1
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2024; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Lee J, De La Torre AL, Rawlinson FL, Ness DB, Lewis LD, Hickey WF, Chang CCY, Chang TY. Characterization of Stealth Liposome-Based Nanoparticles Encapsulating the ACAT1/SOAT1 Inhibitor F26: Efficacy and Toxicity Studies In Vitro and in Wild-Type Mice. Int J Mol Sci 2024; 25:9151. [PMID: 39273099 PMCID: PMC11394700 DOI: 10.3390/ijms25179151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Cholesterol homeostasis is pivotal for cellular function. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), also abbreviated as SOAT1, is an enzyme responsible for catalyzing the storage of excess cholesterol to cholesteryl esters. ACAT1 is an emerging target to treat diverse diseases including atherosclerosis, cancer, and neurodegenerative diseases. F12511 is a high-affinity ACAT1 inhibitor. Previously, we developed a stealth liposome-based nanoparticle to encapsulate F12511 to enhance its delivery to the brain and showed its efficacy in treating a mouse model for Alzheimer's disease (AD). In this study, we introduce F26, a close derivative of F12511 metabolite in rats. F26 was encapsulated in the same DSPE-PEG2000/phosphatidylcholine (PC) liposome-based nanoparticle system. We employed various in vitro and in vivo methodologies to assess F26's efficacy and toxicity compared to F12511. The results demonstrate that F26 is more effective and durable than F12511 in inhibiting ACAT1, in both mouse embryonic fibroblasts (MEFs), and in multiple mouse tissues including the brain tissues, without exhibiting any overt systemic or neurotoxic effects. This study demonstrates the superior pharmacokinetic and safety profile of F26 in wild-type mice, and suggests its therapeutic potential against various neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| | - Adrianna L. De La Torre
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| | - Felix L. Rawlinson
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| | - Dylan B. Ness
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Lionel D. Lewis
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - William F. Hickey
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (J.L.)
| |
Collapse
|
3
|
Xu D, Song XJ, Chen X, Wang JW, Cui YL. Advances and future perspectives of intranasal drug delivery: A scientometric review. J Control Release 2024; 367:366-384. [PMID: 38286336 DOI: 10.1016/j.jconrel.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Intranasal drug delivery is as a noninvasive and efficient approach extensively utilized for treating the local, central nervous system, and systemic diseases. Despite numerous reviews delving into the application of intranasal drug delivery across biomedical fields, a comprehensive analysis of advancements and future perspectives remains elusive. This review elucidates the research progress of intranasal drug delivery through a scientometric analysis. It scrutinizes several challenges to bolster research in this domain, encompassing a thorough exploration of entry and elimination mechanisms specific to intranasal delivery, the identification of drugs compatible with the nasal cavity, the selection of dosage forms to surmount limited drug-loading capacity and poor solubility, and the identification of diseases amenable to the intranasal delivery strategy. Overall, this review furnishes a perspective aimed at galvanizing future research and development concerning intranasal drug delivery.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
4
|
Sunakawa H, Mizoi K, Takahashi R, Takahashi S, Ogihara T. Impact of P-Glycoprotein-Mediated Drug-Endogenous Substrate Interactions on Androgen and Blood-Brain Barrier Permeability. J Pharm Sci 2024; 113:228-234. [PMID: 37898165 DOI: 10.1016/j.xphs.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
This report focuses on pharmacokinetic drug-endogenous substrate interactions (DEIs). We hypothesized that P-glycoprotein (P-gp)-mediated DEI might affect androgen kinetics, especially its blood-brain barrier (BBB) permeability. The intracellular accumulation of the endogenous substrates of P-gp, testosterone (TES) and androstenedione (ADO) was increased by several tested drugs in uptake studies using P-gp overexpressing cells, indicating that these drugs inhibit P-gp-mediated efflux of TES of ADO from the cells. In a transport study using rat BBB kit, we found that the BBB limited the penetration of TES and ADO into the central nervous system. In addition, tested drugs that cause DEI were found to increase BBB permeability of TES and ADO via P-gp inhibition. In short, this study provides new findings regarding the possibility that DEI may affect the kinetics of endogenous substrates of P-gp.
Collapse
Affiliation(s)
- Hiroki Sunakawa
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare.
| | - Kenta Mizoi
- School of Pharmacy, International University of Heath and Welfare
| | - Reiko Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Saori Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takuo Ogihara
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare; Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
5
|
De La Torre AL, Huynh TN, Chang CCY, Pooler DB, Ness DB, Lewis LD, Pannem S, Feng Y, Samkoe KS, Hickey WF, Chang TY. Stealth Liposomes Encapsulating a Potent ACAT1/SOAT1 Inhibitor F12511: Pharmacokinetic, Biodistribution, and Toxicity Studies in Wild-Type Mice and Efficacy Studies in Triple Transgenic Alzheimer's Disease Mice. Int J Mol Sci 2023; 24:11013. [PMID: 37446191 PMCID: PMC10341764 DOI: 10.3390/ijms241311013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cholesterol is essential for cellular function and is stored as cholesteryl esters (CEs). CEs biosynthesis is catalyzed by the enzymes acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2), with ACAT1 being the primary isoenzyme in most cells in humans. In Alzheimer's Disease, CEs accumulate in vulnerable brain regions. Therefore, ACATs may be promising targets for treating AD. F12511 is a high-affinity ACAT1 inhibitor that has passed phase 1 safety tests for antiatherosclerosis. Previously, we developed a nanoparticle system to encapsulate a large concentration of F12511 into a stealth liposome (DSPE-PEG2000 with phosphatidylcholine). Here, we injected the nanoparticle encapsulated F12511 (nanoparticle F) intravenously (IV) in wild-type mice and performed an HPLC/MS/MS analysis and ACAT enzyme activity measurement. The results demonstrated that F12511 was present within the mouse brain after a single IV but did not overaccumulate in the brain or other tissues after repeated IVs. A histological examination showed that F12511 did not cause overt neurological or systemic toxicity. We then showed that a 2-week IV delivery of nanoparticle F to aging 3xTg AD mice ameliorated amyloidopathy, reduced hyperphosphorylated tau and nonphosphorylated tau, and reduced neuroinflammation. This work lays the foundation for nanoparticle F to be used as a possible therapy for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrianna L. De La Torre
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (A.L.D.L.T.)
| | - Thao N. Huynh
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (A.L.D.L.T.)
| | - Catherine C. Y. Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (A.L.D.L.T.)
| | - Darcy B. Pooler
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Dylan B. Ness
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Lionel D. Lewis
- Clinical Pharmacology Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Sanjana Pannem
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.P.); (Y.F.)
| | - Yichen Feng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.P.); (Y.F.)
| | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (S.P.); (Y.F.)
| | - William F. Hickey
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA;
| | - Ta Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (A.L.D.L.T.)
| |
Collapse
|
6
|
Zaidi SAH, Lemtalsi T, Xu Z, Santana I, Sandow P, Labazi L, Caldwell RW, Caldwell RB, Rojas MA. Role of acyl-coenzyme A: cholesterol transferase 1 (ACAT1) in retinal neovascularization. J Neuroinflammation 2023; 20:14. [PMID: 36691048 PMCID: PMC9869542 DOI: 10.1186/s12974-023-02700-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND We have investigated the efficacy of a new strategy to limit pathological retinal neovascularization (RNV) during ischemic retinopathy by targeting the cholesterol metabolizing enzyme acyl-coenzyme A: cholesterol transferase 1 (ACAT1). Dyslipidemia and cholesterol accumulation have been strongly implicated in promoting subretinal NV. However, little is known about the role of cholesterol metabolism in RNV. Here, we tested the effects of inhibiting ACAT1 on pathological RNV in the mouse model of oxygen-induced retinopathy (OIR). METHODS In vivo studies used knockout mice that lack the receptor for LDL cholesterol (LDLR-/-) and wild-type mice. The wild-type mice were treated with a specific inhibitor of ACAT1, K604 (10 mg/kg, i.p) or vehicle (PBS) during OIR. In vitro studies used human microglia exposed to oxygen-glucose deprivation (OGD) and treated with the ACAT1 inhibitor (1 μM) or PBS. RESULTS Analysis of OIR retinas showed that increased expression of inflammatory mediators and pathological RNV were associated with significant increases in expression of the LDLR, increased accumulation of neutral lipids, and formation of toxic levels of cholesterol ester (CE). Deletion of the LDLR completely blocked OIR-induced RNV and significantly reduced the AVA. The OIR-induced increase in CE formation was accompanied by significant increases in expression of ACAT1, VEGF and inflammatory factors (TREM1 and MCSF) (p < 0.05). ACAT1 was co-localized with TREM1, MCSF, and macrophage/microglia makers (F4/80 and Iba1) in areas of RNV. Treatment with K604 prevented retinal accumulation of neutral lipids and CE formation, inhibited RNV, and decreased the AVA as compared to controls (p < 0.05). The treatment also blocked upregulation of LDLR, ACAT1, TREM1, MCSF, and inflammatory cytokines but did not alter VEGF expression. K604 treatment of microglia cells also blocked the effects of OGD in increasing expression of ACAT1, TREM1, and MCSF without altering VEGF expression. CONCLUSIONS OIR-induced RNV is closely associated with increases in lipid accumulation and CE formation along with increased expression of LDLR, ACAT1, TREM1, and MCSF. Inhibiting ACAT1 blocked these effects and limited RNV independently of alterations in VEGF expression. This pathway offers a novel strategy to limit vascular injury during ischemic retinopathy.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Vascular Biology Center, Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912-2500, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912-2500, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912-2500, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Isabella Santana
- Vascular Biology Center, Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912-2500, USA
| | - Porsche Sandow
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Leila Labazi
- Vascular Biology Center, Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912-2500, USA
| | - Robert W Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912-2500, USA. .,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA. .,Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA.
| | - Modesto A Rojas
- Vascular Biology Center, Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912-2500, USA. .,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA. .,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
7
|
Bhattacharjee P, Rutland N, Iyer MR. Targeting Sterol O-Acyltransferase/Acyl-CoA:Cholesterol Acyltransferase (ACAT): A Perspective on Small-Molecule Inhibitors and Their Therapeutic Potential. J Med Chem 2022; 65:16062-16098. [PMID: 36473091 DOI: 10.1021/acs.jmedchem.2c01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterol O-acyltransferase (SOAT) is a membrane-bound enzyme that aids the esterification of cholesterol and fatty acids to cholesterol esters. SOAT has been studied extensively as a potential drug target, since its inhibition can serve as an alternative to statin therapy. Two SOAT isozymes that have discrete functions in the human body, namely, SOAT1 and SOAT2, have been characterized. Over three decades of research has focused on candidate SOAT1 inhibitors with unsatisfactory results in clinical trials. Recent research has focused on targeting SOAT2 selectively. In this perspective, we summarize the literature covering various SOAT inhibitory agents and discuss the design, structural requirements, and mode of action of SOAT inhibitors.
Collapse
Affiliation(s)
- Pinaki Bhattacharjee
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nicholas Rutland
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| |
Collapse
|
8
|
Pires PC, Rodrigues M, Alves G, Santos AO. Strategies to Improve Drug Strength in Nasal Preparations for Brain Delivery of Low Aqueous Solubility Drugs. Pharmaceutics 2022; 14:588. [PMID: 35335964 PMCID: PMC8955176 DOI: 10.3390/pharmaceutics14030588] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Intranasal administration is a promising route for brain drug delivery. However, it can be difficult to formulate drugs that have low water solubility into high strength intranasal solutions. Hence, the purpose of this work was to review the strategies that have been used to increase drug strength in intranasal liquid formulations. Three main groups of strategies are: the use of solubilizers (change in pH, complexation and the use cosolvents/surfactants); incorporation of the drugs into a carrier nanosystem; modifications of the molecules themselves (use of salts or hydrophilic prodrugs). The use of high amounts of cosolvents and/or surfactants and pH decrease below 4 usually lead to local adverse effects, such as nasal and upper respiratory tract irritation. Cyclodextrins and (many) different carrier nanosystems, on the other hand, could be safer for intranasal administration at reasonably high concentrations, depending on selected excipients and their dose. While added attributes such as enhanced permeation, sustained delivery, or increased direct brain transport could be achieved, a great effort of optimization will be required. On the other hand, hydrophilic prodrugs, whether co-administered with a converting enzyme or not, can be used at very high concentrations, and have resulted in a fast prodrug to parent drug conversion and led to high brain drug levels. Nevertheless, the choice of which strategy to use will always depend on the characteristics of the drug and must be a case-by-case approach.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy (FFUC-UC), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
| | - Márcio Rodrigues
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development (CPIRN-UDI-IPG), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Gilberto Alves
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adriana O. Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
9
|
Zhu Y, Kim SQ, Zhang Y, Liu Q, Kim KH. Pharmacological inhibition of acyl-coenzyme A:cholesterol acyltransferase alleviates obesity and insulin resistance in diet-induced obese mice by regulating food intake. Metabolism 2021; 123:154861. [PMID: 34371065 DOI: 10.1016/j.metabol.2021.154861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyze the formation of cholesteryl ester (CE) from free cholesterol to regulate intracellular cholesterol homeostasis. Despite the well-documented role of ACATs in hypercholesterolemia and their emerging role in cancer and Alzheimer's disease, the role of ACATs in adipose lipid metabolism and obesity is poorly understood. Herein, we investigated the therapeutic potential of pharmacological inhibition of ACATs in obesity. METHODS We administrated avasimibe, an ACAT inhibitor, or vehicle to high-fat diet-induced obese (DIO) mice via intraperitoneal injection and evaluated adiposity, food intake, energy expenditure, and glucose homeostasis. Moreover, we examined the effect of avasimibe on the expressions of the genes in adipogenesis, lipogenesis, inflammation and adipose pathology in adipose tissue by real-time PCR. We also performed a pair feeding study to determine the mechanism for body weight lowering effect of avasimibe. RESULTS Avasimibe treatment markedly decreased body weight, body fat content and food intake with increased energy expenditure in DIO mice. Avasimibe treatment significantly lowered blood levels of glucose and insulin, and improved glucose tolerance in obese mice. The beneficial effects of avasimibe were associated with lower levels of adipocyte-specific genes in adipose tissue and the suppression of food intake. Using a pair-feeding study, we further demonstrated that avasimibe-promoted weight loss is attributed mainly to the reduction of food intake. CONCLUSIONS These results indicate that avasimibe ameliorates obesity and its-related insulin resistance in DIO mice through, at least in part, suppression of food intake.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Sora Q Kim
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yuan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qing Liu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
10
|
Genetic underpinnings of affective temperaments: a pilot GWAS investigation identifies a new genome-wide significant SNP for anxious temperament in ADGRB3 gene. Transl Psychiatry 2021; 11:337. [PMID: 34075027 PMCID: PMC8169753 DOI: 10.1038/s41398-021-01436-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Although recently a large-sample GWASs identified significant loci in the background of depression, the heterogeneity of the depressive phenotype and the lack of accurate phenotyping hinders applicability of findings. We carried out a pilot GWAS with in-depth phenotyping of affective temperaments, considered as subclinical manifestations and high-risk states for affective disorders, in a general population sample of European origin. Affective temperaments were measured by TEMPS-A. SNP-level association was assessed by linear regression models, assuming an additive genetic effect, using PLINK1.9. Gender, age, the first ten principal components (PCs) and the other four temperaments were included in the regression models as covariates. SNP-level relevances (p-values) were aggregated to gene level using the PEGASUS method1. In SNP-based tests, a Bonferroni-corrected significance threshold of p ≤ 5.0 × 10-8 and a suggestive significance threshold of p ≤ 1.0 × 10-5, whereas in gene-based tests a Bonferroni-corrected significance of 2.0 × 10-6 and a suggestive significance of p ≤ 4.0 × 10-4 was established. To explore known functional effects of the most significant SNPs, FUMA v1.3.5 was used. We identified 1 significant and 21 suggestively significant SNPs in ADGRB3, expressed in the brain, for anxious temperament. Several other brain-relevant SNPs and genes emerged at suggestive significance for the other temperaments. Functional analyses reflecting effect on gene expression and participation in chromatin interactions also pointed to several genes expressed in the brain with potentially relevant phenotypes regulated by our top SNPs. Our findings need to be tested in larger GWA studies and candidate gene analyses in well-phenotyped samples in relation to affective disorders and related phenotypes.
Collapse
|
11
|
Eguchi K, Mikami D, Sun H, Tsumita T, Takahashi K, Mukai K, Yuyama K, Igarashi Y. Blood-brain barrier permeability analysis of plant ceramides. PLoS One 2020; 15:e0241640. [PMID: 33137152 PMCID: PMC7605672 DOI: 10.1371/journal.pone.0241640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/16/2020] [Indexed: 12/04/2022] Open
Abstract
Ceramides, a type of sphingolipid, are cell membrane components and lipid mediators that modulate a variety of cell functions. In plants, ceramides are mostly present in a glucosylated glucosylceramide (GlcCer) form. We previously showed that oral administration of konjac-derived GlcCer to a mouse model of Alzheimer’s disease reduced brain amyloid-β and amyloid plaques. Dietary plant GlcCer compounds are absorbed as ceramides, but it is unclear whether they can cross the blood-brain barrier (BBB). Herein, we evaluated the BBB permeability of synthetic plant-type ceramides (4, 8-sphingadienine, d18:2) using mouse and BBB cell culture models, and found that they could permeate the BBB both in vivo and in vitro. In addition, administrated ceramides were partially metabolized to other sphingolipid species, namely sphingomyelin (SM) and GlcCer, while crossing the BBB. Thus, plant ceramides can cross the BBB, suggesting that ceramides and their metabolites might affect brain functions.
Collapse
Affiliation(s)
- Koichi Eguchi
- Innovation and Business Development Headquarters, Daicel Corporation, Tokyo, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hui Sun
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Kaori Takahashi
- Innovation and Business Development Headquarters, Daicel Corporation, Tokyo, Japan
| | - Katsuyuki Mukai
- Innovation and Business Development Headquarters, Daicel Corporation, Tokyo, Japan
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|