1
|
Lv S, Zhou Y, Wang H, Kong L, Bi S. Spatial-resolved and self-calibrated 3D-printed photoelectrochemical biosensor engineered by multifunctional CeO 2/CdS heterostructure for immunoassay. Biosens Bioelectron 2024; 262:116553. [PMID: 39018977 DOI: 10.1016/j.bios.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
A spatial-resolved and self-calibrated photoelectrochemical (PEC) biosensor has been fabricated by a multifunctional CeO2/CdS heterostructure, achieving portable and sensitive detection of carcinoembryonic antigen (CEA) using a homemade 3D printing device. The CeO2/CdS heterostructure with matched band structure is prepared to construct the dual-photoelectrodes to improve the PEC response of CeO2. In particular, as the photoactive nanomaterial, the CeO2 also plays the role of peroxidase mimetic nanozymes. Therefore, the catalytic performance of CeO2 with different morphologies (e.g., nano-cubes, nano-rods and nano-octahedra) have been studied, and CeO2 nano-cubes (c-CeO2) achieve the optimal catalytic activity. Upon introducing CEA, the sandwich-type immunocomplex is formed in the microplate using GOx-AuNPs-labeled second antibody as detection antibody. As a result, H2O2 can be produced from the catalytic oxidization of glucose substrate by GOx, which is further catalyzed by CeO2 to form •OH, thus in situ etching CdS and decreasing the photocurrents. The self-calibration is achieved by the dual-channel photoelectrodes on the homemade 3D printing device to obtain the photocurrents ratio, thus effectively normalizing the fluctuations of external factors to enhance the accuracy. This integrated biosensor with a detection limit as low as 0.057 ng mL-1 provides a promising way for ultrasensitive immunoassay in clinic application in complex environments.
Collapse
Affiliation(s)
- Shuzhen Lv
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Yuting Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Huijie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Lingyi Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| |
Collapse
|
2
|
Cai X, Huang Y, Zhu C. Immobilized Multi-Enzyme/Nanozyme Biomimetic Cascade Catalysis for Biosensing Applications. Adv Healthc Mater 2024:e2401834. [PMID: 38889805 DOI: 10.1002/adhm.202401834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Multiple enzyme-induced cascade catalysis has an indispensable role in the process of complex life activities, and is widely used to construct robust biosensors for analyzing various targets. The immobilized multi-enzyme cascade catalysis system is a novel biomimetic catalysis strategy that immobilizes various enzymes with different functions in stable carriers to simulate the synergistic catalysis of multiple enzymes in biological systems, which enables high stability of enzymes and efficiency enzymatic cascade catalysis. Nanozymes, a type of nanomaterial with intrinsic enzyme-like characteristics and excellent stabilities, are also widely applied instead of enzymes to construct immobilized cascade systems, achieving better catalytic performance and reaction stability. Due to good stability, reusability, and remarkably high efficiency, the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems show distinct advantages in promoting signal transduction and amplification, thereby attracting vast research interest in biosensing applications. This review focuses on the research progress of the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems in recent years. The construction approaches, factors affecting the efficiency, and applications for sensitive biosensing are discussed in detail. Further, their challenges and outlooks for future study are also provided.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
3
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Lin Q, Lu L, Huang X, Li M, Tang D. Photocurrent-polarity switching between methylene blue-loaded liposome and iodine-doped BiOCl for in-situ amplified immunoassay. Talanta 2024; 268:125346. [PMID: 37913594 DOI: 10.1016/j.talanta.2023.125346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This work designed a liposome-mediated photocurrent polarity switching immunosensor depending on the reversed photocurrent of iodine-doped BiOCl (I-BOC) nanoflowers induced by the released methylene blue (MB) for the detection of prostate-specific antigen (PSA). Initially, MB-loaded liposomes as indicators were confined within the microplates to participate in the sandwiched immunoreaction and lysed under the treatment of Triton X-100 to release numerous MB. Owing to the host-guest recognition between β-cyclodextrin (β-CD) and MB, the released MB was immobilized on the β-CD-modified I-BOC/FTO electrode and triggered the photocurrent polarity reversal from cathodic photocurrent to anodic photocurrent. The sensing platform realized an accurate and sensitive assay of PSA due to the effective elimination of false-positive/negative signals in a linear range of 0.02-50 ng mL-1 with a limit of detection of 12 pg mL-1. Furthermore, this work not only conjugated liposome-assisted signal amplification strategy with the photocurrent polarity switching system but also provided a novel pathway for various protein determinations.
Collapse
Affiliation(s)
- Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
5
|
Zhuo C, Yu D, Cui J, Song Z, Tang Q, Liao X, Liu Z, Xin N, Lou L, Gao F. Proximity hybridization induced bipedal DNA walker and rolling circle amplification for label-free electrochemical detection of apolipoprotein A4. Bioelectrochemistry 2024; 155:108596. [PMID: 37939432 DOI: 10.1016/j.bioelechem.2023.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Apolipoprotein A4 (Apo-A4) is considered as a prospective molecular biomarker for diagnosis of depression due to its neurosynaptic toxicity. We develop a proximity hybridization-induced DNAzyme-driven bipedal DNA walker strategy for Apo-A4 quantification based on rolling circle amplification (RCA) triggered by poly adenine binding to Ag nanoparticles (AgNPs). With the help of DNAzyme, the free-running bipedal DNA walker can quickly and sequentially shear a molecular beacon that acts as a primer to initiate the RCA process, producing a large number of long DNA strands containing numerous adenines. The long repetitive adenine strands then absorb large amounts of AgNPs on the electrode interface, which is then electrochemically stripped of the AgNPs. The method has a linear detection range of 0.001 ∼ 100 ng mL-1 and a detection limit of 0.46 pg mL-1. The presented detection strategy is label-free, which allows high sensitivity and selectivity for detection of a wide range of protein targets by corresponding DNA-based affinity probes, which have potential applications in bioanalysis.
Collapse
Affiliation(s)
- Chenyi Zhuo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Dehong Yu
- The Affiliated Pizhou Hospital of Xuzhou Medical University, Jiangsu 221399, China
| | - Jiuying Cui
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Zichun Song
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Zhao Liu
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ning Xin
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Lu Lou
- Department of Urology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
6
|
Wang X, Wang Z, Dong F, Yang D, Yin L, Han L. Exploration of Water-Soluble Natural AIEgens Boosting Label-Free Turn-on Fluorescent Sensing in a DNA Hydrogel. Anal Chem 2023; 95:13864-13871. [PMID: 37643162 DOI: 10.1021/acs.analchem.3c02004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Various aggregation-induced emission luminogens (AIEgens) have been developed and applied in different areas in recent years. However, AIEgens generally can aggregate and emit strong fluorescence in aqueous solution even containing DNA and other biomacromolecules because of poor water solubility, restricting their application in biosensing and bioimaging in aqueous solution. Moreover, the great majority of AIEgens commonly suffer from complex organic synthesis, environmental damage, and biological toxicity. In this work, jatrorrhizine (Jat), an isoquinoline alkaloid from Chinese herbs, was found to be a natural water-soluble AIEgen that has not been previously reported. Jat's photometric characteristics and single-crystal structure demonstrated that the restriction of intramolecular motion and twisted intramolecular charge transfer were responsible for its AIE phenomenon. Due to the good water solubility and AIE character of Jat, it did not emit fluorescence in the aqueous solution containing DNA and polymers until the formation of the DNA hydrogel. Therefore, a DNA hydrogel fluorescence biosensor was designed by using the target (miRNA) as a catalyst to trigger the entropy-driven circuit of DNA, realizing the ultrasensitive and label-free detection of miRNA with an ultralow limit of detection (0.049 fM, S/N = 3). This biosensing strategy also has excellent stability and acceptable reliability for real sample assay. The results not only indicated the excellent sensing performance of Jat as AIE probes in aqueous solution but also demonstrated the promising application potential of water-soluble natural AIEgens.
Collapse
Affiliation(s)
- Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Zhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Dongxu Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Li Yin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| |
Collapse
|
7
|
Shi Y, Li T, Zhao L, Liu Y, Ding K, Li D, He P, Jiang D, Liu J, Zhou H. Ultrathin MXene nanosheet-based TiO2/CdS heterostructure as a photoelectrochemical sensor for detection of CEA in human serum samples. Biosens Bioelectron 2023; 230:115287. [PMID: 37012191 DOI: 10.1016/j.bios.2023.115287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
To develop highly accurate and ultrasensitive strategies is of great importance for the clinical measurement, in particular, the detection of cancer biomarkers. Herein, we synthesized an ultrasensitive TiO2/MXene/CdS QDs (TiO2/MX/CdS) heterostructure as a photoelectrochemical immunosensor, which favors energy levels matching and fast electron transfer from CdS to TiO2 in the help of ultrathin MXene nanosheet. Dramatic photocurrent quenching can be observed upon incubation of the TiO2/MX/CdS electrode by Cu2+ solution from 96-well microplate, which caused by the formation of CuS and subsequent CuxS (x = 1, 2), reducing the absorption of light and boosting the electron-hole recombination upon irradiation. As a result, the as-prepared biosensor demonstrates a linearly increased photocurrent quenching percentage (Q%) value with CEA concentration ranging from 1 fg/mL to 10 ng/mL, as well as a low detection limit of 0.24 fg/mL. Benefit from its excellent stability, high selectivity and good reproducibility of as-prepared PEC immunosensor, we believe that this proposed strategy might provide new opportunities for clinical diagnosis of CEA and other tumor markers.
Collapse
|
8
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
9
|
Ma T, Ren S, Wang Y, Yu H, Li L, Li X, Zhang L, Yu J, Zhang Y. Paper-based bipolar electrode electrochemiluminescence sensors for point-of-care testing. Biosens Bioelectron 2023; 235:115384. [PMID: 37244092 DOI: 10.1016/j.bios.2023.115384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
In the past few years, point-of-care testing (POCT) technology has crossed the boundaries of laboratory determination and entered the stage of practical applications. Herein, the latest advances and principal issues in the design and fabrication of paper-based bipolar electrode electrochemiluminescence (BPE-ECL) sensors, which are widely used in the POCT field, are highlighted. After introducing the attractive physical and chemical properties of cellulose paper, various approaches aimed at enhancing the functions of the paper, and their underlying principles are described. The materials typically employed for fabricating paper-based BPE are also discussed in detail. Subsequently, the universal method of enhancing BPE-ECL signal and improving detection accuracy is put forward, and the ECL detector widely used is introduced. Furthermore, the application of paper-based BPE-ECL sensors in biomedical, food, environmental and other fields are displayed. Finally, future opportunities and the remaining challenges are analyzed. It is expected that more design concepts and working principles for paper-based BPE-ECL sensors will be developed in the near future, paving the way for the development and application of paper-based BPE-ECL sensors in the POCT field and providing certain guarantee for the development of human health.
Collapse
Affiliation(s)
- Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Suyue Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Luqing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
10
|
Ji D, Zhao J, Liu Y, Wei D. Electrical Nanobiosensors for Nucleic Acid Based Diagnostics. J Phys Chem Lett 2023; 14:4084-4095. [PMID: 37125726 DOI: 10.1021/acs.jpclett.3c00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.
Collapse
Affiliation(s)
- Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
DNAzyme-driven bipedal DNA walker triggered to hybridize silver nanoparticle probes for electrochemical detection of amyloid-β oligomer. Anal Chim Acta 2023; 1246:340889. [PMID: 36764775 DOI: 10.1016/j.aca.2023.340889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Amyloid-β oligomer has been considered as a promising molecular biomarker for the diagnosis of Alzheimer's disease due to their significant neural synapse toxicity. Therefore, it is essential to create an easy approach for the selective detection of Amyloid-β oligomer that has high sensitivity and cheap cost. In this work, we developed an innovative enzyme-free electrochemical aptasensor based on the DNAzyme-driven DNA bipedal walker tactics for sensing Amyloid-β oligomer. Bipedal DNA walkers demonstrate a wider walking region, better walking kinetics, and higher amplification effectiveness than typical DNA walkers. The Mg2+-dependent DNAzyme drove the DNA walker, and the binding-induced DNA walker can sequentially shear MBs and form MB fragment structure. Finally, the detection probes modified AgNPs hybridized with the MB fragment structure, resulting in the multiplication of AgNPs on the electrode surface. Electrochemical stripping of AgNPs was used to test the performance of the obtained electrochemical sensor. In particular, a low detection limit of 5.94 fM and a wide linear range of 0.01 pM-0.1 nM were attained. The detection of Amyloid-β oligomer in human serum was then carried out using this bipedal DNA walker biosensor, which shown good selectivity and outstanding reproducibility, indicating its usefulness in bioanalysis.
Collapse
|
12
|
Chi L, Wang X, Chen H, Tang D, Xue F. Paper-based photoelectrochemical immunoassay for ultrasensitive screening of carcinoembryonic antigen on hollow CdS/CdMoO 4-functionalized photoanode. Talanta 2023; 254:124176. [PMID: 36495772 DOI: 10.1016/j.talanta.2022.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Lab-based testing systems utilizing photoelectrochemical (PEC) biosensing methodologies for the ultrasensitive carcinoembryonic antigen (CEA) have been developed, although the majority have shown complicated operating procedures and dependence on precise apparatus. Herein, a portable photoelectrochemical split diagnostic platform based on a hollow CdS/CdMoO4 (h-CdS@CdMoO4) shell-shell structured photoanode system was developed for ultrasensitive detection of CEA. Using a small LED flashlight as the excitation light source and a digital multimeter (DMM) as the signal readout device, real-time CEA on a paper-based printed screen electrode developed in-house was quickly detected. The composite h-CdS@CdMoO4 featured a special hollow shell-shell heterojunction structure that optimizes photon usage in the bulk phase on the one hand, and facilitates directed separation of the electrons and holes therein on the other. A split-sandwich immunoassay and detection antibodies for modified glucose oxidase were introduced into the paper-based photoanode test system, and the signals were displayed with a DMM to realize a point-of-care test for CEA. Under optimized conditions, the constructed portable PEC sensing system was sensitive to the target CEA from 0.02 to 50.0 ng mL-1 with a detection limit of 11.3 pg mL-1. Interferent experiments and stability test evaluations demonstrate the specificity and robustness of the constructed paper-based portable PEC sensor. The portable, paper-based PEC immunoassay system developed offers a fresh way of exploring affordable, approachable sensors to satisfy both the relevant community medical testing demands and hospital objectives for quick testing.
Collapse
Affiliation(s)
- Liangjie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China; Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China; Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China; Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China; Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, PR China.
| |
Collapse
|
13
|
Guan Y, Wang FP, Chen ZX, Yang YH, Yang T, Hu R. Ratiometrically homogeneous electrochemical biosensor based on the signal amplified strategy of dual DNA nanomachines for microRNA analysis. Talanta 2023; 254:124191. [PMID: 36525866 DOI: 10.1016/j.talanta.2022.124191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Precise and sensitive microRNA (miRNA) analysis is very significant for early disease diagnosis. In this work, a dual DNA nanomachines-based homogeneous electrochemical biosensor was constructed for the sensitively ratiometric detection of miRNA by a nicking enzyme (Nt.AlwI)-assisted cycling signal amplification strategy. The Co-based metal organic frameworks (Co-MOFs) and toluidine blue (TB) were employed as signal probes and internal reference probes, respectively. The introduction of internal reference probes can actually calibrate the interferent factors of the analytical system to improve the stability in detection procedure. In addition, with the help of the magnetic separation technique, the homogeneous electrochemical biosensor provides a more simpler way for the development of immobilization-free electrochemical miRNA biosensors, avoiding the complex modification procedure of traditional electrochemical biosensing interfaces. Consequently, taking advantages of this proposed dual DNA nanomachines-based homogeneous electrochemical biosensor, the highly sensitive and selective detection of miRNA-141 as model could be accomplished in ranging from 1 fM to 10 nM with detection limit of 0.46 fM. This strategy exhited good sensitivity and stability to integrate the nicking enzyme-powered dual DNA nanomachines with the ratiometric electrochemical output modes, which open new opportunities for the sensitive and reliable diagnosis of miRNA-related diseases.
Collapse
Affiliation(s)
- Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Fu Peng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Zhi Xiong Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Yun Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China.
| |
Collapse
|
14
|
Wu W, Li J. Recent Progress on Nanozymes in Electrochemical Sensing. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Wei JJ, Wang GQ, Zheng JY, Yang HY, Wang AJ, Mei LP, Feng JJ, Cheang TY. Z-scheme Cu2MoS4/CdS/In2S3 nanocages heterojunctions-based PEC aptasensor for ultrasensitive assay of fumonisin B1 via signal amplification with hollow PtPd–CoSnO3 nanozyme. Biosens Bioelectron 2023; 230:115293. [PMID: 37028001 DOI: 10.1016/j.bios.2023.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Fumonisin B1 (FB1), the most prevalent and highest toxicity mycotoxins among fumonisins family, poses threats to human especially children and infants even at a trace level. Therefore, its facile and sensitive detection is of importance. Herein, Z-scheme Cu2MoS4/CdS/In2S3 nanocage-like heterojunctions (labeled Cu2MoS4/CdS/In2S3) were synthesized, whose photoelectrochemical (PEC) property and electron transfer mechanism were strictly investigated. The Cu2MoS4/CdS/In2S3 behaved as photoactive substrate for building a PEC sensing platform for detection of FB1, integrated with PtPd alloy modified hollow CoSnO3 nanoboxes (labeled PtPd-CoSnO3) nanozyme. By virtue of the stronger affinity between the target FB1 and its aptamer (FB1-Apt), the photocurrent was recovered by releasing the CoSnO3-PtPd3 modified FB1-Apt (FB1-Apt/PtPd-CoSnO3) from the photoanode, which can terminate the catalytic precipitation reaction for its peroxidase-like property. The resultant PEC aptasensor exhibited a wider dynamic linear range from 1 × 10-4 to 1 × 102 ng mL-1 with a lower limit of detection (0.0723 pg mL-1). Thus, this research provides a feasible PEC sensing platform for routine analysis of other mycotoxins in practice.
Collapse
|
16
|
Wei J, Ge K, Gong Y, Li L, Tang Q, Liao X, Zhang G, Gao F. DNAzyme-driven bipedal DNA walker for label-free and signal-on electrochemical detection of amyloid-β oligomer. Int J Biol Macromol 2023; 228:234-241. [PMID: 36566812 DOI: 10.1016/j.ijbiomac.2022.12.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
As a common technique for detecting AβO, the enzyme-linked immunosorbent assay (ELISA) method is time-consuming, high in cost, and poor in stability. Therefore, it is necessary to develop a highly sensitive, method-simple and low-cost method for the selective detection of AβO. Here, we created a novel signal-on and label-free electrochemical aptamer sensor for the detection of AβO based on a DNAzyme-driven DNA bipedal walking strategy. Compared with common DNA walkers, bipedal DNA walkers exhibit larger walking areas and faster walking kinetics, and provide higher amplification efficiency. The DNAwalker is powered by an Mg2+-dependent DNAzyme, and the binding-induced DNAwalker continuously clamps the MB, unlocking several active G-quadruplex-forming sequences. These G-quadruplexes can be further combined by hemin to generate a G-quadruplex/heme complex, resulting in an amperometric signal, resulting in a broad proportional band from 0.1 pM to 1 nM and an excellent detection range of 46 fM. A bipedal DNA walker aptamer sensor can detect human serum AβO with remarkable specificity, high reproducibility and practical application value.
Collapse
Affiliation(s)
- Jihua Wei
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Kezhen Ge
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yuanxun Gong
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Liqing Li
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Qianli Tang
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Guanqun Zhang
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; Department of Neurology, Xuzhou Central Hospital, 221004 Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
17
|
Shivalkar S, Chowdhary P, Afshan T, Chaudhary S, Roy A, Samanta SK, Sahoo AK. Nanoengineering of biohybrid micro/nanobots for programmed biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113054. [PMID: 36446238 DOI: 10.1016/j.colsurfb.2022.113054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Biohybrid micro/nanobots have emerged as an innovative resource to be employed in the biomedical field due to their biocompatible and biodegradable properties. These are tiny nanomaterial-based integrated structures engineered in a way that they can move autonomously and perform the programmed tasks efficiently even at hard-to-reach organ/tissues/cellular sites. The biohybrid micro/nanobots can either be cell/bacterial/enzyme-based or may mimic the properties of an active molecule. It holds the potential to change the landscape in various areas of biomedical including early diagnosis of disease, therapeutics, imaging, or precision surgery. The propulsion mechanism of the biohybrid micro/nanobots can be both fuel-based and fuel-free, but the most effective and easiest way to propel these micro/nanobots is via enzymes. Micro/nanobots possess the feature to adsorb/functionalize chemicals or drugs at their surfaces thus offering the scope of delivering drugs at the targeted locations. They also have shown immense potential in intracellular sensing of biomolecules and molecular events. Moreover, with recent progress in the material development and processing is required for enhanced activity and robustness the fabrication is done via various advanced techniques to avoid self-degradation and cause cellular toxicity during autonomous movement in biological medium. In this review, various approaches of design, architecture, and performance of such micro/nanobots have been illustrated along with their potential applications in controlled cargo release, therapeutics, intracellular sensing, and bioimaging. Furthermore, it is also foregrounding their advancement offering an insight into their future scopes, opportunities, and challenges involved in advanced biomedical applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| | - Pallabi Chowdhary
- Department of Biotechnology, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Tayyaba Afshan
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
18
|
Zeng R, Xu J, Liang T, Li M, Tang D. Photocurrent-Polarity-Switching Photoelectrochemical Biosensor for Switching Spatial Distance Electroactive Tags. ACS Sens 2023; 8:317-325. [PMID: 36617728 DOI: 10.1021/acssensors.2c02314] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This work presents a photocurrent-polarity-switching-based photoelectrochemical (PEC) biosensing platform for ultrasensitive detection of microRNA-21 (miR-21) through target-triggered catalytic hairpin assembly (CHA) for modulation of methylene blue (MB) and ferrocene (Fc) positional configurations using double-shelled Cu-doped ZnS nanocages (NCs)-Au nanoparticles (NPs) as photoactive materials. In the presence of miR-21, the assembly of MB-labeled HP1 and Fc-labeled HP2 leads to the generation of a large amount of double-stranded DNA (HP1-HP2), which pushes MB away from the electrode surface and brings Fc close to the electrode surface, resulting in effectively quenching the enhanced PEC signal to activate the photocurrent-polarity-switching system. Benefiting from the distance-controllable strategy, the designed PEC bioanalysis can effectively eliminate false-positive and false-negative signals due to the change of different signal expression patterns (from traditional the "signal-on" mode to the photocurrent-polarity-switching mode), thereby significantly improving the sensing specificity and sensitivity. The proposed PEC sensing system exhibited satisfying photocurrent responses toward target miR-21 within the working range from 1.0 fM to 1 nM at a low limit of detection (LOD) of 0.58 fM. More importantly, we demonstrated the successful integration of the proposed PEC biosensor with a handheld wireless device for instant detection of miR-21 concentrations in practical samples.
Collapse
Affiliation(s)
- Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jianhui Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tikai Liang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
19
|
Ganganboina AB, Khoris IM, Konno A, Li TC, Okamoto A, Park EY. CdSe-Co 3O 4@TiO 2 nanoflower-based photoelectrochemical platform probing visible light-driven virus detection. Mikrochim Acta 2023; 190:46. [PMID: 36604350 PMCID: PMC9816014 DOI: 10.1007/s00604-022-05623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
The design and construction of a visible light-driven photoelectrochemical (PEC) device is described based on a CdSe-Co3O4@TiO2 nanoflower (NF). Moreover, an application to the ultrasensitive detection of viruses, such as hepatitis E virus (HEV), HEV-like particles (HEV-LPs), and SARS-CoV-2 spike protein in complicated lysate solution, is demonstrated. The photocurrent response output of a PEC device based on CdSe-Co3O4@TiO2 is enhanced compared with the individual components, TiO2 and CdSe-Co3O4. This can be attributed to the CdSe quantum dot (QD) sensitization effect and strong visible light absorption to improve overall system stability. A robust oxygen-evolving catalyst (Co3O4) coupled at the hole-trapping site (CdSe) extends the interfacial carrier lifetime, and the energy conversion efficiency was improved. The effective hybridization between the antibody and virus resulted in a linear relationship between the change in photocurrent density and the HEV-LP concentration ranging from 10 fg mL-1 to 10 ng mL-1, with a detection limit of 3.5 fg mL-1. This CdSe-Co3O4@TiO2-based PEC device achieved considerable sensitivity, good specificity, and acceptable stability and demonstrated a significant ability to develop an upgraded device with affordable and portable biosensing capabilities.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan
| | - Indra Memdi Khoris
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529 Japan
| | - Akinori Konno
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka 432-8561 Japan
| | - Tian-Cheng Li
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-Shi, Tokyo, 208-0011 Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA) and Center for Sensor and Actuator Material, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan
| | - Enoch Y. Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529 Japan ,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529 Japan
| |
Collapse
|
20
|
Singh S, Podder PS, Russo M, Henry C, Cinti S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. LAB ON A CHIP 2022; 23:44-61. [PMID: 36321747 DOI: 10.1039/d2lc00666a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the field of cancer detection, technologies to analyze tumors using biomarkers circulating in fluids such as blood have developed rapidly based on liquid biopsy. A proactive approach to early cancer detection can lead to more effective treatments with minimal side effects and better long-term patient survival. However, early detection of cancer is hindered by the existing limitations of conventional cancer diagnostic methods. To enable early diagnosis and regular monitoring and improve automation, the development of integrated point-of-care (POC) and biosensors is needed. This is expected to fundamentally change the diagnosis, management, and monitoring of response to treatment of cancer. POC-based techniques will provide a way to avoid complications that occur after invasive tissue biopsy, such as bleeding, infection, and pain. The aim of this study is to provide a comprehensive view of biosensors and their clinical relevance in oncology for the detection of biomarkers with liquid biopsies of proteins, miRNA, ctDNA, exosomes, and cancer cells. The preceding discussion also illustrates the changing landscape of liquid biopsy-based cancer diagnosis through nanomaterials, machine learning, artificial intelligence, wearable devices, and sensors, many of which apply POC design principles. With the advent of sensitive, selective, and timely detection of cancer, we see the field of POC technology for cancer detection and treatment undergoing a positive paradigm shift in the foreseeable future.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Pritam Saha Podder
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Matt Russo
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Charles Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Naples, Italy
| |
Collapse
|
21
|
Chi L, Wang X, Chen H, Tang D, Xue F. Ultrasensitive photoelectrochemical biosensing platform based target-triggered biocatalytic precipitation reactions on a flower-like Bi 2O 2S super-structured photoanode. J Mater Chem B 2022; 10:10018-10026. [PMID: 36458849 DOI: 10.1039/d2tb02283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we reported a novel photoelectrochemical immunoassay method based on a target-triggered on/off signal of the ultra-structured Bi2O2S (BOS) photoanode system for the sensitive testing of carcinoembryonic antigens (CEAs) in serum samples. Well-defined three-dimensional sheet-like self-assembled flower-like Bi2O2S superstructures were obtained using a time-controlled hydrothermal method. Such well-shaped multifaceted surfaces were considered to be good laser cavity mirror surfaces for multifaceted reflection and refraction of excitation light in the material. An elegant enzyme biocatalytic strategy was introduced into the constructed detection model to sensitively detect CEAs. The substrate 4-chloro-1-naphthol (4-CN) was oxidized to 4-chloro-hexadienone (4-CD) under the formation of target-triggered immune complexes against mAb1 and peroxidase-modified mAb2. Subsequently, 4-CD produced by the biocatalytic precipitation reaction was transferred to the photoanodes of Bi2O2S nanoflowers (BOS NFs) to burst their photoelectric signals, thus achieving the quantification of CEAs. Through optimization of the conditions of the immunization protocol, a good negative photocurrent response to the target CEA was found in the wide range of 0.02-50 ng mL-1 with a detection limit of 11.2 pg mL-1. Impressively, the reported biocatalytic PEC sensing strategy on superstructures is comparable, or superior, to the gold standard ELISA kit in terms of sensitivity and the target response range. This study presents a target-mediated PEC immunoassay for biocatalytic precipitation based on a self-assembled superstructure of Bi2O2S, providing a fresh scheme for the analysis of disease-related markers.
Collapse
Affiliation(s)
- Liangjie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| |
Collapse
|
22
|
Wang GQ, Wei JJ, Hu R, Mei LP, Wang AJ, Feng JJ. Heterostructured BiVO 4/CoPi nanoarrays as high-efficiency photoanode and AuPt nanodendrites as nanozyme for sensitive sensing of miRNA 141. Biosens Bioelectron 2022; 215:114552. [PMID: 35850039 DOI: 10.1016/j.bios.2022.114552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022]
Abstract
MicroRNA (miRNA) is a new class of tumor biomarkers in human body for early diagnosis and therapy of cancers, whose detection has scientific significance and potential applications. Herein, a sensitive heterostructured BiVO4/CoPi photoelectrochemical (PEC) biosensor was established for sensing miRNA 141 with assistance of home-synthesized AuPt nanodendrites (NDs) as nanozyme. Specifically, the BiVO4/CoPi heterostructures displayed rough worm-like internetworks, as characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In parallel, the PEC and UV-vis diffuse reflectance spectroscopy tests confirmed their excellent optical property, combined by discussing the interfacial electron transfer mechanism. Additionally, the AuPt NDs displayed superior peroxidase-like property in the presence of H2O2 as identified by benchmarked tetramethylbenzidine (TMB) oxidation, coupled by showing remarkable catalysis for 3-amino-9-ethylcarbazole (AEC) oxidation to form biocatalytic precipitation (BCP). Integrated by a cyclic enzyme strategy, the developed PEC biosensor exhibited a wider linear range of 5 fM ∼1 pM and a lower limit of detection (LOD) as low as 0.17 fM (S/N = 3). This work provides some valuable insights for sensitive analysis of tumor-associated miRNA in clinic.
Collapse
Affiliation(s)
- Gui-Qing Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing-Jing Wei
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Rui Hu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
23
|
Huang J, Li X, Xiu M, Huang K, Cui K, Zhang J, Ge S, Hao S, Yu J, Huang Y. A Paper-Based Photoelectrochemical Sensing Platform Based on In Situ Grown ZnO/ZnIn 2S 4 Heterojunctions onto Paper Fibers for Sensitively Detecting AFP. BIOSENSORS 2022; 12:818. [PMID: 36290955 PMCID: PMC9599276 DOI: 10.3390/bios12100818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/06/2023]
Abstract
Nowadays, developing a cost-effective, easy-to-operate, and efficient signal amplification platform is of important to microfluidic paper-based analytical devices (μPAD) for end-use markets of point-of-care (POC) assay applications. Herein, an ultrasensitive, paper-based photoelectrochemical (PEC) bioassay platform is constructed by in situ grown ZnO/ZnIn2S4 heterojunctions onto paper fibers, which acted as photoactive signal amplification probes for enhancing the sensitivity of antibodies-based diagnostic assays, for the sensitive detection of alpha-fetoprotein (AFP) targets. The crystalline flake-like ZnIn2S4 composited with hexagonal nanorods (NRs) morphology of ZnO is an in situ grown, at the first time, onto cellulose fibers surface supported with Au nanoparticle (Au NP) modification to improve conductivity of the device working zone. The obtained composites on paper fibers are implemented as a flexible paper-based photoelectrode to realize remarkable performance of the fabricated μPAD, resulting from the enhanced PEC activity of heterojunctions with effective electron-hole pair separation for accelerating photoelectric conversion efficiency of the sensing process under light irradiation. Once the target AFP was introduced into the biosensing interface assistant, with a specific recognition interaction of AFP antibody, a drastically photocurrent response was generated, in view of the apparent steric effects. With the concentration increase of AFP targets, more immune conjugates could be confined onto the biosensing interface, eventually leading to the quantitative decrease of photocurrent intensity. Combined with an ingenious origami design and permitting the hydrophobic/hydrophilic conversion procedure in the bioassay process, the ultrasensitive PEC detection of AFP targets was realized. Under the optimized conditions, the level of AFP could be sensitively tracked by the prepared μPAD with a liner range from 0.1 to 100 ng mL-1 and limit of detection of 0.03 ng mL-1. This work provides a great potential application for highly selective and sensitive POC testing of AFP, and finally, developments for clinical disease diagnosis.
Collapse
Affiliation(s)
- Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shenguang Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
24
|
Lu MJ, Li CJ, Ban R, Chen FZ, Hu J, Gao G, Zhou H, Lin P, Zhao WW. Tuning the Surface Molecular Charge of Organic Photoelectrochemical Transistors with Significantly Improved Signal Resolution: A General Strategy toward Sensitive Bioanalysis. ACS Sens 2022; 7:2788-2794. [PMID: 36069701 DOI: 10.1021/acssensors.2c01493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nature makes use of molecular charges to operate specific biological synthesis and reactions. Targeting advanced opto-bioelectronic sensors, organic photoelectrochemical transistors (OPECTs), taking advantage of the light fuel substituting an external gate potential, is now debuting and expected to serve as a universal platform for studying the rich light-biomatter interplay for new bioanalytics. Given the ubiquity of charged biomolecules in nature, molecular charge manipulation should underpin a generic route for innovative OPECT regulation and operation, which nevertheless has remained unachieved. Herein, this work manifests the biological tuning of surface charge toward the OPECT biosensor, which was exemplified by a light-sensitive CdS quantum dot (QD) gate electrode interfaced by a smart DNA superstructure with adenosine triphosphate (ATP) responsiveness. Highly negative-charged supramolecular DNA concatemers were self-assembled via sequential hybridization, and the ATP-triggered disassembly of the DNA concatemers would cause a tandem change of the effective gate voltage and transfer characteristics with significantly improved resolution. The present opto-bioelectronic device translates the events of charged molecules into amplified electrical signals and outlines a generic format for the future exploitation of rich biological tunability and light-biomatter interplay for innovative bioanalytics and beyond.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Wang F, Liu Y, Zhang L, Zhang Z, Huang C, Zang D, Wang H, Ge S, Yu J. Photoelectrochemical biosensor based on CdS quantum dots anchored h-BN nanosheets and tripodal DNA walker for sensitive detection of miRNA-141. Anal Chim Acta 2022; 1226:340265. [DOI: 10.1016/j.aca.2022.340265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
|
26
|
Li L, Yang H, Li L, Tan X, Ge S, Zhang L, Yu J, Zhang Y. Photothermal-Reagent-Triggered Visual Thermoresponsive and Quantized Photoelectrochemical Dual-Signal Assay. ACS Sens 2022; 7:2429-2437. [PMID: 35930687 DOI: 10.1021/acssensors.2c01162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro biosensing chips are urgently needed for early-stage diagnosis and real-time surveillance of epidemic diseases. Herein, a versatile zone with photothermal effects is implanted in the miniature space of a collapsible lab-on-paper photoelectrochemical biosensor for on-site detection of microRNA-141 in body fluids, which can flexibly interconnect the traditional photocurrent signal with functional temperature response. The visualized thermoresponsive results are enhanced by the exciton energy conversion between Fe3O4 nanoparticles (Fe3O4 NPs) and formed Prussian blue nanoparticles under near-infrared irradiation, which not only presents heat energy gradient variations but also generates color changes. Significantly, the controlled release of Fe3O4 NPs is actuated by a target-triggered enzyme assist strand displacement cycle strategy to efficiently improve the accuracy of target temperature signal prediction, which can concurrently mediate photoelectric signal attenuation via promoting the rapid recombination of photoexcited charge carriers on the CuInS2/CoIn2S4 electrode surface, affording dependable ultrasensitive detection results. Benefitting from the ingenious design of the versatile thermoresponsive-photoelectric sensing platform, the preliminary screening and ultrasensitive quantitative analysis can be simultaneously achieved in a single-drop sample. As a consequence, speedy prediction results and satisfied monitoring data are acquired in the ranges of 0.5 pM to 2 nM and 0.001 pM to 5 nM by measuring the temperature change and photocurrent intensity. By right of these advantages, such research paves a prospective paradigm for the manufacture of a visual, rapid, broad-spectrum, and reliable real-time surveillance platform, which allows it to be a promising candidate for epidemic disease home diagnosis and intelligent diagnosis.
Collapse
Affiliation(s)
- Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiaoran Tan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
27
|
Zhang L, Loh XJ, Ruan J. Photoelectrochemical nanosensors: An emerging technique for tumor liquid biopsy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Hou TL, Zhu L, Zhang XL, Chai YQ, Yuan R. Multiregion Linear DNA Walker-Mediated Ultrasensitive Electrochemical Biosensor for miRNA Detection. Anal Chem 2022; 94:10524-10530. [PMID: 35822933 DOI: 10.1021/acs.analchem.2c02004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, an intelligent multiregion linear DNA walker (MLDW) with a high walking rate and a high amplification efficiency was explored for ultrasensitive detection of miRNA. Significantly, amounts of functional domain could be concentrated in a long linear DNA obtained by the target miRNA-mediated rolling-circle amplification to simultaneously increase the local concentration and collision probability, resulting in an obviously improved reaction rate. Impressively, the MLDW can accomplish the reaction within 30 min, which is at least 4 times beyond that of traditional single-leg and multiple-leg DNA walkers. As a proof of concept, the high-efficiency MLDW was used to develop an electrochemical biosensing platform for ultrasensitive detection of target miRNA-21 with a low detection limit down to 36 aM. Therefore, the MLDW we designed puts forward an innovative insight to construct a functional DNA nanodevice and promote the investigation of the inherent performance of nucleic acid signal amplification for ultimate application in the detection of biomolecules and clinical disease diagnosis.
Collapse
Affiliation(s)
- Tong-Lin Hou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Liang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
29
|
Ai S, Liu Y, Chai Y, Yuan R, Liu H. Enhanced cathodic photocurrent derived from N-type S doped-Bi2WO6 nanoparticles through an antenna-like strategy for photoelectrochemical biosensor. Biosens Bioelectron 2022; 207:114176. [DOI: 10.1016/j.bios.2022.114176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
|
30
|
Zhao Y, Li X, Xiang MH, Gao F, Qu F, Li M, Lu L. Enzyme-free nucleic acid dual-amplification strategy combined with mimic enzyme catalytic precipitation reaction for the photoelectrochemical detection of microRNA-21. Mikrochim Acta 2022; 189:249. [PMID: 35680731 DOI: 10.1007/s00604-022-05345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
A novel photoelectrochemical (PEC) biosensor based on an enzyme-free nucleic acid dual-amplification strategy combined with a mimic enzyme to catalyze the deposition of a quencher is reported for the ultrasensitive detection of miRNA-21. A limited amount of target miRNA-21 can trigger the formation of long DNA duplexes on the electrode, owing to the synergistic effect of the enzyme-free nucleic acid dual-amplification strategy of entropy-driven strand displacement reaction (ESDR) amplification and hybridization chain reaction (HCR) amplification. The embedded manganese porphyrin (MnPP) in the long DNA duplexes acts as a horseradish peroxidase (HRP)-mimicking enzyme to catalyze the transformation of benzo-4-chlorohexadienone on the electrode surface, resulting in a significant reduction in photocurrent intensity. As a photosensitive material, BiOCl-BiOI is used as a tag to provide strong initial PEC signals. Based on the cascade integration of the enzyme-free nucleic acid dual-amplification strategy and the mimic enzyme-catalyzed precipitation reaction, the current PEC biosensor exhibits outstanding performance for miRNA-21 detection with an ultralow detection limit (33 aM) and a wide quantification range (from 100 aM to 1 nM). This work provides a new avenue toward the ultrasensitive detection of miRNAs, and is expected to be used for clinical and biochemical samples. A unique PEC biosensor with the BiOCl-BiOI composite, as the photosensitive material, has been developed for ultrasensitive miRNA-21 determination based on the combination of an enzyme-free nucleic acid dual-amplification strategy and mimic enzyme catalytic precipitation reaction.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiaomeng Li
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Mei-Hao Xiang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Feng Gao
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Fengli Qu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China. .,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Mingfang Li
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Limin Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
31
|
Huang C, Zhang L, Zhu Y, Zhang Z, Liu Y, Liu C, Ge S, Yu J. Dual-Engine Powered Paper Photoelectrochemical Platform Based on 3D DNA Nanomachine-Mediated CRISPR/Cas12a for Detection of Multiple miRNAs. Anal Chem 2022; 94:8075-8084. [PMID: 35608169 DOI: 10.1021/acs.analchem.2c01717] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This work proposed a novel double-engine powered paper photoelectrochemical (PEC) biosensor based on an anode-cathode cooperative amplification strategy and various signal enhancement mechanisms, which realized the monitoring of multiple miRNAs (such as miRNA-141 and miRNA-21). Specifically, C3N4 quantum dots (QDs) sensitized ZnO nanostars and BiOI nanospheres simultaneously to construct a composite photoelectric layer that amplified the original photocurrent of the photoanode and photocathode, respectively. Through the independent design and partition of a flexible paper chip to functionalize injection holes and electrode areas, the bipolar combination completed the secondary upgrade of signals, which also provided biological reaction sites for multitarget detection. With the synergistic participation of a three-dimensional (3D) DNA nanomachine and programmable CRISPR/Cas12a shearing tool, C3N4 QDs lost their attachment away from the electrode surface to quench the signal. Moreover, electrode zoning significantly reduced the spatial cross talk of related substances for multitarget detection, while the universal trans-cleavage capability of CRISPR/Cas12a simplified the operation. The designed PEC biosensor revealed excellent linear ranges for detection of miRNA-141 and miRNA-21, for which the detection limits were 5.5 and 3.4 fM, respectively. With prominent selectivity and sensitivity, the platform established an effective approach for trace multitarget monitoring in clinical applications, and its numerous pioneering attempts owned favorable reference values.
Collapse
Affiliation(s)
- Chuan Huang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lu Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Yuanna Zhu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zuhao Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University; Institute of Stomatology, Shandong University, Jinan 250012, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
32
|
An Z, Shi Z, Lv J, Li X, Liu G, Li Y, Yan Z, Lu Y, Wang D, Jiang J, Zhang F, Liu Q. Elimination of oxygen interference in the photoelectrochemical sensor with ferricyanide shield oxygen reduction for point of care testing. Anal Chim Acta 2022; 1206:339796. [DOI: 10.1016/j.aca.2022.339796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
|
33
|
Gao Y, Zeng Y, Liu X, Tang D. Liposome-Mediated In Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay. Anal Chem 2022; 94:4859-4865. [PMID: 35263077 DOI: 10.1021/acs.analchem.2c00283] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exploiting innovative sensing mechanisms and their rational implementation for selective and sensitive detection has recently become one of the mainstream research directions of photoelectrochemical (PEC) bioanalysis. In contrast to existing conventional strategies, this study presents a new liposome-mediated method via in situ combining ZnInS nanosheets (ZIS NSs) with SnS2 to form a ZIS NSs/SnS2 type-I heterojunction on fluorine-doped tin oxide (FTO) electrodes for highly sensitive PEC immunoassays. Specifically, alkaline phosphatase (ALP)-encapsulated liposomes were confined within 96-well plates by sandwich immunorecognition and subsequently subjected to lysis treatment. Enzymatically produced H2S by the released ALP was then directed to react with Sn(IV) to engender the ZIS NSs/SnS2 type-I heterojunction on the FTO/ZIS NSs-Sn(IV) electrode, resulting in a change in the photogenerated electron-hole transfer path of the photoelectrode and reduction in current signaling. Exemplified by heart-type fatty acid binding protein (h-FABP) as a target, the constructed PEC sensor showed good stability and selectivity in a biosensing system. Under optimal conditions, the as-prepared sensing platform displayed high sensitivity for h-FABP with a dynamic linear response range of 0.1-1000 pg/mL and a lower detection limit of 55 fg/mL. This research presents the liposome-mediated PEC immunoassay based on in situ type-I heterojunction establishment, providing a new protocol for analyzing various targets of interest.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
34
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Zhang J, Yang H, Liu W, Wen H, He F. Rapid 16S rDNA electrochemical sensor for detection of bacteria based on the integration of target-triggered hairpin self-assembly and tripedal DNA walker amplification. Anal Chim Acta 2022; 1190:339266. [PMID: 34857142 DOI: 10.1016/j.aca.2021.339266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Diseases caused by bacteria pose great challenges to human health. The key to reduce disease transmission and mortality is to develop accurate and rapid methods for the detection and identification of bacteria. Herein, a rapid bacteria 16S rDNA electrochemical sensor based on target-triggered hairpin self-assembly and tripedal DNA walker (TD walker) amplification strategy was constructed. Specific variable region of 16S rDNA fragment of bacteria was used as biomarker. The target-triggered hairpin self-assembly strategy was used to prepare a TD walker. The hairpin DNA probes labeled with ferrocene (Fc) were designed and modified on surface of electrode. The "legs" of TD walker hybridized with three hairpin probes and opened their hairpin structures. Exo III enzyme recognised hybrid duplexes and selectively digest hairpin probes. The "legs" of TD walker was released and hybridized with the other three hairpin probes. In this way, the enzyme drived the walkers to walk along electrode interface, until hairpin DNA probes were all removed from the electrode, the Fc was far away from electrode interface. A significantly current reduction signal was obtained and bacteria were detected by recording this response. This strategy was low-cost and scalable, it could continuously recycle low-concentration targets, thus enhanced the detection sensitivity. As the proof-of-concept work, the electrochemical sensor was utilized as detector. The limit of detection (LOD) of detecting Staphylococcus aureus (S. aureus) was 20 CFU mL-1 and detection time was less than 3 h. It was expected to be widely used in clinical early diagnosis.
Collapse
Affiliation(s)
- Jialin Zhang
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hongli Yang
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Wenjing Liu
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
36
|
Tan X, Yu H, Liang B, Han M, Ge S, Zhang L, Li L, Li L, Yu J. A Target-Driven Self-Feedback Paper-Based Photoelectrochemical Sensing Platform for Ultrasensitive Detection of Ochratoxin A with an In 2S 3/WO 3 Heterojunction Structure. Anal Chem 2022; 94:1705-1712. [PMID: 35014798 DOI: 10.1021/acs.analchem.1c04259] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, developing versatile, easy-to-operate, and effective signal amplification strategies hold great promise in photoelectrochemical (PEC) biosensing. Herein, an ultrasensitive polyvinylpyrrolidone-treated In2S3/WO3 (In2S3-P/WO3)-functionalized paper-based PEC sensor was established for sensing ochratoxin A (OTA) based on a target-driven self-feedback (TDSF) mechanism enabled by a dual cycling tactic of PEC chemical-chemical (PECCC) redox and exonuclease III (Exo III)-assisted complementary DNA. The In2S3-P/WO3 heterojunction structure with 3D open-structure and regulable topology was initially in situ grown on Au nanoparticle-functionalized cellulose paper, which was served as a universal signal transducer to directly record photocurrent signals without complicated electrode modification, endowing the paper chip with admirable anti-interference ability and unexceptionable photoelectric conversion efficiency. With the assistance of Exo III-assisted cycling process, a trace amount of OTA could trigger substantial signal reporter ascorbic acid (AA) generated by the enzymatic catalysis of alkaline phosphatase, which could effectively provoke the PECCC redox cycling among the tris(2-carboxyethyl)phosphine acid, AA, and ferrocenecarboxylic at the In2S3-P/WO3 photoelectrode, initiating TDSF signal amplification. Based on the TDSF process induced by the Exo III-assisted recycling and PECCC redox cycling strategy, the developed paper-based PEC biosensor realized ultrasensitive determination of OTA with persuasive selectivity, high stability, and excellent reproducibility. It is believed that the proposed paper-based PEC sensing platform exhibited enormous potential for the detection of other targets in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoran Tan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Bing Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mengting Han
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
37
|
Dai S, Huang H, Liu S, Deng W, Tan Y, Xie Q. Au nanoclusters-decorated WO 3 nanorods for ultrasensitive photoelectrochemical sensing of Hg 2+. Analyst 2022; 147:5747-5753. [DOI: 10.1039/d2an01324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ultrasensitive photoelectrochemical sensing of Hg2+ is achieved using Au nanocluster-decorated WO3 nanorods as photoactive materials.
Collapse
Affiliation(s)
- Si Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shihan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
38
|
Zhao L, Chen Y, Wu X, Li Z, Dong Y, Wang GL. Invoking Cathodic Photoelectrochemistry through a Spontaneously Coordinated Electron Transporter: A Proof of Concept Toward Signal Transduction for Bioanalysis. Anal Chem 2021; 93:17119-17126. [PMID: 34908413 DOI: 10.1021/acs.analchem.1c04750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most of the cathodic photoelectrochemical (PEC) bioassays rely on electron accepting molecules for signal stimuli; unfortunately, the performances of which are still undesirable. New signal transduction strategies are still highly expected for the further development of cathodic photoelectrochemistry as a potentially competitive method. This work represents a new concept of invoked cathodic photoelectrochemistry by a spontaneously formed electron transporter for innovative operation of the sensing strategy. Specifically, the hexacyanoferrate(II) in solution easily self-coordinated with CuO nanomaterials and formed electron transporting copper hexacyanoferrate (CuHCF) on the surface, which endowed improved carrier separation for presenting augmented photocurrent readout. Exemplified by the T4 polynucleotide kinase (T4 PNK) and its inhibitors as targets, a homogenous cathodic PEC biosensing platform was achieved with the distinctive merits of label-free, immobilization-free, and split-mode readout. The mechanism revealed here provided a totally different perspective for signal transduction in cathodic photoelectrochemistry. Hopefully, it may stimulate more interests in the design and construction of semiconductor/transporter counterparts for exquisite operation of photocathodic bioanalysis.
Collapse
Affiliation(s)
- Lingling Zhao
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanru Chen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiuming Wu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zaijun Li
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.,Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
39
|
Li MJ, An SY, Wu Y. Photoelectrochemical monitoring of miRNA based on Au NPs@g-C 3N 4 coupled with exonuclease-involved target cycle amplification. Anal Chim Acta 2021; 1187:339156. [PMID: 34753579 DOI: 10.1016/j.aca.2021.339156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Herein, a sensitive photoelectrochemical (PEC) biosensing platform was designed for quantitative monitoring of microRNA-141 (miRNA-141) based on Au nanoparticles@graphitic-like carbon nitride (Au NPs@g-C3N4) as the signal generator accompanying with T7 exonuclease (T7 Exo)-involved target cycle amplification process. Initially, the prepared Au NPs@g-C3N4 as the signal generator was coated on the electrode surface, which could produce a strong PEC signal due to the unique optical and electronic properties of g-C3N4 and the surface plasmonic resonance (SPR) enhanced effect of Au NPs. Meanwhile, the modified Au NPs@g-C3N4 was also considered as the fixed platform for immobilization of S1-S2 through Au-N bond. Thereafter, the T7 Exo-involved target cycle amplification process would be initiated in existence of miRNA-141 and T7 Exo, leading to abundant single chain S1 exposed on electrode surface. Ultimately, the S3-SiO2 composite was introduced through DNA hybridization, thereby producing high steric hindrance to block external electrons supply and light harvesting, which would further cause a significantly quenched PEC signal. Experimental results revealed that the PEC signal was gradually inhibited with the raising miRNA-141 concentration in the range from 1 fM to 1 nM with a detection limit of 0.3 fM. The PEC biosensor we proposed here provides a valuable scheme in miRNA assay for early disease diagnosis and biological research.
Collapse
Affiliation(s)
- Meng-Jie Li
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China.
| | - Si-Yu An
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China
| | - Ying Wu
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing, 401331, PR China; Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing, 401331, PR China
| |
Collapse
|
40
|
Wang W, Zhang C, Guo J, Li G, Ye B, Zou L. Sensitive electrochemical detection of oxytetracycline based on target triggered CHA and poly adenine assisted probe immobilization. Anal Chim Acta 2021; 1181:338895. [PMID: 34556208 DOI: 10.1016/j.aca.2021.338895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023]
Abstract
Here, we developed a homogeneous electrochemical biosensor for the sensitive determination of antibiotic by the CHA reaction and the consecutive adenine mediated probe fixation. The binding of target to the target recognition sequences in the triple-helix DNA can release the trigger. It can initiate the catalytic hairpin assembly (CHA) to generate lots of mimic targets, which were labeled with electroactive substance ferrocene (Fc). Because the generated mimic target has consecutive sequence of adenines (PolyA), they can be self-assembled on the AuNPs modified electrode and finally realize electrochemical detection. Under optimal conditions, this developed biosensor achieved a satisfactory limit of detection of 0.089 nM (S/N = 3) and a linear range from 0.1 nM to 100 nM for sensitive detection of oxytetracycline with good specificity. The whole process is carried out in homogeneous solution, not only realizes signal amplification, but also avoids the complex modification process of electrode surface. Compared with some reported electrochemical sensors, the method is easier to operate and has good precision.
Collapse
Affiliation(s)
- Weihang Wang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chi Zhang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jiaxin Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
41
|
Yu Z, Gong H, Li Y, Xu J, Zhang J, Zeng Y, Liu X, Tang D. Chemiluminescence-Derived Self-Powered Photoelectrochemical Immunoassay for Detecting a Low-Abundance Disease-Related Protein. Anal Chem 2021; 93:13389-13397. [PMID: 34554727 DOI: 10.1021/acs.analchem.1c03344] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early diagnosis of cancers relies on the sensitive detection of specific biomarkers, but most of the current testing methods are inaccessible to home healthcare due to cumbersome steps, prolonged testing time, and utilization of toxic and hazardous substances. Herein, we developed a portable self-powered photoelectrochemical (PEC) sensing platform for rapid detection of prostate-specific antigen (PSA, as a model disease-related protein) by integrating a self-powered photoelectric signal output system catalyzed with chemiluminescence-functionalized Au nanoparticles (AuNPs) and a phosphomolybdic acid (PMA)-based photochromic visualization platform. TiO2-g-C3N4-PMA photosensitive materials were first synthesized and functionalized on a sensor chip. The sensor consisted of filter paper modified with a photocatalytic material and a regional laser-etched FTO electrode as an alternative to a conventional PEC sensor with a glass-based electrode. The targeting system involved a monoclonal anti-PSA capture antibody-functionalized Fe3O4 magnetic bead (mAb1-MB) and a polyclonal anti-PSA antibody (pAb2)-N-(4-aminobutyl)-N-ethylisoluminol-AuNP (ABEI-AuNP). Based on the signal intensity of the chemiluminescent system, the photochromic device color changed from light yellow to heteropoly blue through the PMA photoelectric materials integrated into the electrode for visualization of the signal output. In addition, the electrical signal in the PEC system was amplified by a sandwich-type capacitor and readout on a handheld digital multimeter. Under optimum conditions, the sensor exhibited high sensitivity relative to PSA in the range of 0.01-50 ng mL-1 with a low detection limit of 6.25 pg mL-1. The flow-through chemiluminescence reactor with a semiautomatic injection device and magnetic separation was avoid of unstable light source intensity inherent in the chemiluminescence process. Therefore, our strategy provides a new horizon for point-of-care analysis and rapid cost-effective clinical diagnosis.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hexiang Gong
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuxuan Li
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jianhui Xu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jin Zhang
- Chongqing Vocational Institute of Engineering, Chongqing 402260, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,Chongqing Vocational Institute of Engineering, Chongqing 402260, People's Republic of China
| |
Collapse
|
42
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
43
|
Homogeneous photoelectrochemical biosensor for microRNA based on target-responsive hydrogel coupled with exonuclease III and nicking endonuclease Nb.BbvCI assistant cascaded amplification strategy. Mikrochim Acta 2021; 188:267. [PMID: 34296354 DOI: 10.1007/s00604-021-04935-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/09/2021] [Indexed: 10/25/2022]
Abstract
MicroRNAs can serve as biomarkers for many cancers, so it is significant to develop simple and sensitive strategies for microRNAs detection. Photoelectrochemical (PEC) detection has the advantages of simple equipment and high sensitivity. But in conventional PEC DNA sensors, tedious immobilization procedures of photoactive materials and capture probes on electrode surfaces are inevitable. To overcome those limitations, a homogeneous PEC biosensor based on target-responsive hydrogels has been developed (miRNA-155 has been chosen as a model target). PEC signal molecules (TiO2 nanoparticles, TiO2 NPs) were embedded in DNA hydrogels formed by hyaluronic acid sodium salt, amine-modified DNA double strands, and polyethylenimine rich in amine groups. In the presence of the target, DNA double strands in hydrogel were nicked by endonuclease and TiO2 NPs were released to the supernate and a high PEC response was obtained when collecting the supernate for PEC test, while almost no TiO2 NPs released in the absence of the target. Thanks to the exonuclease III and nicking endonuclease Nb.BbvCI-assisted cascaded amplification strategy, the proposed biosensor exhibits high sensitivity toward miRNA-155 with a low detection limit of 0.41 fM and a wide linear range from 1.0 fM to 100 pM. Since this method circumvents tedious electrode modification procedures, the proposed technique exhibits the advantages of simplicity and good reproducibility. Moreover, the prepared hydrogels have outstanding storage stability, so that they can be prepared in advance and shorten detection time. This biosensing platform provides a versatile strategy for the construction of homogeneous PEC biosensors for the detection of diverse targets. Photoelectrochemical detection techniques have been coupled with controlled release system to develop an immobilization-free microRNA biosensor. High sensitivity has been realized based on cascaded signal amplification strategy, and the proposed biosensor has been applied to detect the target in real sample with satisfied results. Since no tedious electrode modifications, the proposed homogeneous PEC sensor exhibits high reproducibility and good stability.
Collapse
|
44
|
Gao J, Hua X, Yuan R, Li Q, Xu W. Amplified electrochemical biosensing based on bienzymatic cascade catalysis confined in a functional DNA structure. Talanta 2021; 234:122643. [PMID: 34364452 DOI: 10.1016/j.talanta.2021.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
Herein, an amplified and renewable electrochemical biosensor was developed via bienzymatic cascade catalysis of glucose oxidase (GOx) and horseradish peroxidase (HRP), which were confined in a functional Y-shaped DNA nanostructure oriented by a dual-thiol-ended hairpin probe (dSH-HP) with a paired stem as a rigid scaffold and unpaired loop as enclosed binding platform. For proof-of-concept assay of sequence-specific biomarker DNA related to Alzheimer's disease (aDNA), GOx and redox ferrocene-modified HRP (Fc@HRP) were chemically conjugated in two enzyme strands (GOx-ES1 and Fc@HRP-ES2), respectively. The repeated recycling of aDNA was powered by the displacement of GOx-ES1 by aDNA and exonuclease III (ExoIII)-assisted cleavage reaction for amplified output of numerous GOx-ES1 as dependent transducers, together with Fc@HRP-ES2 which was simultaneously hybridized with dSH-HP to assemble this DNA structure. Rationally, the bienzymatic cascade catalysis was motivated through GOx-catalyzed glucose oxidization to in situ generate hydrogen peroxide (H2O2) and overlapped HRP-catalyzed H2O2 decomposition to promote the electron transfer, producing significantly enhanced electrochemical signal of Fc with an ultrahigh sensitivity down to 0.22 fM of aDNA. Benefited from the unique design of dSH-HP-oriented bienzymatic cascades, this one-step strategy without non-specific blockers passivation was simple and renewable, and would pave a promising avenue for sensitive electrochemical assay of biomolecules.
Collapse
Affiliation(s)
- Jiaxi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Hua
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qiong Li
- College of Geophysics, Chengdu University of Technology, Chengdu, 610059, China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
45
|
A dual-model "on-super off" photoelectrochemical/ratiometric electrochemical biosensor for ultrasensitive and accurate detection of microRNA-224. Biosens Bioelectron 2021; 188:113337. [PMID: 34030091 DOI: 10.1016/j.bios.2021.113337] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
A dual-model "on-super off" photoelectrochemical (PEC)/ratiometric electrochemical (EC) biosensor based on signal enhancing and quenching combining three-dimensional (3D) DNA walker strategy was designed for the ultrasensitive and accurate detection of microRNA-224 (miRNA-224). The "signal on" PEC state was achieved by methylene blue labeled hairpin DNA (MB-DNA) for sensitizing CdS QDs. Then numerous transformational ferrocene labeled DNAs (Fc-DNAs) converted by target-induced 3D DNA walker amplification with the help of Ag nanocubes (NCs) label DNA (Ag-DNA) were introduced to open hairpin MB-DNA. Such configuration change would relocate the sensitizer MB and the quencher Fc, whereas energy transfer placed between Ag NCs and CdS QDs, thereby significantly quenching the PEC signal to obtain "super off" state. Meanwhile, these changes resulted in a decreased oxidation peak current of MB (IMB) and an increased that of Fc (IFc). MiRNA-224 was also detected on basis of the dual-signaling EC ratiometric method for complementary PEC detection. Benefiting from different mechanisms and relatively independent signal transduction, this approach not only avoided interference from difficult assembly but also outstandingly increased sensitivity by distance-controllable signal enhancing and quenching strategies. As a result, the detection ranges of 0.1-1000 fM with a low detection limit of 0.019 fM for PEC, and 0.52 to 500 fM with a low detection limit of 0.061 fM for EC, were obtained for miRNA-224, which opens a new avenue for designing numerous elegant biosensors with potential utility in bioanalysis and early disease diagnosis.
Collapse
|
46
|
Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050540. [PMID: 34066112 PMCID: PMC8150371 DOI: 10.3390/biomedicines9050540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Paper-based analytical devices (PADs) have emerged as a promising approach to point-of-care (POC) detection applications in biomedical and clinical diagnosis owing to their advantages, including cost-effectiveness, ease of use, and rapid responses as well as for being equipment-free, disposable, and user-friendly. However, the overall sensitivity of PADs still remains weak, posing a challenge for biosensing scientists exploiting them in clinical applications. This review comprehensively summarizes the current applicable potential of PADs, focusing on total signal-amplification strategies that have been applied widely in PADs involving colorimetry, luminescence, surface-enhanced Raman scattering, photoacoustic, photothermal, and photoelectrochemical methods as well as nucleic acid-mediated PAD modifications. The advances in signal-amplification strategies in terms of signal-enhancing principles, sensitivity, and time reactions are discussed in detail to provide an overview of these approaches to using PADs in biosensing applications. Furthermore, a comparison of these methods summarizes the potential for scientists to develop superior PADs. This review serves as a useful inside look at the current progress and prospective directions in using PADs for clinical diagnostics and provides a better source of reference for further investigations, as well as innovations, in the POC diagnostics field.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
- Correspondence: (L.M.T.P.); (S.C.)
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: (L.M.T.P.); (S.C.)
| |
Collapse
|
47
|
Zhao Q, Zheng X, Xing L, Tang Y, Zhou X, Hu L, Yao W, Yan Z. 2D Co 3O 4 stabilizing Rh nano composites developed for visual sensing bioactive urea and toxic p-aminophenol in practice by synergetic-reinforcing oxidase activity. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:125019. [PMID: 33421875 DOI: 10.1016/j.jhazmat.2020.125019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
To enlarge the perspective of nanozyme, 2-dimensional Co3O4 stabilizing Rh nano composite (2D Co3O4@Rh NC) was identified and developed first by one-pot surfactant-aided oxido-reduction. By virtue of the synergetic-reinforcing oxidase activity between 2D Co3O4 substrate and Rh nano particles, the obtained 2D Co3O4@Rh NC could catalyze the oxidation of chromogenic substrate 3,3',5,5,'-tetramethylbenzidine (TMB) to blue oxTMB with quite a low Michaelis-Menten constant (Km) of 0.018 mM and a quick vmax of 6.45 × 10-8 M s-1, expressing superior oxidase-like catalysis with a wide temperature range from 20 to 60 °C. Importantly, either bioactive urea or toxic p-aminophenol (p-Ap) could exclusively alter the existed state of oxTMB with differentiable color changes. Under the optimized conditions, 2D Co3O4@Rh NC was successfully applied for ratiometric colorimetric sensing urea and p-Ap in environmental water, soil and urine samples with low detection limits (1.1 μM for urea and 0.68 μM for p-Ap) and satisfactory recoveries (96.0-105.8%). The synergetic enhanced oxidase-like activity of 2D Co3O4@Rh NC and the different reaction mechanisms of the 2D Co3O4@Rh NC-TMB system to urea and p-Ap were investigated. Not only does the work provide an efficient way for sensing organic pollution of p-Ap, it will offer an efficient potential for diagnosing urea-related diseases on clinical medical testing in future.
Collapse
Affiliation(s)
- Qi Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaoyu Zheng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lin Xing
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yulian Tang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuemei Zhou
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenli Yao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
48
|
|
49
|
Abstract
Since the discovery of the enzyme-like activities of nanomaterials, the study of nanozymes has become one of the most popular research frontiers of diverse areas including biosensors. DNA also plays a very important role in the construction of biosensors. Thus, the idea of combined applications of nanozymes with DNA (DNA-nanozyme) is very attractive for the development of nanozyme-based biosensors, which has attracted considerable interest of researchers. To date, many sensors based on DNA-functionalized or templated nanozymes have been reported for the detection of various targets and highly accelerated the development of nanozyme-based sensors. In this review, we summarize the main applications and advances of DNA-nanozyme-based sensors. Additionally, perspectives and challenges are also discussed at the end of the review.
Collapse
Affiliation(s)
- Renzhong Yu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Rui Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Zhaoyin Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Qinshu Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China. and Nanjing Normal University Centre for Analysis and Testing, Nanjing, 210023, P.R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China. and Nanjing Normal University Centre for Analysis and Testing, Nanjing, 210023, P.R. China
| |
Collapse
|
50
|
Hong C, Guan L, Huang L, Hong X, Huang Z. Colorimetric determination of xanthine with xanthine oxidase and WSe 2 nanosheets as a peroxidase mimic. NEW J CHEM 2021. [DOI: 10.1039/d1nj00819f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric method combining WSe2 nanosheets with peroxidase-like activity and xanthine oxidase was developed for xanthine detection in serum samples.
Collapse
Affiliation(s)
- Chengyi Hong
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| | - Lingyan Guan
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| | - Lei Huang
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| | - Xiaoshan Hong
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| | - Zhiyong Huang
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- China
| |
Collapse
|