1
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
2
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
3
|
High-performance photoelectrochemical immunosensor based on featured photocathode-photoanode operating system. Anal Chim Acta 2022; 1236:340593. [DOI: 10.1016/j.aca.2022.340593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
|
4
|
Li J, Liang X, Zhong R, Liu M, Liu X, Yan HL, Zhou YG. Clinically Applicable Homogeneous Assay for Serological Diagnosis of Alpha-Fetoprotein by Impact Electrochemistry. ACS Sens 2022; 7:3216-3222. [PMID: 36240195 DOI: 10.1021/acssensors.2c01887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor protein quantification with high specificity, sensitivity, and efficiency is of great significance to enable early diagnosis and effective treatment. The existing methods for protein analysis usually suffer from high cost, time-consuming operation, and insufficient sensitivity, making them not clinically friendly. In this work, a label-free homogeneous sensor based on the nano-impact electroanalytic (NIE) technique was proposed for the detection of tumor protein marker alpha-fetoprotein (AFP). The detection principle is based on the recovery of current of single PtNP catalyzed hydrazine oxidation due to the release of the pre-adsorbed passivating aptamers on PtNPs from the competition of the stronger binding between the specific interaction of the AFP aptamer and AFP. The intrinsic one-by-one analytical ability of NIE allows highly sensitive detection, which can be further improved by reducing the reaction/incubation volume. Meanwhile, the current sensor avoids a laborious labeling procedure as well as the separation and washing steps due to the in situ characteristic of NIE. Accordingly, the current sensor enables efficient, highly sensitive, and specific AFP analysis. More importantly, the reliable detection of AFP in diluted real sera from hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the impact electrochemistry-based sensing platform has great potential to be applied in point-of-care devices for HCC liquid biopsy.
Collapse
Affiliation(s)
- Jiebin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China.,College of Biology, Hunan University, Changsha410082, P. R. China
| | - Xianghui Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha410008, P. R. China
| | - Rui Zhong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Meijuan Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Xuan Liu
- Research Center, Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing210003, P. R. China
| | - Hai-Long Yan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
5
|
Lu MJ, Li CJ, Ban R, Chen FZ, Hu J, Gao G, Zhou H, Lin P, Zhao WW. Tuning the Surface Molecular Charge of Organic Photoelectrochemical Transistors with Significantly Improved Signal Resolution: A General Strategy toward Sensitive Bioanalysis. ACS Sens 2022; 7:2788-2794. [PMID: 36069701 DOI: 10.1021/acssensors.2c01493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nature makes use of molecular charges to operate specific biological synthesis and reactions. Targeting advanced opto-bioelectronic sensors, organic photoelectrochemical transistors (OPECTs), taking advantage of the light fuel substituting an external gate potential, is now debuting and expected to serve as a universal platform for studying the rich light-biomatter interplay for new bioanalytics. Given the ubiquity of charged biomolecules in nature, molecular charge manipulation should underpin a generic route for innovative OPECT regulation and operation, which nevertheless has remained unachieved. Herein, this work manifests the biological tuning of surface charge toward the OPECT biosensor, which was exemplified by a light-sensitive CdS quantum dot (QD) gate electrode interfaced by a smart DNA superstructure with adenosine triphosphate (ATP) responsiveness. Highly negative-charged supramolecular DNA concatemers were self-assembled via sequential hybridization, and the ATP-triggered disassembly of the DNA concatemers would cause a tandem change of the effective gate voltage and transfer characteristics with significantly improved resolution. The present opto-bioelectronic device translates the events of charged molecules into amplified electrical signals and outlines a generic format for the future exploitation of rich biological tunability and light-biomatter interplay for innovative bioanalytics and beyond.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Development of a sensitive phage-mimotope and horseradish peroxidase based electrochemical immunosensor for detection of O,O-dimethyl organophosphorus pesticides. Biosens Bioelectron 2022; 218:114748. [DOI: 10.1016/j.bios.2022.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
|
7
|
A sensitive photoelectrochemical aptasensor for enrofloxacin detection based on plasmon-sensitized bismuth-rich bismuth oxyhalide. Talanta 2022; 246:123515. [DOI: 10.1016/j.talanta.2022.123515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 02/04/2022] [Accepted: 04/24/2022] [Indexed: 01/24/2023]
|
8
|
Li X, Cui K, Xiu M, Zhou C, Li L, Zhang J, Hao S, Zhang L, Ge S, Huang Y, Yu J. In situ growth of WO 3/BiVO 4 nanoflowers onto cellulose fibers to construct photoelectrochemical/colorimetric lab-on-paper devices for the ultrasensitive detection of AFP. J Mater Chem B 2022; 10:4031-4039. [PMID: 35506741 DOI: 10.1039/d2tb00297c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, novel dual-mode lab-on-paper devices based on in situ grown WO3/BiVO4 heterojunctions onto cellulose fibers, as signal amplification probes, were successfully fabricated by the integration of photoelectrochemical (PEC)/colorimetric analysis technologies into a paper sensing platform for the ultrasensitive detection of alpha-fetoprotein (AFP). Specifically, to achieve an impressive PEC performance of the lab-on-paper device, the WO3/BiVO4 heterojunction was in situ grown onto the surface of cellulose fibers assisted with Au nanoparticle (Au NP) functionalization for enhancing the conductivity of the working zone of the device. With the target concentration increased, more immune conjugates could be captured by the proposed paper photoelectrode, which could lead to a quantitative decrease in the photocurrent intensity, eventually realizing the accurate PEC signal readout. To meet the requirement of end-user application, a colorimetric signal readout system was designed for the lab-on-paper device based on the color reaction of 3,3'5,5'-tetramethylbenzidine (TMB) oxidized by WO3/BiVO4 nanoflowers in the presence of H2O2. Noticeably, it is the first time that the WO3/BiVO4 heterojunction is in situ grown onto cellulose fibers, which enhances the sensitivity in view of both their PEC activity and catalytic ability. By controlling the conversion process of hydrophobicity and hydrophilicity on the lab-on-paper device combined with diverse origami methods, the dual-mode PEC/colorimetric signal output for the ultrasensitive AFP detection was realized. Under optimal conditions, the proposed dual-mode lab-on-paper device could enable the sensitive PEC/colorimetric diagnosis of AFP in the linear range of 0.09-100 ng mL-1 and 5-100 ng mL-1 with the limit of detection of 0.03 and 1.47 ng mL-1, respectively.
Collapse
Affiliation(s)
- Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Chenxi Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Guangdong 523808, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, P. R. China
| | - Shenguang Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
9
|
Dashtian K, Hajati S, Ghaedi M. Molecular Imprinted Poly(2,5-benzimidazole)-Modified VO 2-CuWO 4 Homotype Heterojunction for Photoelectrochemical Dopamine Sensing. Anal Chem 2022; 94:6781-6790. [PMID: 35467838 DOI: 10.1021/acs.analchem.2c00485] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A photoactive molecularly imprinted poly(2,5-benzimidazole)-modified vanadium dioxide-cupric tungstate (VO2-CuWO4) as an efficient photosensitive n-n type-II heterojunction thin film was electrochemically deposited on Ti substrate for the selective and robust photoelectrochemical (PEC) bioanalysis of dopamine (DA). The optical absorption of n-VO2/n-CuWO4 type-II heterojunction was capably broadened toward the visible region, which permitted superior light-harvesting and robust carriers generation, separation, and transfer processes significantly enhancing the anodic photocurrent, as confirmed by a series of PEC analyses. Findings revealed that the as-prepared label-free MIP-PEC sensor can quantitatively monitor DA in a linear range of 1 nM to 200 μM with a detection limit of 0.15 nM. This MIP-PEC sensor showed robust selectivity under conditions with high concentrations of interfering substances, which can be recovered in the real samples of urine, cocoa chocolate, and diluted yogurt, indicating its promising potential applications in biological and food samples. This work not only featured the use of photoelectrically active MIP/VO2-CuWO4 for PEC detection of DA, but also provided a new horizon for the design and implementation of functional polymers/metal oxides heterojunction materials in the field of PEC sensors and biosensors.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Shaaker Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), Tehran 31787-316, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
10
|
Li X, Wang J, Xia J, Fang Y, Hou Y, Fu X, Shalom M, Wang X. One-Pot Synthesis of CoS 2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. CHEMSUSCHEM 2022; 15:e202200330. [PMID: 35212173 DOI: 10.1002/cssc.202200330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Polymeric carbon nitride (PCN) has attracted intensive interest as sustainable, metal-free semiconductor for photoelectrochemical (PEC) water splitting. Charge transfer along the films acts as the main concern to restrict the performance due to the amorphous nature of polymer. Herein, gradient concentration of cobalt disulfide (CoS2 ) merged in PCN films was realized as CSCN photoanode by a one-pot synthesis. Owing to the unique properties of CoS2 , namely high conductivity, the charge transfer of the CSCN photoanode was promoted, and thus the performance for PEC water oxidation was improved. The optimal photoanode exhibited a photoanodic current of 200 μA cm-2 at 1.23 V versus reversible hydrogen electrode under air mass 1.5 global (AM 1.5G) illumination, which was approximately 4 times that of the pristine PCN photoanode. This work provides a new design of metal-free photoanodes to improve the performance of water splitting.
Collapse
Affiliation(s)
- Xiaochun Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiawen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jiawei Xia
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
11
|
Designing nanosheet heterostructures of CuO grown on Bi2MoO6 as a photoelectrochemical biosensor for detecting Alpha‐fetoprotein. ChemElectroChem 2022. [DOI: 10.1002/celc.202101669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Gao Y, Zeng Y, Liu X, Tang D. Liposome-Mediated In Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay. Anal Chem 2022; 94:4859-4865. [PMID: 35263077 DOI: 10.1021/acs.analchem.2c00283] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exploiting innovative sensing mechanisms and their rational implementation for selective and sensitive detection has recently become one of the mainstream research directions of photoelectrochemical (PEC) bioanalysis. In contrast to existing conventional strategies, this study presents a new liposome-mediated method via in situ combining ZnInS nanosheets (ZIS NSs) with SnS2 to form a ZIS NSs/SnS2 type-I heterojunction on fluorine-doped tin oxide (FTO) electrodes for highly sensitive PEC immunoassays. Specifically, alkaline phosphatase (ALP)-encapsulated liposomes were confined within 96-well plates by sandwich immunorecognition and subsequently subjected to lysis treatment. Enzymatically produced H2S by the released ALP was then directed to react with Sn(IV) to engender the ZIS NSs/SnS2 type-I heterojunction on the FTO/ZIS NSs-Sn(IV) electrode, resulting in a change in the photogenerated electron-hole transfer path of the photoelectrode and reduction in current signaling. Exemplified by heart-type fatty acid binding protein (h-FABP) as a target, the constructed PEC sensor showed good stability and selectivity in a biosensing system. Under optimal conditions, the as-prepared sensing platform displayed high sensitivity for h-FABP with a dynamic linear response range of 0.1-1000 pg/mL and a lower detection limit of 55 fg/mL. This research presents the liposome-mediated PEC immunoassay based on in situ type-I heterojunction establishment, providing a new protocol for analyzing various targets of interest.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
13
|
Abstract
Nowadays, the emerging photoelectrochemical (PEC) bioanalysis has drawn intensive interest due to its numerous merits. As one of its core elements, functional nanostructured materials play a crucial role during the construction of PEC biosensors, which can not only be employed as transducers but also act as signal probes. Although both chemical composition and morphology control of nanostructured materials contribute to the excellent analytical performance of PEC bioassay, surveys addressing nanostructures with different dimensionality have rarely been reported. In this review, according to classification based on dimensionality, zero-dimensional, one-dimensional, two-dimensional, and three-dimensional nanostructures used in PEC bioanalysis are evaluated, with an emphasis on the effect of morphology on the detection performances. Furthermore, using the illustration of recent works, related novel PEC biosensing patterns with promising applications are also discussed. Finally, the current challenges and some future perspectives in this field are addressed based on our opinions.
Collapse
|
14
|
Ding J, Zhou Y, Wang Q, Ai S. Photoelectrochemical biosensor for DNA hydroxymethylation detection based on the enhanced photoactivity of in-situ synthesized Bi 4NbO 8Cl@Bi 2S 3 heterojunction. Biosens Bioelectron 2021; 194:113580. [PMID: 34454344 DOI: 10.1016/j.bios.2021.113580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
As an important epigenetic modification, 5-hydroxymethylcytosine (5hmC) aroused wide concern about the distribution and the function. Due to the necessity of 5hmC detection, a novel photoelectrochemical (PEC) biosensor was established based on the in-situ generated heterojunction of Bi4NbO8Cl@Bi2S3, which was employed as the substrate material with excellent photoelectric property. The specific recognition of 5hmC relied on the covalent reaction between -CH2OH of 5hmC and -SH on the substrate electrode under the catalysis of M.HhaI methyltransferase. Afterwards, ZrO2 was used as signal amplification unit capturing by the specific reaction of Zr with the phosphate group of 5hmC. The experimental results demonstrated well specificity and sensitivity of this biosensor. Under optimal conditions, the linear relationship between the photocurrent and the logarithm value of 5hmC concentration was constructed with the range from 0.3 to 300 nM and the detection limit of 0.0779 nM (S/N = 3). The procedures of constructing this biosensor were compact and convenient, and this biosensor realized actual detection of 5hmC level in wheat sample. Significantly, this biosensor was applied to a preliminary study that the heavy metal Pb2+ and the perfluorooctanoic acid influence the expression of 5hmC in the genomic DNA of wheat seedling roots and leaves.
Collapse
Affiliation(s)
- Jia Ding
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China.
| | - Qian Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| |
Collapse
|
15
|
Dutta K, De S, Das B, Bera S, Guria B, Ali MS, Chattopadhyay D. Development of an Efficient Immunosensing Platform by Exploring Single-Walled Carbon Nanohorns (SWCNHs) and Nitrogen Doped Graphene Quantum Dot (N-GQD) Nanocomposite for Early Detection of Cancer Biomarker. ACS Biomater Sci Eng 2021; 7:5541-5554. [PMID: 34802226 DOI: 10.1021/acsbiomaterials.1c00753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, a novel electrochemical immunosensor based on nitrogen doped graphene quantum dot (N-GQD) and single-walled carbon nanohorns (SWCNHs) was developed for the detection of α-fetoprotein (AFP), a cancer biomarker. Thus, to fabricate the platform of the immunosensor, nanocomposite architecture was developed by decorating N-GQD on the surface of the SWCNHs. The resulting hybrid architecture (N-GQD@SWCNHs) functioned as an exceptional base for the immobilization of antibody (Anti-AFP) through carbodiimide reaction with good stability and bioactivity. The immunosensor was prepared by evenly distributing the bioconjugates (N-GQD@SWCNHs/Anti-AFP) dispersion on the surface of the glassy carbon electrode, and subsequently blocking the remaining active sites by bovine serum albumin to prevent the nonspecific adsorption. Cyclic voltammetry and electrochemical impedance spectroscopy technique was employed to investigate the assembly process of the immunosensor. Under optimal conditions, the immunosensor exhibited a broad dynamic range in between 0.001 ng/mL to 200 ng/mL and a low detection limit of 0.25 pg/mL. Furthermore, the sensor showed high selectivity, desirable stability, and reproducibility. Measurements of AFP in human serum gave outstanding recovery within 99.2% and 102.1%. Thus, this investigation and the amplification strategy exhibited a potential role of the developed nanocomposite based sensor for early clinical screening of cancer biomarkers.
Collapse
Affiliation(s)
- Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata 700129, India
| | - Beauty Das
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Suman Bera
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Biswanath Guria
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Mir Sahidul Ali
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
16
|
|
17
|
Wang Y, Xia L, Xiang X, Yuan R, Wei S. A new photoelectrochemical biosensor based on FeOOH and exonuclease III-aided dual recycling signal amplification for HPV-16 detection. Chem Commun (Camb) 2021; 57:6416-6419. [PMID: 34095911 DOI: 10.1039/d1cc00756d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, based on iron oxyhydroxide (FeOOH) as the photoactive material and exonuclease III (exo III)-aided dual recycling signal amplification, a new photoelectrochemical (PEC) biosensor was successfully developed for human papillomavirus-16 (HPV-16) detection with a wide linear range from 0.5 fM to 1 nM and a low detection limit of 0.17 fM.
Collapse
Affiliation(s)
- Yanlin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Lingying Xia
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xuelian Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shaping Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
18
|
Plasmonic TiO2@Au NPs//CdS QDs photocurrent-direction switching system for ultrasensitive and selective photoelectrochemical biosensing with cathodic background signal. Anal Chim Acta 2021; 1153:338283. [DOI: 10.1016/j.aca.2021.338283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022]
|
19
|
Chang J, Lv W, Wu J, Li H, Li F. Simultaneous photoelectrochemical detection of dual microRNAs by capturing CdS quantum dots and methylene blue based on target-initiated strand displaced amplification. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.05.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Development of biosensors for detection of alpha-fetoprotein: As a major biomarker for hepatocellular carcinoma. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115961] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Recent advances in optical biosensors for the detection of cancer biomarker α-fetoprotein (AFP). Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Shang M, Gao Y, Zhang J, Yan J, Song W. Signal-on cathodic photoelectrochemical aptasensing of insulin: Plasmonic Au activated amorphous MoS x photocathode coupled with target-induced sensitization effect. Biosens Bioelectron 2020; 165:112359. [PMID: 32729492 DOI: 10.1016/j.bios.2020.112359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Cathodic photoelectrochemical (PEC) bioassay is more resistant to reductive interferents, and development of high-performance photocathode is imperatively required in precise monitoring target in complex matrices. In this work, a plasmonic Au activated amorphous MoSx photocathode (a-MoSx/Au) was fabricated by sequential electrodeposition. Coupled with a sensitization amplification strategy induced by target-aptamer recognition, an ultrasensitive and high-affinitive signal-on cathodic PEC aptasensor for insulin detection was developed. Under optimum conditions, the sensor exhibits a wide linear range (0.1 pg/mL~100 ng/mL) and an ultralow detection limit (28 fg/mL) even lower than most sensors reported so far. Plasmonic Au activation and target-induced sensitization effect are responsible for high-performance PEC aptasensing of insulin at a-MoSx photocathode.
Collapse
Affiliation(s)
- Mengxiang Shang
- College of Chemistry, Jilin University, Changchun, 130012, PR China; College of Chemistry, Jilin Normal University, Siping, 13600, PR China
| | - Yao Gao
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jinling Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jianyue Yan
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
24
|
Bao C, Liu X, Shao X, Ren X, Zhang Y, Sun X, Fan D, Wei Q, Ju H. Cardiac troponin I photoelectrochemical sensor: {Mo 368} as electrode donor for Bi 2S 3 and Au co-sensitized FeOOH composite. Biosens Bioelectron 2020; 157:112157. [PMID: 32250931 DOI: 10.1016/j.bios.2020.112157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 01/14/2023]
Abstract
A suitable electron donor, which guarantees the stability of the whole system, is considered as the driving force of the PEC sensor. Nowadays, searching appropriate electron donor is still one of the orientations to explorate in the field of sensor. Na48[H496Mo368O1464S48]·ca.1000H2O (abbr. {Mo368}), as a type of polyoxometalate, has perfect morphology, definite size and unique electronic property. Due to the prominent water solubility, {Mo368} usually releases small cations and exists as large anions in the ultrapure water. The interesting property endows {Mo368} with excellent reducibility, which provides great feasibility to become an outstanding electron donor. In addition, FeOOH prepared through a simple operation owns high adsorption capacity, which ensures the fastness of other materials. Subsequently, the narrow band-gap of Bi2S3 and the unique noble metal properties of Au nanoparticles are utilized to co-sensitize FeOOH to improve the light-harvesting capability and photoelectric conversion efficiency. Combined with the specificity recognition of antigen and antibody, a novel photoelectrochemical sensor is constructed with a wide detection range of 1.00 pg mL-1 - 100 ng mL-1 and low detection limit (0.76 pg mL-1), which achieves the sensitive detection of cardiac troponin I in early diagnosis of cardiovascular disease.
Collapse
Affiliation(s)
- Chunzhu Bao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xin Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xinrong Shao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
25
|
Chen K, Xue J, Zhou Q, Zhang Y, Zhang M, Zhang Y, Zhang H, Shen Y. Coupling metal-organic framework nanosphere and nanobody for boosted photoelectrochemical immunoassay of Human Epididymis Protein 4. Anal Chim Acta 2020; 1107:145-154. [DOI: 10.1016/j.aca.2020.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/28/2019] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
|
26
|
Yang W, Wang X, Hao W, Wu Q, Peng J, Tu J, Cao Y. 3D hollow-out TiO 2 nanowire cluster/GOx as an ultrasensitive photoelectrochemical glucose biosensor. J Mater Chem B 2020; 8:2363-2370. [PMID: 32104865 DOI: 10.1039/d0tb00082e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultra-high sensitivity is difficult to achieve using conventional enzymatic glucose biosensors due to the lack of exposed active sites and steric-hinderance effects. Thus, in the present study, we report a photoelectrochemical (PEC) enzymatic glucose biosensor based on 3-dimensional (3D) hollow-out titanium dioxide (TiO2) nanowire cluster (NWc)/glucose oxidase (GOx), providing more number of exposed active sites, thus constructing a sensor with a higher affinity toward glucose reaction. Excellent performance with an ultra-high sensitivity of 58.9 μA mM-1 cm-2 and 0-2 mM linear range with a determination limit of 8.7 μM was obtained for the detection of glucose. This study might provide a new approach to expose active sites efficiently for remarkable photoelectrochemical performances.
Collapse
Affiliation(s)
- Wenke Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Hainan University, Haikou 570228, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Li F, Yin H, Chen Y, Wang S, Li J, Zhang Y, Li C, Ai S. Preparation of P-g-C3N4-WS2 nanocomposite and its application in photoelectrochemical detection of 5-formylcytosine. J Colloid Interface Sci 2020; 561:348-357. [DOI: 10.1016/j.jcis.2019.10.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
|
28
|
|
29
|
Weng Q, Zheng X, Zhang S, Zhu L, Huang Q, Liu P, Li X, Kang J, Han Z. A photoelectrochemical immunosensor based on natural pigment sensitized ZnO for alpha-fetoprotein detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wang Q, Zhou M, Zhang L. A dual mode photoelectrochemical sensor for nitrobenzene and L-cysteine based on 3D flower-like Cu 2SnS 3@SnS 2 double interfacial heterojunction photoelectrode. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121026. [PMID: 31446355 DOI: 10.1016/j.jhazmat.2019.121026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 05/14/2023]
Abstract
In this work, 3D hierarchical Cu2SnS3@SnS2 flower assembled from nanopetals with sandwich-like Cu2SnS3-SnS2-Cu2SnS3 double interfacial heterojunction was successfully designed and synthesized on fluoride doped tin oxide (FTO) for photoelectrochemical (PEC) sensor by in situ electrodeposition p-type Cu2SnS3 nanoparticles on both inner and outer surfaces of n-type SnS2 nanopetals. The unique double interfacial heterojunction simultaneously combines 3D flower-like architectures to drastically increase the light trapping and absorption in visible-near infrared range (Vis-NIR), and dramatically inhibites the charge carrier recombination, which is crucial for boosting the PEC activity. Benefitting from the shape and compositional merits, the Cu2SnS3@SnS2 heterojunction possess dual-mode signal by controlling the electrodeposition time to manipulate the composition ratio of Cu2SnS3 and SnS2. The Cu2SnS3@SnS2/FTO electrode not only exhibits excellent photoeletro-reduction capacity for ultra-sensitive sensing trace persistent organic pollutant (nitrobenzene, NB), but also presents photoeletro-oxidization activity for high selective detection of L-cysteine (L-Cys) without any auxiliary enzyme under the light illumination. Dual mode sensor displayed superb performance for the detection of NB/L-Cys, showing a wide linear range from 100 pM to 300 μM/10 nM to 100 μM and a low detection limit (3S/N) of 68 pM/8.5 nM, respectively. Such a tunable double interfacial heterojunction design opened up new avenue for constructing multifunction PEC sensing platform.
Collapse
Affiliation(s)
- Qiong Wang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, 110036, People's Republic of China
| | - Min Zhou
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, 110036, People's Republic of China.
| |
Collapse
|
31
|
Zhang N, Wang Y, Zhao G, Wang C, Li Y, Zhang Y, Wang H, Wei Q. A photoelectrochemical immunosensor based on CdS/CdTe-cosensitized SnO2 as a platform for the ultrasensitive detection of amyloid β-protein. Analyst 2020; 145:619-625. [DOI: 10.1039/c9an01848d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An ultrasensitive label-free photoelectrochemical immunosensor was developed to detect amyloid β-protein based on CdS/CdTe-cosensitized SnO2 nanoflowers.
Collapse
Affiliation(s)
- Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Yaoguang Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Chao Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Yueyuan Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| |
Collapse
|
32
|
Zhou Q, Li G, Chen K, Yang H, Yang M, Zhang Y, Wan Y, Shen Y, Zhang Y. Simultaneous Unlocking Optoelectronic and Interfacial Properties of C60 for Ultrasensitive Immunosensing by Coupling to Metal–Organic Framework. Anal Chem 2019; 92:983-990. [DOI: 10.1021/acs.analchem.9b03915] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qing Zhou
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Kaiyang Chen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Mengran Yang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|
33
|
Dong J, Li H, Yan P, Xu L, Zhang J, Qian J, Chen J, Li H. A composite prepared from BiOBr and gold nanoparticles with electron sink and hot-electron donor properties for photoelectrochemical aptasensing of tetracycline. Mikrochim Acta 2019; 186:794. [PMID: 31734780 DOI: 10.1007/s00604-019-3954-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/17/2019] [Indexed: 01/14/2023]
Abstract
A photoelectrochemical (PEC) aptasensor is described for detecting tetracycline (TC). A gold nanoparticles/BiOBr (AuNPs/BiOBr) composite was prepared where the AuNPs play a key function in carrier transfer which is ascribed to the wavelength-dependent dual function as an electron sink and as a hot-electron donor. Due to this dual function, the composite exhibits a wide photo-response and high electron transfer efficiency. This results in enormously enhanced PEC response. The TC-aptamer was immobilized on an ITO modified with AuNPs/BiOBr via Au-S covalent bonding. The resulting PEC aptasensor possesses a wide linear range (1-104 ng L-1) and a low detection limit (0.35 ng L-1; at S/N = 3). Graphical abstractSchematic representation of a photoelectrochemical aptasensor for tetracycline based on the use of a AuNP/BiOBr composite with electron sink and hot-electron donor properties of the gold nanoparticles.
Collapse
Affiliation(s)
- Jintao Dong
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Henan Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Pengcheng Yan
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Junchao Qian
- Jiangsu Key Laboratory for Environment Functional Materials, Jiangsu Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Jianping Chen
- Jiangsu Key Laboratory for Environment Functional Materials, Jiangsu Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
34
|
Fu B, Wu W, Gan L, Zhang Z. Bulk/Surface Defects Engineered TiO 2 Nanotube Photonic Crystals Coupled with Plasmonic Gold Nanoparticles for Effective in Vivo Near-Infrared Light Photoelectrochemical Detection. Anal Chem 2019; 91:14611-14617. [PMID: 31660734 DOI: 10.1021/acs.analchem.9b03733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoelectrochemical (PEC) techniques are of fundamental and practical importance, and they have been widely used for solar energy conversion and experimental protection. Besides these important applications, an emerging and fast developing PEC application of PEC bioanalysis is receiving more attention from both academic and clinic communities. However, the typical PEC biosensing is still limited under illumination of ultraviolet and visible (UV/vis) light, which hampers its in vivo detection in deep tissues. Expanding the optical absorption wavelength of photoelectrodes from the UV/vis light region into the near-infrared (NIR) light region is highly desirable due to its deep tissue penetrability and minimal invasiveness for organisms, but the exploration of a facile strategy to implement efficient NIR absorption with biocompatible materials is still a big challenge. Herein, under the guidance of theorical calculations, we propose a strategy through modulation of bulk/surface defects and decoration of Au nanoparticles on TiO2 nanotube photonic crystals to implement efficient NIR response and thus successfully realize sensitive and selective PEC detection of antibiotics in real bio- and experimental-samples under NIR illumination. In addition, we first implement the in vivo PEC detection under illumination of NIR light. We have faith that this new NIR photoelectric responsive strategy will provide a broad platform for detection of life-related biomolecules in deep tissues or even in vivo for real-time measurement and shed light on the intrinsic connections between biomarkers and clinical diseases.
Collapse
Affiliation(s)
- Baihe Fu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Wenlong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Liyong Gan
- Institute for Structure and Function and Department of Physics , Chongqing University , Chongqing 400030 , China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
35
|
A signal-off type photoelectrochemical immunosensor for the ultrasensitive detection of procalcitonin: Ru(bpy)32+ and Bi2S3 co-sensitized ZnTiO3/TiO2 polyhedra as matrix and dual inhibition by SiO2/PDA-Au. Biosens Bioelectron 2019; 142:111513. [DOI: 10.1016/j.bios.2019.111513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
|
36
|
Wang H, Zhang B, Xi J, Zhao F, Zeng B. Z-scheme I-BiOCl/CdS with abundant oxygen vacancies as highly effective cathodic material for photocathodic immunoassay. Biosens Bioelectron 2019; 141:111443. [DOI: 10.1016/j.bios.2019.111443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
|
37
|
Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Mikrochim Acta 2019; 186:633. [DOI: 10.1007/s00604-019-3706-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/21/2019] [Indexed: 01/10/2023]
|
38
|
Jia Y, Yang L, Xue J, Zhang N, Fan D, Ma H, Ren X, Hu L, Wei Q. Bioactivity-Protected Electrochemiluminescence Biosensor Using Gold Nanoclusters as the Low-Potential Luminophor and Cu 2S Snowflake as Co-reaction Accelerator for Procalcitonin Analysis. ACS Sens 2019; 4:1909-1916. [PMID: 31259531 DOI: 10.1021/acssensors.9b00870] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expansion of electrochemiluminescence (ECL) technology to immunoassay at the core of care emphasizes all immune molecules will not be inactivated in the analysis process. That poses a major challenge to ECL-based biosensors due to the deoxynucleotide sequences of an antigen or antibody could be oxidized through a route of excessive cyclic potential. Herein, an ultrasensitive ECL biosensor was developed based on a novel bioactivity-protected sensing strategy utilizing Au nanoclusters (Au NCs) as low-potential luminophor for detection of procalcitonin (PCT). Bovine serum albumin (BSA)-templated Au NCs exhibited a low-potential anodic ECL signal in triethylamine (TEA) solution at 0.87 V, where it is suitable for the survival of immune molecules. Taking advantage of good conductivity and high surface area, a Cu2S snowflake not only functions as a satisfying substrate for connecting immune molecules but also acts as co-reaction accelerator to produce more cationic radicals TEA•+, which could improve the ECL intensity needed to meet the requirements of trace analysis. Otherwise, HWRGWVC (HC-7) heptapeptide as specific antibody immobilizer for site-oriented fixation was introduced to further maintain the bioactivity of an antibody. In view of the preceding discussion, the obtained biosensor exhibited ultrahigh immune recognition to targets so that the detection limit was as low as an unprecedented value of 2.36 fg/mL, which will be of great significance to the application and development of a biosensor in the future.
Collapse
Affiliation(s)
- Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lei Yang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jingwei Xue
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lihua Hu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
39
|
Electrochemical Sensing of α-Fetoprotein Based on Molecularly Imprinted Polymerized Ionic Liquid Film on a Gold Nanoparticle Modified Electrode Surface. SENSORS 2019; 19:s19143218. [PMID: 31336606 PMCID: PMC6679504 DOI: 10.3390/s19143218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 07/16/2019] [Indexed: 01/29/2023]
Abstract
A molecularly imprinted sensor was fabricated for alpha-fetoprotein (AFP) using an ionic liquid as a functional monomer. Ionic liquid possesses many excellent characteristics which can improve the sensing performances of the imprinted electrochemical sensor. To demonstrate this purpose, 1-[3-(N-cystamine)propyl]-3-vinylimidazolium tetrafluoroborate ionic liquid [(Cys)VIMBF4] was synthesized and used as a functional monomer to fabricate an AFP imprinted polymerized ionic liquid film on a gold nanoparticle modified glassy carbon electrode (GCE) surface at room temperature. After removing the AFP template, a molecularly imprinted electrochemical sensor was successfully prepared. The molecularly imprinted sensor exhibits excellent selectivity towards AFP, and can be used for sensitive determination of AFP. Under the optimized conditions, the imprinted sensor shows a good linear response to AFP in the concentration range of 0.03 ng mL−1~5 ng mL−1. The detection limit is estimated to be 2 pg mL−1.
Collapse
|
40
|
Fan B, Fan Q, Cui M, Wu T, Wang J, Ma H, Wei Q. Photoelectrochemical Biosensor for Sensitive Detection of Soluble CD44 Based on the Facile Construction of a Poly(ethylene glycol)/Hyaluronic Acid Hybrid Antifouling Interface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24764-24770. [PMID: 31257854 DOI: 10.1021/acsami.9b06937] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The serum level of soluble CD44 is directly associated with several clinicopathological parameters of malignant diseases. There is a great need for the development of an easy and cost-effective detection method for soluble CD44 for both the diagnosis and the treatment of cancers. In this work, a simple photoelectrochemical (PEC) method for the sensitive detection of serum-soluble CD44 is proposed based on the construction of a hybrid antifouling coating on the TiO2 substrate. Hyaluronic acid (HA) and poly(ethylene glycol) (PEG) are co-immobilized using a biomimetic one-step surface functionalization approach. The immobilized HA shows strong recognition abilities toward soluble CD44, and the synergistic antifouling effect achieved by the combination of PEG and HA improves the sensing specificity. Based on the inhibitory effect of CD44 recognition on the PEC signal of the TiO2 substrate, a PEC biosensor is developed with a wide response range and a low detection limit. The development of antibody-free biosensors may promote the application of soluble CD44 as a biomarker for the diagnosis and treatment of malignant diseases.
Collapse
Affiliation(s)
- Bobo Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Qi Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Min Cui
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Jinshen Wang
- Shandong Provincial Hospital Affiliated to Shandong University , Jinan 250012 , P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P. R. China
| |
Collapse
|
41
|
Bai L, Chen Y, Liu X, Zhou J, Cao J, Hou L, Guo S. Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Anal Chim Acta 2019; 1080:75-83. [PMID: 31409477 DOI: 10.1016/j.aca.2019.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains the top fatal infection continuing to threat public health, and the present detection method for MTB is facing great challenges with the global TB burden. In response to this issue, a novel electrochemical DNA biosensor was developed for detecting the IS6110 fragment within MTB. For the first time, the nanohybrid of gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet (Au-nano-C60/NGS) directly served as a new signal tag to generate signal response without additional redox molecules and subsequently labeled with signal probes (SPs) to form tracer label to achieve signal amplification. Additionally, a biotin-avidin system was introduced to immobilize abundant capture probes (CPs), further improving the sensitivity of the proposed biosensor. After a typical sandwich hybridization, the proposed electrochemical DNA biosensor was incubated with tetraoctylammonium bromide (TOAB), which was used as a booster to induce the intrinsic redox activity of the tracer label, resulting in a discriminating current response. The proposed electrochemical DNA biosensor shows a broad linear range for MTB determination from 10 fM to 10 nM with a low limit of detection (LOD) of 3 fM. In addition, this proposed biosensor not only distinguishes mismatched DNA sequence, but also differentiates MTB from other pathogenic agents. More importantly, it has been preliminarily applied in clinical detection and displayed excellent ability to identify the PCR products of clinical samples. There is great potential for this developed method to be used in early diagnosis and monitor of TB.
Collapse
Affiliation(s)
- Lijuan Bai
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinzhu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jing Zhou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jun Cao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Liang Hou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
42
|
Qiao Z, Zhang H, Zhou Y, Zheng J. C 60 Mediated Ion Pair Interaction for Label-Free Electrochemical Immunosensing with Nanoporous Anodic Alumina Nanochannels. Anal Chem 2019; 91:5125-5132. [PMID: 30908018 DOI: 10.1021/acs.analchem.8b05673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Label-free biosensing based on the nanoporous anodic alumina (NAA) membrane emerged as a versatile biosensing platform in the recent decade. In the present work, we developed a new immunosensing strategy based on the nanochannels of NAA and the ion pair interaction mediated by electrochemistry of C60. The NAA served as the matrix for the immobilization of the capture antibodies. The incubation of target antigens resulted in the formation of the immunocomplexes and thus an increase of the steric hindrance of the nanochannels. Therefore, the concentration of the redox probe transported through the nanochannels decreases, which can be detected at the working electrode modified with C60. Herein, we initially found that the cathodic peak ascribed to the reduction of C60 to C60- was obviously enhanced by the presence of the redox probe K3[Fe(CN)6] and which was contributed to the formation of a ternary ion association complex among C60, tetraoctylammonium bromide, and K3[Fe(CN)6]. Therefore, the transportation of K3[Fe(CN)6] though the NAA-based bionanochannels can be detected by a C60 modified electrode with an amplified signal. Choosing human epididymis protein 4 (HE4) as the model target, a linear range of 1.0 ng mL-1 to 100 ng mL-1 can be established between the peak current obtained from the differential pulse voltammetric response of the platform and the concentration of HE4. The detection limit was 0.2 ng mL-1. This study not only provides a new avenue to develop the other nanochannel-based biosensing platform for a variety of other disease biomarkers but also contributes to the electrochemistry of fullerene.
Collapse
Affiliation(s)
- Zhe Qiao
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry , Northwest University , Xi'an 710127 , China
| | - Hongfang Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry , Northwest University , Xi'an 710127 , China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Jianbin Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry , Northwest University , Xi'an 710127 , China
| |
Collapse
|
43
|
Etching reaction-based photoelectrochemical immunoassay of aflatoxin B1 in foodstuff using cobalt oxyhydroxide nanosheets-coating cadmium sulfide nanoparticles as the signal tags. Anal Chim Acta 2019; 1052:49-56. [DOI: 10.1016/j.aca.2018.11.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022]
|
44
|
Liu Q, Yang T, Ye Y, Chen P, Ren X, Rao A, Wan Y, Wang B, Luo Z. A highly sensitive label-free electrochemical immunosensor based on an aligned GaN nanowires array/polydopamine heterointerface modified with Au nanoparticles. J Mater Chem B 2019; 7:1442-1449. [PMID: 32255015 DOI: 10.1039/c8tb03233e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aligned GaN nanowire arrays show great potential not only in optoelectronic devices, but also in sensitive biosensor applications, owing to their excellent chemical stability and biocompatibility, as well as high electron mobility and surface-to-volume ratio. However, to construct electrochemical immunosensors, proper surface modification of GaN nanowires, which can enable efficient charge transfer and provide large densities of immobilization sites for antibodies to anchor, is still challenging. Herein we demonstrate a highly sensitive label-free electrochemical immunosensing platform based on the integration of polydopamine (PDA) on a GaN nanowire surface. The PDA polymer was self-assembled on GaN nanowire surfaces via organic polymerization. The interface dipole layer generated at the GaN nanowire array/PDA polymer heterointerface enabled efficient charge transfer. The aligned GaN nanowire array/PDA hybrids were further modified with gold nanoparticles for subsequent covalent binding of antibodies. The fabricated immunosensor yielded a wide linear range between 0.01 and 100 ng ml-1 and a detection limit as low as 0.003 ng ml-1 for the detection of alpha-fetoprotein (AFP). The immunosensor showed good selectivity, reproducibility, and stability and was utilized in human serum samples for AFP detection. This work demonstrates the superiority of taking advantage of a nanowire array configuration and a semiconductor/polymer heterointerface in an immunosensing platform for sensitivity enhancement.
Collapse
Affiliation(s)
- Qingyun Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xue H, Chen K, Zhou Q, Pan D, Zhang Y, Shen Y. Antimony selenide/graphene oxide composite for sensitive photoelectrochemical detection of DNA methyltransferase activity. J Mater Chem B 2019; 7:6789-6795. [DOI: 10.1039/c9tb01541h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An Sb2Se3/graphene oxide composite was applied as both the photoelectrochemical probe and substrate for biomolecule conjugation for the construction of a “signal-off” sandwich-type biosensor for DNA methyltransferase activity detection.
Collapse
Affiliation(s)
- Huaijia Xue
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Kaiyang Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Qing Zhou
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| |
Collapse
|
46
|
Feng J, Li F, Li X, Ren X, Fan D, Wu D, Ma H, Du B, Zhang N, Wei Q. An amplification label of core–shell CdSe@CdS QD sensitized GO for a signal-on photoelectrochemical immunosensor for amyloid β-protein. J Mater Chem B 2019; 7:1142-1148. [DOI: 10.1039/c8tb03164a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Core–shell CdSe@CdS QDs conjugated with GO can enhance the photocurrent intensity.
Collapse
|
47
|
Li L, Zheng X, Huang Y, Zhang L, Cui K, Zhang Y, Yu J. Addressable TiO2 Nanotubes Functionalized Paper-Based Cyto-Sensor with Photocontrollable Switch for Highly-Efficient Evaluating Surface Protein Expressions of Cancer Cells. Anal Chem 2018; 90:13882-13890. [DOI: 10.1021/acs.analchem.8b02849] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiaoxiao Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuzhen Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|