1
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Wang J, Xiong Q, Zhang S, Han H, Ma Z. Quantification of Glycated Hemoglobin in Total Hemoglobin by a Simultaneous Dual-Signal Acquisition Approach. ACS Sens 2024; 9:2141-2148. [PMID: 38578241 DOI: 10.1021/acssensors.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).
Collapse
Affiliation(s)
- Jiaqing Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Qichen Xiong
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shuli Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
3
|
Sriondee Y, Vijitvarasan P, Rattanachata A, Nakajima H, Oaew S, Cheunkar S. Real-time kinetic analysis and detection of glycated hemoglobin A1c using a quartz crystal microbalance-based aptasensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:599-607. [PMID: 38197200 DOI: 10.1039/d3ay01842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Glycated hemoglobin (HbA1c) has been an important biomarker for long-term diagnosis and monitoring of diabetes mellitus. The development of a rapid, reliable, and less sophisticated device to measure HbA1c is imperative to facilitate efficient early-care diabetes management. To date, no existing aptamer-based biosensor (aptasensor) for detecting HbA1c has been developed using a quartz crystal microbalance (QCM). In this study, the aptamer specific to HbA1c as a novel biosensing receptor was covalently functionalized onto a QCM substrate via mixed self-assembled monolayers (SAMs). A portable QCM equipped with a liquid-flow module was used to investigate the biospecificity, sensitivity, and interaction dynamics of the aptamer functionalized surfaces. The real-time kinetic analysis of HbA1c binding to the surface-functionalized aptamers revealed "on" and "off" binding rates of 4.19 × 104 M-1 s-1 and 2.43 × 10-3 s-1, respectively. These kinetic parameters imply that the QCM-based aptasensor specifically recognizes HbA1c with an equilibrium dissociation constant as low as 57.99 nM. The linear detection of HbA1c spanned from 13 to 108 nM, with a limit of detection (LOD) of 26.29 nM. Moreover, the spiked plasma sample analysis offered compelling evidence that this aptasensor is a promising technique for developing a point-of-care device for diabetes mellitus.
Collapse
Affiliation(s)
- Yossawadee Sriondee
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | | | | | - Hideki Nakajima
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Sukunya Oaew
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | - Sarawut Cheunkar
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
4
|
Noviana E, Siswanto S, Budi Hastuti AAM. Advances in Nanomaterial-Based Biosensors for Determination of Glycated Hemoglobin. Curr Top Med Chem 2022; 22:CTMC-EPUB-126335. [PMID: 36111762 DOI: 10.2174/1568026622666220915114646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
Diabetes is a major public health burden whose prevalence has been steadily increasing over the past decades. Glycated hemoglobin (HbA1c) is currently the gold standard for diagnostics and monitoring glycemic control in diabetes patients. HbA1c biosensors are often considered to be cost-effective alternatives for smaller testing laboratories or clinics unable to access other reference methods. Many of these sensors deploy nanomaterials as recognition elements, detection labels, and/or transducers for achieving sensitive and selective detection of HbA1c. Nanomaterials have emerged as important sensor components due to their excellent optical and electrical properties, tunable morphologies, and easy integration into multiple sensing platforms. In this review, we discuss the advantages of using nanomaterials to construct HbA1c sensors and various sensing strategies for HbA1c measurements. Key gaps between the current technologies with what is needed moving forward are also summarized.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
| | - Soni Siswanto
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
| | - Agustina Ari Murti Budi Hastuti
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
- Center of Excellence Institute for Halal Industry and Systems (PUI-PT IHIS), Universitas Gadjah Mada, Indonesia
| |
Collapse
|
5
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
6
|
Duanghathaipornsuk S, Reaver NGF, Cameron BD, Kim DS. Adsorption Kinetics of Glycated Hemoglobin on Aptamer Microarrays with Antifouling Surface Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4647-4657. [PMID: 33797255 DOI: 10.1021/acs.langmuir.1c00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Aptamers are oligonucleotides that bind with high affinity to target molecules of interest. One such target is glycated hemoglobin (gHb), a biomarker for assessing glycemic control and diabetes diagnosis. By the coupling of aptamers with surface plasmon resonance (SPR) sensing surfaces, a fast, reliable and inexpensive assay for gHb can be developed. In this study, we tested the affinity of SPR-sensing surfaces, composed of aptamers and antifouling self-assembled monolayers (SAMs), to hemoglobin (Hb) and gHb. First, we developed a gHb-targeted aptamer (GHA) through a modified Systematic Evolution of Ligands by EXponential (SELEX) enrichment process and tested its affinity to gHb using the Nano-Affi protocol. GHA was used to produce three distinct SAM-SPR-sensing surfaces: (Type-1) a SAM of GHA directly attached to a sensor surface; (Type-2) GHA attached to a SAM of 11-mercaptoundecanoic acid (11MUA) on a sensor surface; (Type-3) GHA attached to a binary SAM of 11MUA and 3,6-dioxa-8-mercaptooctan-1-ol (DMOL) on a sensor surface. Type-2 and Type-3 surfaces were characterized by cyclic voltammetry and electrochemical impedance spectroscopy to confirm that GHA bound to the underlying SAMs. The adsorption kinetics for Hb and gHb interacting with each SPR sensing surface were used to quantify their respective affinities. The Type-1 surface without antifouling modification had a dissociation constant ratio (KD,Hb/KD,gHb) of 9.7, as compared to 809.3 for the Type-3 surface, demonstrating a higher association of GHA to gHb for sensor surfaces with antifouling modifications than those without. The enhanced selectivity of GHA to gHb can likely be attributed to the inclusion of DMOL in the SAM-modified surface, which reduced interference from nonspecific adsorption of proteins. Results suggest that pairing aptamers with antifouling SAMs can significantly improve their target affinity, potentially allowing for the development of novel, low cost, and fast assays.
Collapse
Affiliation(s)
- Surachet Duanghathaipornsuk
- Department of Chemical Engineering, 2801 W. Bancroft St., University of Toledo, Toledo, Ohio 43606, United States
| | - Nathan G F Reaver
- Engineering School of Sustainable Infrastructure and the Environment Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611, United States
- Water Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Brent D Cameron
- Department of Bioengineering, 2801 W. Bancroft St., University of Toledo, Toledo, Ohio 43606, United States
| | - Dong-Shik Kim
- Department of Chemical Engineering, 2801 W. Bancroft St., University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
7
|
Glieberman AL, Pope BD, Melton DA, Parker KK. Building Biomimetic Potency Tests for Islet Transplantation. Diabetes 2021; 70:347-363. [PMID: 33472944 PMCID: PMC7881865 DOI: 10.2337/db20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Douglas A Melton
- Harvard Department of Stem Cell and Regenerative Biology, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
8
|
Investigation of the recognition interaction between glycated hemoglobin and its aptamer by using surface plasmon resonance. Talanta 2020; 222:121466. [PMID: 33167203 DOI: 10.1016/j.talanta.2020.121466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 01/07/2023]
Abstract
Glycated hemoglobin (HbA1c) has been widely explored as an important marker for monitoring and diagnosing diabetes. Due to the advantages of high selectivity, easy preparation, and convenient preservation of aptamers, research on glycated hemoglobin detection utilizing aptasensors has received much attention in recent years. However, factors such as the pH and the salt concentration of the solution and the structure of the aptamer could influence the interactions between HbA1c and the aptamer. In this study, the factors were evaluated using surface plasmon resonance (SPR). The results show that the pH and the salt concentration can greatly affect the formation of a complex between the aptamer and HbA1c. In the stereostructure of the aptamer, loop L1 may be an important motif for recognizing glycated hemoglobin. In addition, the best condition for detecting HbA1c was at pH 6, with a high sensitivity and a low limit of detection(LOD) (1.06 × 10-3RUnM /2.55 nM). The results also demonstrated that the use of an SPR aptamer biosensor can be a sensitive technique to improve the accuracy and correctness of HbA1c measurement.
Collapse
|
9
|
Singh V. Ultrasensitive quantum dot-coupled-surface plasmon microfluidic aptasensor array for serum insulin detection. Talanta 2020; 219:121314. [PMID: 32887054 DOI: 10.1016/j.talanta.2020.121314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Monitoring insulin levels in complex clinical matrices such as serum, holds immense importance in diagnosing type of diabetes. The present study reports the development of surface plasmon resonance aptamer based insulin sensor array in a four-channel microfluidic format which utilizes antibody attached to magnetic nanoparticles for capturing insulin from diabetic patient serum samples and surface immobilized plasmon enhancing quantum dots for signal amplification. The aptasensor gives minimal non-specific binding due to the immobilization of high molecular weight dendrimers on a cysteamine monolayer. The aptamer-insulin-antibody sandwich microarray monitors insulin levels in two-fold diluted serum and offers a detection limit 800 fM with a linear dynamic range 0.8-250 pM. Its clinical applicability on measuring serum insulin levels in 24 diabetic patient samples and correlation with ELISA is demonstrated.
Collapse
Affiliation(s)
- Vini Singh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
10
|
Orooji Y, Haddad Irani-Nezhad M, Hassandoost R, Khataee A, Rahim Pouran S, Joo SW. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118272. [PMID: 32229321 DOI: 10.1016/j.saa.2020.118272] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Cerium doped magnetite nanoparticle (CDM) was synthesized via a co-precipitation method and used as the co-reactant of luminol-K3Fe(CN)6 chemiluminescent system. The physical-chemical features of CDM were studied by XPS, XRD, HRTEM, FESEM, VSM, BET, and FTIR analyses. This simple and highly sensitive nanoprobe enabled the determination of minor concentrations of metronidazole (MNZ). Owing to the quenching efficacy of MNZ in the studied chemiluminescence system, a linear range of 3.47 × 10-6-9.37 × 10-5 mol/L was obtained with a limit of detection of 3.91 × 10-7 mol/L. This biosensor was used for MNZ detection in human serum samples, which was highly efficient. The outcomes of this study give credit to the proposed biosensor to be applied for detection of MNZ in biological samples.
Collapse
Affiliation(s)
- Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, 210037, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mahsa Haddad Irani-Nezhad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Ramin Hassandoost
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Shima Rahim Pouran
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea.
| |
Collapse
|
11
|
Abstract
: Nanomaterial biosensors have revolutionized the entire scientific, technology, biomedical, materials science, and engineering fields. Among all nanomaterials, magnetic nanoparticles, microparticles, and beads are unique in offering facile conjugation of biorecognition probes for selective capturing of any desired analytes from complex real sample matrices (e.g., biofluids such as whole blood, serum, urine and saliva, tissues, food, and environmental samples). In addition, rapid separation of the particle-captured analytes by the simple use of a magnet for subsequent detection on a sensor unit makes the magnetic particle sensor approach very attractive. The easy magnetic isolation feature of target analytes is not possible with other inorganic particles, both metallic (e.g., gold) and non-metallic (e.g., silica), which require difficult centrifugation and separation steps. Magnetic particle biosensors have thus enabled ultra-low detection with ultra-high sensitivity that has traditionally been achieved only by radioactive assays and other tedious optical sources. Moreover, when traditional approaches failed to selectively detect low-concentration analytes in complex matrices (e.g., colorimetric, electrochemistry, and optical methods), magnetic particle-incorporated sensing strategies enabled sample concentration into a defined microvolume of large surface area particles for a straightforward detection. The objective of this article is to highlight the ever-growing applications of magnetic materials for the detection of analytes present in various real sample matrices. The central idea of this paper was to show the versatility and advantages of using magnetic particles for a variety of sample matrices and analyte types and the adaptability of different transducers with the magnetic particle approaches.
Collapse
|
12
|
Sun H, Wu S, Zhou X, Zhao M, Wu H, Luo R, Ding S. Electrochemical sandwich immunoassay for insulin detection based on the use of gold nanoparticle-modified MoS2 nanosheets and the hybridization chain reaction. Mikrochim Acta 2018; 186:6. [DOI: 10.1007/s00604-018-3124-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
13
|
Zhou L, Arugula MA, Chin BA, Simonian AL. Simultaneous Surface Plasmon Resonance/Fluorescence Spectroelectrochemical in Situ Monitoring of Dynamic Changes on Functional Interfaces: A Study of the Electrochemical Proximity Assay Model System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41763-41772. [PMID: 30379060 DOI: 10.1021/acsami.8b13993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the chemical composition and morphology of interfaces plays a vital role in the development of sensors, drug delivery systems, coatings for biomedical implants, and so forth. In many cases, the interface characterization can be performed by a combination of electrochemical and one of the optical techniques. In this study, we further enhanced capabilities in probing interfaces by combining electrochemical characterization with multiple optical techniques, that is, surface plasmon resonance (SPR) and fluorescence spectroscopy. This new combination was utilized to study the electrochemical proximity assay (ECPA)-a recently developed protein recognition strategy for the point-of-care test. The SPR/fluorescence spectroelectrochemical technique has achieved not only recognition of binding components involved in the ECPA model system, estimation of their thicknesses and surface coverages, but more importantly, highly reliable in situ monitoring of dynamic changes of components involved in interfacial binding via cross-validation and confirmation from three simultaneously generated signals-SPR, fluorescence, and electrochemistry. In addition, the obtained corresponding proportions among magnitudes of three signals provide crucial information for future studies on simultaneous characterization of multiple components in one step and differentiation of nonspecific binding events. Another advantage using this technique is that the excitation of fluorescence is not only confined by surface plasmons, but by photons, so the fluorescence information can be also gained as the distance of fluorophores from the surface exceeds the decay length of surface plasmons.
Collapse
Affiliation(s)
- Lang Zhou
- Materials Research and Education Center, Department of Mechanical Engineering , Auburn University , Auburn , Alabama 36849 , United States
| | - Mary A Arugula
- Materials Research and Education Center, Department of Mechanical Engineering , Auburn University , Auburn , Alabama 36849 , United States
| | - Bryan A Chin
- Materials Research and Education Center, Department of Mechanical Engineering , Auburn University , Auburn , Alabama 36849 , United States
| | - Aleksandr L Simonian
- Materials Research and Education Center, Department of Mechanical Engineering , Auburn University , Auburn , Alabama 36849 , United States
| |
Collapse
|
14
|
Premaratne G, Niroula J, Patel MK, Zhong W, Suib SL, Kalkan AK, Krishnan S. Electrochemical and Surface-Plasmon Correlation of a Serum-Autoantibody Immunoassay with Binding Insights: Graphenyl Surface versus Mercapto-Monolayer Surface. Anal Chem 2018; 90:12456-12463. [DOI: 10.1021/acs.analchem.8b01565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gayan Premaratne
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jinesh Niroula
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Manoj K. Patel
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wei Zhong
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven L. Suib
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - A. Kaan Kalkan
- Department of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
15
|
|
16
|
Chen D, Mei Y, Hu W, Li CM. Electrochemically enhanced antibody immobilization on polydopamine thin film for sensitive surface plasmon resonance immunoassay. Talanta 2018; 182:470-475. [DOI: 10.1016/j.talanta.2018.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
|
17
|
Abstract
Diabetes is a complex immune disorder that requires extensive medical care beyond glycemic control. Recently, the prevalence of diabetes, particularly type 1 diabetes (T1D), has significantly increased from 5% to 10%, and this has affected the health-associated complication incidences in children and adults. The 2012 statistics by the American Diabetes Association reported that 29.1 million Americans (9.3% of the population) had diabetes, and 86 million Americans (age ≥20 years, an increase from 79 million in 2010) had prediabetes. Personalized glucometers allow diabetes management by easy monitoring of the high millimolar blood glucose levels. In contrast, non-glucose diabetes biomarkers, which have gained considerable attention for early prediction and provide insights about diabetes metabolic pathways, are difficult to measure because of their ultra-low levels in blood. Similarly, insulin pumps, sensors, and insulin monitoring systems are of considerable biomedical significance due to their ever-increasing need for managing diabetic, prediabetic, and pancreatic disorders. Our laboratory focuses on developing electrochemical immunosensors and surface plasmon microarrays for minimally invasive insulin measurements in clinical sample matrices. By utilizing antibodies or aptamers as the insulin-selective biorecognition elements in combination with nanomaterials, we demonstrated a series of selective and clinically sensitive electrochemical and surface plasmon immunoassays. This review provides an overview of different electrochemical and surface plasmon immunoassays for insulin. Considering the paramount importance of diabetes diagnosis, treatment, and management and insulin pumps and monitoring devices with focus on both T1D (insulin-deficient condition) and type 2 diabetes (insulin-resistant condition), this review on insulin bioassays is timely and significant.
Collapse
Affiliation(s)
- Vini Singh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
18
|
Shen M, Joshi AA, Vannam R, Dixit CK, Hamilton RG, Kumar CV, Rusling JF, Peczuh MW. Epitope-Resolved Detection of Peanut-Specific IgE Antibodies by Surface Plasmon Resonance Imaging. Chembiochem 2018; 19:199-202. [PMID: 29232483 PMCID: PMC5965296 DOI: 10.1002/cbic.201700513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 12/19/2022]
Abstract
Peanut allergy can be life-threatening and is mediated by allergen-specific immunoglobulin E (IgE) antibodies. Investigation of IgE antibody binding to allergenic epitopes can identify specific interactions underlying the allergic response. Here, we report a surface plasmon resonance imaging (SPRi) immunoassay for differentiating IgE antibodies by epitope-resolved detection. IgE antibodies were first captured by magnetic beads bearing IgE ϵ-chain-specific antibodies and then introduced into an SPRi array immobilized with epitopes from the major peanut allergen glycoprotein Arachis hypogaea h2 (Ara h2). Differential epitope responses were achieved by establishing a binding environment that minimized cross-reactivity while maximizing analytical sensitivity. IgE antibody binding to each Ara h2 epitope was distinguished and quantified from patient serum samples (10 μL each) in a 45 min assay. Excellent correlation of Ara h2-specific IgE values was found between ImmunoCAP assays and the new SPRi method.
Collapse
Affiliation(s)
- Min Shen
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Amit A Joshi
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Raghu Vannam
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Chandra K Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Robert G Hamilton
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06032, USA
| | - Mark W Peczuh
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|