ramnath
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Jessica B. von Pein
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - James E. B. Curson
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Yizhuo Wang
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Rishika Abrol
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Asha Kakkanat
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Shayli Varasteh Moradi
- The Commonwealth Scientific and Industrial Research Organisation-Queensland University of Technology Synthetic Biology Alliance, Australian Research Council Centre of Excellence in Synthetic Biology, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD4001, Australia
| | - Kimberley S. Gunther
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Ambika M. V. Murthy
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Claudia J. Stocks
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Robert C. Reid
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Zoe C. Ilka
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - William M. Nauseef
- Department of Internal Medicine, Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA52242
| | - Manuel Plan
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Kirill Alexandrov
- The Commonwealth Scientific and Industrial Research Organisation-Queensland University of Technology Synthetic Biology Alliance, Australian Research Council Centre of Excellence in Synthetic Biology, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD4001, Australia
| | - Melanie R. Shakespear
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Mark A. Schembri
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, Institute for Molecular Bioscience Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
21
|
Liang H, Ji K, Ge X, Zhu J, Ren M, Mi H. Methionine played a positive role in improving the intestinal digestion capacity, anti-inflammatory reaction and oxidation resistance of grass carp, Ctenopharyngodon idella, fry. FISH & SHELLFISH IMMUNOLOGY 2022; 128:389-397. [PMID: 35940539 DOI: 10.1016/j.fsi.2022.07.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A study was carried out to appraisal the function of methionine on intestinal digestion and the health of grass carp (Ctenopharyngodon idella) fry (initial weight 0.36 ± 0.01 g). The fry were fed graded dietary methionine levels (0.33%-1.20% dry matter) in 18 recirculatory tanks (180 L). After an 8-week breeding experiment, the results revealed that 0.71%-1.20% dietary methionine levels markedly upregulated the mRNA levels of intestinal digestion including trypsin, amylase, chymotrypsin and AKP, and 0.71%-0.87% dietary methionine level significantly increased intestinal trypsin activities compared with the 0.33% dietary methionine level. For inflammation, 0.71%-1.20% dietary methionine levels downregulated the mRNA levels of NF-κBp65, IL-1β, IL-6, IL-8, IL-15 and IL-17D, whereas upregulated the mRNA levels of anti-inflammatory cytokines, including IL-4/13B, IL-10 and IL-11. In terms of antioxidants, although dietary methionine levels had no significant effect on the expression of most core genes of the Nrf2/ARE signaling pathway, such as Nrf2, Keap 1, GPx4, CAT, Cu/Zn-SOD. Furthermore, dietary methionine levels had no significant effect on the expression of p38MAPK, IL-12p35, TGF-β2 and IL-4/13A. 0.71%-1.20% dietary methionine levels still increased the mRNA levels of GPx1α, GSTR and GSTP1. Furthermore, higher intestinal catalase activity and glutathione contents were also observed in fry fed 0.71%-1.20% diets. In summary, 0.71%-1.20% dietary methionine levels played a positive role in improving the intestinal digestion capacity of digestion, anti-inflammatory reaction and oxidation resistance of grass carp fry. This study provided a theoretical basis for improving the survival rate and growth of grass carp fry.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xianping Ge
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| | - Haifeng Mi
- Tongwei Co, Ltd, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610093, China.
| |
Collapse
|
22
|
Chen C, Wang Z, Qin Y. Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Front Pharmacol 2022; 13:935536. [PMID: 35935878 PMCID: PMC9354823 DOI: 10.3389/fphar.2022.935536] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo metabolic adaptations to sustain their growth and proliferation under several stress conditions thereby displaying metabolic plasticity. Epigenetic modification is known to occur at the DNA, histone, and RNA level, which can alter chromatin state. For almost a century, our focus in cancer biology is dominated by oncogenic mutations. Until recently, the connection between metabolism and epigenetics in a reciprocal manner was spotlighted. Explicitly, several metabolites serve as substrates and co-factors of epigenetic enzymes to carry out post-translational modifications of DNA and histone. Genetic mutations in metabolic enzymes facilitate the production of oncometabolites that ultimately impact epigenetics. Numerous evidences also indicate epigenome is sensitive to cancer metabolism. Conversely, epigenetic dysfunction is certified to alter metabolic enzymes leading to tumorigenesis. Further, the bidirectional relationship between epigenetics and metabolism can impact directly and indirectly on immune microenvironment, which might create a new avenue for drug discovery. Here we summarize the effects of metabolism reprogramming on epigenetic modification, and vice versa; and the latest advances in targeting metabolism-epigenetic crosstalk. We also discuss the principles linking cancer metabolism, epigenetics and immunity, and seek optimal immunotherapy-based combinations.
Collapse
|
23
|
Wang LL, Li ZH, Wang H, Kwak-Kim J, Liao AH. Cutting edge: the regulatory mechanisms of macrophage polarization and function during pregnancy. J Reprod Immunol 2022; 151:103627. [DOI: 10.1016/j.jri.2022.103627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
|
24
|
Navik U, Sheth VG, Sharma N, Tikoo K. L-Methionine supplementation attenuates high-fat fructose diet-induced non-alcoholic steatohepatitis by modulating lipid metabolism, fibrosis, and inflammation in rats. Food Funct 2022; 13:4941-4953. [PMID: 35437549 DOI: 10.1039/d1fo03403k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, the protective effects of a methionine-rich diet on hepatic oxidative stress and fibrosis have been suggested but not adequately studied. We, therefore, hypothesized that L-methionine supplementation would ameliorate the progression of hepatic injury in a diet-induced non-alcoholic steatohepatitis (NASH) model and aimed to investigate the underlying mechanism. NASH was developed in male Sprague Dawley rats by feeding them with a high-fat-fructose diet (HFFrD) for 10 weeks. The results demonstrated that L-methionine supplementation to NASH rats for 16 weeks improved the glycemic, lipid, and liver function profiles in NASH rats. Histological analysis of liver tissue revealed a remarkable improvement in the three classical lesions of NASH: steatosis, inflammation, and ballooning. Besides, L-methionine supplementation ameliorated the HFFrD-induced enhanced lipogenesis and lipid peroxidation. An anti-inflammatory effect of L-methionine was also observed through the inhibition of the release of proinflammatory cytokines. Furthermore, the hepatic SIRT1/AMPK signaling pathway was associated with the beneficial effects of L-methionine. This study demonstrates that L-methionine supplementation in HFFrD-fed rats improves their liver pathology via regulation of lipogenesis, inflammation, and the SIRT1/AMPK pathway, thus encouraging its clinical evaluation for the treatment of NASH.
Collapse
Affiliation(s)
- Umashanker Navik
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India. .,Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab-151401, India
| | - Vaibhav G Sheth
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India.
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India.
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
25
|
Ampomah PB, Cai B, Sukka SR, Gerlach BD, Yurdagul A, Wang X, Kuriakose G, Darville LNF, Sun Y, Sidoli S, Koomen JM, Tall AR, Tabas I. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat Metab 2022; 4:444-457. [PMID: 35361955 PMCID: PMC9050866 DOI: 10.1038/s42255-022-00551-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/11/2022] [Indexed: 12/19/2022]
Abstract
Efferocytosis, the clearance of apoptotic cells (ACs) by macrophages, is critical for tissue resolution, with defects driving many diseases. Mechanisms of efferocytosis-mediated resolution are incompletely understood. Here, we show that AC-derived methionine regulates resolution through epigenetic repression of the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphatase Dusp4. We focus on two key efferocytosis-induced pro-resolving mediators, prostaglandin E2 (PGE2) and transforming growth factor beta 1 (TGF-β1), and show that efferocytosis induces prostaglandin-endoperoxide synthase 2/cyclooxygenase 2 (Ptgs2/COX2), leading to PGE2 synthesis and PGE2-mediated induction of TGF-β1. ERK1/2 phosphorylation/activation by AC-activated CD36 is necessary for Ptgs2 induction, but this is insufficient owing to an ERK-DUSP4 negative feedback pathway that lowers phospho-ERK. However, subsequent AC engulfment and phagolysosomal degradation lead to Dusp4 repression, enabling enhanced p-ERK and induction of the Ptgs2-PGE2-TGF-β1 pathway. Mechanistically, AC-derived methionine is converted to S-adenosylmethionine, which is used by DNA methyltransferase-3A (DNMT3A) to methylate Dusp4. Bone-marrow DNMT3A deletion in mice blocks COX2/PGE2, TGF-β1, and resolution in sterile peritonitis, apoptosis-induced thymus injury and atherosclerosis. Knowledge of how macrophages use AC-cargo and epigenetics to induce resolution provides mechanistic insight and therapeutic options for diseases driven by impaired resolution.
Collapse
Affiliation(s)
- Patrick B Ampomah
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Santosh R Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Lancia N F Darville
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alan R Tall
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
26
|
Nuñez R, Rodriguez MJ, Palomares F, Gomez F, Jabato FM, Cordoba-Caballero J, Seoane P, Losada J, Rojo J, Torres MJ, Perkins JR, Mayorga C. Transcriptional changes in dendritic cells underlying allergen specific induced tolerance in a mouse model. Sci Rep 2022; 12:2797. [PMID: 35181694 PMCID: PMC8857182 DOI: 10.1038/s41598-022-06186-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate food allergy-tolerance mechanisms induced through allergen-specific immunotherapy we used RNA-Sequencing to measure gene expression in lymph-node-derived dendritic cells from Pru p 3-anaphylactic mice after immunotherapy with glycodendropeptides at 2 nM and 5 nM, leading to permanent tolerance and short-term desensitization, respectively. Gene expression was also measured in mice receiving no immunotherapy (anaphylaxis); and in which anaphylaxis could never occur (antigen-only). Compared to anaphylaxis, the antigen-only group showed the greatest number of expression-changes (411), followed by tolerant (186) and desensitized (119). Only 29 genes changed in all groups, including Il12b, Cebpb and Ifngr1. The desensitized group showed enrichment for genes related to chronic inflammatory response, secretory granule, and regulation of interleukin-12 production; the tolerant group showed genes related to cytokine receptor activity and glucocorticoid receptor binding, suggesting distinct pathways for similar outcomes. We identified genes and processes potentially involved in the restoration of long-term tolerance via allergen-specific immunotherapy, representing potential prognostic biomarkers.
Collapse
Affiliation(s)
- Rafael Nuñez
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Maria Jose Rodriguez
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Francisca Gomez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando M Jabato
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
| | | | - Pedro Seoane
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Losada
- Laboratory of Carbohydrates, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Carbohydrates, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Maria Jose Torres
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - James Richard Perkins
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain.
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain.
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain.
| |
Collapse
|
27
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Immunomodulatory effects of fish peptides on cardiometabolic syndrome associated risk factors: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2014861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
28
|
Plasma S-Adenosylmethionine Is Associated with Lung Injury in COVID-19. DISEASE MARKERS 2021; 2021:7686374. [PMID: 34956420 PMCID: PMC8702356 DOI: 10.1155/2021/7686374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Objective S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. Methods The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. Results SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). There was a negative association between SAM and glutathione level (ρ = −0.343, p = 0.011). Interleukin-6 (IL-6) levels were associated with SAM (ρ = 0.44, p = 0.01) and SAH (ρ = 0.534, p = 0.001) levels. Conclusions A high SAM level and high methylation index are associated with the risk of lung injury in patients with COVID-19. The association of SAM with IL-6 and glutathione indicates an important role of transmethylation in the development of cytokine imbalance and oxidative stress in patients with COVID-19.
Collapse
|
29
|
Bhagirath AY, Medapati MR, de Jesus VC, Yadav S, Hinton M, Dakshinamurti S, Atukorallaya D. Role of Maternal Infections and Inflammatory Responses on Craniofacial Development. FRONTIERS IN ORAL HEALTH 2021; 2:735634. [PMID: 35048051 PMCID: PMC8757860 DOI: 10.3389/froh.2021.735634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnancy is a tightly regulated immunological state. Mild environmental perturbations can affect the developing fetus significantly. Infections can elicit severe immunological cascades in the mother's body as well as the developing fetus. Maternal infections and resulting inflammatory responses can mediate epigenetic changes in the fetal genome, depending on the developmental stage. The craniofacial development begins at the early stages of embryogenesis. In this review, we will discuss the immunology of pregnancy and its responsive mechanisms on maternal infections. Further, we will also discuss the epigenetic effects of pathogens, their metabolites and resulting inflammatory responses on the fetus with a special focus on craniofacial development. Understanding the pathophysiological mechanisms of infections and dysregulated inflammatory responses during prenatal development could provide better insights into the origins of craniofacial birth defects.
Collapse
Affiliation(s)
- Anjali Y. Bhagirath
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Manoj Reddy Medapati
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sneha Yadav
- Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Martha Hinton
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Devi Atukorallaya
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
30
|
Qin W, Scicluna BP, van der Poll T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front Immunol 2021; 12:696280. [PMID: 34394088 PMCID: PMC8358789 DOI: 10.3389/fimmu.2021.696280] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Wang D, Zhou L, Zhou H, Hou G. Effects of Guava ( Psidium guajava L.) Leaf Extract on the Metabolomics of Serum and Feces in Weaned Piglets Challenged by Escherichia coli. Front Vet Sci 2021; 8:656179. [PMID: 34109234 PMCID: PMC8183609 DOI: 10.3389/fvets.2021.656179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of dietary supplementation with guava leaf extracts (GE) on intestinal barrier function and serum and fecal metabolome in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated. In total, 50 weaned piglets (Duroc × Yorkshire × Landrace) from 25 pens (two piglets per pen) were randomly divided into five groups: BC (blank control), NC (negative control), S50 (supplemented with 50 mg kg−1 diet GE), S100 (100 mg kg−1 diet GE), and S200 (200 mg kg−1 diet GE), respectively. On day 4, all groups (except BC) were orally challenged with enterotoxigenic ETEC at a dose of 1.0 × 109 colony-forming units (CFUs). After treatment for 28 days, intestinal barrier function and parallel serum and fecal metabolomics analysis were carried out. Results suggested that dietary supplementation with GE (50–200 mg kg−1) increased protein expression of intestinal tight junction proteins (ZO-1, occludin, claudin-1) (p < 0.05) and Na+/H+ exchanger 3 (NHE3) (p < 0.05). Moreover, dietary supplementation with GE (50–200 mg kg−1) increased the level of tetrahydrofolic acid (THF) and reversed the higher level of nicotinamide-adenine dinucleotide phosphate (NADP) induced by ETEC in serum compared with the NC group (p < 0.05), and enhanced the antioxidant capacity of piglets. In addition, dietary addition with GE (100 mg kg−1) reversed the lower level of L-pipecolic acid induced by ETEC in feces compared with the NC group (p < 0.05) and decreased the oxidative stress of piglets. Collectively, dietary supplementation with GE exhibited a positive effect on improving intestinal barrier function. It can reprogram energy metabolism through similar or dissimilar metabolic pathways and finally enhance the antioxidant ability of piglets challenged by ETEC.
Collapse
Affiliation(s)
- Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
32
|
Fanucchi S, Domínguez-Andrés J, Joosten LAB, Netea MG, Mhlanga MM. The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity 2020; 54:32-43. [PMID: 33220235 DOI: 10.1016/j.immuni.2020.10.011] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
The last few years have witnessed an increasing body of evidence that challenges the traditional view that immunological memory is an exclusive trait of the adaptive immune system. Myeloid cells can show increased responsiveness upon subsequent stimulation with the same or a different stimulus, well after the initial challenge. This de facto innate immune memory has been termed "trained immunity" and is involved in infections, vaccination and inflammatory diseases. Trained immunity is based on two main pillars: the epigenetic and metabolic reprogramming of cells. In this review we discuss the latest insights into the epigenetic mechanisms behind the induction of trained immunity, as well as the role of different cellular metabolites and metabolic networks in the induction, regulation and maintenance of trained immunity.
Collapse
Affiliation(s)
- Stephanie Fanucchi
- Division of Chemical, Systems & Synthetic Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Anzio Road Observatory, 7925 Cape Town, South Africa; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Metabolic regulation of Ganoderma lucidum extracts in high sugar and fat diet-induced obese mice by regulating the gut-brain axis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|