1
|
Sasaki Y, Ohshiro K, Kato M, Tanaka H, Yamagami A, Hagiya K, Minami T. Quantitative Spermidine Detection in Cosmetics using an Organic Transistor-Based Chemical Sensor. ChemistryOpen 2024; 13:e202400098. [PMID: 39235692 DOI: 10.1002/open.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Indexed: 09/06/2024] Open
Abstract
Spermidine is an essential biomarker related to antiaging. Although the detection of spermidine levels is in high demand in life science fields, easy-to-use analytical tools without sample purification have not yet been fully established. Herein, we propose an organic field-effect transistor-based chemical sensor for quantifying the spermidine concentration in commercial cosmetics. An extended-gate structure was employed for organic field-effect transistor (OFET)-based chemical sensing in aqueous media. A coordination-bond-based sensing system was introduced into the OFET device to visualize the spermidine detection information through changes in the transistor characteristics. The extended-gate-type OFET has shown quantitative responses to spermidine, which indicates sufficient detectability (i. e., the limit of detection for spermidine: 2.3 μM) considering actual concentrations in cosmetics. The applicability of the OFET-based chemical sensor for cosmetic analysis was validated by instrumental analysis using high-performance liquid chromatography. The estimated recovery rates for spermidine in cosmetic ingredient products (108-111 %) suggest the feasibility of cosmetic analysis based on the OFET-based chemical sensor.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505 Tokyo, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012 Saitama, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| | - Miyuki Kato
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, 520-0292 Shiga, Japan
| | - Akari Yamagami
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, 520-0292 Shiga, Japan
| | - Kazutake Hagiya
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, 520-0292 Shiga, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505 Tokyo, Japan
| |
Collapse
|
2
|
Sasaki Y, Ohshiro K, Lyu X, Kawashima T, Kamiko M, Tanaka H, Yamagami A, Ueno Y, Minami T. An extended-gate-type organic transistor for monitoring the Menschutkin reaction of tetrazole at a solid-liquid interface. Chem Commun (Camb) 2024; 60:9930-9933. [PMID: 39171508 DOI: 10.1039/d4cc03266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We herein propose an approach to visualize the Menschutkin reaction at an interface between a self-assembled monolayer with nucleophilic properties and water containing alkyl halides. An organic field-effect transistor functionalized with a nucleophilic monolayer has detected in situ alkylation depending on differences in the leaving group ability and the bulkiness of electrophilic alkyls.
Collapse
Affiliation(s)
- Yui Sasaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Takayuki Kawashima
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Akari Yamagami
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Yoshinori Ueno
- Corporate Research Center, Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
3
|
Sasaki Y, Zhang Y, Ohshiro K, Tsuchiya K, Lyu X, Kamiko M, Ueno Y, Tanaka H, Minami T. An organic transistor for detecting the oxidation of an organic sulfur compound at a solid-liquid interface and its chemical sensing applications. Faraday Discuss 2024; 250:60-73. [PMID: 37975288 DOI: 10.1039/d3fd00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of chemical sensors has advanced due to an increase in demand; however, the potential of chemical sensors as devices to monitor organic reactions has not been revealed yet. Thus, we aim to propose a chemical sensor platform for facile monitoring of chemical reactions, especially at a solid-liquid interface. In this study, an extended-gate-type organic field-effect transistor (OFET) has been employed as a platform to detect chemical reactions at an interface between the extended-gate electrode and an aqueous solution. The OFET device functionalized with 4,4'-thiobisbenzenthiol has shown time- and concentration-dependent shifts in transistor characteristics upon adding H2O2. In a selectivity test using seven oxidant agents, the transistor responses depended on the oxidation of the organic sulfur compound (i.e., 4,4'-thiobisbenzenthiol) stemming from the ability of the oxidant agents. Therefore, the observed changes in the transistor characteristics have suggested the generation of sulfur-oxidized products at the interface. In this regard, the observed responses were caused by disulfide formation accompanied by changes in the charges under neutral pH conditions. Meanwhile, weak transistor responses derived from the generation of oxygen adducts have also been observed, which were caused by changes in the dipole moments. Indeed, the yields of the oxygen adducts have been revealed by X-ray photoelectron spectroscopy. The monitoring of gradual changes originating from the decrease in the disulfide formation and the increase in the oxygen adducts implied a novel aspect of the OFET device as a platform to simultaneously detect reversible and irreversible reactions at interfaces without using large-sized analytical instruments. Sulfur oxidation by H2O2 on the OFET device has been further applied to the indirect monitoring of an enzymatic reaction in solution. The OFET-based chemical sensor has shown continuous changes with an increase in a substance (i.e., lactate) in the presence of an enzyme (i.e., lactate oxidase), which indicates that the OFET response depends on the H2O2 generated through the enzymatic reaction in the solution. In this study, we have clarified the versatility of organic devices as platforms to monitor different chemical reactions using a single detection method.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yijing Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yoshinori Ueno
- Corporate Research Center, Toyobo Co., Ltd, 2-1-1 Katata, Otsu, Shiga, 520-0292, Japan
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd, 2-1-1 Katata, Otsu, Shiga, 520-0292, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
4
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
5
|
Zhang Y, Sun C, Duan Y, Cheng S, Hu W. Carbon dots-functionalized extended gate organic field effect transistor-based biosensors for low abundance proteins. NANOSCALE 2023; 15:16458-16465. [PMID: 37791597 DOI: 10.1039/d3nr03405d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Organic field effect transistors have emerged as promising platforms for biosensing applications. However, the challenge lies in optimizing functionalization strategies for the sensing interface, enabling the simultaneous detection of low abundance proteins while maintaining device performance. Here, we designed a carbon dots-functionalized extended gate organic field effect transistor. Leveraging the advantages of facile synthesis, tunable modification, small particle size, and cost-effectiveness of carbon dots, we implemented their integration onto the electrode surface. Through harnessing the covalent interactions of functional groups on the surface of carbon dots, we achieved effective immobilization of low abundance proteins without compromising device performance. Consequently, this biosensor exhibits a remarkably low limit of detection of 2.7 pg mL-1 and demonstrates high selectivity for the carcinoembryonic antigen. These findings highlight the superior capabilities of carbon dots in enhancing biosensor performance and emphasize their potential for early cancer detection.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Insitute, Tianjin University of Technology, Tianjin 300384, China
| | - Yuchen Duan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Shanshan Cheng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Song Y, Tang W, Han L, Liu Y, Shen C, Yin X, Ouyang B, Su Y, Guo X. Integration of nanomaterial sensing layers on printable organic field effect transistors for highly sensitive and stable biochemical signal conversion. NANOSCALE 2023; 15:5537-5559. [PMID: 36880412 DOI: 10.1039/d2nr05863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic field effect transistor (OFET) devices are one of the most popular candidates for the development of biochemical sensors due to their merits of being flexible and highly customizable for low-cost large-area manufacturing. This review describes the key points in constructing an extended-gate type OFET (EGOFET) biochemical sensor with high sensitivity and stability. The structure and working mechanism of OFET biochemical sensors are described firstly, emphasizing the importance of critical material and device engineering to higher biochemical sensing capabilities. Next, printable materials used to construct sensing electrodes (SEs) with high sensitivity and stability are presented with a focus on novel nanomaterials. Then, methods of obtaining printable OFET devices with steep subthreshold swing (SS) for high transconductance efficiency are introduced. Finally, approaches for the integration of OFETs and SEs to form portable biochemical sensor chips are introduced, followed by several demonstrations of sensory systems. This review will provide guidelines for optimizing the design and manufacturing of OFET biochemical sensors and accelerating the movement of OFET biochemical sensors from the laboratory to the marketplace.
Collapse
Affiliation(s)
- Yawen Song
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Han
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chaochao Shen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaokuan Yin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bang Ouyang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Fan H, Sasaki Y, Zhou Q, Tang W, Nishina Y, Minami T. Non-enzymatic detection of glucose levels in human blood plasma by a graphene oxide-modified organic transistor sensor. Chem Commun (Camb) 2023; 59:2425-2428. [PMID: 36745444 DOI: 10.1039/d2cc07009j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We herein report an organic transistor functionalized with a phenylboronic acid derivative and graphene oxide for the quantification of plasma glucose levels, which has been achieved by the minimization of interferent effects derived from physical protein adsorption on the detection electrode.
Collapse
Affiliation(s)
- Haonan Fan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan.,Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
8
|
Ohshiro K, Sasaki Y, Minami T. An extended-gate-type organic transistor-based enzymatic sensor for dopamine detection in human urine. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Wang S, Liu Y, Zhu A, Tian Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal Chem 2023; 95:388-406. [PMID: 36625112 DOI: 10.1021/acs.analchem.2c04541] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrochemical biosensors provide powerful tools for dissecting the dynamically changing neurochemical signals in the living brain, which contribute to the insight into the physiological and pathological processes of the brain, due to their high spatial and temporal resolutions. Recent advances in the integration of in vivo electrochemical sensors with cross-disciplinary advances have reinvigorated the development of in vivo sensors with even better performance. In this Review, we summarize the recent advances in molecular design, electrode materials, and electrochemical devices for in vivo electrochemical sensors from molecular to macroscopic dimensions, highlighting the methods to obtain high performance for fulfilling the requirements for determination in the complex brain through flexible and smart design of molecules, materials, and devices. Also, we look forward to the development of next-generation in vivo electrochemical biosensors.
Collapse
Affiliation(s)
- Shidi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
10
|
Schulz F, Takamaru S, Bens T, Hanna JI, Sarkar B, Laschat S, Iino H. Liquid crystalline self-assembly of azulene-thiophene hybrids and their applications as OFET materials. Phys Chem Chem Phys 2022; 24:23481-23489. [PMID: 36129047 DOI: 10.1039/d2cp03527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orientational control within thin films is crucial for the preparation of organic field effect transistors (OFETs). The highly ordered liquid crystalline smectic E phase (SmE) is known as a powerful template for solution processed thin films. Here, we describe the synthesis and characterization of three novel azulene-thiophene hybrid materials. Liquid crystalline characterization showed the presence of wide SmE phases. Thin films were prepared by spin-coating at mesophase temperature. Due to the self-aligning properties of the SmE phase uniformly flat films with good molecular alignment were manufactured. Top contact bottom gate OFETs showed mobilities up to (3.3 ± 0.5) × 10-3 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Finn Schulz
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany. .,Imaging Science and Engineering Research Center, Tokyo Institute of Technology, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Shun Takamaru
- Imaging Science and Engineering Research Center, Tokyo Institute of Technology, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Tobias Bens
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Jun-Ichi Hanna
- Imaging Science and Engineering Research Center, Tokyo Institute of Technology, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Hiroaki Iino
- Imaging Science and Engineering Research Center, Tokyo Institute of Technology, J1-2, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
11
|
Zhou Q, Sasaki Y, Ohshiro K, Fan H, Montagna V, Gonzato C, Haupt K, Minami T. An organic transistor for the selective detection of tropane alkaloids utilizing a molecularly imprinted polymer. J Mater Chem B 2022; 10:6808-6815. [PMID: 35815816 DOI: 10.1039/d2tb01067d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study proposes a chemical sensing approach for the selective detection of tropane alkaloid drugs based on an extended-gate-type organic field-effect transistor (OFET) functionalized with a molecularly imprinted polymer (MIP). From the viewpoint of pharmaceutical chemistry, the development of versatile chemical sensors to determine the enantiomeric purity of over-the-counter (OTC) tropane drugs is important because of their side effects and different pharmacological activities depending on their chirality. To this end, we newly designed an OFET sensor with an MIP (MIP-OFET) as the recognition element for tropane drugs based on a high complementarity among a template (i.e., (S)-hyoscyamine) and functional monomers such as N-isopropylacrylamide and 2,2-dimethyl-4-pentenoic acid. Indeed, the MIP optimized by density functional theory (DFT) has succeeded in the sensitive and selective detection of (S)-hyoscyamine (as low as 1 μM) by the combination of the OFET with highly selective recognition sites in the MIP. The MIP-OFET was further applied to determine the enantiomeric excess (ee) of commercially available (S)-hyoscyamine, and the linearity changes in the threshold voltages of the OFET corresponded to the % ee values of (S)-hyoscyamine. Overall, the validation with tropane alkaloids revealed the potential of the MIP combined with OFET as a chemical sensor chip for OTC drugs in real-world scenarios.
Collapse
Affiliation(s)
- Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Haonan Fan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Valentina Montagna
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France.
| | - Carlo Gonzato
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France.
| | - Karsten Haupt
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France.
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
12
|
Arai S. Environmental Response Sensors Produced Using Bilayer-Type Organic Semiconductors. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, we developed environmental gas sensors based on bilayer-type organic semiconductors. The number of stacked molecular bilayers was controlled through a solution-based approach. In particular, single molecular bilayers (SMBs) were produced through a geometrical frustration method that can effectively suppress the multiple stacking of bilayers. The layer number-controlled films were utilized to form thin-film transistors (TFTs) to detect the moisture in the air. We revealed that the sensitivity was enhanced in the SMB-based TFTs compared with the TFTs with thicker active layers. These findings are expected to facilitate a new route for producing flexible and lightweight chemical sensors.
Collapse
|
13
|
Ohshiro K, Sasaki Y, Zhou Q, Didier P, Nezaki T, Yasuike T, Kamiko M, Minami T. A microfluidic organic transistor for reversible and real-time monitoring of H 2O 2 at ppb/ppt levels in ultrapure water. Chem Commun (Camb) 2022; 58:5721-5724. [PMID: 35416219 DOI: 10.1039/d2cc01224c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic organic transistor functionalized with phenylboronic acid firstly succeeded in reversible and real-time monitoring of H2O2 at ppb/ppt levels in ultrapure water, which would be used not only as portable chemical sensors but also as monitoring tools to clarify unknown reaction mechanisms of phenylboronic acid with H2O2.
Collapse
Affiliation(s)
- Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Pierre Didier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,LIMMS/CNRS-IIS(UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Takasuke Nezaki
- Kurita Water Industries Ltd., 4-10-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Tomoharu Yasuike
- Kurita Water Industries Ltd., 4-10-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,LIMMS/CNRS-IIS(UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
14
|
Veloz Martínez I, Ek JI, Ahn EC, Sustaita AO. Molecularly imprinted polymers via reversible addition-fragmentation chain-transfer synthesis in sensing and environmental applications. RSC Adv 2022; 12:9186-9201. [PMID: 35424874 PMCID: PMC8985154 DOI: 10.1039/d2ra00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Molecularly imprinted polymers (MIP) have shown their potential as artificial and selective receptors for environmental monitoring. These materials can be tailor-made to achieve a specific binding event with a template through a chosen mechanism. They are capable of emulating the recognition capacity of biological receptors with superior stability and versatility of integration in sensing platforms. Commonly, these polymers are produced by traditional free radical bulk polymerization (FRP) which may not be the most suitable for enhancing the intended properties due to the poor imprinting performance. To improve the imprinting technique and the polymer capabilities, controlled/living radical polymerization (CRP) has been used to overcome the main drawbacks of FRP. Combining CRP techniques such as RAFT (reversible addition-fragmentation chain transfer) with MIP has achieved higher selectivity, sensitivity, and sorption capacity of these polymers when implemented as the transductor element in sensors. The present work focuses on RAFT-MIP design and synthesis strategies to enhance the binding affinities and their implementation in environmental contaminant sensing applications.
Collapse
Affiliation(s)
- Irvin Veloz Martínez
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Jackeline Iturbe Ek
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Ethan C Ahn
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio San Antonio TX 78249 USA
| | - Alan O Sustaita
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| |
Collapse
|
15
|
Comeau ZJ, Lessard BH, Shuhendler AJ. The Need to Pair Molecular Monitoring Devices with Molecular Imaging to Personalize Health. Mol Imaging Biol 2022; 24:675-691. [PMID: 35257276 PMCID: PMC8901094 DOI: 10.1007/s11307-022-01714-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
By enabling the non-invasive monitoring and quantification of biomolecular processes, molecular imaging has dramatically improved our understanding of disease. In recent years, non-invasive access to the molecular drivers of health versus disease has emboldened the goal of precision health, which draws on concepts borrowed from process monitoring in engineering, wherein hundreds of sensors can be employed to develop a model which can be used to preventatively detect and diagnose problems. In translating this monitoring regime from inanimate machines to human beings, precision health posits that continual and on-the-spot monitoring are the next frontiers in molecular medicine. Early biomarker detection and clinical intervention improves individual outcomes and reduces the societal cost of treating chronic and late-stage diseases. However, in current clinical settings, methods of disease diagnoses and monitoring are typically intermittent, based on imprecise risk factors, or self-administered, making optimization of individual patient outcomes an ongoing challenge. Low-cost molecular monitoring devices capable of on-the-spot biomarker analysis at high frequencies, and even continuously, could alter this paradigm of therapy and disease prevention. When these devices are coupled with molecular imaging, they could work together to enable a complete picture of pathogenesis. To meet this need, an active area of research is the development of sensors capable of point-of-care diagnostic monitoring with an emphasis on clinical utility. However, a myriad of challenges must be met, foremost, an integration of the highly specialized molecular tools developed to understand and monitor the molecular causes of disease with clinically accessible techniques. Functioning on the principle of probe-analyte interactions yielding a transducible signal, probes enabling sensing and imaging significantly overlap in design considerations and targeting moieties, however differing in signal interpretation and readout. Integrating molecular sensors with molecular imaging can provide improved data on the personal biomarkers governing disease progression, furthering our understanding of pathogenesis, and providing a positive feedback loop toward identifying additional biomarkers and therapeutics. Coupling molecular imaging with molecular monitoring devices into the clinical paradigm is a key step toward achieving precision health.
Collapse
Affiliation(s)
- Zachary J Comeau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, ON, K1N 6N5, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada.
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
16
|
Mitobe R, Sasaki Y, Tang W, Zhou Q, Lyu X, Ohshiro K, Kamiko M, Minami T. Multi-Oxyanion Detection by an Organic Field-Effect Transistor with Pattern Recognition Techniques and Its Application to Quantitative Phosphate Sensing in Human Blood Serum. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22903-22911. [PMID: 35040626 DOI: 10.1021/acsami.1c21092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We herein report an organic field-effect transistor (OFET) based chemical sensor for multi-oxyanion detection with pattern recognition techniques. The oxyanions ubiquitously play versatile roles in biological systems, and accessing the chemical information they provide would potentially facilitate fundamental research in diagnosis and pharmacology. In this regard, phosphates in human blood serum would be a promising indicator for early case detection of significant diseases. Thus, the development of an easy-to-use chemical sensor for qualitative and quantitative detection of oxyanions is required in real-world scenarios. To this end, an extended-gate-type OFET has been functionalized with a metal complex consisting of 2,2'-dipicolylamine and a copper(II) ion (CuII-dpa), allowing a compact chemical sensor for oxyanion detection. The OFET combined with a uniform CuII-dpa-based self-assembled monolayer (SAM) on the extended-gate gold electrode shows a cross-reactive response, which suggests a discriminatory power for pattern recognition. Indeed, the qualitative detection of 13 oxyanions (i.e., hydrogen monophosphate, pyrophosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, terephthalate, phthalate, isophthalate, malonate, oxalate, lactate, benzoate, and acetate) has been demonstrated by only using a single OFET-based sensor with linear discriminant analysis, which has shown 100% correct classification. The OFET has been further applied to the quantification of hydrogen monophosphate in human blood serum using a support vector machine (SVM). The multiple predictions of hydrogen monophosphate at 49 and 89 μM have been successfully realized with low errors, which indicates that the OFET-based sensor with pattern recognition techniques would be a practical sensing platform for medical assays. We believe that a combination of the OFET functionalized with the SAM-based recognition scaffold and powerful pattern recognition methods can achieve multi-analyte detection from just a single sensor.
Collapse
Affiliation(s)
- Riho Mitobe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
17
|
Guo YB, Liu YL, Chen QL, Liu G. Titanium oxide-based optoelectronic synapses with visual memory synergistically adjusted by internal emotions and ambient illumination. RSC Adv 2022; 12:27162-27169. [PMID: 36276034 PMCID: PMC9511690 DOI: 10.1039/d2ra02749f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Brain-inspired neuromorphic computing has become one of the critical technologies to overcome the bottleneck of von Neumann architecture. It is a vital step to construct a brain-like neuromorphic computing system at the hardware level by utilizing artificial synaptic devices. Compared with electronic synaptic devices, optoelectronic synaptic devices have the advantages of low power consumption, low crosstalk, and high bandwidth. Artificial optoelectronic synapses, analogous to retinal structure, can directly respond to and process light signal information to mimic the neuromorphic visual system. As high-level nerve impulses, both generated and regulated, emotions affect the strength and persistence of memory. Ambient illumination can provide visual perception to distinguish the size, color, and other characteristics of objects as well as affect the nonvisual functions of individuals, such as emotional states, thereby affecting learning and memory function. Herein, an artificial optoelectronic synapse composed of ITO/TiO2−x/p-Si was proposed. A variety of biologically dependent synaptic plasticity relating to learning and memory, including short-term synaptic plasticity, long-term synaptic plasticity, and learning-forgetting-relearning multifunctional advanced synaptic activity, was successfully simulated. A 3 × 3 artificial optoelectronic synapse array based on 9 devices was constructed to mimic the functions of visual learning and memory affected by internal emotion and ambient illumination. The proposed artificial optoelectronic synapse will exhibit great potential in visual and image information perception and memory. A variety of biologically dependent synaptic plasticity activities were simulated on artificial optoelectronic synapse devices. An array was constructed to mimic the functions of visual learning and memory affected by internal emotion and ambient illumination.![]()
Collapse
Affiliation(s)
- Yan-bo Guo
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-lin Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Qi-lai Chen
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Gang Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Qian Y, Zhang L, Tian Y. Highly Stable Electrochemical Probe with Bidentate Thiols for Ratiometric Monitoring of Endogenous Polysulfide in Living Mouse Brains. Anal Chem 2021; 94:1447-1455. [PMID: 34951539 DOI: 10.1021/acs.analchem.1c04894] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lack of reliable approaches for real-time measurement and quantification of polysulfides (H2Sn) in vivo greatly limits the exploration of their potential roles in brain functions. Herein, an electrochemical probe, 4-(5-(1,2-dithiolan-3-yl)pentanamido)-1,2-phenylene bis(2-fluoro-5-nitrobenzoate) (FP2), was rationally designed and created for determination of H2Sn. The bis-electrophilic groups of FP2 could specifically recognize two -SH groups in H2Sn and trigger the generation of an electroactive pyrocatechol moiety, resulting in a well-defined faradic current signal at ∼0.24 V (vs Ag/AgCl). Meanwhile, bidentate thiols were designed as anchoring sites to greatly improve the assembled stability of FP2 at the Au surface, which efficiently defended the interference of glutathione (GSH) with a current decrease of less than 5.2% even after long-term measurements in 5 mM GSH for 3 h. In addition, a stable inner reference molecule with dithiols, α-lipoic acid ferrocenylamide (FcBT), was synthesized to construct a ratiometric electrochemical strategy for in vivo determination of H2Sn through one-step coassembling with FP2 via double S-Au bonds. The present ratiometric strategy demonstrated high selectivity for real-time tracking of H2Sn in a linear range of 0.25-20 μM. Eventually, the developed microelectrode with high selectivity, accuracy, and stability was employed for in vivo assaying of H2Sn in mouse brains with ischemia.
Collapse
Affiliation(s)
- Yinjie Qian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Limin Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
19
|
Sasaki Y, Lyu X, Tang W, Wu H, Minami T. Polythiophene-Based Chemical Sensors: Toward On-Site Supramolecular Analytical Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hao Wu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
20
|
|
21
|
|
22
|
Asano K, Didier P, Ohshiro K, Lobato-Dauzier N, Genot AJ, Minamiki T, Fujii T, Minami T. Real-Time Detection of Glyphosate by a Water-Gated Organic Field-Effect Transistor with a Microfluidic Chamber. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7305-7311. [PMID: 34110177 DOI: 10.1021/acs.langmuir.1c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper reports the development of a real-time monitoring system utilizing the combination of a water-gated organic field-effect transistor (WG-OFET) and a microfluidic chamber for the detection of the herbicide glyphosate (GlyP). For the realization of the real-time sensing with the WG-OFET, the surface of a polymer semiconductor was utilized as a sensing unit. The aqueous solution including the target analyte, which is employed as a gate dielectric of the WG-OFET, flows into a designed microfluidic chamber on the semiconductor layer and the gate electrode. As the sensing mechanism, the WG-OFET-based sensor utilizes the competitive complexation among carboxylate-functionalized polythiophene, a copper(II) (Cu2+) ion, and GlyP. The reversible accumulation and desorption of the positively charged Cu2+ ion on the semiconductor surface induced a change in the electrical double-layer capacitance (EDLC). The optimization of the microfluidic chamber enables a uniform water flow and contributes to real-time quantitative sensing of GlyP at a micromolar level. Thus, this study would lead to practical real-time sensing in water for various fields including environmental assessment.
Collapse
Affiliation(s)
- Koichiro Asano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Pierre Didier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Nicolas Lobato-Dauzier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Anthony J Genot
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
23
|
Recent advances in development of devices and probes for sensing and imaging in the brain. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9961-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Minami T. Design of Supramolecular Sensors and Their Applications to Optical Chips and Organic Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
25
|
Zhou Q, Wang M, Yagi S, Minami T. Extended gate-type organic transistor functionalized by molecularly imprinted polymer for taurine detection. NANOSCALE 2021; 13:100-107. [PMID: 33231581 DOI: 10.1039/d0nr06920e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecularly imprinted polymers (MIPs) are a fascinating technology for the sensitive and selective detection of target molecules. However, in most situations, the need for complicated and expensive analytical devices for reading the responses of MIPs greatly limits their applications. For exploring low-cost and easy-to-use applications of MIPs, herein we have developed a MIP-modified extended-gate type organic field-effect transistor (MIP-OFET). Taurine was selected as a demonstrative analyte due to its biological roles and utility as a nutrient. We explored the rational design of the novel MIP with the aid of density functional theory and wave function calculations and characterized the electrochemically synthesized MIP using differential pulse voltammetry and electrochemical impedance spectroscopy. The mechanism of taurine detection by the MIP-OFET can be explained by the changes in the surface potential of the MIP-functionalized extended-gate electrode accompanied with the capture of taurine. The detection limit of taurine in complete aqueous media was estimated to be 0.33 μM, which was lower or comparable to those calculated by high-performance liquid chromatography. Furthermore, taurine in a commercial drink without any extraction was also successfully detected using the fabricated MIP-OFET. This study would broaden the scope of the applications of MIP-OFETS as chemical sensors for on-site detection of various daily nutrients.
Collapse
Affiliation(s)
- Qi Zhou
- Institute of Industrial Science, The University of Tokyo. 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan.
| | | | | | | |
Collapse
|
26
|
Tominaga S, Sano K, Hirade Y, Shimada T, Ishida T, Takagi S. Adsorption orientation control of porphyrin on titania-nanosheet. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Zhang C, Liu Z, Zhang L, Zhu A, Liao F, Wan J, Zhou J, Tian Y. A Robust Au−C≡C Functionalized Surface: Toward Real‐Time Mapping and Accurate Quantification of Fe
2+
in the Brains of Live AD Mouse Models. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chuanping Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Fumin Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Jingjing Wan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
28
|
Zhang C, Liu Z, Zhang L, Zhu A, Liao F, Wan J, Zhou J, Tian Y. A Robust Au-C≡C Functionalized Surface: Toward Real-Time Mapping and Accurate Quantification of Fe 2+ in the Brains of Live AD Mouse Models. Angew Chem Int Ed Engl 2020; 59:20499-20507. [PMID: 32857422 DOI: 10.1002/anie.202006318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Described here is that Au-C≡C bonds showed the highest stability under biological conditions, with abundant thiols, and the best electrochemical performance compared to Au-S and Au-Se bonds. The new finding was also confirmed by theorical calculations. Based on this finding, a specific molecule for recognition of Fe2+ was designed and synthesized, and used to create a selective and accurate electrochemical sensor for the quantification of Fe2+ . The present ratiometric strategy demonstrates high spatial resolution for real-time tracking of Fe2+ in a dynamic range of 0.2-120 μM. Finally, a microelectrode array with good biocompatibility was applied in imaging and biosensing of Fe2+ in the different regions of live mouse brains. Using this tool, it was discovered that the uptake of extracellular Fe2+ into the cortex and striatum was largely mediated by cyclic adenosine monophosphate (cAMP) through the CREB-related pathway in the brain of a mouse with Alzheimer's disease.
Collapse
Affiliation(s)
- Chuanping Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Fumin Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jingjing Wan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
29
|
Minamiki T, Kubota R, Sasaki Y, Asano K, Minami T. Protein Assays on Organic Electronics: Rational Device and Material Designs for Organic Transistor-Based Sensors. ChemistryOpen 2020; 9:573-581. [PMID: 32405448 PMCID: PMC7216454 DOI: 10.1002/open.202000025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/22/2020] [Indexed: 01/23/2023] Open
Abstract
Artificial receptor-based protein assays have various attractive features such as a long-term stability, a low-cost production process, and the ease of tuning the target specificity. However, such protein sensors are still immature compared with conventional immunoassays. To enhance the application potential of synthetic sensing materials, organic field-effect transistors (OFETs) are some of the suitable platforms for protein assays because of their solution processability, durability, and compact integration. Importantly, OFETs enable the electrical readout of the protein recognition phenomena of artificial receptors on sensing electrodes. Thus, we believe that OFETs functionalized with artificial protein receptors will be a powerful tool for the on-site analyses of target proteins. In this Minireview, we summarize the recent progress of the OFET-based protein assays including the rational design strategies for devices and sensing materials.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Riku Kubota
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Yui Sasaki
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Koichiro Asano
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| | - Tsuyoshi Minami
- Institute of Industrial ScienceThe University of Tokyo4-6-1 Komaba, Meguro-kuTokyo153-8505Japan
| |
Collapse
|
30
|
Minamiki T, Ichikawa Y, Kurita R. The Power of Assemblies at Interfaces: Nanosensor Platforms Based on Synthetic Receptor Membranes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2228. [PMID: 32326464 PMCID: PMC7218865 DOI: 10.3390/s20082228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022]
Abstract
Synthetic sensing materials (artificial receptors) are some of the most attractive components of chemical/biosensors because of their long-term stability and low cost of production. However, the strategy for the practical design of these materials toward specific molecular recognition in water is not established yet. For the construction of artificial material-based chemical/biosensors, the bottom-up assembly of these materials is one of the effective methods. This is because the driving forces of molecular recognition on the receptors could be enhanced by the integration of such kinds of materials at the 'interfaces', such as the boundary portion between the liquid and solid phases. Additionally, the molecular assembly of such self-assembled monolayers (SAMs) can easily be installed in transducer devices. Thus, we believe that nanosensor platforms that consist of synthetic receptor membranes on the transducer surfaces can be applied to powerful tools for high-throughput analyses of the required targets. In this review, we briefly summarize a comprehensive overview that includes the preparation techniques for molecular assemblies, the characterization methods of the interfaces, and a few examples of receptor assembly-based chemical/biosensing platforms on each transduction mechanism.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuki Ichikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
31
|
Minamiki T, Ichikawa Y, Kurita R. Systematic Investigation of Molecular Recognition Ability in FET-Based Chemical Sensors Functionalized with a Mixed Self-Assembled Monolayer System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15903-15910. [PMID: 32134238 DOI: 10.1021/acsami.0c00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring new strategies for simple and on-demand methods of manipulating the sensing ability of sensor devices functionalized with artificial receptors embedded in a molecular assembly is important to realizing high-throughput on-site sensing systems based on integrated and miniaturized devices such as field-effect transistors (FETs). Although FET-based chemical sensors can be used for rapid, quantitative, and simultaneous determination of various desired analytes, detectable targets in conventional FET sensors are currently restricted owing to the complicated processes used to prepare sensing materials. In this study, we investigated the relationship between the sensing features of FETs and the nanostructures of mixed self-assembled monolayers (mSAMs) for the detection of biomolecules. The FET devices were systematically functionalized using mixtures of benzenethiol derivatives (4-mercaptobenzoic acid and benzenethiol), which changed the nanostructure of the SAMs formed on gold sensing electrodes. The obtained cross-reactivity in the FETs modified with the mSAMs was derived from the multidimensional variations of the SAM characteristics. Our successful demonstration of continuous control of the molecular recognition ability in the FETs by applying the mSAM system could lead to the development of next-generation versatile analyzers, including chemical sensor arrays for the determination of multiple analytes anytime, anywhere.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuki Ichikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
32
|
Martín Várguez P, Brunel F, Raimundo JM. Recent Electrochemical/Electrical Microfabricated Sensor Devices for Ionic and Polyionic Analytes. ACS OMEGA 2020; 5:4733-4742. [PMID: 32201758 PMCID: PMC7081253 DOI: 10.1021/acsomega.9b04331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/12/2020] [Indexed: 05/06/2023]
Abstract
The recent technological advances combined with the development of new concepts and strategies have revolutionized the field of sensor devices, allowing access to increasingly sophisticated device structures associated with high sensitivities and selectivities. Among them, electrochemical and electrical sensors have gained the most interest because they offer unique intrinsic characteristics and meet the requirements to be integrated in more sophisticated devices including microfluidics or lab-on-chips, opening access to multiplex and all-in-one detection devices. In the present article, we outline and provide a short and concise overview on the most recent achievements in the field of electrical detection of ionic species as they display versatile roles in many important biological events and are ubiquitous in environment.
Collapse
|
33
|
Didier P, Lobato‐Dauzier N, Clément N, Genot AJ, Sasaki Y, Leclerc É, Minamiki T, Sakai Y, Fujii T, Minami T. Microfluidic System with Extended‐Gate‐Type Organic Transistor for Real‐Time Glucose Monitoring. ChemElectroChem 2020. [DOI: 10.1002/celc.201902013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pierre Didier
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- LIMMS/CNRS-IIS (UMI2820) The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Nicolas Lobato‐Dauzier
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- LIMMS/CNRS-IIS (UMI2820) The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Nicolas Clément
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- LIMMS/CNRS-IIS (UMI2820) The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Anthony J. Genot
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- LIMMS/CNRS-IIS (UMI2820) The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yui Sasaki
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Éric Leclerc
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- LIMMS/CNRS-IIS (UMI2820) The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yasuyuki Sakai
- LIMMS/CNRS-IIS (UMI2820) The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- Department of Chemical System Engineering The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Teruo Fujii
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- LIMMS/CNRS-IIS (UMI2820) The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- LIMMS/CNRS-IIS (UMI2820) The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|