1
|
Goldaeva KV, Pleshakova TO, Ivanov YD. Nanowire-based biosensors for solving biomedical problems. BIOMEDITSINSKAIA KHIMIIA 2024; 70:304-314. [PMID: 39324195 DOI: 10.18097/pbmc20247005304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The review considers modern achievements and prospects of using nanowire biosensors, principles of their operation, methods of fabrication, and the influence of the Debye effect, which plays a key role in improving the biosensor characteristics. Special attention is paid to the practical application of such biosensors for the detection of a variety of biomolecules, demonstrating their capabilities and potential in the detection of a wide range of biomarkers of various diseases. Nanowire biosensors also show excellent results in such areas as early disease diagnostics, patient health monitoring, and personalized medicine due to their high sensitivity and specificity. Taking into consideration their high efficiency and diverse applications, nanowire-based biosensors demonstrate significant promise for commercialization and widespread application in medicine and related fields, making them an important area for future research and development.
Collapse
Affiliation(s)
- K V Goldaeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - Yu D Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Nava G, Carzaniga T, Casiraghi L, Bot E, Zanchetta G, Damin F, Chiari M, Weber G, Bellini T, Mollica L, Buscaglia M. Weak-cooperative binding of a long single-stranded DNA chain on a surface. Nucleic Acids Res 2024; 52:8661-8674. [PMID: 38989620 PMCID: PMC11347152 DOI: 10.1093/nar/gkae576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Binding gene-wide single-stranded nucleic acids to surface-immobilized complementary probes is an important but challenging process for biophysical studies and diagnostic applications. The challenge comes from the conformational dynamics of the long chain that affects its accessibility and weakens its hybridization to the probes. We investigated the binding of bacteriophage genome M13mp18 on several different 20-mer probes immobilized on the surface of a multi-spot, label-free biosensor, and observed that only a few of them display strong binding capability with dissociation constant as low as 10 pM. Comparing experimental data and computational analysis of the M13mp18 chain structural features, we found that the capturing performance of a specific probe is directly related to the multiplicity of binding sites on the genomic strand, and poorly connected with the predicted secondary and tertiary structure. We show that a model of weak cooperativity of transient bonds is compatible with the measured binding kinetics and accounts for the enhancement of probe capturing observed when more than 20 partial pairings with binding free energy lower than -10 kcal mol-1 are present. This mechanism provides a specific pattern of response of a genomic strand on a panel of properly selected oligomer probe sequences.
Collapse
Affiliation(s)
- Giovanni Nava
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Thomas Carzaniga
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Luca Casiraghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Erik Bot
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Giuliano Zanchetta
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Francesco Damin
- Istituto di Scienze e Tecnologie Chimiche ‘Giulio Natta’, National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, 20131 Milano, Italy
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche ‘Giulio Natta’, National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, 20131 Milano, Italy
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Tommaso Bellini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Marco Buscaglia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| |
Collapse
|
3
|
Yang X, Xu L, Xiong S, Rao H, Tan F, Yan J, Bao Y, Albanese A, Camposeo A, Pisignano D, Li B. Light-Emitting Microfibers from Lotus Root for Eco-Friendly Optical Waveguides and Biosensing. NANO LETTERS 2024; 24:566-575. [PMID: 37962055 DOI: 10.1021/acs.nanolett.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.
Collapse
Affiliation(s)
- Xianguang Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Liping Xu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Shijie Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Hao Rao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Fangchang Tan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jiahao Yan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yanjun Bao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Annachiara Albanese
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Dario Pisignano
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
4
|
Tang Q, Li Z, Li J, Chen H, Yan H, Deng J, Liu L. PCR-Free, Label-Free, and Centrifugation-Free Diagnosis of Multiplex Antibiotic Resistance Genes by Combining mDNA-Au@Fe 3O 4 from Heating Dry and DNA Concatamers with G-Triplex. Anal Chem 2024; 96:292-300. [PMID: 38141016 DOI: 10.1021/acs.analchem.3c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Accurate identification of antibiotic resistance genes (ARGs) is crucial for improving treatment and controlling the spread of antibiotic-resistant bacteria (ARB). Herein, a novel PCR-free, centrifugation-free, and label-free magnetic fluorescent biosensor (MFB) was developed by combining polyA-medium DNA-polyT (mDNA, which contained a partial sequence of a target DNA), gold nanoparticle (AuNP)-anchored magnetic nanoparticle (Au@Fe3O4), complementary strand DNA (CS) of the target DNA, DNA concatamer with G-triplex (G3), and thioflavin T (ThT). Thereinto, Au@Fe3O4 nanoparticles were first capped by mDNA strands within 20 min using a simple hot drying method, and then CS was added and hybridized with mDNA on Au@Fe3O4. Second, a DNA concatamer was used to bind with CS on Au@Fe3O4. When an ARG was present in the sample, the CS would recognize it and release the DNA concatamer into solution by a toehold-mediated strand displacement reaction. Finally, under magnetic separation, the free DNA concatamers with G3 were taken out easily and bound with ThT, resulting in strong fluorescence signals. The fluorescence intensity of ThT was positively correlated with the concentration of the ARG. The whole analysis was accomplished within 1.5 h using 96-well plates. Remarkably, our MFB was universal; eight ARGs were detected by replacing the corresponding mDNA and CS in this study. To verify the practicability of our method, 12 clinically isolated strains were analyzed. The results of the MFB method were in good agreement with those of the quantitative real-time PCR method with an area under the curve of 0.92 (95% confidence interval: 0.8479 to 0.9932), sensitivity of 92.00%, and specificity of 91.55%. Above all, the MFB assay established here is simple, low-cost, and universal and has great potential for applications in the identification of ARGs.
Collapse
Affiliation(s)
- Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhijie Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanren Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Ullah I, Suliman H, Alamzeb M, Abid OUR, Sohail M, Ullah M, Haleem A, Omer M. An insight into recent developments of copper, silver and gold carbon dots: cancer diagnostics and treatment. Front Bioeng Biotechnol 2023; 11:1292641. [PMID: 38162182 PMCID: PMC10757632 DOI: 10.3389/fbioe.2023.1292641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer is one of the most fatal diseases globally, however, advancement in the field of nanoscience specifically novel nanomaterials with nano-targeting of cancer cell lines has revolutionized cancer diagnosis and therapy and has thus attracted the attention of researchers of related fields. Carbon Dots (CDs)-C-based nanomaterials-have emerged as highly favorable candidates for simultaneous bioimaging and therapy during cancer nano-theranostics due to their exclusive innate FL and theranostic characteristics exhibited in different preclinical results. Recently, different transition metal-doped CDs have enhanced the effectiveness of CDs manifold in biomedical applications with minimum toxicity. The use of group-11 (Cu, Ag and Au) with CDs in this direction have recently gained the attention of researchers because of their encouraging results. This review summarizes the current developments of group-11 (Cu, Ag and Au) CDs for early diagnosis and therapy of cancer including their nanocomposites, nanohybrids and heterostructures etc. All The manuscript highlights imaging applications (FL, photoacoustic, MRI etc.) and therapeutic applications (phototherapy, photodynamic, multimodal etc.) of Cu-, Ag- and Au-doped CDs reported as nanotheranostic agents for cancer treatment. Sources of CDs and metals alogwith applications to give a comparative analysis have been given in the tabulated form at the end of manuscript. Further, future prospects and challenges have also been discussed.
Collapse
Affiliation(s)
- Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Hazrat Suliman
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | | | - Muhammad Sohail
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
6
|
Shi W, Li K, Zhang Y. The Advancement of Nanomaterials for the Detection of Hepatitis B Virus and Hepatitis C Virus. Molecules 2023; 28:7201. [PMID: 37894681 PMCID: PMC10608909 DOI: 10.3390/molecules28207201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Viral hepatitis is a global health concern mostly caused by hepatitis B virus (HBV) and hepatitis C virus (HCV). The late diagnosis and delayed treatment of HBV and HCV infections can cause irreversible liver damage and the occurrence of cirrhosis and hepatocellular carcinoma. Detecting the presence and activity of HBV and HCV is the cornerstone of the diagnosis and management of related diseases. However, the traditional method shows limitations. The utilization of nanomaterials has been of great significance in the advancement of virus detection technologies due to their unique mechanical, electrical, and optical properties. Here, we categorized and illustrated the novel approaches used for the diagnosis of HBV and HCV.
Collapse
Affiliation(s)
- Wanting Shi
- Interventional Therapy Center of Liver Disease, Beijing You’An Hospital, Capital Medical University, Beijing 100069, China;
| | - Kang Li
- Biomedical Information Center, Beijing You’An Hospital, Capital Medical University, Beijing 100069, China
| | - Yonghong Zhang
- Interventional Therapy Center of Liver Disease, Beijing You’An Hospital, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
7
|
Calorenni P, Leonardi AA, Sciuto EL, Rizzo MG, Faro MJL, Fazio B, Irrera A, Conoci S. PCR-Free Innovative Strategies for SARS-CoV-2 Detection. Adv Healthc Mater 2023; 12:e2300512. [PMID: 37435997 PMCID: PMC11469253 DOI: 10.1002/adhm.202300512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 07/13/2023]
Abstract
The pandemic outbreak caused by SARS-CoV-2 coronavirus brought a crucial issue in public health causing up to now more than 600 million infected people and 6.5 million deaths. Conventional diagnostic methods are based on quantitative reverse transcription polymerase chain reaction (RT-qPCR assay) and immuno-detection (ELISA assay). However, despite these techniques have the advantages of being standardized and consolidated, they keep some main limitations in terms of accuracy (immunoassays), time/cost consumption of analysis, the need for qualified personnel, and lab constrain (molecular assays). There is crucial the need to develop new diagnostic approaches for accurate, fast and portable viral detection and quantification. Among these, PCR-free biosensors represent the most appealing solution since they can allow molecular detection without the complexity of the PCR. This will enable the possibility to be integrated in portable and low-cost systems for massive and decentralized screening of SARS-CoV-2 in a point-of-care (PoC) format, pointing to achieve a performant identification and control of infection. In this review, the most recent approaches for the SARS-CoV-2 PCR-free detection are reported, describing both the instrumental and methodological features, and highlighting their suitability for a PoC application.
Collapse
Affiliation(s)
- Paolo Calorenni
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Antonio A. Leonardi
- Department of Physics and AstronomyUniversity of CataniaVia Santa Sofia 64Catania95123Italy
| | - Emanuele L. Sciuto
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Maria G. Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Maria J. Lo Faro
- Department of Physics and AstronomyUniversity of CataniaVia Santa Sofia 64Catania95123Italy
| | - Barbara Fazio
- URT Lab Sens Beyond NanoCNR‐DSFTMViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Alessia Irrera
- URT Lab Sens Beyond NanoCNR‐DSFTMViale F. Stagno D'Alcontres 37Messina98158Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaViale F. Stagno D'Alcontres 37Messina98158Italy
- URT Lab Sens Beyond NanoCNR‐DSFTMViale F. Stagno D'Alcontres 37Messina98158Italy
- Department of Chemistry ‘‘Giacomo Ciamician’’University of BolognaVia Selmi 2Bologna40126Italy
- CNR‐IMMInstitute for Microelectronics and MicrosystemsOttava Strada n.5CataniaI‐95121Italy
| |
Collapse
|
8
|
Li X, Li Y, Wang Y, Liang P, Lai G. Distance-Regulated Photoelectrochemical Sensor "Signal-On" and "Signal-Off" Transitions for the Multiplexed Detection of Viruses Exposed in the Aquatic Environment. Anal Chem 2023; 95:13922-13931. [PMID: 37671934 DOI: 10.1021/acs.analchem.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Photochemical (PEC) sensors were severely limited for multiplex detection applications due to the cross interference between multiplex signals at the single recognition interface. In this work, a distance-regulated PEC sensor was developed for multiplex detection by using an i-Motif sequence with conformational transformation activity as the signal transduction unit. Through dynamic regulation of the spatial distance between the end site of the functional sequence and the electrode material, the photogenerated electrons on the surface of the sensor were directionally transferred. Thus, a PEC sensor with "signal-on" and "signal-off" dual signal output modes was developed for simultaneous detection of multitarget molecules. Combining isothermal nucleic acid amplification, the PEC sensor constructed in this work was successfully applied to the detection of two virus (Norovirus and Rotavirus) nucleic acid sequences. Under the optimal condition, this bioassay protocol exhibits a linear range of 0.01-100 nM for both viruses with detection limits of 0.72 and 0.53 pM, respectively. In this study, a stimulus-mediated distance regulation strategy successfully addressed the transduction of multiplex detection signals at the single recognition interface of the PEC sensor. It is expected that the technical barriers to multiplex detection of PEC sensors will be overcome and the application of PEC sensing technology will be expanded in the field of environmental analysis.
Collapse
Affiliation(s)
- Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yishuang Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yuxin Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Pan Liang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| |
Collapse
|
9
|
Malik S, Singh J, Goyat R, Saharan Y, Chaudhry V, Umar A, Ibrahim AA, Akbar S, Ameen S, Baskoutas S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023; 9:e19929. [PMID: 37809900 PMCID: PMC10559358 DOI: 10.1016/j.heliyon.2023.e19929] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
A sensor can be called ideal or perfect if it is enriched with certain characteristics viz., superior detections range, high sensitivity, selectivity, resolution, reproducibility, repeatability, and response time with good flow. Recently, biosensors made of nanoparticles (NPs) have gained very high popularity due to their excellent applications in nearly all the fields of science and technology. The use of NPs in the biosensor is usually done to fill the gap between the converter and the bioreceptor, which is at the nanoscale. Simultaneously the uses of NPs and electrochemical techniques have led to the emergence of biosensors with high sensitivity and decomposition power. This review summarizes the development of biosensors made of NPssuch as noble metal NPs and metal oxide NPs, nanowires (NWs), nanorods (NRs), carbon nanotubes (CNTs), quantum dots (QDs), and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Vivek Chaudhry
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED)Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A. Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED)Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Advanced Science Campus, Jeonbuk National University, 56212, Jeonju, Republic of Korea
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
10
|
Bălan AM, Bodolea C, Trancă SD, Hagău N. Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review. Healthcare (Basel) 2023; 11:1345. [PMID: 37174887 PMCID: PMC10177880 DOI: 10.3390/healthcare11091345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Nosocomial pneumonia is one of the most frequent hospital-acquired infections. One of the types of nosocomial pneumonia is ventilator-associated pneumonia, which occurs in endotracheally intubated patients in intensive care units (ICU). Ventilator-associated pneumonia may be caused by multidrug-resistant pathogens, which increase the risk of complications due to the difficulty in treating them. Pneumonia is a respiratory disease that requires targeted antimicrobial treatment initiated as early as possible to have a good outcome. For the therapy to be as specific and started sooner, diagnostic methods have evolved rapidly, becoming quicker and simpler to perform. Polymerase chain reaction (PCR) is a rapid diagnostic technique with numerous advantages compared to classic plate culture-based techniques. Researchers continue to improve diagnostic methods; thus, the newest types of PCR can be performed at the bedside, in the ICU, so-called point of care testing-PCR (POC-PCR). The purpose of this review is to highlight the benefits and drawbacks of PCR-based techniques in managing nosocomial pneumonia.
Collapse
Affiliation(s)
- Andrei-Mihai Bălan
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Constantin Bodolea
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Sebastian Daniel Trancă
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Emergency Department, The Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Natalia Hagău
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, “Regina Maria” Hospital, 400221 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Leonardi AA, Sciuto EL, Lo Faro MJ, Fazio B, Rizzo MG, Calabrese G, Francioso L, Picca R, Nastasi F, Mancuso G, Spinella C, Knoll W, Irrera A, Conoci S. SARS-CoV-2 and omicron variant detection with a high selectivity, sensitivity, and low-cost silicon bio-nanosensor. NANO SELECT 2022; 4:NANO202200188. [PMID: 36721465 PMCID: PMC9880655 DOI: 10.1002/nano.202200188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 12/30/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has highlighted the urgent need for novel point-of-care devices to be promptly used for a rapid and reliable large screening analysis of several biomarkers like genetic sequences and antibodies. Currently, one of the main limitations of rapid tests is the high percentage of false negatives in the presence of variants and, in particular for the Omicron one. We demonstrate in this work the detection of SARS-CoV-2 and the Omicron variant with a cost-effective silicon nanosensor enabling high sensitivity, selectivity, and fast response. We have shown that a silicon (Si) nanowires (NW) platform detects both Sars-CoV-2 and its Omicron variant with a limit of detection (LoD) of four effective copies (cps), without any amplification of the genome, and with high selectivity. This ultrasensitive detection of 4 cps allows to obtain an extremely early diagnosis paving the way for efficient and widespread tracking. The sensor is made with industrially compatible techniques, which in perspective may allow easy and cost-effective industrialization.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”Università degli studi di CataniaCataniaItaly
- CNR‐IMM Catania UniversitàIstituto per la Microelettronica e MicrosistemiCataniaItaly
| | - Emanuele Luigi Sciuto
- Lab SENS Beyond NanoCNRMessinaItaly
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”Università degli studi di CataniaCataniaItaly
- CNR‐IMM Catania UniversitàIstituto per la Microelettronica e MicrosistemiCataniaItaly
| | | | - Maria Giovanna Rizzo
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
| | - Giovanna Calabrese
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
| | - Luca Francioso
- CNR‐IMMIstituto per la Microelettronica e MicrosistemiVia MonteroniUniversity CampusLecceItaly
| | - Rosaria Picca
- Dipartimento di ChimicaUniversità degli studi di BariBariItaly
| | - Francesco Nastasi
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
| | - Giuseppe Mancuso
- Dipartimento di Patologia Umana dell'adulto e dell'età evolutiva Gaetano BarresiUniversità degli studi MessinaGazzi (Me)Italy
| | - Corrado Spinella
- Lab SENS Beyond NanoCNRMessinaItaly
- CNR‐IMM Istituto per la Microelettronica e MicrosistemiZona IndustrialeCataniaItaly
| | - Wolfgang Knoll
- Department of Scientific Coordination and ManagementDanube Private UniversityKremsAustria
| | | | - Sabrina Conoci
- Lab SENS Beyond NanoCNRMessinaItaly
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
- CNR‐IMM Istituto per la Microelettronica e MicrosistemiZona IndustrialeCataniaItaly
- Dipartimento di Chimica "G. Ciamician"Università degli studi di BolognaBolognaItaly
| |
Collapse
|
12
|
Lo Faro MJ, Leonardi AA, Priolo F, Fazio B, Irrera A. Future Prospects of Luminescent Silicon Nanowires Biosensors. BIOSENSORS 2022; 12:1052. [PMID: 36421170 PMCID: PMC9688548 DOI: 10.3390/bios12111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we exploit the perspective of luminescent Si nanowires (NWs) in the growing field of commercial biosensing nanodevices for the selective recognition of proteins and pathogen genomes. We fabricated quantum confined fractal arrays of Si NWs with room temperature emission at 700 nm obtained by thin-film, metal-assisted, chemical etching with high production output at low cost. The fascinating optical features arising from multiple scattering and weak localization of light promote the use of Si NWs as optical biosensing platforms with high sensitivity and selectivity. In this work, label-free Si NW optical sensors are surface modified for the selective detection of C-reactive protein through antigen-gene interaction. In this case, we report the lowest limit of detection (LOD) of 1.6 fM, fostering the flexibility of different dynamic ranges for detection either in saliva or for serum analyses. By varying the NW surface functionalization with the specific antigen, the luminescence quenching of NW biosensors is used to measure the hepatitis B-virus pathogen genome without PCR-amplification, with an LOD of about 20 copies in real samples or blood matrix. The promising results show that NW optical biosensors can detect and isolate extracellular vesicles (EV) marked with CD81 protein with unprecedented sensitivity (LOD 2 × 105 sEV/mL), thus enabling their measurement even in a small amount of blastocoel fluid.
Collapse
Affiliation(s)
- Maria Josè Lo Faro
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Antonio Alessio Leonardi
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Priolo
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| | - Alessia Irrera
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| |
Collapse
|
13
|
Nikolaou P, Sciuto EL, Zanut A, Petralia S, Valenti G, Paolucci F, Prodi L, Conoci S. Ultrasensitive PCR-Free detection of whole virus genome by electrochemiluminescence. Biosens Bioelectron 2022; 209:114165. [DOI: 10.1016/j.bios.2022.114165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/21/2022]
|
14
|
Bassi MDJ, Araujo Todo Bom M, Terribile Budel ML, Maltempi de Souza E, Müller dos Santos M, Roman LS. Optical Biosensor for the Detection of Infectious Diseases Using the Copolymer F8T2 with Application to COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:5673. [PMID: 35957230 PMCID: PMC9370833 DOI: 10.3390/s22155673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has accelerated the development of biosensors based on new materials and techniques. Here, we present our effort to develop a fast and affordable optical biosensor using photoluminescence spectroscopy for anti-SARS-CoV-2 antibody detection. The biosensor was fabricated with a thin layer of the semiconductor polymer Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-2,2'-bithiophene-5,5'-diyl)] (F8T2) as a signal transducer material. We mounted the biosensors by depositing a layer of F8T2 and an engineered version of RBD from the SARS-CoV-2 spike protein with a tag to promote hydrophobic interaction between the protein and the polymeric surface. We validated the biosensor sensitivity with decreasing anti-RBD polyclonal IgG concentrations and challenged the biosensor specificity with human serum samples from both COVID-19 negative and positive individuals. The antibody binding to the immobilized antigen shifted the F8T2 photoluminescence spectrum even at the low concentration of 0.0125 µg/mL. A volume as small as one drop of serum (100 µL) was sufficient to distinguish a positive from a negative sample without requiring multiple washing steps and secondary antibody reactions.
Collapse
Affiliation(s)
| | - Maritza Araujo Todo Bom
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Maria Luisa Terribile Budel
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Emanuel Maltempi de Souza
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Marcelo Müller dos Santos
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | | |
Collapse
|
15
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
16
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Cheng R, Zhu F, Huang M, Zhang Q, Yan HH, Zhao XH, Luo FK, Li CM, Liu H, Liang GL, Huang CZ, Wang J. “Hepatitis virus indicator”----the simultaneous detection of hepatitis B and hepatitis C viruses based on the automatic particle enumeration. Biosens Bioelectron 2022; 202:114001. [DOI: 10.1016/j.bios.2022.114001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
|
18
|
Kamali P, Zandi M, Ghasemzadeh-Moghaddam H, Fani M. Comparison between various biosensor methods for human T-lymphotropic virus-1 (HTLV-1) detection. Mol Biol Rep 2021; 49:1513-1517. [PMID: 34797491 DOI: 10.1007/s11033-021-06959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Due to the drawback of traditional and current diagnostic methods including serological and molecular assays, the development of the rapid and free-PCR techniques can be an alternative technique for the human T-cell lymphotropic virus (HTLV-1) DNA detection sequences. On the other hand, early detection of HTLV-1 prevents two dangerous diseases including Adult T-cell leukemia/lymphoma and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis. The biosensor-based methods are sensitive techniques that can provide new opportunities to detect infectious diseases, particularly in the early stage. This study provides a comparative view among recently designed biosensors for the detection of HTLV-1.
Collapse
Affiliation(s)
- Peyman Kamali
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Ghasemzadeh-Moghaddam
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mona Fani
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
19
|
Leonardi AA, Lo Faro MJ, Fazio B, Spinella C, Conoci S, Livreri P, Irrera A. Fluorescent Biosensors Based on Silicon Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2970. [PMID: 34835735 PMCID: PMC8624671 DOI: 10.3390/nano11112970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023]
Abstract
Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer. Among all the transduction methods, fluorescent probes and sensors emerge as some of the most used approaches thanks to their easy data interpretation, measure affordability, and real-time in situ analysis. In fluorescent sensors, Si NWs are employed as substrate and coupled with several fluorophores, NWs can be used as quenchers in stem-loop configuration, and have recently been used for direct fluorescent sensing. In this review, an overview on fluorescent sensors based on Si NWs is presented, analyzing the literature of the field and highlighting the advantages and drawbacks for each strategy.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) UoS Catania, Via S. Sofia 64, 95123 Catania, Italy
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) UoS Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| | - Corrado Spinella
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Sabrina Conoci
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) Zona Industriale, VIII Strada 5, 95121 Catania, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Patrizia Livreri
- Dipartimento di ingegneria, Università degli Studi di Palermo, Viale delle Scienze BLDG 9, 90128 Palermo, Italy;
| | - Alessia Irrera
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| |
Collapse
|
20
|
Leonardi AA, Battaglia R, Morganti D, Lo Faro MJ, Fazio B, De Pascali C, Francioso L, Palazzo G, Mallardi A, Purrello M, Priolo F, Musumeci P, Di Pietro C, Irrera A. A Novel Silicon Platform for Selective Isolation, Quantification, and Molecular Analysis of Small Extracellular Vesicles. Int J Nanomedicine 2021; 16:5153-5165. [PMID: 34611399 PMCID: PMC8487288 DOI: 10.2147/ijn.s310896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches. Methods Novel sensing solutions based on nanomaterials are arising as strategic tools able to surpass traditional sensor limits. Among these, Si nanowires (Si NWs), realized with cost-effective industrially compatible metal-assisted chemical etching, are perfect candidates for sEV detection. Results In this paper, the realization of a selective sensor able to isolate, concentrate and quantify specific vesicle populations, from minimal volumes of biofluid, is presented. In particular, this Si NW platform has a detection limit of about 2×105 sEVs/mL and was tested with follicular fluid and blastocoel samples. Moreover, the possibility to detach the selectively isolated sEVs allowing further analyses with other approaches was demonstrated by SEM analysis and several PCRs performed on the RNA content of the detached sEVs. Discussion This platform overcomes the limit of detection of traditional methods and, most importantly, preserves the biological content of sEVs, opening the route toward a reliable liquid biopsy analysis.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy.,CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Catania, 95123, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Dario Morganti
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| | - Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy.,CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Catania, 95123, Italy
| | - Barbara Fazio
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| | - Chiara De Pascali
- CNR-IMM, Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Luca Francioso
- CNR-IMM, Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari 'Aldo Moro', Bari, 70125, Italy.,CSGI, Center for Colloid and Surface Science c/o Chemistry Department, Bari, 70125, Italy
| | - Antonia Mallardi
- CNR-IPCF, Institute for Chemical-Physical Processes, c/o Chemistry Department, Bari, 70125, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesco Priolo
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy
| | - Paolo Musumeci
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, 95123, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessia Irrera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, 98158, Italy
| |
Collapse
|
21
|
Etienne EE, Nunna BB, Talukder N, Wang Y, Lee ES. COVID-19 Biomarkers and Advanced Sensing Technologies for Point-of-Care (POC) Diagnosis. Bioengineering (Basel) 2021; 8:98. [PMID: 34356205 PMCID: PMC8301167 DOI: 10.3390/bioengineering8070098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19, also known as SARS-CoV-2 is a novel, respiratory virus currently plaguing humanity. Genetically, at its core, it is a single-strand positive-sense RNA virus. It is a beta-type Coronavirus and is distinct in its structure and binding mechanism compared to other types of coronaviruses. Testing for the virus remains a challenge due to the small market available for at-home detection. Currently, there are three main types of tests for biomarker detection: viral, antigen and antibody. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) remains the gold standard for viral testing. However, the lack of quantitative detection and turnaround time for results are drawbacks. This manuscript focuses on recent advances in COVID-19 detection that have lower limits of detection and faster response times than RT-PCR testing. The advancements in sensing platforms have amplified the detection levels and provided real-time results for SARS-CoV-2 spike protein detection with limits as low as 1 fg/mL in the Graphene Field Effect Transistor (FET) sensor. Additionally, using multiple biomarkers, detection levels can achieve a specificity and sensitivity level comparable to that of PCR testing. Proper biomarker selection coupled with nano sensing detection platforms are key in the widespread use of Point of Care (POC) diagnosis in COVID-19 detection.
Collapse
Affiliation(s)
- Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
- Division of Engineering in Medicine, Department of Medicine, Brigham, and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| |
Collapse
|
22
|
Zhang W, Liu P, Yang G, Lei H. Single Polylactic Acid Nanowire for Highly Sensitive and Multifunctional Optical Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27983-27990. [PMID: 34110765 DOI: 10.1021/acsami.1c08074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanowire-based optical biosensors with high sensitivity are highly desired for the detection of biological microenvironments and analysis of cellular processes. However, the current nanowire biosensors are mostly fabricated with metal and semiconductor materials, which are not suitable for long-term use in biological environments due to their incompatible and nondegradable properties. Biosensors based on biofriendly materials (e.g., spider silk) often do not have high enough sensitivity due to high losses or micron sizes. Here, polylactic acid (PLA), a polymer with high optical transparency, good biocompatibility, biodegradability, and flexibility, is used to fabricate nanowires using a directly drawing method for the first time. Because of the strong evanescent wave and abundant carboxyl groups on the surface of nanowires, an ultralow concentration sensing of cytochrome c is achieved with a limit of detection of 1.38 × 10-17 M, which is much lower than other detection results using semiconductor/metal-based nanosensors (10-6 to 10-12 M). On this basis, a label-free and real-time monitoring of cell apoptosis is realized. In addition, by doping quantum dots, the functionalized PLA nanowires can also sense a change in pH. These results are suggestive of the potential for PLA nanowires applied in multifunctional biosensing and biodetection, pushing forward the photomedicine field.
Collapse
Affiliation(s)
- Weina Zhang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Pu Liu
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Zhang M, Adkins M, Wang Z. Recent Progress on Semiconductor-Interface Facing Clinical Biosensing. SENSORS 2021; 21:s21103467. [PMID: 34065696 PMCID: PMC8156696 DOI: 10.3390/s21103467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023]
Abstract
Semiconductor (SC)-based field-effect transistors (FETs) have been demonstrated as amazing enhancer gadgets due to their delicate interface towards surface adsorption. This leads to their application as sensors and biosensors. Additionally, the semiconductor material has enormous recognizable fixation extends, high affectability, high consistency for solid detecting, and the ability to coordinate with other microfluidic gatherings. This review focused on current progress on the semiconductor-interfaced FET biosensor through the fundamental interface structure of sensor design, including inorganic semiconductor/aqueous interface, photoelectrochemical interface, nano-optical interface, and metal-assisted interface. The works that also point to a further advancement for the trademark properties mentioned have been reviewed here. The emergence of research on the organic semiconductor interface, integrated biosensors with Complementary metal–oxide–semiconductor (CMOS)-compatible, metal-organic frameworks, has accelerated the practical application of biosensors. Through a solid request for research along with sensor application, it will have the option to move forward the innovative sensor with the extraordinary semiconductor interface structure.
Collapse
Affiliation(s)
- Mingrui Zhang
- School of Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Mitchell Adkins
- Chemistry Department, Oakland University, Rochester, MI 48309, USA;
| | - Zhe Wang
- Chemistry Department, Oakland University, Rochester, MI 48309, USA;
- Correspondence: ; Tel.: +1-248-370-2086
| |
Collapse
|
24
|
Nocito G, Calabrese G, Forte S, Petralia S, Puglisi C, Campolo M, Esposito E, Conoci S. Carbon Dots as Promising Tools for Cancer Diagnosis and Therapy. Cancers (Basel) 2021; 13:cancers13091991. [PMID: 33919096 PMCID: PMC8122497 DOI: 10.3390/cancers13091991] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Diagnostic approaches and chemotherapeutic delivery based on nanotechnologies, such as nanoparticles (NPs), could be promising candidates for the new era of cancer research. Recently great attention has been received by carbon-based nanomaterials such as Carbon Dots (CDs), due their variegated physical-chemical properties that makes these systems appealing for multiple use from bioimaging, biosensing, nano-carriers for drug delivery systems to innovative therapeutic agents in photodynamic (PDT) and photothermal therapy (PTT). In this review, we report the last evidence on the application and prospects of CDs as useful nano theranostics tools for cancer diagnosis and therapy. Abstract Carbon Dots (CDs) are the latest members of carbon-based nanomaterials, which since their discovery have attracted notable attention due to their chemical and mechanical properties, brilliant fluorescence, high photostability, and good biocompatibility. Together with the ease and affordable preparation costs, these intrinsic features make CDs the most promising nanomaterials for multiple applications in the biological field, such as bioimaging, biotherapy, and gene/drug delivery. This review will illustrate the most recent applications of CDs in the biomedical field, focusing on their biocompatibility, fluorescence, low cytotoxicity, cellular uptake, and theranostic properties to highlight above all their usefulness as a promising tool for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Giuseppe Nocito
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Giovanna Calabrese
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
- Correspondence: (G.C.); (S.C.)
| | - Stefano Forte
- IOM Ricerca, Viagrande, 95029 Catania, Italy; (S.F.); (C.P.)
| | - Salvatore Petralia
- Department of Drug Science and Health, University of Catania, 95125 Catania, Italy;
| | | | - Michela Campolo
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Sabrina Conoci
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
- Correspondence: (G.C.); (S.C.)
| |
Collapse
|
25
|
Abstract
Selective and sensitive detection of nucleic acid biomarkers is of great significance in early-stage diagnosis and targeted therapy. Therefore, the development of diagnostic methods capable of detecting diseases at the molecular level in biological fluids is vital to the emerging revolution in the early diagnosis of diseases. However, the vast majority of the currently available ultrasensitive detection strategies involve either target/signal amplification or involve complex designs. Here, using a p53 tumor suppressor gene whose mutation has been implicated in more than 50% of human cancers, we show a background-free ultrasensitive detection of this gene on a simple platform. The sensor exhibits a relatively static mid-FRET state in the absence of a target that can be attributed to the time-averaged fluorescence intensity of fast transitions among multiple states, but it undergoes continuous dynamic switching between a low- and a high-FRET state in the presence of a target, allowing a high-confidence detection. In addition to its simple design, the sensor has a detection limit down to low femtomolar (fM) concentration without the need for target amplification. We also show that this sensor is highly effective in discriminating against single-nucleotide polymorphisms (SNPs). Given the generic hybridization-based detection platform, the sensing strategy developed here can be used to detect a wide range of nucleic acid sequences enabling early diagnosis of diseases and screening genetic disorders.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
26
|
Leonardi AA, Lo Faro MJ, Irrera A. Biosensing platforms based on silicon nanostructures: A critical review. Anal Chim Acta 2021; 1160:338393. [PMID: 33894957 DOI: 10.1016/j.aca.2021.338393] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022]
Abstract
Biosensors are revolutionizing the health-care systems worldwide, permitting to survey several diseases, even at their early stage, by using different biomolecules such as proteins, DNA, and other biomarkers. However, these sensing approaches are still scarcely diffused outside the specialized medical and research facilities. Silicon is the undiscussed leader of the whole microelectronics industry, and novel sensors based on this material may completely change the health-care scenario. In this review, we will show how novel sensing platforms based on Si nanostructures may have a disruptive impact on applications with a real commercial transfer. A critical study for the main Si-based biosensors is herein presented with a comparison of their advantages and drawbacks. The most appealing sensing devices are discussed, starting from electronic transducers, with Si nanowires field-effect transistor (FET) and porous Si, to their optical alternatives, such as effective optical thickness porous silicon, photonic crystals, luminescent Si quantum dots, and finally luminescent Si NWs. All these sensors are investigated in terms of working principle, sensitivity, and selectivity with a specific focus on the possibility of their industrial transfer, and which ones may be preferred for a medical device.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Via Santa Sofia 64, 95123, Catania, Italy; CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy; CNR-IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Via Santa Sofia 64, 95123, Catania, Italy; CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy
| | - Alessia Irrera
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy.
| |
Collapse
|
27
|
Mussi V, Ledda M, Convertino A, Lisi A. Raman Mapping of Biological Systems Interacting with a Disordered Nanostructured Surface: A Simple and Powerful Approach to the Label-Free Analysis of Single DNA Bases. MICROMACHINES 2021; 12:mi12030264. [PMID: 33806524 PMCID: PMC8000830 DOI: 10.3390/mi12030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
This article demonstrates the possibility to use a novel powerful approach based on Raman mapping of analyte solutions drop casted on a disordered array of Ag covered silicon nanowires (Ag/SiNWs), to identify the characteristic spectral signal of the four DNA bases, adenine (A), thymine (T), cytosine (C), and guanine (G), at concentration as low as 10 ng/µL, and to study their specific way of interacting with the nanostructured substrate. The results show a distinctive and amplified interaction of guanine, the base that is most susceptible to oxidation, with the nanostructured surface. Our findings explain the recently revealed diverse behaviour of cancer and normal DNA deposited on the same Ag/SiNWs, which is ascribed to mechanical deformation and base lesions present on the oxidised DNA molecule backbone and causes detectable variation in the Raman signal, usable for diagnostic purposes. The notable bio-analytical capability of the presented platform, and its sensitivity to the molecule mechanical conformation at the single-base level, thus provides a new reliable, rapid, label-free DNA diagnostic methodology alternative to more sophisticated and expensive sequencing ones.
Collapse
Affiliation(s)
- Valentina Mussi
- Institute for Microelectronics and Microsystems, National Research Council, IMM-CNR, 00133 Rome, Italy;
- Correspondence:
| | - Mario Ledda
- Institute of Translational Pharmacology, National Research Council, IFT-CNR, 00133 Rome, Italy; (M.L.); (A.L.)
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, National Research Council, IMM-CNR, 00133 Rome, Italy;
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, IFT-CNR, 00133 Rome, Italy; (M.L.); (A.L.)
| |
Collapse
|
28
|
Franco D, Calabrese G, Petralia S, Neri G, Corsaro C, Forte L, Squarzoni S, Guglielmino S, Traina F, Fazio E, Conoci S. Antimicrobial Effect and Cytotoxic Evaluation of Mg-Doped Hydroxyapatite Functionalized with Au-Nano Rods. Molecules 2021; 26:molecules26041099. [PMID: 33669712 PMCID: PMC7923154 DOI: 10.3390/molecules26041099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
| | - Salvatore Petralia
- Department of Drug Science and Health, University of Catania, 95125 Catania, Italy;
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy; (C.C.); (E.F.)
| | | | - Stefano Squarzoni
- CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Salvatore Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
| | - Francesco Traina
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy; (C.C.); (E.F.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
- Correspondence: ; Tel.: +39-090-676-1
| |
Collapse
|
29
|
Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:1109. [PMID: 33562639 PMCID: PMC7915135 DOI: 10.3390/s21041109] [Citation(s) in RCA: 461] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.
Collapse
Affiliation(s)
- Varnakavi. Naresh
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
30
|
Leonardi AA, Faro MJL, Irrera A. Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:383. [PMID: 33546133 PMCID: PMC7913243 DOI: 10.3390/nano11020383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Silicon is the undisputed leader for microelectronics among all the industrial materials and Si nanostructures flourish as natural candidates for tomorrow's technologies due to the rising of novel physical properties at the nanoscale. In particular, silicon nanowires (Si NWs) are emerging as a promising resource in different fields such as electronics, photovoltaic, photonics, and sensing. Despite the plethora of techniques available for the synthesis of Si NWs, metal-assisted chemical etching (MACE) is today a cutting-edge technology for cost-effective Si nanomaterial fabrication already adopted in several research labs. During these years, MACE demonstrates interesting results for Si NW fabrication outstanding other methods. A critical study of all the main MACE routes for Si NWs is here presented, providing the comparison among all the advantages and drawbacks for different MACE approaches. All these fabrication techniques are investigated in terms of equipment, cost, complexity of the process, repeatability, also analyzing the possibility of a commercial transfer of these technologies for microelectronics, and which one may be preferred as industrial approach.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Consiglio Nazionale delle Ricerche—Instituto Processi Chimico-Fisici (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM) UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM) UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Alessia Irrera
- Consiglio Nazionale delle Ricerche—Instituto Processi Chimico-Fisici (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
31
|
Iwanaga M. High-Sensitivity High-Throughput Detection of Nucleic Acid Targets on Metasurface Fluorescence Biosensors. BIOSENSORS-BASEL 2021; 11:bios11020033. [PMID: 33513845 PMCID: PMC7911868 DOI: 10.3390/bios11020033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022]
Abstract
Worldwide infection disease due to SARS-CoV-2 is tremendously affecting our daily lives. High-throughput detection methods for nucleic acids are emergently desired. Here, we show high-sensitivity and high-throughput metasurface fluorescence biosensors that are applicable for nucleic acid targets. The all-dielectric metasurface biosensors comprise silicon-on-insulator nanorod array and have prominent electromagnetic resonances enhancing fluorescence emission. For proof-of-concept experiment on the metasurface biosensors, we have conducted fluorescence detection of single-strand oligoDNAs, which model the partial sequences of SARS-CoV-2 RNA indicated by national infection institutes, and succeeded in the high-throughput detection at low concentrations on the order of 100 amol/mL without any amplification technique. As a direct detection method, the metasurface fluorescence biosensors exhibit high performance.
Collapse
Affiliation(s)
- Masanobu Iwanaga
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
32
|
Smith R, Geary SM, Salem AK. Silicon Nanowires and their Impact on Cancer Detection and Monitoring. ACS APPLIED NANO MATERIALS 2020; 3:8522-8536. [PMID: 36733606 PMCID: PMC9891666 DOI: 10.1021/acsanm.0c01572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since the inception of silicon nanowires (SINWs)-based biosensors in 2001, SINWs employed in various detection schemes have routinely demonstrated label-free, real-time, sub femtomolar detection of both protein and nucleic acid analytes. This has allowed SiNW-based biosensors to integrate into the field of cancer detection and cancer monitoring and thus have the potential to be a paradigm shift in how cancer biomarkers are detected and monitored. Combining this with several promising fields such as liquid biopsies and targeted oncology, SiNW based biosensors represents an opportunity for cancer monitoring and treatment to be a more dynamic process. Such advances provide clinicians with more information on the molecular landscape of cancer patients which can better inform cancer treatment guidelines.
Collapse
Affiliation(s)
- Rasheid Smith
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
33
|
Soler M, Estevez MC, Cardenosa-Rubio M, Astua A, Lechuga LM. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens 2020; 5:2663-2678. [PMID: 32786383 PMCID: PMC7447078 DOI: 10.1021/acssensors.0c01180] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
The global sanitary crisis caused by the emergence of the respiratory virus SARS-CoV-2 and the COVID-19 outbreak has revealed the urgent need for rapid, accurate, and affordable diagnostic tests to broadly and massively monitor the population in order to properly manage and control the spread of the pandemic. Current diagnostic techniques essentially rely on polymerase chain reaction (PCR) tests, which provide the required sensitivity and specificity. However, its relatively long time-to-result, including sample transport to a specialized laboratory, delays massive detection. Rapid lateral flow tests (both antigen and serological tests) are a remarkable alternative for rapid point-of-care diagnostics, but they exhibit critical limitations as they do not always achieve the required sensitivity for reliable diagnostics and surveillance. Next-generation diagnostic tools capable of overcoming all the above limitations are in demand, and optical biosensors are an excellent option to surpass such critical issues. Label-free nanophotonic biosensors offer high sensitivity and operational robustness with an enormous potential for integration in compact autonomous devices to be delivered out-of-the-lab at the point-of-care (POC). Taking the current COVID-19 pandemic as a critical case scenario, we provide an overview of the diagnostic techniques for respiratory viruses and analyze how nanophotonic biosensors can contribute to improving such diagnostics. We review the ongoing published work using this biosensor technology for intact virus detection, nucleic acid detection or serological tests, and the key factors for bringing nanophotonic POC biosensors to accurate and effective COVID-19 diagnosis on the short term.
Collapse
Affiliation(s)
| | | | - Maria Cardenosa-Rubio
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro Astua
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
34
|
Smith R, Geary SM, Salem AK. Implications of current and future approaches to coronavirus disease 2019 testing. Future Virol 2020; 15:551-556. [PMID: 33193806 PMCID: PMC7560716 DOI: 10.2217/fvl-2020-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022]
Affiliation(s)
- Rasheid Smith
- Division of Pharmaceutics & Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- Division of Pharmaceutics & Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Division of Pharmaceutics & Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
35
|
Li X, Lu J, Feng L, Zhang L, Gong J. Smart pH-Regulated Switchable Nanoprobes for Photoelectrochemical Multiplex Detection of Antibiotic Resistance Genes. Anal Chem 2020; 92:11476-11483. [DOI: 10.1021/acs.analchem.0c02839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Junmiao Lu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
36
|
CMOS-Compatible and Low-Cost Thin Film MACE Approach for Light-Emitting Si NWs Fabrication. NANOMATERIALS 2020; 10:nano10050966. [PMID: 32443601 PMCID: PMC7325577 DOI: 10.3390/nano10050966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022]
Abstract
Silicon nanowires (Si NWs) are emerging as an innovative building block in several fields, such as microelectronics, energetics, photonics, and sensing. The interest in Si NWs is related to the high surface to volume ratio and the simpler coupling with the industrial flat architecture. In particular, Si NWs emerge as a very promising material to couple the light to silicon. However, with the standard synthesis methods, the realization of quantum-confined Si NWs is very complex and often requires expensive equipment. Metal-Assisted Chemical Etching (MACE) is gaining more and more attention as a novel approach able to guarantee high-quality Si NWs and high density with a cost-effective approach. Our group has recently modified the traditional MACE approach through the use of thin metal films, obtaining a strong control on the optical and structural properties of the Si NWs as a function of the etching process. This method is Complementary Metal-Oxide-Semiconductors (CMOS)-technology compatible, low-cost, and permits us to obtain a high density, and room temperature light-emitting Si NWs due to the quantum confinement effect. A strong control on the Si NWs characteristics may pave the way to a real industrial transfer of this fabrication methodology for both microelectronics and optoelectronics applications.
Collapse
|
37
|
Klinghammer S, Rauch S, Pregl S, Uhlmann P, Baraban L, Cuniberti G. Surface Modification of Silicon Nanowire Based Field Effect Transistors with Stimuli Responsive Polymer Brushes for Biosensing Applications. MICROMACHINES 2020; 11:E274. [PMID: 32155794 PMCID: PMC7143225 DOI: 10.3390/mi11030274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
We demonstrate the functionalization of silicon nanowire based field effect transistors (SiNW FETs) FETs with stimuli-responsive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) and poly(acrylic acid) (PAA). Surface functionalization was confirmed by atomic force microscopy, contact angle measurements, and verified electrically using a silicon nanowire based field effect transistor sensor device. For thermo-responsive PNIPAAM, the physicochemical properties (i.e., a reversible phase transition, wettability) were induced by crossing the lower critical solution temperature (LCST) of about 32 °C. Taking advantage of this property, osteosarcomic SaoS-2 cells were cultured on PNIPAAM-modified sensors at temperatures above the LCST, and completely detached by simply cooling. Next, the weak polyelectrolyte PAA, that is sensitive towards alteration of pH and ionic strength, was used to cover the silicon nanowire based device. Here, the increase of pH will cause deprotonation of the present carboxylic (COOH) groups along the chains into negatively charged COO- moieties that repel each other and cause swelling of the polymer. Our experimental results suggest that this functionalization enhances the pH sensitivity of the SiNW FETs. Specific receptor (bio-)molecules can be added to the polymer brushes by simple click chemistry so that functionality of the brush layer can be tuned optionally. We demonstrate at the proof-of concept-level that osteosarcomic Saos-2 cells can adhere to PNIPAAM-modified FETs, and cell signals could be recorded electrically. This study presents an applicable route for the modification of highly sensitive, versatile FETs that can be applied for detection of a variety of biological analytes.
Collapse
Affiliation(s)
- Stephanie Klinghammer
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (S.K.); (S.P.); (G.C.)
| | - Sebastian Rauch
- Leibniz Institute für Polymerforschung Dresden e.V., 01069 Dresden, Germany; (S.R.); (P.U.)
| | - Sebastian Pregl
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (S.K.); (S.P.); (G.C.)
| | - Petra Uhlmann
- Leibniz Institute für Polymerforschung Dresden e.V., 01069 Dresden, Germany; (S.R.); (P.U.)
- Department of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, 639 North 12th Street, Lincoln, NE 68588, USA
| | - Larysa Baraban
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (S.K.); (S.P.); (G.C.)
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (S.K.); (S.P.); (G.C.)
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
38
|
Sciuto EL, Petralia S, Calabrese G, Conoci S. An integrated biosensor platform for extraction and detection of nucleic acids. Biotechnol Bioeng 2020; 117:1554-1561. [PMID: 31997343 DOI: 10.1002/bit.27290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
The development of portable systems for analysis of nucleic acids (NAs) is crucial for the evolution of biosensing in the context of future healthcare technologies. The integration of NA extraction, purification, and detection modules, properly actuated by microfluidics technologies, is a key point for the development of portable diagnostic systems. In this paper, we describe an integrated biosensor platform based on a silicon-plastic hybrid lab-on-disk technology capable of managing NA extraction, purification, and detection processes in an integrated format. The sample preparation process is performed by solid-phase extraction technology using magnetic beads on a plastic disk, while detection is done through quantitative real-time polymerase chain reaction (qRT-PCR) on a miniaturized silicon device. The movement of sample and reagents is actuated by a centrifugal force induced by a disk actuator instrument. The assessment of the NA extraction and detection performance has been carried out by using hepatitis B virus (HBV) DNA genome as a biological target. The quantification of the qRT-PCR chip in the hybrid disk showed an improvement in sensitivity with respect to the qRT-PCR commercial platforms, which means an optimization of time and cost. Limit of detection and limit of quantification values of about 8 cps/reaction and 26 cps/reaction, respectively, were found by using analytical samples (synthetic clone), while the results with real samples (serum with spiked HBV genome) indicate that the system performs as well as the standard methods.
Collapse
Affiliation(s)
| | | | - Giovanna Calabrese
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, University of Messina, Messina, Italy
| | - Sabrina Conoci
- STMicroelectronics, Catania, Italy.,Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, University of Messina, Messina, Italy
| |
Collapse
|
39
|
Dong H, Lu B, Wang J, Xie J, Liu K, Jia L, Zhuang J. Polymerization-driven successive collapse of DNA dominoes enabling highly sensitive cancer gene diagnosis. Chem Commun (Camb) 2019; 55:14797-14800. [PMID: 31761905 DOI: 10.1039/c9cc07508a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a novel fluorescence assay method by designing a polymerization-driven DNA dominoes collapse (PDDC) strategy, enabling highly sensitive detection of p53 gene (as a model analyte) and single nucleotide polymorphism analysis.
Collapse
Affiliation(s)
- Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lo Faro MJ, D’Andrea C, Leonardi AA, Morganti D, Irrera A, Fazio B. Fractal Silver Dendrites as 3D SERS Platform for Highly Sensitive Detection of Biomolecules in Hydration Conditions. NANOMATERIALS 2019; 9:nano9111630. [PMID: 31744124 PMCID: PMC6915472 DOI: 10.3390/nano9111630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
In this paper, we report on the realization of a highly sensitive and low cost 3D surface-enhanced Raman scattering (SERS) platform. The structural features of the Ag dendrite network that characterize the SERS material were exploited, attesting a remarked self-similarity and scale invariance over a broad range of length scales that are typical of fractal systems. Additional structural and optical investigations confirmed the purity of the metal network, which was characterized by low oxygen contamination and by broad optical resonances introduced by the fractal behavior. The SERS performances of the 3D fractal Ag dendrites were tested for the detection of lysozyme as probe molecule, attesting an enhancement factor of ~2.4 × 106. Experimental results assessed the dendrite material as a suitable SERS detection platform for biomolecules investigations in hydration conditions.
Collapse
Affiliation(s)
- Maria José Lo Faro
- Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (A.A.L.); (D.M.)
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- CNR - MATIS IMM, Istituto per la Microelettronica e Microsistemi, via S. Sofia 64, 95123 Catania, Italy
| | - Cristiano D’Andrea
- CNR - IFAC, Istituto di Fisica Applicata “Nello Carrara”, Via Madonna del Piano, 10, I-50019 Sesto Fiorentino, Italy;
| | - Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (A.A.L.); (D.M.)
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- CNR - MATIS IMM, Istituto per la Microelettronica e Microsistemi, via S. Sofia 64, 95123 Catania, Italy
| | - Dario Morganti
- Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, Italy; (M.J.L.F.); (A.A.L.); (D.M.)
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Alessia Irrera
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- Correspondence: (A.I.); (B.F.); Tel.: +39-090-3976-2266 (A.I.); +39-090-3976-2246 (B.F.)
| | - Barbara Fazio
- CNR - IPCF, Istituto per I Processi Chimico-Fisici, viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- Correspondence: (A.I.); (B.F.); Tel.: +39-090-3976-2266 (A.I.); +39-090-3976-2246 (B.F.)
| |
Collapse
|
41
|
Petralia S, Forte G, Zimbone M, Conoci S. The cooperative interaction of triplex forming oligonucleotides on DNA-triplex formation at electrode surface: Molecular dynamics studies and experimental evidences. Colloids Surf B Biointerfaces 2019; 187:110648. [PMID: 31767411 DOI: 10.1016/j.colsurfb.2019.110648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
An extensive study on cooperative interaction of Triplex Forming Oligonucleotides (TFOs) with a double strand DNA, to form a triplex-DNA structure at electrode surface, is here reported. The cooperative effect on triplex structure formation was assumed by the higher binding enthalpy value, calculated for the interaction between the duplex DNA structure and the TFO1 and TFO2 probes (-67.3 KJ/mol), respect the sum of the single duplex-TFO1 and duplex-TFO2 interactions (-47.0 kJ/mol). The formation of triplex-DNA structure was proven by kinetic modelling study performed using the Luzar and Chandler model. The results indicate that after 500 ns from interaction, H-bonds between the base pairs in the double strand DNA are weaken while new H-bonds between the TFOs and duplex DNA are formed. Molecular dynamic (MD) simulations indicate that the TFOs sequence distance (138 bps) and the amount of TA*T triplet units are the keystones for the effectiveness of the cooperative effect, reaching for the selected target a minimum of energy value of -19452.6 kJ/mol. The MD data were experimentally corroborated by electrochemical measurements, detecting a HBV-clone genome at TFOs modified electrode surface. The interaction was electrochemical transduced by an intercalative Osmium based compound. The Langmuir isotherm model reports for the forming triplex DNA an association constant value of about 2.9 × 1016M-1, this high value could be attributed to the synergic contribution of the TFOs cooperative effect and to the rigid circular duplex structure. Finally, AFM and SEM investigations suggest the formation of a triplex-DNA structure at electrode surface, consisting in circles of about 1.5 um in diameter with asymmetric stranded thickness. This finding data paving the way to future development of advanced miniaturized DNA computing and biosensors.
Collapse
Affiliation(s)
| | - Giuseppe Forte
- Department of Drug Science, University of Catania, via S. Sofia 64, 95123, Catania, Italy
| | | | - Sabrina Conoci
- Department of Chemical Science, University of Messina, Via Stagno d'Alcontres, 98166, Messina, Italy
| |
Collapse
|
42
|
Electrodeposition of Nanoparticles and Continuous Film of CdSe on n-Si (100). NANOMATERIALS 2019; 9:nano9101504. [PMID: 31652606 PMCID: PMC6835584 DOI: 10.3390/nano9101504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
CdSe electrodeposition on n-Si (100) substrate was investigated in sulfuric acid solution. The behaviour and the deposition of the precursors (Cd and Se) were studied separately at first. Then, we explored both the alternated deposition, one layer by one, as well as the simultaneous co-deposition of the two elements to form the CdSe semiconductor. Varying the deposition conditions, we were able to obtain nanoparticles, or a thin film, on the surface of the electrode. The samples were then characterised microscopically and spectroscopically with SEM, XRD and XPS. Finally, we evaluated the induced photoemission of the deposit for the application in optoelectronics.
Collapse
|
43
|
Abstract
Semiconductor nanowires have attracted extensive interest as one of the best-defined classes of nanoscale building blocks for the bottom-up assembly of functional electronic and optoelectronic devices over the past two decades. The article provides a comprehensive review of the continuing efforts in exploring semiconductor nanowires for the assembly of functional nanoscale electronics and macroelectronics. Specifically, we start with a brief overview of the synthetic control of various semiconductor nanowires and nanowire heterostructures with precisely controlled physical dimension, chemical composition, heterostructure interface, and electronic properties to define the material foundation for nanowire electronics. We then summarize a series of assembly strategies developed for creating well-ordered nanowire arrays with controlled spatial position, orientation, and density, which are essential for constructing increasingly complex electronic devices and circuits from synthetic semiconductor nanowires. Next, we review the fundamental electronic properties and various single nanowire transistor concepts. Combining the designable electronic properties and controllable assembly approaches, we then discuss a series of nanoscale devices and integrated circuits assembled from nanowire building blocks, as well as a unique design of solution-processable nanowire thin-film transistors for high-performance large-area flexible electronics. Last, we conclude with a brief perspective on the standing challenges and future opportunities.
Collapse
Affiliation(s)
- Chuancheng Jia
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yu Huang
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
44
|
Dong B, Luo X, Zhu S, Hu T, Li M, Hasan D, Zhang L, Chua SJ, Wei J, Chang Y, Ma Y, Vachon P, Lo GQ, Ang KW, Kwong DL, Lee C. Thermal annealing study of the mid-infrared aluminum nitride on insulator (AlNOI) photonics platform. OPTICS EXPRESS 2019; 27:19815-19826. [PMID: 31503736 DOI: 10.1364/oe.27.019815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/28/2019] [Indexed: 05/19/2023]
Abstract
Aluminum nitride on insulator (AlNOI) photonics platform has great potential for mid-infrared applications thanks to the large transparency window, piezoelectric property, and second-order nonlinearity of AlN. However, the deployment of AlNOI platform might be hindered by the high propagation loss. We perform thermal annealing study and demonstrate significant loss improvement in the mid-infrared AlNOI photonics platform. After thermal annealing at 400°C for 2 hours in ambient gas environment, the propagation loss is reduced by half. Bend loss and taper coupling loss are also investigated. The performance of multimode interferometer, directional coupler, and add/drop filter are improved in terms of insertion loss, quality factor, and extinction ratio. Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction spectroscopy suggest the loss improvement is mainly attributed to the reduction of extinction coefficient in the silicon dioxide cladding. Apart from loss improvement, appropriate thermal annealing also helps in reducing thin film stress.
Collapse
|
45
|
Dong B, Hu T, Luo X, Chang Y, Guo X, Wang H, Kwong DL, Lo GQ, Lee C. Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E893. [PMID: 30388814 PMCID: PMC6266145 DOI: 10.3390/nano8110893] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
In this paper, we report a compact wavelength-flattened directional coupler (WFDC) based chemical sensor featuring an incorporated subwavelength grating (SWG) structure for the mid-infrared (MIR). By incorporating a SWG structure into directional coupler (DC), the dispersion in DC can be engineered to allow broadband operation which is advantageous to extract spectroscopic information for MIR sensing analysis. Meanwhile, the Bragg reflection introduced by the SWG structure produces a sharp trough at the Bragg wavelength. This sharp trough is sensitive to the surrounding refractive index (RI) change caused by the existence of analytes. Therefore, high sensitivity can be achieved in a small footprint. Around fivefold enhancement in the operation bandwidth compared to conventional DC is achieved for 100% coupling efficiency in a 40 µm long WFDC experimentally. Detection of dichloromethane (CH₂Cl₂) in ethanol (C₂H₅OH) is investigated in a SWG-based WFDC sensor 136.8 µm long. Sensing performance is studied by 3D finite-difference time domain (FDTD) simulation while sensitivity is derived by computation. Both RI sensing and absorption sensing are examined. RI sensing reveals a sensitivity of -0.47% self-normalized transmitted power change per percentage of CH₂Cl₂ concentration while 0.12% change in the normalized total integrated output power is realized in the absorption sensing. As the first demonstration of the DC based sensor in the MIR, our device has the potential for tertiary mixture sensing by utilizing both changes in the real and imaginary part of RI. It can also be used as a broadband building block for MIR application such as spectroscopic sensing system.
Collapse
Affiliation(s)
- Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore.
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456, Singapore.
| | - Ting Hu
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
| | - Xianshu Luo
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
| | - Yuhua Chang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore.
| | - Xin Guo
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Hong Wang
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Dim-Lee Kwong
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
| | - Guo-Qiang Lo
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore.
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|