1
|
Zhou K, Ding R, Ma X, Lin Y. Printable and flexible integrated sensing systems for wireless healthcare. NANOSCALE 2024; 16:7264-7286. [PMID: 38470428 DOI: 10.1039/d3nr06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The rapid development of wearable sensing devices and artificial intelligence has enabled portable and wireless tracking of human health, fulfilling the promise of digitalized healthcare applications. To achieve versatile design and integration of multi-functional modules including sensors and data transmission units onto various flexible platforms, printable technologies emerged as some of the most promising strategies. This review first introduces the commonly utilized printing technologies, followed by discussion of the printable ink formulations and flexible substrates to ensure reliable device fabrication and system integration. The advances of printable sensors for body status monitoring are then discussed. Moreover, the integration of wireless data transmission via printable approaches is also presented. Finally, the challenges in achieving printable sensing devices and wireless integrated systems with competitive performances are considered, so as to realize their practical applications for personalized healthcare.
Collapse
Affiliation(s)
- Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Liu X, Li T, Lee TC, Sun Y, Liu Y, Shang L, Han Y, Deng W, Yuan Z, Dang A. Wearable Plasmonic Sensors Engineered via Active-Site Maximization of TiVC MXene for Universal Physiological Monitoring at the Molecular Level. ACS Sens 2024; 9:483-493. [PMID: 38206578 DOI: 10.1021/acssensors.3c02285] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional transition metal carbon/nitrides (MXenes) are promising candidates to revolutionize next-generation wearable sensors as high-performance surface-enhanced Raman scattering (SERS) substrates. However, low sensitivity of pure MXene nanosheets and weak binding force or uncontrolled in situ growth of plasmonic nanoparticles on hybrid MXene composites limit their progress toward universal and reliable sensors. Herein, we designed and manufactured a highly sensitive, structurally stable wearable SERS sensor by in situ fabrication of plasmonic nanostructures on the flexible TiVC membranes via the maximization of chemically reducing sites using alkaline treatment. DFT calculations and experimental characterization demonstrated that the hydroxyl functional groups on the surface of MXenes can facilitate the reduction of metal precursors and the nucleation of gold nanoparticles (AuNPs) and can be covalently attached to AuNPs. Thus, the fabricated flexible TiVC-OH-Au sensor satisfied the rigorous mechanical requirements for wearable sensors. In addition, combining the electromagnetic (EM) enhancement from dense AuNPs formed by the activation of nucleation sites and charge transfer (CT) between target molecule and substrate induced by the abundant DOS near the Fermi level of TiVC, the fabricated sensor exhibits ultrasensitivity, long-term stability, good signal repeatability, and excellent mechanical durability. Moreover, the proof-of-concept application of the wearable SERS sensor in sweat sensing was demonstrated to monitor the content of nicotine, methotrexate, nikethamide, and 6-acetylmorphine in sweat at the molecular level, which was an important step toward the universality and practicality of the wearable sensing technology.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Tung-Chun Lee
- Department of Chemistry, University College London (UCL), London WC1H 0AJ, United Kingdom
- Institute for Materials Discovery, University College London (UCL), London WC1H 0AJ, United Kingdom
| | - Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Yuhui Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Li Shang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Yanying Han
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Weibin Deng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Zeqi Yuan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| | - Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R China
| |
Collapse
|
3
|
Li D, Zhou J, Zhao Z, Huang X, Li H, Qu Q, Zhou C, Yao K, Liu Y, Wu M, Su J, Shi R, Huang Y, Wang J, Zhang Z, Liu Y, Gao Z, Park W, Jia H, Guo X, Zhang J, Chirarattananon P, Chang L, Xie Z, Yu X. Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring. SCIENCE ADVANCES 2024; 10:eadk6301. [PMID: 38198552 PMCID: PMC10780888 DOI: 10.1126/sciadv.adk6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Miniaturized mobile electronic system is an effective candidate for in situ exploration of confined spaces. However, realizing such system still faces challenges in powering issue, untethered mobility, wireless data acquisition, sensing versatility, and integration in small scales. Here, we report a battery-free, wireless, and miniaturized soft electromagnetic swimmer (SES) electronic system that achieves multiple monitoring capability in confined water environments. Through radio frequency powering, the battery-free SES system demonstrates untethered motions in confined spaces with considerable moving speed under resonance. This system adopts soft electronic technologies to integrate thin multifunctional bio/chemical sensors and wireless data acquisition module, and performs real-time water quality and virus contamination detection with demonstrated promising limits of detection and high sensitivity. All sensing data are transmitted synchronously and displayed on a smartphone graphical user interface via near-field communication. Overall, this wireless smart system demonstrates broad potential for confined space exploration, ranging from pathogen detection to pollution investigation.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Zichen Zhao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qing’ao Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Changfei Zhou
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yanting Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingjing Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huiling Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Xu Guo
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiachen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Pakpong Chirarattananon
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Xu C, Solomon SA, Gao W. Artificial Intelligence-Powered Electronic Skin. NAT MACH INTELL 2023; 5:1344-1355. [PMID: 38370145 PMCID: PMC10868719 DOI: 10.1038/s42256-023-00760-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024]
Abstract
Skin-interfaced electronics is gradually changing medical practices by enabling continuous and noninvasive tracking of physiological and biochemical information. With the rise of big data and digital medicine, next-generation electronic skin (e-skin) will be able to use artificial intelligence (AI) to optimize its design as well as uncover user-personalized health profiles. Recent multimodal e-skin platforms have already employed machine learning (ML) algorithms for autonomous data analytics. Unfortunately, there is a lack of appropriate AI protocols and guidelines for e-skin devices, resulting in overly complex models and non-reproducible conclusions for simple applications. This review aims to present AI technologies in e-skin hardware and assess their potential for new inspired integrated platform solutions. We outline recent breakthroughs in AI strategies and their applications in engineering e-skins as well as understanding health information collected by e-skins, highlighting the transformative deployment of AI in robotics, prosthetics, virtual reality, and personalized healthcare. We also discuss the challenges and prospects of AI-powered e-skins as well as predictions for the future trajectory of smart e-skins.
Collapse
Affiliation(s)
- Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
5
|
Qureshi FM, Golan R, Ghomeshi A, Ramasamy R. An Update on the Use of Wearable Devices in Men's Health. World J Mens Health 2023; 41:785-795. [PMID: 36792091 PMCID: PMC10523121 DOI: 10.5534/wjmh.220205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023] Open
Abstract
Men's health represents an often-overlooked aspect of public health. Men have higher mortality rates worldwide and are more negatively affected by chronic conditions such as obesity and heart disease, as well as addiction to alcohol and tobacco. Men also have health issues such as prostate cancer and male sexual dysfunction which only affect them. Because of the skewed burden of morbidity and mortality on men, it is imperative from a public health perspective to make a concerted effort to specifically improve men's health. The use of wearable devices in medical practice presents a novel avenue to invest in men's health in a safe, easily scalable, and economic fashion. Wearable devices are now ubiquitous in society, and their use in the healthcare setting is only increasing with time. There are commercially available devices such as smart watches which are available to lay people and healthcare professionals alike to improve overall health and wellness, and there are also purpose-built wearable devices which are used to track or treat a specific disease. In our review of the literature, we found that while research in the field of wearable devices is still in its early stages, there is ample evidence that wearable devices can greatly improve men's health in the long-term.
Collapse
Affiliation(s)
- Farhan M Qureshi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roei Golan
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Armin Ghomeshi
- Department of Urology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2023; 9:2020-2047. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sweat is an increasingly popular biological medium for fitness monitoring and clinical diagnostics. It contains an abundance of biological information and is available continuously and noninvasively. Sweat-sensing devices often employ proteins in various capacities to create skin-friendly matrices that accurately extract valuable and time-sensitive information from sweat. Proteins were first used in sensors as biorecognition elements in the form of enzymes and antibodies, which are now being tuned to operate at ranges relevant for sweat. In addition, a range of structural proteins, sometimes assembled in conjunction with polymers, can provide flexible and compatible matrices for skin sensors. Other proteins also naturally possess a range of functionalities─as adhesives, charge conductors, fluorescence emitters, and power generators─that can make them useful components in wearable devices. Here, we examine the four main components of wearable sweat sensors─the biorecognition element, the transducer, the scaffold, and the adhesive─and the roles that proteins have played so far, or promise to play in the future, in each component. On a case-by-case basis, we analyze the performance characteristics of existing protein-based devices, their applicable ranges of detection, their transduction mechanism and their mechanical properties. Thereby, we review and compare proteins that can readily be used in sweat sensors and others that will require further efforts to overcome design, stability or scalability challenges. Incorporating proteins in one or multiple components of sweat sensors could lead to the development and deployment of tunable, greener, and safer biosourced devices.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | | |
Collapse
|
7
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
8
|
Bakker E. Wearable Sensors. ACS Sens 2023; 8:1368-1370. [PMID: 36942872 DOI: 10.1021/acssensors.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
|
9
|
Parolo C, Idili A, Heikenfeld J, Plaxco KW. Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. LAB ON A CHIP 2023; 23:1339-1348. [PMID: 36655710 PMCID: PMC10799767 DOI: 10.1039/d2lc00716a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent years have seen continued expansion of the functionality of lab on a chip (LOC) devices. Indeed LOCs now provide scientists and developers with useful and versatile platforms across a myriad of chemical and biological applications. The field still fails, however, to integrate an often important element of bench-top analytics: real-time molecular measurements that can be used to "guide" a chemical response. Here we describe the analytical techniques that could provide LOCs with such real-time molecular monitoring capabilities. It appears to us that, among the approaches that are general (i.e., that are independent of the reactive or optical properties of their targets), sensing strategies relying on binding-induced conformational change of bioreceptors are most likely to succeed in such applications.
Collapse
Affiliation(s)
- Claudio Parolo
- Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona, 08036, Barcelona, Spain
| | - Andrea Idili
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - Jason Heikenfeld
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA.
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
10
|
Abstract
Flexible sweat sensors have found widespread potential applications for long-term wear and tracking and real-time monitoring of human health. However, the main substrate currently used in common flexible sweat sensors is thin film, which has disadvantages such as poor air permeability and the need for additional wearables. In this Review, the recent progress of sweat sensors has been systematically summarized by the types of monitoring methods of sweat sensors. In addition, this Review introduces and compares the performance of sweat sensors based on thin film and textile substrates such as fiber/yarn. Finally, opportunities and suggestions for the development of flexible sweat sensors are presented by summarizing the integration methods of sensors and human body monitoring sites.
Collapse
Affiliation(s)
- Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Haibo Sun
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Qianqian Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Xin Niu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Yin He
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.,Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
11
|
Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules 2023; 28:1259. [PMID: 36770925 PMCID: PMC9920341 DOI: 10.3390/molecules28031259] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Sweat contains a broad range of important biomarkers, which may be beneficial for acquiring non-invasive biochemical information on human health status. Therefore, highly selective and sensitive electrochemical nanosensors for the non-invasive detection of sweat metabolites have turned into a flourishing contender in the frontier of disease diagnosis. A large surface area, excellent electrocatalytic behavior and conductive properties make nanomaterials promising sensor materials for target-specific detection. Carbon-based nanomaterials (e.g., CNT, carbon quantum dots, and graphene), noble metals (e.g., Au and Pt), and metal oxide nanomaterials (e.g., ZnO, MnO2, and NiO) are widely used for modifying the working electrodes of electrochemical sensors, which may then be further functionalized with requisite enzymes for targeted detection. In the present review, recent developments (2018-2022) of electrochemical nanosensors by both enzymatic as well as non-enzymatic sensors for the effectual detection of sweat metabolites (e.g., glucose, ascorbic acid, lactate, urea/uric acid, ethanol and drug metabolites) have been comprehensively reviewed. Along with this, electrochemical sensing principles, including potentiometry, amperometry, CV, DPV, SWV and EIS have been briefly presented in the present review for a conceptual understanding of the sensing mechanisms. The detection thresholds (in the range of mM-nM), sensitivities, linear dynamic ranges and sensing modalities have also been properly addressed for a systematic understanding of the judicious design of more effective sensors. One step ahead, in the present review, current trends of flexible wearable electrochemical sensors in the form of eyeglasses, tattoos, gloves, patches, headbands, wrist bands, etc., have also been briefly summarized, which are beneficial for on-body in situ measurement of the targeted sweat metabolites. On-body monitoring of sweat metabolites via wireless data transmission has also been addressed. Finally, the gaps in the ongoing research endeavors, unmet challenges, outlooks and future prospects have also been discussed for the development of advanced non-invasive self-health-care-monitoring devices in the near future.
Collapse
Affiliation(s)
- Riyanka Das
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Somrita Nag
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
12
|
Kalasin S, Surareungchai W. Challenges of Emerging Wearable Sensors for Remote Monitoring toward Telemedicine Healthcare. Anal Chem 2023; 95:1773-1784. [PMID: 36629753 DOI: 10.1021/acs.analchem.2c02642] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Digitized telemedicine tools with the Internet of Things (IoT) started advancing into our daily lives and have been incorporated with commercial wearable gadgets for noninvasive remote health monitoring. The newly established tools have been steered toward a new era of decentralized healthcare. The advancement of a telemedicine wearable monitoring system has attracted enormous interest in the multimodal big data acquisition of real-time physiological and biochemical information via noninvasive methods for any health-related industries. The expectation of telemedicine wearable creation has been focused on early diagnosis of multiple diseases and minimizing the cost of high-tech and invasive treatments. However, only limited progress has been directed toward the development of telemedicine wearable sensors. This Perspective addresses the advancement of these wearable sensors that encounter multiple challenges on the forefront and technological gaps hampering the realization of health monitoring at molecular levels related to smart materials mostly limited to single use, issues of selectivity to analytes, low sensitivity to targets, miniaturization, and lack of artificial intelligence to perform multiple tasks and secure big data transfer. Sensor stability with minimized signal drift, on-body sensor reusability, and long-term continuous health monitoring provides key analytical challenges. This Perspective also focuses on, promotes, and highlights wearable sensors with a distinct capability to interconnect with telemedicine healthcare for physical sensing and multiplex sensing at deeper levels. Moreover, it points out some critical challenges in different material aspects and promotes what it will take to advance the current state-of-art wearable sensors for telemedicine healthcare. Ultimately, this Perspective is to draw attention to some potential blind spots of wearable technology development and to inspire further development of this integrated technology in mitigating multimorbidity in aging societies through health monitoring at molecular levels to identify signs of diseases.
Collapse
Affiliation(s)
- Surachate Kalasin
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, 10140 Bangkok, Thailand
| | - Werasak Surareungchai
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology Thonburi, 10150 Bangkok, Thailand
- School of Bioresource and Technology, King Mongkut's University of Technology Thonburi, 10150 Bangkok, Thailand
| |
Collapse
|
13
|
Madhvapathy SR, Arafa HM, Patel M, Winograd J, Kong J, Zhu J, Xu S, Rogers JA. Advanced thermal sensing techniques for characterizing the physical properties of skin. APPLIED PHYSICS REVIEWS 2022; 9:041307. [PMID: 36467868 PMCID: PMC9677811 DOI: 10.1063/5.0095157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Measurements of the thermal properties of the skin can serve as the basis for a noninvasive, quantitative characterization of dermatological health and physiological status. Applications range from the detection of subtle spatiotemporal changes in skin temperature associated with thermoregulatory processes, to the evaluation of depth-dependent compositional properties and hydration levels, to the assessment of various features of microvascular/macrovascular blood flow. Examples of recent advances for performing such measurements include thin, skin-interfaced systems that enable continuous, real-time monitoring of the intrinsic thermal properties of the skin beyond its superficial layers, with a path to reliable, inexpensive instruments that offer potential for widespread use as diagnostic tools in clinical settings or in the home. This paper reviews the foundational aspects of the latest thermal sensing techniques with applicability to the skin, summarizes the various devices that exploit these concepts, and provides an overview of specific areas of application in the context of skin health. A concluding section presents an outlook on the challenges and prospects for research in this field.
Collapse
|
14
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
15
|
Chondath SK, Sreekala APK, Farzeena C, Varanakkottu SN, Menamparambath MM. Interfacial tension driven adsorption of MnO 2 nanoparticles at the liquid/liquid interface to tailor ultra-thin polypyrrole sheets. NANOSCALE 2022; 14:11197-11209. [PMID: 35900017 DOI: 10.1039/d2nr02130g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An emerging aspect of research is designing and developing fully tunable metamaterials for various applications with fluid interfaces. Liquid/liquid interface-assisted methods represent an efficient and facile route for synthesizing two-dimensional (2-D) thin films of potential materials. The underlying mechanism behind thin film formation at the liquid/liquid interface involves the preferential adsorption of nano-sized particles at the interface to minimize high interfacial tension. Here, a water/chloroform interface-assisted method is employed for the one-pot synthesis of highly crystalline polypyrrole/manganese dioxide (PPy/MnO2) sheets. The temporal evolution in the dynamic interfacial tension (from 32 mN m-1 to 17 mN m-1) observed in pendant drop tensiometry proved the preferential adsorption of MnO2 atttached PPy oligomers at the water/chloroform interface. An ultra-thin sheet-like morphology and uniform distribution of ∼6 nm highly crystalline MnO2 nanoparticles are evidenced by transmission and atomic force microscopy techniques. The predominance of interfacial polymerization in retaining the electrochemical activity of the PPy/MnO2 sheets is elucidated for the electrochemical detection of nicotine. This study opens a new avenue for the realization of ultra-thin sheets of polymer-nanomaterial hybrids, enabling applications ranging from new classes of sensors to optics.
Collapse
Affiliation(s)
- Subin Kaladi Chondath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| | | | - Chalikkara Farzeena
- School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut-673601, Kerala, India
| | | | - Mini Mol Menamparambath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| |
Collapse
|
16
|
Gong X, Shi S, Zhang D, Gamez G. Quantitative Analysis of Exhaled Breath Collected on Filter Substrates via Low-Temperature Plasma Desorption/Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1518-1529. [PMID: 35792104 DOI: 10.1021/jasms.2c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breath analysis has attracted increasing attention in recent years due to its great potential for disease diagnostics at early stages and for clinical drug monitoring. There are several recent examples of successful development of real-time, in vivo quantitative analysis of exhaled breath metabolites via mass spectrometry. On the other hand, current mass spectrometer accessibility limitations restrict point-of-care applications. Here now, an offline method is developed for quantitative analysis of exhaled breath collected on inexpensive filter substrates for direct desorption and ionization by using low-temperature plasma-mass spectrometry (LTP-MS). In particular, different operating conditions of the ionization source were systematically studied to optimize desorption/ionization by using glycerol, a low volatility compound. Applications with respect to propofol, γ-valprolactone, and nicotine analysis in exhaled breath are demonstrated in this study. The effects of several filter substrate properties, including filter material and pore size, on the analyte signal were characterized. Cellulose filter papers performed best with the present analytes. In addition, filters with smaller pores enabled a more efficient sample collection. Furthermore, sample-collection flow rate was determined to have a very significant effect, with slower flow rates yielding the best results. It was also found that filters loaded with sample can be successfully stored in glass vials with no observable sample loss even after 3 days. Limits of detection under optimized conditions are shown to be competitive or significantly better compared with relevant techniques and with additional benefits of cost-efficiency and sample storage capabilities.
Collapse
Affiliation(s)
- Xiaoxia Gong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Songyue Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
17
|
Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Anal Chim Acta 2022; 1208:339843. [DOI: 10.1016/j.aca.2022.339843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022]
|
18
|
Li J, Bo X. Laser-enabled flexible electrochemical sensor on finger for fast food security detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127014. [PMID: 34461543 DOI: 10.1016/j.jhazmat.2021.127014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Today's rampant abuse of antibiotics and lean meat powder disturbs environment and threatens public human health. Therefore, fast in-site detection of antibiotics or lean meat powder residue could avoid potential risks. In this work, flexible graphene electrodes (FGE) were easily and facilely patterned and prepared by CO2 laser at room environment, which was coupled with a portable electrochemical analyzer for electronic signal transmission. Laser-enabled flexible electrochemical sensor on finger can be used for rapid real-time in-site electrochemical identification of chloramphenicol (CAP), clenbuterol (CLB) and ractopamine (RAC) in meat. The electrochemical response of CAP, CLB and RAC is investigated with the limit of detection of 2.70, 1.29 and 7.81 μM and the linear range of 10-200, 5-80 and 25-250 μM in phosphate buffer saline (PBS) pH 7.0, correspondingly. The minimum detection concentrations of CAP, CLB and RAC were 20, 10 and 30 μM, respectively, in actual samples of pork. And the minimum detection concentrations of CAP, CLB and RAC were 10, 5 and 25 μM in milk, respectively. Such an integrated sensing platform enriches application of sensors on finger in food security and provides information that prevents drug containments from entering food chain.
Collapse
Affiliation(s)
- Jiajia Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
19
|
Tiwari N, Chatterjee S, Kaswan K, Chung JH, Fan KP, Lin ZH. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Rahman MA, Cai L, Tawfik SA, Tucker S, Burton A, Perera G, Spencer MJS, Walia S, Sriram S, Gutruf P, Bhaskaran M. Nicotine Sensors for Wearable Battery-Free Monitoring of Vaping. ACS Sens 2022; 7:82-88. [PMID: 34877860 DOI: 10.1021/acssensors.1c01633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nicotine, an addictive substance in tobacco products and electronic cigarettes (e-cigs), is recognized for increasing the risk of cardiovascular and respiratory disorders. Careful real-time monitoring of nicotine exposure is critical in alleviating the potential health impacts of not just smokers but also those exposed to second-hand and third-hand smoke. Monitoring of nicotine requires suitable sensing material to detect nicotine selectively and testing under free-living conditions in the standard environment. Here, we experimentally demonstrate a vanadium dioxide (VO2)-based nicotine sensor and explain its conductometric mechanisms with compositional analysis and density functional theory (DFT) calculations. For real-time monitoring of nicotine vapor from e-cigarettes in the air, the sensor is integrated with an epidermal near-field communication (NFC) interface that enables battery-free operation and data transmission to smart electronic devices to record and store sensor data. Collectively, the technique of sensor development and integration expands the use of wearable electronics for real-time monitoring of hazardous elements in the environment and biosignals wirelessly.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Le Cai
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Sherif Abdulkader Tawfik
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Stuart Tucker
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Ganganath Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Philipp Gutruf
- Department of Biomedical Engineering, BIO5 Institute, Department of Electrical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
21
|
Abstract
Regular health monitoring can result in early detection of disease, accelerate the delivery of medical care and, therefore, considerably improve patient outcomes for countless medical conditions that affect public health. A substantial unmet need remains for technologies that can transform the status quo of reactive health care to preventive, evidence-based, person-centred care. With this goal in mind, platforms that can be easily integrated into people's daily lives and identify a range of biomarkers for health and disease are desirable. However, urine - a biological fluid that is produced in large volumes every day and can be obtained with zero pain, without affecting the daily routine of individuals, and has the most biologically rich content - is discarded into sewers on a regular basis without being processed or monitored. Toilet-based health-monitoring tools in the form of smart toilets could offer preventive home-based continuous health monitoring for early diagnosis of diseases while being connected to data servers (using the Internet of Things) to enable collection of the health status of users. In addition, machine learning methods can assist clinicians to classify, quantify and interpret collected data more rapidly and accurately than they were able to previously. Meanwhile, challenges associated with user acceptance, privacy and test frequency optimization should be considered to facilitate the acceptance of smart toilets in society.
Collapse
Affiliation(s)
- Savas Tasoglu
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey. .,Koç University Translational Medicine Research Center (KUTTAM), Koç University, Sarıyer, Istanbul, Turkey. .,Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul, Turkey. .,Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
| |
Collapse
|
22
|
|
23
|
Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021; 6:2787-2801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin-interfaced wearable systems with integrated colorimetric assays, microfluidic channels, and electrochemical sensors offer powerful capabilities for noninvasive, real-time sweat analysis. This Perspective details recent progress in the development and translation of novel wearable sensors for personalized assessment of sweat dynamics and biomarkers, with precise sampling and real-time analysis. Sensor accuracy, system ruggedness, and large-scale deployment in remote environments represent key opportunity areas, enabling broad deployment in the context of field studies, clinical trials, and recent commercialization. On-body measurements in these contexts show good agreement compared to conventional laboratory-based sweat analysis approaches. These device demonstrations highlight the utility of biochemical sensing platforms for personalized assessment of performance, wellness, and health across a broad range of applications.
Collapse
Affiliation(s)
- Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
| | - Amer Mansour
- Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637, United States
| | - John A. Wright
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Jeffrey B. Model
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Donald E. Wright
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
- Departments of Materials Science and Engineering, Mechanical Engineering, Electrical and Computer Engineering, and Chemistry, Northwestern University, Evanston, Illinois 60202, United States
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Ma̅noa, Honolulu, Hawaii 96822, United States
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai’i at Ma̅noa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
24
|
Mou L, Xia Y, Jiang X. Epidermal Sensor for Potentiometric Analysis of Metabolite and Electrolyte. Anal Chem 2021; 93:11525-11531. [PMID: 34378909 DOI: 10.1021/acs.analchem.1c01940] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wearable epidermal sensors that can provide noninvasive and continuous analysis of metabolites and electrolytes in sweat have great significance for healthcare monitoring. This study reports an epidermal sensor that can wirelessly, noninvasively, and potentiometrically analyze metabolites and electrolytes. Potentiometry-based ion-selective electrodes (ISE) are most widely used for detecting electrolytes, such as Na+ and K+. We develop an enzyme-based glucose ISE for potentiometric analysis of sweat glucose. The glucose ISE sensor is obtained by modifying a glucose oxidase layer (GOD) on an H+ ISE sensor. GOD catalyzes glucose to generate H+. The generated H+ passes through the H+ selective membrane to change the potential of the electrode. We have fully examined the limit of detection, detecting range, and stability of our epidermal sensor. Meanwhile, using this epidermal sensor, we can easily analyze the relationship between blood glucose and sweat glucose. The concentration curve of sweat glucose can represent blood glucose concentration, significantly contributing to sports and chronic disease monitoring.
Collapse
Affiliation(s)
- Lei Mou
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yong Xia
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Xingyu Jiang
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
25
|
Jo S, Sung D, Kim S, Koo J. A review of wearable biosensors for sweat analysis. Biomed Eng Lett 2021; 11:117-129. [PMID: 34150348 DOI: 10.1007/s13534-021-00191-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
Recent advances in the skin-interfaced wearable sweat sensors allow a personalized daily diagnosis and prognosis of the diseases in a form of a non-invasive, portable, and continuous monitoring system. Especially, the soft microfluidic system provides robust quantitative analysis platforms that integrate sweat sampling, storing, and various sensing capabilities. This review systematically introduces the sweat collecting mechanism using soft microfluidic valves, including calculation of sweat storage and loss. In terms of sweat analysis, colorimetric (e.g. enzymatic, chemical, or their mixed reactions), electrochemical (e.g. voltammetric, potentiometric, amperometric, or conductometric), and multiplex measurements of sweat contents facilitate diagnosis of diseases via analysis of combined multiple data, such as vital signals (e.g. ECG, EMG, EEG, etc.) and information from the skin (e.g. temperature, GSR, etc.). The integration of wireless communication with the microfluidic systems enables point-of-care health monitoring for disease and specific physiological status.
Collapse
Affiliation(s)
- Seongbin Jo
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Daeun Sung
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Sungbong Kim
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois At Urbana-Champaign, Urbana, IL 61801 USA
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
26
|
Yokus BMA, Daniele MA. Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: A systems perspective. Biosens Bioelectron 2021; 184:113249. [PMID: 33895689 DOI: 10.1016/j.bios.2021.113249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Advances in materials, bio-recognition elements, transducers, and microfabrication techniques, as well as progress in electronics, signal processing, and wireless communication have generated a new class of skin-interfaced wearable health monitoring systems for applications in personalized medicine and digital health. In comparison to conventional medical devices, these wearable systems are at the cusp of initiating a new era of longitudinal and noninvasive sensing for the prevention, detection, diagnosis, and treatment of diseases at the molecular level. Herein, we provide a review of recent developments in wearable biochemical and biophysical systems. We survey the sweat sampling and collection methods for biochemical systems, followed by an assessment of biochemical and biophysical sensors deployed in current wearable systems with an emphasis on their hardware specifications. Specifically, we address how sweat collection and sample handling platforms may be a rate limiting technology to realizing the clinical translation of wearable health monitoring systems; moreover, we highlight the importance of achieving both longitudinal sensing and assessment of intrapersonal variation in sweat-blood correlations to have the greatest clinical impact. Lastly, we assess a snapshot of integrated wireless wearable systems with multimodal sensing capabilities, and we conclude with our perspective on the state-of-the-art and the required developments to achieve the next-generation of integrated wearable health and performance monitoring systems.
Collapse
Affiliation(s)
- By Murat A Yokus
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA
| | - Michael A Daniele
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC, 27695, USA.
| |
Collapse
|
27
|
Ghaffari R, Rogers JA, Ray TR. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 332:129447. [PMID: 33542590 PMCID: PMC7853653 DOI: 10.1016/j.snb.2021.129447] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sweat is a promising, yet relatively unexplored biofluid containing biochemical information that offers broad insights into the underlying dynamic metabolic activity of the human body. The rich composition of electrolytes, metabolites, hormones, proteins, nucleic acids, micronutrients, and exogenous agents found in sweat dynamically vary in response to the state of health, stress, and diet. Emerging classes of skin-interfaced wearable sensors offer powerful capabilities for the real-time, continuous analysis of sweat produced by the eccrine glands in a manner suitable for use in athletics, consumer wellness, military, and healthcare industries. This perspective examines the rapid and continuous progress of wearable sweat sensors through the most advanced embodiments that address the fundamental challenges currently restricting widespread deployment. It concludes with a discussion of efforts to expand the overall utility of wearable sweat sensors and opportunities for commercialization, in which advances in biochemical sensor technologies will be critically important.
Collapse
Affiliation(s)
- Roozbeh Ghaffari
- -Querrey Simpson Institute for Bioelectronics and Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- -Epicore Biosystems, Inc., Cambridge, MA, USA
| | - John A. Rogers
- -Querrey Simpson Institute for Bioelectronics and Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- -Epicore Biosystems, Inc., Cambridge, MA, USA
- -Departments of Materials Science and Engineering, Mechanical Engineering, Electrical and Computer Engineering, Chemistry, Northwestern University, Evanston, IL, USA
- -Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tyler R. Ray
- -Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI
| |
Collapse
|
28
|
Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2020; 93:167-183. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Chemical Research Institute Andres M. del Rio, University of Alcalá, E-28871 Madrid, Spain
| |
Collapse
|
29
|
Coughlin LN, Bonar EE, Bickel WK. Considerations for remote delivery of behavioral economic interventions for substance use disorder during COVID-19 and beyond. J Subst Abuse Treat 2020; 120:108150. [PMID: 33298296 PMCID: PMC7532990 DOI: 10.1016/j.jsat.2020.108150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
The response to the COVID-19 crisis has created direct pressure on health care providers to deliver virtual care, and has created the opportunity to develop innovations in remote treatment for people with substance use disorders. Remote treatments provide an intervention delivery framework that capitalizes on technological innovations in remote monitoring of behaviors and can efficiently use information collected from people and their environment to provide personalized treatments as needed. Interventions informed by behavioral economic theories can help to harness the largely untapped potential of virtual care in substance use treatment. Behavioral economic treatments, such as contingency management, the substance-free activity session, and episodic future thinking, are positioned to leverage remote monitoring of substance use and to use personalized medicine frameworks to deliver remote interventions in the COVID-19 era and beyond. With increased remote care, there is an opportunity for virtual treatment development. Treatments can capitalize on remote technology to increase effectiveness. Behavioral economic interventions are well positioned to fill this need. Remote behavioral economic interventions can add to current treatments.
Collapse
Affiliation(s)
- Lara N Coughlin
- Addiction Center, Department of Psychiatry, University of Michigan, United States of America.
| | - Erin E Bonar
- Addiction Center, Department of Psychiatry, University of Michigan, United States of America; Injury Prevention Center, University of Michigan, United States of America
| | - Warren K Bickel
- Fralin Biomedical Research Institute at Virginia Tech, United States of America
| |
Collapse
|
30
|
Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens 2020; 5:2679-2700. [PMID: 32822166 DOI: 10.1021/acssensors.0c01318] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and commercialization efforts.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Parrilla
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Noelia Felipe Montiel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Abbas Barfidokht
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Robin Van Echelpoel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|