1
|
Basu P, Banerjee A, Okoro PD, Masoumi A, Kanjilal B, Akbari M, Martins‐Green M, Armstrong DG, Noshadi I. Integration of Functional Polymers and Biosensors to Enhance Wound Healing. Adv Healthc Mater 2024; 13:e2401461. [PMID: 39235365 PMCID: PMC11582501 DOI: 10.1002/adhm.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Indexed: 09/06/2024]
Abstract
Biosensors have led to breakthroughs in the treatment of chronic wounds. Since the discovery of the oxygen electrode by Clarke, biosensors have evolved into the design of smart bandages that dispense drugs to treat wounds in response to physiological factors, such as pH or glucose concentration, which indicate pathogenic tendencies. Aptamer-based biosensors have helped identify and characterize pathogenic bacteria in wounds that often form antibiotic-resistant biofilms. Several functional polymers have served as indispensable parts of the fabrication of these biosensors. Beginning with natural polymers such as alginate, chitosan, and silk-based fibroin, which are biodegradable and absorptive, advances have been made in formulating biocompatible synthetic polymers such as polyurethane and polyethylene glycol designed to reduce non-specific binding of proteins and cells, making biosensors less painful or cumbersome for patient use. Recently, polycaprolactone has been developed, which offers ductility and a large surface-area-to-volume ratio. There is still room for advances in the fabrication and use of biosensors for wound healing and in this review, the trend in developing biosensors from biomarker detection to smart dressings to the incorporation of machine learning in designing customized wound patches while making application easier is highlighted and can be used for a long time.
Collapse
Affiliation(s)
- Proma Basu
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Aihik Banerjee
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Prince David Okoro
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | | | - Baishali Kanjilal
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Mohsen Akbari
- Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Manuela Martins‐Green
- Department of Molecular Cellular and Systems BiologyUniversity of California, RiversideRiversideCA92521USA
| | - David G. Armstrong
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Iman Noshadi
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| |
Collapse
|
2
|
Wang C, Wang C, Wang M, Wang M, Ni Q, Sun J, Sun B, Wang Y. Minimally Invasive Real-Time Monitoring for Rapid and Sensitive Diagnosis of Spinal Cord Injury. ACS Sens 2024; 9:5058-5068. [PMID: 39401952 DOI: 10.1021/acssensors.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological injury that is currently extremely difficult to cure clinically. SCI involves numerous pathophysiological processes, and microRNAs (miRNAs) play an important role in these processes. Meanwhile, miRNAs have received a lot of attention for their role in other diseases as well. Therefore, the detection of disease-related miRNAs is important for the study of disease development, treatment, and prognosis. With the rapid development of molecular biology, the traditional detection methods of miRNA can no longer meet the needs of experiments. Electrochemical detection methods are widely used because of their excellent detection performance. Here, we designed an electrochemical sensor prepared using borosilicate glass microneedle electrodes for real-time monitoring of miR-21-5p expression in vivo after SCI. The sensor showed a good linear relationship between the oxidation peak current value and the concentration of miR-21-5p in the concentration range 0-2 fM (Y = 12.025X + 90.396, R2 = 0.98). The limit of detection (LOD) of the sensor was 0.3667 fM. The experimental results showed that the borosilicate glass microneedle electrochemical sensor achieved fast, accurate, highly sensitive, highly specific, highly stable, and reproducible monitoring of miR-21-5p. More importantly, the electrochemical sensor has a better clinical translation prospect, which is important for the research of clinical diseases.
Collapse
Affiliation(s)
- Chengcheng Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Cai Wang
- Binhai County People's Hospital, Yancheng, Jiangsu 224500, China
| | - Minyue Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Mengyue Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, Shandong 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Ying Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
3
|
Asl ZR, Rezaee K, Ansari M, Zare F, Roknabadi MHA. A review of biopolymer-based hydrogels and IoT integration for enhanced diabetes diagnosis, management, and treatment. Int J Biol Macromol 2024; 280:135988. [PMID: 39322132 DOI: 10.1016/j.ijbiomac.2024.135988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of diabetes has been increasing globally, necessitating innovative approaches beyond conventional blood sugar monitoring and insulin control. Diabetes is associated with complex health complications, including cardiovascular diseases. Continuous Glucose Monitoring (CGM) devices, though automated, have limitations such as irreversibility and interference with bodily fluids. Hydrogel technologies provide non-invasive alternatives to traditional methods, addressing the limitations of current approaches. This review explores hydrogels as macromolecular biopolymeric materials capable of absorbing and retaining a substantial amount of water within their structure. Due to their high-water absorption properties, these macromolecules are utilized as coating materials for wound care and diabetes management. The study emphasizes the need for early diagnosis and monitoring, especially during the COVID-19 pandemic, where heightened attention to diabetic patients is crucial. Additionally, the article examines the role of the Internet of Things (IoT) and machine learning-based systems in enhancing diabetes management effectiveness. By leveraging these technologies, there is potential to revolutionize diabetes care, providing more personalized and proactive solutions. This review explores cutting-edge hydrogel-based systems as a promising avenue for diabetes diagnosis, management, and treatment, highlighting key biopolymers and technological integrations.
Collapse
Affiliation(s)
- Zahra Rahmani Asl
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Khosro Rezaee
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
4
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
5
|
Jin S, Mia R, Newton MAA, Cheng H, Gao W, Zheng Y, Dai Z, Zhu J. Nanofiber-reinforced self-healing polysaccharide-based hydrogel dressings for pH discoloration monitoring and treatment of infected wounds. Carbohydr Polym 2024; 339:122209. [PMID: 38823899 DOI: 10.1016/j.carbpol.2024.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Rajib Mia
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
6
|
Weber CJ, Strom NE, Simoska O. Electrochemical deposition of gold nanoparticles on carbon ultramicroelectrode arrays. NANOSCALE 2024; 16:16204-16217. [PMID: 39140335 DOI: 10.1039/d4nr02326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Electrode surfaces functionalized with gold nanoparticles (AuNP) are widely used in electroanalysis, electrocatalysis, and electrochemical biosensing due to their increased surface area and conductivity. Electrochemical deposition of AuNPs offers advantages over chemical synthesis, including better control over AuNP size, dispersion, and morphology. This study examines the electrodeposition of AuNPs on carbon ultramicroelectrode arrays (CUAs) focusing on electrodeposition parameters, such as deposition potential, deposition time, and gold ion concentration. Detailed analysis based on scanning electron microscopy revealed that higher reductive potentials and shorter deposition times result in smaller AuNP particle sizes and greater particle counts. Unlike previous studies using planar, macro-sized electrodes and millimolar concentrations of gold ion, as well as longer deposition times (e.g., 100-300 s), this research employed micromolar concentration ranges (25-50 μM) of gold ion solution and shorter deposition times (5-60 s) for successful electrodeposition of AuNPs on the array-based CUAs. This is attributed to the physical properties of the ultramicroelectrodes in the array geometry and the distinct material composition of the CUAs. The gold amounts deposited on the CUA electrodes were determined (88.73 ± 0.06 nmol cm-2), which were in correlation with the electrocatalytic responses for the hydrogen evolution reaction (HER) measured on AuNP-modified CUAs. Overall, the array-based geometry, nanometer-scale electrode sizes, and unique material composition of the CUAs significantly influence AuNP electrodeposition. This study underscores the importance of systematically characterizing the electrodeposition parameters on novel electrode surfaces.
Collapse
Affiliation(s)
- Courtney J Weber
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| | - Natalie E Strom
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
7
|
Ding S, Chen X, Yu B, Liu Z. Electrochemical biosensors for clinical detection of bacterial pathogens: advances, applications, and challenges. Chem Commun (Camb) 2024; 60:9513-9525. [PMID: 39120607 DOI: 10.1039/d4cc02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bacterial pathogens are responsible for a variety of human diseases, necessitating their prompt detection for effective diagnosis and treatment of infectious diseases. Over recent years, electrochemical methods have gained significant attention owing to their exceptional sensitivity and rapidity. This review outlines the current landscape of electrochemical biosensors employed in clinical diagnostics for the detection of bacterial pathogens. We categorize these biosensors into four types: amperometry, potentiometry, electrochemical impedance spectroscopy, and conductometry, targeting various bacterial components, including toxins, virulence factors, metabolic activity, and events related to bacterial adhesion and invasion. We discuss the merits and challenges associated with electrochemical methods, underscoring their rapid response, high sensitivity, and specificity, while acknowledging the necessity for skilled operators and potential interference from biological and environmental factors. Furthermore, we examine future prospects and potential applications of electrochemical biosensors in clinical diagnostics. While electrochemical biosensors offer a promising avenue for detecting bacterial pathogens, further research in optimizing the robustness and surmounting the challenges hindering their seamless integration into clinical practice is imperative.
Collapse
Affiliation(s)
- Shengyong Ding
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Xiaodi Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Yu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Liu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| |
Collapse
|
8
|
Lv M, Li Y, Qiao X, Zeng X, Luo X. An antifouling electrochemical biosensor based on oxidized bacterial cellulose and quaternized chitosan for reliable detection of involucrin in wound exudate. Anal Chim Acta 2024; 1316:342821. [PMID: 38969423 DOI: 10.1016/j.aca.2024.342821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
The monitoring of biomarkers in wound exudate is of great importance for wound care and treatment, and electrochemical biosensors with high sensitivity are potentially useful for this purpose. However, conventional electrochemical biosensors always suffer from severe biofouling when performed in the complex wound exudate. Herein, an antifouling electrochemical biosensor for the detection of involucrin in wound exudate was developed based on a wound dressing, oxidized bacterial cellulose (OxBC) and quaternized chitosan (QCS) composite hydrogel. The OxBC/QCS hydrogel was prepared using an in-situ chemical oxidation and physical blending method, and the proportion of OxBC and QCS was optimized to achieve electrical neutrality and enhanced hydrophilicity, therefore endowing the hydrogel with exceptional antifouling and antimicrobial properties. The involucrin antibody SY5 was covalently bound to the OxBC/QCS hydrogel to construct the biosensor, and it demonstrated a low limit of detection down to 0.45 pg mL-1 and a linear detection range from 1.0 pg mL-1 to 1.0 μg mL-1, and it was capable of detecting targets in wound exudate. Crucially, the unique antifouling and antimicrobial capability of the OxBC/QCS hydrogel not only extends its effective lifespan but also guarantees the sensing performance of the biosensor. The successful application of this wound dressing, OxBC/QCS hydrogel for involucrin detection in wound exudate demonstrates its promising potential in wound healing monitoring.
Collapse
Affiliation(s)
- Mingrui Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
9
|
Takallu S, Aiyelabegan HT, Zomorodi AR, Alexandrovna KV, Aflakian F, Asvar Z, Moradi F, Behbahani MR, Mirzaei E, Sarhadi F, Vakili-Ghartavol R. Nanotechnology improves the detection of bacteria: Recent advances and future perspectives. Heliyon 2024; 10:e32020. [PMID: 38868076 PMCID: PMC11167352 DOI: 10.1016/j.heliyon.2024.e32020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Nanotechnology has advanced significantly, particularly in biomedicine, showing promise for nanomaterial applications. Bacterial infections pose persistent public health challenges due to the lack of rapid pathogen detection methods, resulting in antibiotic overuse and bacterial resistance, threatening the human microbiome. Nanotechnology offers a solution through nanoparticle-based materials facilitating early bacterial detection and combating resistance. This study explores recent research on nanoparticle development for controlling microbial infections using various nanotechnology-driven detection methods. These approaches include Surface Plasmon Resonance (SPR) Sensors, Surface-Enhanced Raman Scattering (SERS) Sensors, Optoelectronic-based sensors, Bacteriophage-Based Sensors, and nanotechnology-based aptasensors. These technologies provide precise bacteria detection, enabling targeted treatment and infection prevention. Integrating nanoparticles into detection approaches holds promise for enhancing patient outcomes and mitigating harmful bacteria spread in healthcare settings.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abolfazl Rafati Zomorodi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahrokh Rajaee Behbahani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoozeh Sarhadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
11
|
Xu K, Dai L, Du Y, Liu L, Zhang N, Feng R, Xu R, Wei Q. A signal polarity conversion photoelectrochemical immunosensor for neuron-specific enolase detection based on MgIn 2S 4-sensitized CsPbBr 3. Mikrochim Acta 2024; 191:84. [PMID: 38195951 DOI: 10.1007/s00604-023-06174-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
A photoelectrochemical (PEC) immunosensor was designed based on MgIn2S4-decorated inorganic halide perovskite CsPbBr3 combined with the signal polarity conversion strategy for neuron-specific enolase (NSE) detection. CsPbBr3 was applied as the basic photoactive material owing to its excellent optical and electronic properties, which provide a good PEC performance for sensor construction. In order to improve the stability of this perovskite, the three-dimensional flower-like MgIn2S4 with a desirable direct band gap was applied to enhance the PEC response. Also, the excellent structure of MgIn2S4 provides large surface-active sites for CsPbBr3 loaded. For enhancing the detection sensitivity of PEC immunosensor, p-type CuInS2 was used as a signal probe which fixed on detection antibody (Ab2). When the target NSE was present, the photogenerated electrons produced by CuInS2 were transferred to the test solution, and the polarity of PEC signal changes. Based on the above photosensitive materials and signal conversion strategy, the proposed PEC immunosensor showed favorable detection performance, and the linear detection range is 0.0001 ~ 100 ng/mL with a 38 fg/mL of detection limit. The proposed strategy improved the adhibition of CsPbBr3 in the analytical chemistry field as well as provided a reference method for other protein detections.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yu Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Ruiqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Rui Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Lormaneenopparat P, Yukird J, Rodthongkum N, Hoven VP. Bacterial cellulose composite hydrogel for pre-concentration and mass spectrometric detection of thiol-containing biomarker. Int J Biol Macromol 2023; 253:126855. [PMID: 37714234 DOI: 10.1016/j.ijbiomac.2023.126855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Simple soaking of bacterial cellulose (BC) membrane in carboxymethyl cellulose (CMC) solution yielded BC/CMC hydrogel having re-swellable property. Then, gold nanoparticles (AuNPs) were embedded in the BC/CMC hydrogel via in situ chemical reduction to form BC/CMC/AuNPs composite hydrogel. It was found that the composite hydrogel exhibited physical/chemical characteristics similar to those of BC. The AuNPs with an average diameter of 13 nm distributed uniformly within the BC/CMC matrix as verified by transmission electron microscopy. The novelty of this work is the application of the BC/CMC/AuNPs composite hydrogel for selective adsorption of an important thiol-containing biomarker of Alzheimer's disease, glutathione (GSH), prior to direct laser desorption/ionization mass spectrometric (LDI-MS) detection. GSH adsorbed in the BC/CMC/AuNPs composite hydrogel showed the high ionization signal in LDI-MS providing a linear range of 50-10,000 nM with a limit of detection as low as 54.1 nM, which is a cut-off level for distinguishing between normal individuals and Alzheimer's patients. It should be emphasized that an additional matrix was not necessary as AuNPs can act as self-matrix for LDI-MS analysis. Furthermore, the BC/CMC/AuNPs composite hydrogel can effectively preconcentrate GSH approximately 10 times upon adsorption allowing for ultrasensitive detection of GSH required for disease diagnosis.
Collapse
Affiliation(s)
- Panlop Lormaneenopparat
- Program in Petrochemistry and Polymer Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jutiporn Yukird
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Zheng XT, Zhong Y, Chu HE, Yu Y, Zhang Y, Chin JS, Becker DL, Su X, Loh XJ. Carbon Dot-Doped Hydrogel Sensor Array for Multiplexed Colorimetric Detection of Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17675-17687. [PMID: 37001053 DOI: 10.1021/acsami.3c01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein). The encapsulated enzymes in such a matrix exhibit improved enzyme kinetics and stability compared to those in pure hydrogels. Such a matrix also provides stable colorimetric responses for all five sensors. The sensor array exhibits high accuracy (recovery rates of 91.5-113.1%) and clinically relevant detection ranges for all five wound markers. The sensor array is established for simulated wound fluids and validated with rat wound fluids from perturbed wound models. Distinct color patterns are obtained that can clearly distinguish healing vs nonhealing wounds visually and quantitatively. This hydrogel sensor array shows great potential for on-site wound sensing due to its long-term stability, lightweight, and flexibility.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yingying Zhong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Huan Enn Chu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Jiah Shin Chin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Republic of Singapore
| | - David Lawrence Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
14
|
An innovative wireless electrochemical card sensor for field-deployable diagnostics of Hepatitis B surface antigen. Sci Rep 2023; 13:3523. [PMID: 36864072 PMCID: PMC9981757 DOI: 10.1038/s41598-023-30340-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
A wireless-based detection utilizing an innovative electrochemical card (eCard) sensor controlled by a smartphone was developed for targeting Hepatitis B surface antigen (HBsAg). A simple label-free electrochemical platform allows a convenient operation for point-of-care diagnosis. A disposable screen-printed carbon electrode was modified straightforwardly layer-by-layer with chitosan followed by glutaraldehyde, allowing a simple but effective, reproducible, and stable method for covalently immobilizing antibodies. The modification and immobilization processes were verified by electrochemical impedance spectroscopy and cyclic voltammetry. The smartphone-based eCard sensor was used to quantify HBsAg by measuring the change in current response of the [Fe(CN)6]3-/4- redox couple before and after the presence of HBsAg. Under the optimal conditions, the linear calibration curve for HBsAg was found to be 10-100,000 IU/mL with a detection limit of 9.55 IU/mL. The HBsAg eCard sensor was successfully applied to detect 500 chronic HBV-infected serum samples with satisfactory results, demonstrating the excellent applicability of this system. The sensitivity and specificity of this sensing platform were found to be 97.75% and 93%, respectively. As illustrated, the proposed eCard immunosensor offered a rapid, sensitive, selective, and easy-to-use platform for healthcare providers to rapidly determine the infection status of HBV patients.
Collapse
|
15
|
Shafique H, de Vries J, Strauss J, Khorrami Jahromi A, Siavash Moakhar R, Mahshid S. Advances in the Translation of Electrochemical Hydrogel-Based Sensors. Adv Healthc Mater 2023; 12:e2201501. [PMID: 36300601 DOI: 10.1002/adhm.202201501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Novel biomaterials for bio- and chemical sensing applications have gained considerable traction in the diagnostic community with rising trends of using biocompatible and lowly cytotoxic material. Hydrogel-based electrochemical sensors have become a promising candidate for their swellable, nano-/microporous, and aqueous 3D structures capable of immobilizing catalytic enzymes, electroactive species, whole cells, and complex tissue models, while maintaining tunable mechanical properties in wearable and implantable applications. With advances in highly controllable fabrication and processability of these novel biomaterials, the possibility of bio-nanocomposite hydrogel-based electrochemical sensing presents a paradigm shift in the development of biocompatible, "smart," and sensitive health monitoring point-of-care devices. Here, recent advances in electrochemical hydrogels for the detection of biomarkers in vitro, in situ, and in vivo are briefly reviewed to demonstrate their applicability in ideal conditions, in complex cellular environments, and in live animal models, respectively, to provide a comprehensive assessment of whether these biomaterials are ready for point-of-care translation and biointegration. Sensors based on conductive and nonconductive polymers are presented, with highlights of nano-/microstructured electrodes that provide enhanced sensitivity and selectivity in biocompatible matrices. An outlook on current challenges that shall be addressed for the realization of truly continuous real-time sensing platforms is also presented.
Collapse
Affiliation(s)
- Houda Shafique
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Justin de Vries
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Julia Strauss
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | | | | | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| |
Collapse
|
16
|
Xu W, Ceylan Koydemir H. Non-invasive biomedical sensors for early detection and monitoring of bacterial biofilm growth at the point of care. LAB ON A CHIP 2022; 22:4758-4773. [PMID: 36398687 DOI: 10.1039/d2lc00776b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections have long been a serious global health issue. Biofilm formation complicates matters even more. The biofilm's extracellular polymeric substances (EPSs) matrix protects bacteria from the host's immune responses, yielding strong adhesion and drug resistance as the biofilm matures. Early bacterial biofilm detection and bacterial biofilm growth monitoring are crucial to treating biofilm-associated infections. Current detection methods are highly sensitive but not portable, are time-consuming, and require expensive equipment and complex operating procedures, limiting their use at the point of care. Therefore, there is an urgent need to develop affordable, on-body, and non-invasive biomedical sensors to continuously monitor and detect early biofilm growth at the point of care through personalized telemedicine. Herein, recent advances in developing non-invasive biomedical sensors for early detection and monitoring bacterial biofilm growth are comprehensively reviewed. First, biofilm's life cycle and its impact on the human body, such as biofilm-associated disease and infected medical devices, are introduced together with the challenges of biofilm treatment. Then, the current methods used in clinical and laboratory settings for biofilm detection and their challenges are discussed. Next, the current state of non-invasive sensors for direct and indirect detection of bacterial biofilms are summarized and highlighted with the detection parameters and their design details. Finally, commercially available products, challenges of current devices, and the further trend in biofilm detection sensors are discussed.
Collapse
Affiliation(s)
- Weiming Xu
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| |
Collapse
|
17
|
Microbial Interplay in Skin and Chronic Wounds. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose of Review
Microbial infections in chronic wounds can often lead to lower-limb amputation, decrease in quality of life, and increase in mortality rate, and there is an unmet need to distinguish between pathogens and colonisers in these chronic wounds. Hence, identifying the composition of healthy skin microbiota, microbes associated with chronic wound and healing processes, and microbial interactions and host response in healing wounds vs. non-healing wounds can help us in formulating innovative individual-centric treatment protocols.
Recent Findings
This review highlights various metabolites and biomarkers produced by microbes that have been identified to modulate these interactions, particularly those involved in host–microbe and microbe–microbe communication. Further, considering that many skin commensals demonstrate contextual pathogenicity, we provide insights into promising initiatives in the wound microbiome research.
Summary
The skin microbiome is highly diverse and variable, and considering its importance remains to be a hotspot of medical investigations and research to enable us to prevent and treat skin disorders and chronic wound infections. This is especially relevant now considering that non-healing and chronic wounds are highly prevalent, generally affecting lower extremities as seen in diabetic foot ulcers, venous leg ulcers, and pressure ulcers. Pathogenic bacteria are purported to have a key role in deferring healing of wounds. However, the role of skin microflora in wound progression has been a subject of debate. In this review, we discuss biomarkers associated with chronic wound microenvironment along with the relevance of skin microflora and their metabolites in determining the chronicity of wounds.
Collapse
|
18
|
Minsart M, Van Vlierberghe S, Dubruel P, Mignon A. Commercial wound dressings for the treatment of exuding wounds: an in-depth physico-chemical comparative study. BURNS & TRAUMA 2022; 10:tkac024. [PMID: 35733649 PMCID: PMC9210940 DOI: 10.1093/burnst/tkac024] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Background Nowadays, a wide range of wound dressings is already commercially available. The selection of the dressing is of paramount importance as inappropriate wound management and dressing selection can delay the wound healing process. Not only can this be distressing for the patient, but it can also contribute to complications such as maceration and subsequent infection. Many researchers are targeting the design of dressings with superior properties over existing commercial dressings. However, reported results in the state-of-the-art are rarely benchmarked against commercial dressings. The aim of this study was to determine several characteristics of a large variety of the most frequently used commercial wound dressings, providing an overview for both practitioners and researchers. Methods For this comparative study, 11 frequently used commercial wound dressings were selected, representing the different types. The morphology was studied using scanning electron microscopy. The dressings were characterized in terms of swelling capacity (water, phosphate buffered saline and simulated wound fluid), moisture vapour transmission rate (MVTR) and moisture uptake capacity (via dynamic vapour sorption) as well as mechanical properties using tensile testing and texturometry. Results The selected dressings showed distinctive morphological differences (fibrous, porous and/or gel) which was reflected in the different properties. Indeed, the swelling capacities ranged between 1.5 and 23.2 g/g (water), 2.1 and 17.6 g/g (phosphate buffered saline) or 2.9 and 20.8 g/g (simulated wound fluid). The swelling capacity of the dressings in water increased even further upon freeze-drying, due to the formation of pores. The MVTR values varied between 40 and 930 g/m2/24 h. The maximal moisture uptake capacity varied between 5.8% and 105.7% at 95% relative humidity. Some commercial dressings exhibited a superior mechanical strength, due to either being hydrophobic or multi-layered. Conclusions The present work not only offers insight into a valuable toolbox of suitable wound dressing characterization techniques, but also provides an extensive landscaping of commercial dressings along with their physico-chemical properties, obtained through reproducible experimental protocols. Furthermore, it ensures appropriate benchmark values for commercial dressings in all forthcoming studies and could aid researchers with the development of novel modern wound dressings. The tested dressings either exhibited a high strength or a high swelling capacity, suggesting that there is still a strong potential in the wound dressings market for dressings that possess both.
Collapse
Affiliation(s)
- Manon Minsart
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-bis, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-bis, 9000 Ghent, Belgium
| | - Arn Mignon
- Smart Polymeric Biomaterials Research Group, Biomaterials and Tissue Engineering (SIEM) @ Campus Group T Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Alaysuy O, Snari RM, Alfi AA, Aldawsari AM, Abu-Melha S, Khalifa ME, El-Metwaly NM. Development of green and sustainable smart biochromic and therapeutic bandage using red cabbage (Brassica oleracea L. Var. capitata) extract encapsulated into alginate nanoparticles. Int J Biol Macromol 2022; 211:390-399. [PMID: 35580745 DOI: 10.1016/j.ijbiomac.2022.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 05/08/2022] [Indexed: 12/28/2022]
Abstract
Novel multifunctional wound dressing with the ability to protect, cure and sense the healing process, was developed. Red-cabbage extract has been reported to exhibit bioactive compounds with the ability to function as antioxidant, antiinflammatory, anticancer, antibacterial, antifungal, and antiviral agent, as well as a natural pH-sensory chromophoric material. An anthocyanin extract was prepared from Red-cabbage (Brassica oleracea L. Var. capitata). The anthocyanins extract was encapsulated into calcium alginate in the presence of potash alum mordant, which was then applied to the surface of the cotton gauze. Red-cabbage based anthocyanin chromophoric extract was encapsulated at different concentrations into alginate-based hydrogel and immobilized into cotton gauze to provide a smart therapeutic pH-responsive wound dress to function as an antimicrobial and biochromic matrix providing a comfortable dress sensor to monitor the wound status. Decreasing the pH of a wound mimic solution caused a blue shift from 579 to 437 nm. The anthocyanin spectroscopic probe's halochromic activity demonstrated a colorimetric change from purple to pink, which was critical to the dyed cotton diagnostic assay's biochromic performance. The colorimetric parameters of the prepared dressing sensor were proved by UV-Vis absorbance and CIE Lab coordinates. Both mechanical and morphological properties of the prepared dressing were studied using different analytical methods. The effect of anthocyanin concentration on the mechanical, water vapor permeability, water absorption and morphological properties of the wound dressing were investigated. No substantial flaws in air-permeability or bend length were detected after dyeing. The colored cotton gauze samples were tested for their high colorfastness. The cytotoxicity and antimicrobial activity of the prepared biochromic cotton gauze were explored. The dyed cotton samples exhibited no cytotoxicity and improved antimicrobial activity with increasing the anthocyanin ratio on cotton surface.
Collapse
Affiliation(s)
- Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Afrah M Aldawsari
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia; King abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sraa Abu-Melha
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohamed E Khalifa
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516, Egypt.
| |
Collapse
|
20
|
Wang C, Sani ES, Gao W. Wearable Bioelectronics for Chronic Wound Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2111022. [PMID: 36186921 PMCID: PMC9518812 DOI: 10.1002/adfm.202111022] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 05/05/2023]
Abstract
Chronic wounds are a major healthcare issue and can adversely affect the lives of millions of patients around the world. The current wound management strategies have limited clinical efficacy due to labor-intensive lab analysis requirements, need for clinicians' experiences, long-term and frequent interventions, limiting therapeutic efficiency and applicability. The growing field of flexible bioelectronics enables a great potential for personalized wound care owing to its advantages such as wearability, low-cost, and rapid and simple application. Herein, recent advances in the development of wearable bioelectronics for monitoring and management of chronic wounds are comprehensively reviewed. First, the design principles and the key features of bioelectronics that can adapt to the unique wound milieu features are introduced. Next, the current state of wound biosensors and on-demand therapeutic systems are summarized and highlighted. Furthermore, we discuss the design criteria of the integrated closed loop devices. Finally, the future perspectives and challenges in wearable bioelectronics for wound care are discussed.
Collapse
Affiliation(s)
- Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ehsan Shirzaei Sani
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Jarosova R, Irikura K, Rocha‐Filho RC, Swain GM. Detection of Pyocyanin with a Boron‐doped Diamond Electrode Using Flow Injection Analysis with Amperometric Detection and Square Wave Voltammetry. ELECTROANAL 2022. [DOI: 10.1002/elan.202100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Romana Jarosova
- Department of Analytical Chemistry UNESCO Laboratory of Environmental Electrochemistry Charles University 12843 Prague 2 Czech Republic
- Department of Chemistry Michigan State University 48824-1322 East Lansing MI United States
| | - Kallyni Irikura
- Department of Chemistry Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos SP Brazil
- Department of Chemistry Michigan State University 48824-1322 East Lansing MI United States
| | - Romeu C. Rocha‐Filho
- Department of Chemistry Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos SP Brazil
| | - Greg M. Swain
- Department of Chemistry Michigan State University 48824-1322 East Lansing MI United States
| |
Collapse
|
22
|
Li Y, Hu Y, Chen T, Chen Y, Li Y, Zhou H, Yang D. Advanced detection and sensing strategies of Pseudomonas aeruginosa and quorum sensing biomarkers: A review. Talanta 2022; 240:123210. [PMID: 35026633 DOI: 10.1016/j.talanta.2022.123210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a ubiquitous opportunistic pathogen, can frequently cause chronic obstructive pulmonary disease, cystic fibrosis and chronic wounds, and potentially lead to severe morbidity and mortality. Timely and adequate treatment of nosocomial infection in clinic depends on rapid detection and accurate identification of P. aeruginosa and its early-stage antibiotic susceptibility test. Traditional methods like plating culture, polymerase chain reaction, and enzyme-linked immune sorbent assays are time-consuming and require expensive equipment, limiting the rapid diagnostic application. Advanced sensing strategy capable of fast, sensitive and simple detection with low cost has therefore become highly desired in point of care testing (POCT) of nosocomial pathogens. Within this review, advanced detection and sensing strategies for P. aeruginosa cells along with associated quorum sensing (QS) molecules over the last ten years are discussed and summarized. Firstly, the principles of four commonly used sensing strategies including localized surface plasmon resonance (LSPR), surface-enhanced Raman spectroscopy (SERS), electrochemistry, and fluorescence are briefly overviewed. Then, the advancement of the above sensing techniques for P. aeruginosa cells and its QS biomarkers detection are introduced, respectively. In addition, the integration with novel compatible platforms towards clinical application is highlighted in each section. Finally, the current achievements are summarized along with proposed challenges and prospects.
Collapse
Affiliation(s)
- Yingying Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yang Hu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Tao Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yan Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yi Li
- Graduate School of Biomedical Engineering and ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Danting Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
23
|
Sun X, Zhang Y, Ma C, Yuan Q, Wang X, Wan H, Wang P. A Review of Recent Advances in Flexible Wearable Sensors for Wound Detection Based on Optical and Electrical Sensing. BIOSENSORS 2021; 12:10. [PMID: 35049637 PMCID: PMC8773881 DOI: 10.3390/bios12010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Chronic wounds that are difficult to heal can cause persistent physical pain and significant medical costs for millions of patients each year. However, traditional wound care methods based on passive bandages cannot accurately assess the wound and may cause secondary damage during frequent replacement. With advances in materials science and smart sensing technology, flexible wearable sensors for wound condition assessment have been developed that can accurately detect physiological markers in wounds and provide the necessary information for treatment decisions. The sensors can implement the sensing of biochemical markers and physical parameters that can reflect the infection and healing process of the wound, as well as transmit vital physiological information to the mobile device through optical or electrical signals. Most reviews focused on the applicability of flexible composites in the wound environment or drug delivery devices. This paper summarizes typical biochemical markers and physical parameters in wounds and their physiological significance, reviews recent advances in flexible wearable sensors for wound detection based on optical and electrical sensing principles in the last 5 years, and discusses the challenges faced and future development. This paper provides a comprehensive overview for researchers in the development of flexible wearable sensors for wound detection.
Collapse
Affiliation(s)
- Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Yanchi Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (X.S.); (Y.Z.); (C.M.); (Q.Y.); (X.W.)
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
24
|
Pusta A, Tertiș M, Cristea C, Mirel S. Wearable Sensors for the Detection of Biomarkers for Wound Infection. BIOSENSORS 2021; 12:1. [PMID: 35049629 PMCID: PMC8773884 DOI: 10.3390/bios12010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Infection represents a major complication that can affect wound healing in any type of wound, especially in chronic ones. There are currently certain limitations to the methods that are used for establishing a clinical diagnosis of wound infection. Thus, new, rapid and easy-to-use strategies for wound infection diagnosis need to be developed. To this aim, wearable sensors for infection diagnosis have been recently developed. These sensors are incorporated into the wound dressings that are used to treat and protect the wound, and are able to detect certain biomarkers that can be correlated with the presence of wound infection. Among these biomarkers, the most commonly used ones are pH and uric acid, but a plethora of others (lactic acid, oxygenation, inflammatory mediators, bacteria metabolites or bacteria) have also been detected using wearable sensors. In this work, an overview of the main types of wearable sensors for wound infection detection will be provided. These sensors will be divided into electrochemical, colorimetric and fluorimetric sensors and the examples will be presented and discussed comparatively.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Mihaela Tertiș
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania; (A.P.); (M.T.)
| | - Simona Mirel
- Department of Medical Devices, Iuliu Hațieganu University of Medicine and Pharmacy, 4 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
25
|
Sundaresan V, Do H, Shrout JD, Bohn PW. Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems. Analyst 2021; 147:22-34. [PMID: 34874024 PMCID: PMC8791413 DOI: 10.1039/d1an01954f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbes, such as bacteria, can be described, at one level, as small, self-sustaining chemical factories. Based on the species, strain, and even the environment, bacteria can be useful, neutral or pathogenic to human life, so it is increasingly important that we be able to characterize them at the molecular level with chemical specificity and spatial and temporal resolution in order to understand their behavior. Bacterial metabolism involves a large number of internal and external electron transfer processes, so it is logical that electrochemical techniques have been employed to investigate these bacterial metabolites. In this mini-review, we focus on electrochemical and spectroelectrochemical methods that have been developed and used specifically to chemically characterize bacteria and their behavior. First, we discuss the latest mechanistic insights and current understanding of microbial electron transfer, including both direct and mediated electron transfer. Second, we summarize progress on approaches to spatiotemporal characterization of secreted factors, including both metabolites and signaling molecules, which can be used to discern how natural or external factors can alter metabolic states of bacterial cells and change either their individual or collective behavior. Finally, we address in situ methods of single-cell characterization, which can uncover how heterogeneity in cell behavior is reflected in the behavior and properties of collections of bacteria, e.g. bacterial communities. Recent advances in (spectro)electrochemical characterization of bacteria have yielded important new insights both at the ensemble and the single-entity levels, which are furthering our understanding of bacterial behavior. These insights, in turn, promise to benefit applications ranging from biosensors to the use of bacteria in bacteria-based bioenergy generation and storage.
Collapse
Affiliation(s)
- Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Liu Z, Sun C, Wang H, Wu T, Qiu B, Xiong X, Liu L. A far-red-emitting fluorescence probe for selective and sensitive detection of no in live cells and in C. elegans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120030. [PMID: 34118523 DOI: 10.1016/j.saa.2021.120030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), a ubiquitous intracellular and intercellular messenger molecule, plays vital roles in many physiological processes and is closely related to many diseases. Although a lot of fluorescent probes have been developed for real-time detection of NO successfully, the probes still suffer from poor tissue permeability and limited selectivity. In this study, a novel far-red fluorescent probe ZJL-3 based on rhodamine fluorescent dye was designed, synthesized, and used for NO determination. The probe contains a rhodamine as fluorophore and o-phenylenediamino as recognition unit. Upon addition of NO, the probe ZJL-3 showed an obvious far-red emission at 637 nm. The results of fluorescence spectrum experiments indicated that probe ZJL-3 exhibited desirable selectivity to NO. Furthermore, probe ZJL-3 has low cytotoxicity and was applied for the detection of exogenous and endogenous NO in RAW264.7 cells and C. elegans with satisfactory results.
Collapse
Affiliation(s)
- Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hailan Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tong Wu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Baoyu Qiu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
27
|
Jiang D, Sheng K, Jiang H, Wang L. A biomimetic "intestinal microvillus" cell sensor based on 3D bioprinting for the detection of wheat allergen gliadin. Bioelectrochemistry 2021; 142:107919. [PMID: 34371348 DOI: 10.1016/j.bioelechem.2021.107919] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
A biomimetic "intestinal microvillus" electrochemical cell sensor based on three-dimensional (3D) bioprinting was developed, which can specifically and accurately detect wheat gliadin. Self-assembled flower-like copper oxide nanoparticles (FCONp) and hydrazide-functionalized multiwalled carbon nanotubes (MWCNT-CDH) were innovatively synthesized to improve the sensor performance. A conductive biocomposite hydrogel (bioink) was prepared by mixing FCONp and MWCNT-CDH based on GelMA gel. The cluster-shaped microvillus structure of small intestine was accurately printed on the screen printing electrode with the prepared bioink using stereolithography 3D-bioprinting technology, and then the Rat Basophilic Leukemia cells were immobilized on the gel skeleton. Next, the developed cell sensor was used to effectively detect wheat allergen gliadin. The experimental results show that the bioprinted cell sensor sensitively detects wheat gliadin when the optimized cell numbers and immobilized time are 1 × 106 cells/mL and 10 min, respectively. The linear detection range is 0.1-0.8 ng/mL, and the detection limit is 0.036 ng/mL. The electrochemical cell sensor based on 3D printing technology has excellent stability and reproducibility. Thus, a simple and novel electrochemical detection approach for food allergens was established in this study with potential application in food safety detection and evaluation.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Kaikai Sheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
28
|
Liu X, Huang L, Qian K. Nanomaterial‐Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xun Liu
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| | - Lin Huang
- Stem Cell Research Center Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| |
Collapse
|
29
|
|