1
|
Iradukunda Y, Kang JY, Zhao XB, Fu XK, Nsanzamahoro S, Ha W, Shi YP. Triple Sensing Modes for Triggered β-Galactosidase Activity Assays Based on Kaempferol-Deduced Silicon Nanoparticles and Biological Imaging of MCF-7 Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:3154-3163. [PMID: 38695332 DOI: 10.1021/acsabm.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
β-Galactosidase (β-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor β-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine β-Gala activity effectively. Via the sensing performance, the catalytic activity of β-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-β-d-galactopyranoside (KOβDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing β-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of β-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.
Collapse
Affiliation(s)
- Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Stanislas Nsanzamahoro
- School of Chemistry and Chemical Engineering, Shandong University, Jinan City, Shandong 250100, PR China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| |
Collapse
|
2
|
Kim HS, Ham SY, Ryoo HS, Kim DH, Yun ET, Park HD, Park JH. Inhibiting bacterial biofilm formation by stimulating c-di-GMP regulation using citrus peel extract from Jeju Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162180. [PMID: 36775169 DOI: 10.1016/j.scitotenv.2023.162180] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Biofilms consist of single or multiple species of bacteria embedded in extracellular polymeric substances (EPSs), which affect the increase in antibiotic resistance by restricting the transport of antibiotics to the bacterial cells. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In this study, we found that citrus peel extract from Jeju Island (CPEJ) can inhibit bacterial biofilm formation. According to the results, CPEJ concentration-dependently reduces biofilm formation without affecting bacterial growth. Additionally, CPEJ decreased the production of extracellular polymeric substances but increased bacterial swarming motility. These results led to the hypothesis that CPEJ can reduce intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) concentration. The results showed that CPEJ significantly reduced the c-di-GMP level through increased phosphodiesterase activity. Altogether, these findings suggest that CPEJ as a biofilm inhibitor has new potential for pharmacological (e.g. drug and medication) and industrial applications (e.g. ship hulls, water pipes, and membrane processes biofouling control).
Collapse
Affiliation(s)
- Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - So-Young Ham
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Hwa-Soo Ryoo
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Do-Hyung Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, South Korea
| | - Eun-Tae Yun
- Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, South Korea.
| |
Collapse
|
3
|
Liu Y, Kim E, Lei M, Wu S, Yan K, Shen J, Bentley WE, Shi X, Qu X, Payne GF. Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels. Biomacromolecules 2023. [PMID: 37155361 DOI: 10.1021/acs.biomac.3c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Ye X, Gao D, Mu X, Wu Q, Ma P, Song D. Dual-Signal Triple-Mode Optical Sensing Platform for Assisting in the Diagnosis of Kidney Disorders. Anal Chem 2023; 95:4653-4661. [PMID: 36863867 DOI: 10.1021/acs.analchem.2c04958] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
As known biomarkers of kidney diseases, N-acetyl-β-d-glucosaminidase (NAG) and β-galactosidase (β-GAL) are of great importance for the diagnosis and treatment of diseases. The feasibility of using multiplex sensing methods to simultaneously report the outcome of the two enzymes in the same sample is even more alluring. Herein, we establish a simple sensing platform for the concurrent detection of NAG and β-GAL using silicon nanoparticles (SiNPs) as a fluorescent indicator synthesized by a one-pot hydrothermal route. p-Nitrophenol (PNP), as a common enzymatic hydrolysis product of the two enzymes, led to the attenuation of fluorometric signal caused by the inner filter effect on SiNPs, the enhancement of colorimetric signal due to the increase of intensity of the characteristic absorption peak at around 400 nm with increasing reaction time, and the changes of RGB values of images obtained through a color recognition application on a smartphone. The fluorometric/colorimetric approach combined with the smartphone-assisted RGB mode was able to detect NAG and β-GAL with good linear response. Applying this optical sensing platform to clinical urine samples, we found that the two indicators in healthy individuals and patients (glomerulonephritis) with kidney diseases were significantly different. By expanding to other renal lesion-related specimens, this tool may show great potentials in clinical diagnosis and visual inspection.
Collapse
Affiliation(s)
- Xiwen Ye
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dejiang Gao
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xiaowei Mu
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qiong Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Pinyi Ma
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
5
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
VanArsdale E, Pitzer J, Wang S, Stephens K, Chen CY, Payne GF, Bentley WE. Enhanced electrochemical measurement of β-galactosidase activity in whole cells by coexpression of lactose permease, LacY. Biotechniques 2022; 73:233-237. [DOI: 10.2144/btn-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Whole-cell biosensing links the sensing and computing capabilities of microbes to the generation of a detectable reporter. Whole cells enable dynamic biological computation (filtered noise, amplified signals, logic gating etc.). Enzymatic reporters enable in situ signal amplification. Electrochemical measurements are easily quantified and work in turbid environments. In this work we show how the coexpression of the lactose permease, LacY, dramatically improves electrochemical sensing of β-galactosidase (LacZ) expressed as a reporter in whole cells. The permease facilitates transport of the LacZ substrate, 4-aminophenyl β-d-galactopyranoside, which is converted to redox active p-aminophenol, which, in turn, is detected via cyclic voltammetry or chronocoulometry. We show a greater than fourfold improvement enabled by lacY coexpression in cells engineered to respond to bacterial signal molecules, pyocyanin and quorum-sensing autoinducer-2.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Chen-yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Motabar D, Wang S, Tsao CY, Payne GF, Bentley WE. Protein G: β-galactosidase fusion protein for multi-modal bioanalytical applications. Biotechnol Prog 2022; 38:e3297. [PMID: 35976745 PMCID: PMC10078426 DOI: 10.1002/btpr.3297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
β-galactosidase (β-gal) is one of the most prevalent markers of gene expression. Its activity can be monitored via optical and fluorescence microscopy, electrochemistry, and many other ways after slight modification using protein engineering. Here, we have constructed a chimeric version that incorporates a streptococcal protein G domain at the N-terminus of β-gal that binds immunoglobins, namely IgG. This protein G:β-galactosidase fusion enables β-gal-based spectrophotometric and electrochemical measurements of IgG. Moreover, our results show linearity over an industrially relevant range. We demonstrate applicability with rapid spectroelectrochemical detection of IgG in several formats including using an electrochemical sensing interface that is rapidly assembled directly onto electrodes for incorporation into biohybrid devices. The fusion protein enables sensitive, linear, and rapid responses, and in our case, makes IgG measurements quite robust and simple, expanding the molecular diagnostics toolkit for biological measurement. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
8
|
Dong H, Zhao L, Zhu X, Wei X, Zhu M, Ji Q, Luo X, Zhang Y, Zhou Y, Xu M. Development of a novel ratiometric electrochemical sensor for monitoring β-galactosidase in Parkinson's disease model mice. Biosens Bioelectron 2022; 210:114301. [DOI: 10.1016/j.bios.2022.114301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
|
9
|
Badalyan G, Díaz C, Grigoryan K. Dual substrate sensor platform for rapid detection and differentiation of coliforms. METHODS IN MICROBIOLOGY 2022; 199:106534. [DOI: 10.1016/j.mimet.2022.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
|
10
|
Multiplexed assessment of engineered bacterial constructs for intracellular β-galactosidase expression by redox amplification on catechol-chitosan modified nanoporous gold. Mikrochim Acta 2021; 189:4. [PMID: 34855041 DOI: 10.1007/s00604-021-05109-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying β-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.
Collapse
|
11
|
Mustafa F, Liebich S, Andreescu S. Nanoparticle-based amplification for sensitive detection of β-galactosidase activity in fruits. Anal Chim Acta 2021; 1186:339129. [PMID: 34756270 DOI: 10.1016/j.aca.2021.339129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Development of fast and sensitive assays for enzyme activity detection has received a great deal of attention because of the wide spread applications in measurements of numerous clinical, food and environmental processes. Herein, a novel amplification approach to enhance the sensitivity of colorimetric assays for detection of β-galactosidase (β-Gal) activity is proposed. β-Gal detection is important in biomedical applications and in food industry, where it is associated with the ripening process of fruits. The method is based on the use of multivalent cerium oxide nanoparticles (CeNPs) which catalyze the oxidation of 4-aminophenol (4-AP) produced in the hydrolysis process of the 4-aminophenyl-β-d-galactopyranoside substrate (4-APG) by β-Gal, thus enhancing detection sensitivity of β-Gal in the visible range. The developed assay is highly sensitive and easy to use. Using the optimized procedure, a limit of detection of 0.06 mU/mL was obtained with a linearity range up to 2.0 mU/mL. The feasibility of the method was demonstrated for detection of β-Gal activity in fruits and the results were compared with the conventional assay, providing over a 30-fold amplification as compared to a commercially available β-Gal protocol. The advantage of the presented assay is its biocatalytic event amplified by a secondary reaction, which enables much more sensitive detection of the enzymatic product. The sensing platform can be applied broadly to a variety of applications that rely on β-Gal activity measurements.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University, USA
| | - Steve Liebich
- Department of Chemistry and Biomolecular Science, Clarkson University, USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, USA.
| |
Collapse
|
12
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
13
|
Sharma SK, Poudel Sharma S, Leblanc RM. Methods of detection of β-galactosidase enzyme in living cells. Enzyme Microb Technol 2021; 150:109885. [PMID: 34489038 DOI: 10.1016/j.enzmictec.2021.109885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
The application of β-galactosidase enzyme ranges from industrial use as probiotics to medically important application such as cancer detection. The irregular activities of β-galactosidase enzyme are directly related to the development of cancers. Identifying the location and expression levels of enzymes in cancer cells have considerable importance in early-stage cancer diagnosis and monitoring the efficacy of therapies. Most importantly, the knowledge of the efficient method of detection of β-galactosidase enzyme will help in the early-stage treatment of the disease. In this review paper, we provide an overview of recent advances in the detection methods of β-galactosidase enzyme in the living cells, including the detection strategies, and approaches in human beings, plants, and microorganisms such as bacteria. Further, we emphasized on the challenges and opportunities in this rapidly developing field of development of different biomarkers and fluorescent probes based on β-galactosidase enzyme. We found that previously used chromo-fluorogenic methods have been mostly replaced by the new molecular probes, although they have certain drawbacks. Upon comparing the different methods, it was found that near-infrared fluorescent probes are dominating the other detection methods.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States; Thomas More University, 333 Thomas More Pkwy, Crestview Hills, KY 41017
| | - Sijan Poudel Sharma
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States.
| |
Collapse
|
14
|
Stephens K, Zakaria FR, VanArsdale E, Payne GF, Bentley WE. Electronic signals are electrogenetically relayed to control cell growth and co-culture composition. Metab Eng Commun 2021; 13:e00176. [PMID: 34194997 PMCID: PMC8233222 DOI: 10.1016/j.mec.2021.e00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
There is much to be gained by enabling electronic interrogation and control of biological function. While the benefits of bioelectronics that rely on potential-driven ionic flows are well known (electrocardiograms, defibrillators, neural prostheses, etc) there are relatively few advances targeting nonionic molecular networks, including genetic circuits. Redox activities combine connectivity to electronics with the potential for specific genetic control in cells. Here, electrode-generated hydrogen peroxide is used to actuate an electrogenetic "relay" cell population, which interprets the redox cue and synthesizes a bacterial signaling molecule (quorum sensing autoinducer AI-1) that, in turn, signals increased growth rate in a second population. The dramatically increased growth rate of the second population is enabled by expression of a phosphotransferase system protein, HPr, which is important for glucose transport. The potential to electronically modulate cell growth via direct genetic control will enable new opportunities in the treatment of disease and manufacture of biological therapeutics and other molecules.
Collapse
Affiliation(s)
- Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - Fauziah Rahma Zakaria
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, USA
| |
Collapse
|
15
|
Terrell JL, Tschirhart T, Jahnke JP, Stephens K, Liu Y, Dong H, Hurley MM, Pozo M, McKay R, Tsao CY, Wu HC, Vora G, Payne GF, Stratis-Cullum DN, Bentley WE. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. NATURE NANOTECHNOLOGY 2021; 16:688-697. [PMID: 33782589 DOI: 10.1038/s41565-021-00878-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/15/2021] [Indexed: 05/15/2023]
Abstract
We developed a bioelectronic communication system that is enabled by a redox signal transduction modality to exchange information between a living cell-embedded bioelectronics interface and an engineered microbial network. A naturally communicating three-member microbial network is 'plugged into' an external electronic system that interrogates and controls biological function in real time. First, electrode-generated redox molecules are programmed to activate gene expression in an engineered population of electrode-attached bacterial cells, effectively creating a living transducer electrode. These cells interpret and translate electronic signals and then transmit this information biologically by producing quorum sensing molecules that are, in turn, interpreted by a planktonic coculture. The propagated molecular communication drives expression and secretion of a therapeutic peptide from one strain and simultaneously enables direct electronic feedback from the second strain, thus enabling real-time electronic verification of biological signal propagation. Overall, we show how this multifunctional bioelectronic platform, termed a BioLAN, reliably facilitates on-demand bioelectronic communication and concurrently performs programmed tasks.
Collapse
Affiliation(s)
- Jessica L Terrell
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Tanya Tschirhart
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Justin P Jahnke
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Hong Dong
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Margaret M Hurley
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Aberdeen, MD, USA
| | - Maria Pozo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ryan McKay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Chen Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Hsuan-Chen Wu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Gary Vora
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Dimitra N Stratis-Cullum
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
16
|
Li Y, Deng B, Chen H, Yang S, Sun B. A ratiometric fluorescent probe for the detection of β-galactosidase and its application. RSC Adv 2021; 11:13341-13347. [PMID: 35423855 PMCID: PMC8697631 DOI: 10.1039/d1ra00739d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, a coumarin fluorescent probe (Probe 1) was developed for the ratiometric detection of β-galactosidase (β-gal) activity. The detection range was 0–0.1 U mL−1 and 0.2–0.8 U mL−1, and the limit of detection (LOD) was 0.0054 U mL−1. Moreover, the luminous intensity of Probe 1 increased gradually with increase in β-gal activity. It could be observed under 254 nm UV irradiation by the naked eye. Furthermore, this method only required a small amount of sample (20 μL) and a short analytical time (30 min) for the detection of β-gal activity with a low LOD. Probe 1 was successfully used to detect β-gal activity in real fruit samples, and can be applied to the quantitative and qualitative detection of β-gal activity. A ratiometric fluorescent probe was successfully used as a tool to determine β-galactosidase activity in fruits.![]()
Collapse
Affiliation(s)
- Yanan Li
- Beijing Key Laboratory of Flavor Chemistry
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Bing Deng
- Beijing Key Laboratory of Flavor Chemistry
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Shaoxiang Yang
- Beijing Key Laboratory of Flavor Chemistry
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry
- Beijing Technology and Business University
- Beijing 100048
- China
| |
Collapse
|
17
|
Tseng CP, Silberg JJ, Bennett GN, Verduzco R. 100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Lett 2020; 9:1590-1603. [PMID: 35617074 DOI: 10.1021/acsmacrolett.0c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioelectronics brings together the fields of biology and microelectronics to create multifunctional devices with the potential to address longstanding technological challenges and change our way of life. Microbial electrochemical devices are a growing subset of bioelectronic devices that incorporate naturally occurring or synthetically engineered microbes into electronic devices and have broad applications including energy harvesting, chemical production, water remediation, and environmental and health monitoring. The goal of this Viewpoint is to highlight recent advances and ongoing challenges in the rapidly developing field of microbial bioelectronic devices, with an emphasis on materials challenges. We provide an overview of microbial bioelectronic devices, discuss the biotic-abiotic interface in these devices, and then present recent advances and ongoing challenges in materials related to electron transfer across the abiotic-biotic interface, microbial adhesion, redox signaling, electronic amplification, and device miniaturization. We conclude with a summary and perspective of the field of microbial bioelectronics.
Collapse
Affiliation(s)
- Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - George N. Bennett
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Lamberg P, Lamkin-Kennard KA, Schrlau MG. Fast Detection of Beta Galactosidase and Enzyme Kinetics with 4-Aminophenyl-β-D-Galactopyranoside as Substrate. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1837856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Peter Lamberg
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | | | - Michael G. Schrlau
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
19
|
Novel fluorescent probe for the ratiometric detection of β-galactosidase and its application in fruit. Food Chem 2020; 328:127112. [DOI: 10.1016/j.foodchem.2020.127112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022]
|
20
|
VanArsdale E, Pitzer J, Payne GF, Bentley WE. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience 2020; 23:101545. [PMID: 33083771 PMCID: PMC7516135 DOI: 10.1016/j.isci.2020.101545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells often communicate by the secretion, transport, and perception of molecules. Information conveyed by molecules is encoded, transmitted, and decoded by cells within the context of the prevailing microenvironments. Conversely, in electronics, transmission reliability and message validation are predictable, robust, and less context dependent. In turn, many transformative advances have resulted by the formal consideration of information transfer. One way to explore this potential for biological systems is to create bio-device interfaces that facilitate bidirectional information transfer between biology and electronics. Redox reactions enable this linkage because reduction and oxidation mediate communication within biology and can be coupled with electronics. By manipulating redox reactions, one is able to combine the programmable features of electronics with the ability to interrogate and modulate biological function. In this review, we examine methods to electrochemically interrogate the various components of molecular communication using redox chemistry and to electronically control cell communication using redox electrogenetics.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
21
|
Bhokisham N, Liu Y, Brown AD, Payne GF, Culver JN, Bentley WE. Transglutaminase-mediated assembly of multi-enzyme pathway onto TMV brush surfaces for synthesis of bacterial autoinducer-2. Biofabrication 2020; 12:045017. [DOI: 10.1088/1758-5090/ab9e7a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
VanArsdale E, Hörnström D, Sjöberg G, Järbur I, Pitzer J, Payne GF, van Maris AJA, Bentley WE. A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks. ACS Synth Biol 2020; 9:1117-1128. [PMID: 32208720 DOI: 10.1021/acssynbio.9b00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synthetic biology-electrochemical axis in which engineered cells process molecular cues, producing an output that can be directly recorded via electronics-but without the need for added redox mediators. The process is robust; two key components must act together to provide a valid signal. The system builds on the tyrosinase-mediated conversion of tyrosine to L-DOPA and L-DOPAquinone, which are both redox active. "Catalytic" transducer cells provide for signal-mediated surface expression of tyrosinase. Additionally, "reagent" transducer cells synthesize and export tyrosine, a substrate for tyrosinase. In cocultures, this system enables real-time electrochemical transduction of cell activating molecular cues. To demonstrate, we eavesdrop on quorum sensing signaling molecules that are secreted by Pseudomonas aeruginosa, N-(3-oxododecanoyl)-l-homoserine lactone and pyocyanin.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - David Hörnström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Ida Järbur
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Antonius J. A. van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| |
Collapse
|
23
|
Din MO, Martin A, Razinkov I, Csicsery N, Hasty J. Interfacing gene circuits with microelectronics through engineered population dynamics. SCIENCE ADVANCES 2020; 6:eaaz8344. [PMID: 32494744 PMCID: PMC7244307 DOI: 10.1126/sciadv.aaz8344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/18/2020] [Indexed: 05/27/2023]
Abstract
While there has been impressive progress connecting bacterial behavior with electrodes, an attractive observation to facilitate advances in synthetic biology is that the growth of a bacterial colony can be determined from impedance changes over time. Here, we interface synthetic biology with microelectronics through engineered population dynamics that regulate the accumulation of charged metabolites. We demonstrate electrical detection of the bacterial response to heavy metals via a population control circuit. We then implement this approach to a synchronized genetic oscillator where we obtain an oscillatory impedance profile from engineered bacteria. We lastly miniaturize an array of electrodes to form "bacterial integrated circuits" and demonstrate its applicability as an interface with genetic circuits. This approach paves the way for new advances in synthetic biology, analytical chemistry, and microelectronic technologies.
Collapse
Affiliation(s)
- M. Omar Din
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Aida Martin
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Ivan Razinkov
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas Csicsery
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Wu S, Kim E, Li J, Bentley WE, Shi XW, Payne GF. Catechol-Based Capacitor for Redox-Linked Bioelectronics. ACS APPLIED ELECTRONIC MATERIALS 2019; 1:1337-1347. [PMID: 32090203 PMCID: PMC7034937 DOI: 10.1021/acsaelm.9b00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A common bioelectronics goal is to enable communication between biology and electronics, and success is critically dependent on the communication modality. When a biorelevant modality aligns with instrumentation capabilities, remarkable successes have been observed (e.g., electrodes provide a powerful tool to observe and actuate biology through its ion-based electrical modality). Emerging biological research demonstrates that redox is another biologically relevant modality, and recent research has shown that advanced electrochemical methods enable biodevice communication through this redox modality. Here, we briefly summarize the biological relevance of this redox modality and the use of redox mediators to enable access to this modality through electrochemical measurements. Next, we describe the fabrication of a catechol-chitosan redox capacitor that is redox-active but nonconducting and thus offers a unique set of molecular electronic properties that enhance access to redox-based information. Finally, we cite several recent studies that demonstrate the broad potential for this capacitor to access redox-based biological information. In summary, we envision the redox capacitor will become a vital component in the integrated circuitry of redox-linked bioelectronics.
Collapse
Affiliation(s)
- Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Kim E, Li J, Kang M, Kelly DL, Chen S, Napolitano A, Panzella L, Shi X, Yan K, Wu S, Shen J, Bentley WE, Payne GF. Redox Is a Global Biodevice Information Processing Modality. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2019; 107:1402-1424. [PMID: 32095023 PMCID: PMC7036710 DOI: 10.1109/jproc.2019.2908582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biology is well-known for its ability to communicate through (i) molecularly-specific signaling modalities and (ii) a globally-acting electrical modality associated with ion flow across biological membranes. Emerging research suggests that biology uses a third type of communication modality associated with a flow of electrons through reduction/oxidation (redox) reactions. This redox signaling modality appears to act globally and has features of both molecular and electrical modalities: since free electrons do not exist in aqueous solution, the electrons must flow through molecular intermediates that can be switched between two states - with electrons (reduced) or without electrons (oxidized). Importantly, this global redox modality is easily accessible through its electrical features using convenient electrochemical instrumentation. In this review, we explain this redox modality, describe our electrochemical measurements, and provide four examples demonstrating that redox enables communication between biology and electronics. The first two examples illustrate how redox probing can acquire biologically relevant information. The last two examples illustrate how redox inputs can transduce biologically-relevant transitions for patterning and the induction of a synbio transceiver for two-hop molecular communication. In summary, we believe redox provides a unique ability to bridge bio-device communication because simple electrochemical methods enable global access to biologically meaningful information. Further, we envision that redox may facilitate the application of information theory to the biological sciences.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Jinyang Li
- Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA
| | - Mijeong Kang
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
26
|
Ueda H, Stephens K, Trivisa K, Bentley WE. Bacteria Floc, but Do They Flock? Insights from Population Interaction Models of Quorum Sensing. mBio 2019; 10:e00972-19. [PMID: 31138754 PMCID: PMC6538791 DOI: 10.1128/mbio.00972-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022] Open
Abstract
Quorum sensing (QS) enables coordinated, population-wide behavior. QS-active bacteria "communicate" their number density using autoinducers which they synthesize, collect, and interpret. Tangentially, chemotactic bacteria migrate, seeking out nutrients and other molecules. It has long been hypothesized that bacterial behaviors, such as chemotaxis, were the primordial progenitors of complex behaviors of higher-order organisms. Recently, QS was linked to chemotaxis, yet the notion that these behaviors can together contribute to higher-order behaviors has not been shown. Here, we mathematically link flocking behavior, commonly observed in fish and birds, to bacterial chemotaxis and QS by constructing a phenomenological model of population-scale QS-mediated phenomena. Specifically, we recast a previously developed mathematical model of flocking and found that simulated bacterial behaviors aligned well with well-known QS behaviors. This relatively simple system of ordinary differential equations affords analytical analysis of asymptotic behavior and describes cell position and velocity, QS-mediated protein expression, and the surrounding concentrations of an autoinducer. Further, heuristic explorations of the model revealed that the emergence of "migratory" subpopulations occurs only when chemotaxis is directly linked to QS. That is, behaviors were simulated when chemotaxis was coupled to QS and when not. When coupled, the bacterial flocking model predicts the formation of two distinct groups of cells migrating at different speeds in their journey toward an attractant. This is qualitatively similar to phenomena spotted in our Escherichiacoli chemotaxis experiments as well as in analogous work observed over 50 years ago.IMPORTANCE Our modeling efforts show how cell density can affect chemotaxis; they help to explain the roots of subgroup formation in bacterial populations. Our work also reinforces the notion that bacterial mechanisms are at times exhibited in higher-order organisms.
Collapse
Affiliation(s)
- Hana Ueda
- Department of Mathematics, University of Maryland College Park, College Park, Maryland, USA
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| | - Konstantina Trivisa
- Department of Mathematics, University of Maryland College Park, College Park, Maryland, USA
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
| | - William E Bentley
- Graduate Program in Applied Mathematics & Statistics, and Scientific Computation, University of Maryland College Park, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
27
|
VanArsdale E, Tsao CY, Liu Y, Chen CY, Payne GF, Bentley WE. Redox-Based Synthetic Biology Enables Electrochemical Detection of the Herbicides Dicamba and Roundup via Rewired Escherichia coli. ACS Sens 2019; 4:1180-1184. [PMID: 30990313 DOI: 10.1021/acssensors.9b00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic biology is typically exploited to endow bacterial cells with new biosynthetic capabilities. It can also serve to create "smart" bacteria such as probiotics that detect and treat disease. Here, we show how minimally rewiring the genetic regulation of bacterial cells can enable their ability to recognize and report on chemical herbicides, including those routinely used to clear weeds from gardens and crops. In so doing, we demonstrate how constructs of synthetic biology, in this case redox-based synthetic biology, can serve as a vector for information flow mediating molecular communication between biochemical systems and microelectronics. We coupled the common genetic reporter, β-galactosidase, with the E. coli superoxide response regulon promoter pSoxS, for detection of the herbicides dicamba and Roundup. Both herbicides activated our genetic construct in a concentration dependent manner. Results indicate robust detection using spectrophotometry, via the Miller assay, and electrochemistry using the enzymatic cleavage of 4-aminophenyl β-d-galactopyranoside into the redox active molecule p-aminophenol. We found that environmental components, in particular, the availability of glucose, are important factors for the cellular detection of dicamba. Importantly, both herbicides were detected at concentrations relevant for aquatic toxicity.
Collapse
|
28
|
A Novel Bioelectronic Reporter System in Living Cells Tested with a Synthetic Biological Comparator. Sci Rep 2019; 9:7275. [PMID: 31086248 PMCID: PMC6513987 DOI: 10.1038/s41598-019-43771-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
As the fields of biotechnology and synthetic biology expand, cheap and sensitive tools are needed to measure increasingly complicated genetic circuits. In order to bypass some drawbacks of optical fluorescent reporting systems, we have designed and created a co-culture microbial fuel cell (MFC) system for electronic reporting. This system leverages the syntrophic growth of Escheriachia. coli (E. coli) and an electrogenic bacterium Shewanella oneidensis MR-1 (S. oneidensis). The fermentative products of E. coli provide a carbon and electron source for S. oneidensis MR-1, which then reports on such activity electrically at the anode of the MFC. To further test the capability of electrical reporting of complicated synthetic circuits, a novel synthetic biological comparator was designed and tested with both fluorescent and electrical reporting systems. The results suggest that the electrical reporting system is a good alternative to commonly used optical fluorescent reporter systems since it is a non-toxic reporting system with a much wider dynamic range.
Collapse
|
29
|
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; 6-3 Aramaki-aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Noriko Taira
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Javier Ramon Azcon
- Institute for Bioengineering of Catalonia (IBEC); The Barcelona Institute of Science and Technology; Baldiri Reixac 10-12 08028 Barcelona Spain
| | - Hitoshi Shiku
- Graduate School of Engineering; Tohoku University; 6-6-11 Aramaki-aza Aoba, Aoba-ku Sendai 980-8579 Japan
| |
Collapse
|
30
|
Liu Y, Wu HC, Bhokisham N, Li J, Hong KL, Quan DN, Tsao CY, Bentley WE, Payne GF. Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjug Chem 2018; 29:1809-1822. [PMID: 29745651 PMCID: PMC7045599 DOI: 10.1021/acs.bioconjchem.8b00197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biology often provides the inspiration for functional soft matter, but biology can do more: it can provide the raw materials and mechanisms for hierarchical assembly. Biology uses polymers to perform various functions, and biologically derived polymers can serve as sustainable, self-assembling, and high-performance materials platforms for life-science applications. Biology employs enzymes for site-specific reactions that are used to both disassemble and assemble biopolymers both to and from component parts. By exploiting protein engineering methodologies, proteins can be modified to make them more susceptible to biology's native enzymatic activities. They can be engineered with fusion tags that provide (short sequences of amino acids at the C- and/or N- termini) that provide the accessible residues for the assembling enzymes to recognize and react with. This "biobased" fabrication not only allows biology's nanoscale components (i.e., proteins) to be engineered, but also provides the means to organize these components into the hierarchical structures that are prevalent in life.
Collapse
Affiliation(s)
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | - Kai-Lin Hong
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | | | | |
Collapse
|
31
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
32
|
RGD peptide doped polypyrrole film as a biomimetic electrode coating for impedimetric sensing of cell proliferation and cytotoxicity. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
33
|
Adkins JA, Boehle K, Friend C, Chamberlain B, Bisha B, Henry CS. Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytic Devices. Anal Chem 2017; 89:3613-3621. [DOI: 10.1021/acs.analchem.6b05009] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | - Bledar Bisha
- Department
of Animal Science, University of Wyoming, Laramie, Wyoming 82071, United States
| | | |
Collapse
|
34
|
Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat Commun 2017; 8:14030. [PMID: 28094788 PMCID: PMC5247576 DOI: 10.1038/ncomms14030] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
The ability to interconvert information between electronic and ionic modalities has transformed our ability to record and actuate biological function. Synthetic biology offers the potential to expand communication ‘bandwidth' by using biomolecules and providing electrochemical access to redox-based cell signals and behaviours. While engineered cells have transmitted molecular information to electronic devices, the potential for bidirectional communication stands largely untapped. Here we present a simple electrogenetic device that uses redox biomolecules to carry electronic information to engineered bacterial cells in order to control transcription from a simple synthetic gene circuit. Electronic actuation of the native transcriptional regulator SoxR and transcription from the PsoxS promoter allows cell response that is quick, reversible and dependent on the amplitude and frequency of the imposed electronic signals. Further, induction of bacterial motility and population based cell-to-cell communication demonstrates the versatility of our approach and potential to drive intricate biological behaviours. Synthetic biology offers the ability to explore new ways of manipulating gene expression and function. Here the authors demonstrate an electrogenetic device that allows control of transcription by an exogenous electrical signal.
Collapse
|
35
|
Liu Y, Tsao C, Kim E, Tschirhart T, Terrell JL, Bentley WE, Payne GF. Using a Redox Modality to Connect Synthetic Biology to Electronics: Hydrogel-Based Chemo-Electro Signal Transduction for Molecular Communication. Adv Healthc Mater 2017; 6. [PMID: 27863177 DOI: 10.1002/adhm.201600908] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/15/2016] [Indexed: 01/08/2023]
Abstract
A hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD 20742 USA
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD 20742 USA
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
36
|
Sadeghi S, Ahmadi N, Esmaeili A, Javadi-Zarnaghi F. Blue-white screening as a new readout for deoxyribozyme activity in bacterial cells. RSC Adv 2017. [DOI: 10.1039/c7ra09679h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Demonstration of 10–23 deoxyribozyme activity in viable E. coli using blue-white screening as the readout system.
Collapse
Affiliation(s)
- S. Sadeghi
- Cell, Molecular Biology and Biochemistry Division
- Department of Biology
- Faculty of Sciences
- University of Isfahan
- Isfahan
| | - N. Ahmadi
- Cell, Molecular Biology and Biochemistry Division
- Department of Biology
- Faculty of Sciences
- University of Isfahan
- Isfahan
| | - A. Esmaeili
- Cell, Molecular Biology and Biochemistry Division
- Department of Biology
- Faculty of Sciences
- University of Isfahan
- Isfahan
| | - F. Javadi-Zarnaghi
- Cell, Molecular Biology and Biochemistry Division
- Department of Biology
- Faculty of Sciences
- University of Isfahan
- Isfahan
| |
Collapse
|
37
|
Hauk P, Stephens K, Mckay R, Virgile CR, Ueda H, Ostermeier M, Ryu KS, Sintim HO, Bentley WE. Insightful directed evolution of Escherichia coli quorum sensing promoter region of the lsrACDBFG operon: a tool for synthetic biology systems and protein expression. Nucleic Acids Res 2016; 44:10515-10525. [PMID: 27915294 PMCID: PMC5137460 DOI: 10.1093/nar/gkw981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
Abstract
Quorum sensing (QS) regulates many natural phenotypes (e.q. virulence, biofilm formation, antibiotic resistance), and its components, when incorporated into synthetic genetic circuits, enable user-directed phenotypes. We created a library of Escherichia coli lsr operon promoters using error-prone PCR (ePCR) and selected for promoters that provided E. coli with higher tetracycline resistance over the native promoter when placed upstream of the tet(C) gene. Among the fourteen clones identified, we found several mutations in the binding sites of QS repressor, LsrR. Using site-directed mutagenesis we restored all p-lsrR-box sites to the native sequence in order to maintain LsrR repression of the promoter, preserving the other mutations for analysis. Two promoter variants, EP01rec and EP14rec, were discovered exhibiting enhanced protein expression. In turn, these variants retained their ability to exhibit the LsrR-mediated QS switching activity. Their sequences suggest regulatory linkage between CytR (CRP repressor) and LsrR. These promoters improve upon the native system and exhibit advantages over synthetic QS promoters previously reported. Incorporation of these promoters will facilitate future applications of QS-regulation in synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Pricila Hauk
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kristina Stephens
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ryan Mckay
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Chelsea Ryan Virgile
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hana Ueda
- Department of Mathematics, University of Maryland, College Park, MD 20742, USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Kyoung-Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudangi-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 363-883, South Korea
| | - Herman O Sintim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA .,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
38
|
Kim E, Liu Y, Ben-Yoav H, Winkler TE, Yan K, Shi X, Shen J, Kelly DL, Ghodssi R, Bentley WE, Payne GF. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Adv Healthc Mater 2016; 5:2595-2616. [PMID: 27616350 PMCID: PMC5485850 DOI: 10.1002/adhm.201600516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/26/2016] [Indexed: 12/14/2022]
Abstract
The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yi Liu
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Thomas E Winkler
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
39
|
Terrell JL, Payne GF, Bentley WE. Networking biofabricated systems through molecular communication. Nanomedicine (Lond) 2016; 11:1503-6. [DOI: 10.2217/nnm-2016-0126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jessica L Terrell
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|