1
|
Alzahrani KA, Ismail A, Alahmadi N. CuCo2O4/CeO2 S-scheme Photocatalyst for Promoted CO2 Photoreduction to CH3OH. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
2
|
Liu F, Cao H, Xu L, Fu H, Sun S, Xiao Z, Sun C, Long X, Xia Y, Wang S. Design and preparation of highly active TiO 2 photocatalysts by modulating their band structure. J Colloid Interface Sci 2023; 629:336-344. [PMID: 36162391 DOI: 10.1016/j.jcis.2022.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Titanium dioxide photocatalysts with high reduction potential and visible light response hold great promise in photochemical conversion. Here, we used a simple glycine doping method to synthesize novel N-TiO2@C photocatalysts with upward shifted conduction bands and narrowed band gaps as well as inhibited recombination of photoinduced electron-hole pairs. The N-TiO2@C photocatalysts exhibited higher visible light response and remarkably enhanced photocatalytic activity in the production of nicotinamide adenine dinucleotide (NADH) by photomediated reduction of NAD+ without any electron mediator. The yield of NADH was up to 70.3 % far greater than that of the undoped TiO2 (11.3 %), and it stabilized at ca. 60 % after 10 cycles. The viability of coupling NADH regeneration with enzymatic reaction (alcohol dehydrogenase) was established in aldehyde reduction where formaldehyde was specifically reduced to methanol. These findings shed new light on the modulation of the band structure of semiconductors and develop an electron mediator free strategy for NADH-dependent artificial photosynthesis through coupled photocatalytic and enzymatic approaches.
Collapse
Affiliation(s)
- Fangyuan Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Han Cao
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Luyi Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Hui Fu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shiyong Sun
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zijun Xiao
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Caiheng Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Xing Long
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yongqing Xia
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| |
Collapse
|
3
|
Ma X, Li SY, Liu S, Li HD, Chen HL, Chen QL. zeolite-Y/g-C3N4 composite with enhanced photocatalytic activity for dye degradation and nitrogen fixation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Efficient One-Pot Synthesis of TiO2/ZrO2/SiO2 Ternary Nanocomposites Using Prunus × Yedoensis Leaf Extract for Enhanced Photocatalytic Dye Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3088827. [PMID: 36120599 PMCID: PMC9481355 DOI: 10.1155/2022/3088827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
A simple, efficient, and ecofriendly method was employed to synthesize TiO2/ZrO2/SiO2 ternary nanocomposites using Prunus × yedoensis leaf extract (PYLE) that shows improved photocatalytic and antibacterial properties. The characterization of the obtained nanocomposites was done by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopic (EDS) analysis. The synthesized ternary nanocomposites with nanoscale pore diameters were investigated for the elimination of Reactive Red 120 (RR120) dye. The obtained results showed about 96.2% removal of RR120 dye from aqueous solution under sunlight irradiation. Furthermore, it shows promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The improved photocatalytic and antibacterial activity of TiO2/ZrO2/SiO2 may bring unique insights into the production of ternary nanocomposites and their applications in the environment and biomedical field.
Collapse
|
5
|
Singh T, Pal DB, Bhatiya AK, Mishra PK, Hashem A, Alqarawi AA, AbdAllah EF, Gupta VK, Srivastava N. Integrated process approach for degradation of p-cresol pollutant under photocatalytic reactor using activated carbon/TiO 2 nanocomposite: application in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61811-61820. [PMID: 34415523 DOI: 10.1007/s11356-021-15454-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Over the years, biodegradation has been an effective technique for waste water treatment; however, it has its own limitations. In order to achieve a higher degradation efficacy, integrated processes are being focus in this area. Therefore, the present study is targeted towards the coupling of biodegradation and photocatalytic degradation of p-cresol. The biodegradation of p-cresol was performed via lab isolate Serratia marcescens ABHI001. The obtained results confirmed that ~85% degradation of p-cresol was accomplished using Serratia marcescens ABHI001 strain in 18 h. Consequently, degradation of remaining residue (remaining p-cresol concentration initially used) was also examined in a batch reactor using activated carbon-TiO2 nanocomposite (AC/TiO2-NC) as a catalyst under the exposure of UV radiation. The AC/TiO2-NC was processed via sol-gel technique and characterized by various techniques, namely Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transformed infrared spectroscopy (FT-IR). The investigation allowed p-cresol degradation further augment up to ~96% with the help of spectrophotometer trailed by high performance liquid chromatography (HPLC). This study demonstrates that integrated process (biodegradation-photodegradation) is the cost-effective bioremediation process to overcome such kinds of pollutant issues.
Collapse
Affiliation(s)
- Tripti Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221005, India
- Department of Biotechnology, GLA University, Mathura, U.P., 281406, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | | | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221005, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz Abdullah Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi AbdAllah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221005, India.
| |
Collapse
|
6
|
Navarro-Gázquez PJ, Muñoz-Portero MJ, Blasco-Tamarit E, Sánchez-Tovar R, García-Antón J. Synthesis and applications of TiO 2/ZnO hybrid nanostructures by ZnO deposition on TiO 2 nanotubes using electrochemical processes. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In recent years, TiO2/ZnO hybrid nanostructures have been attracting the interest of the scientific community due to their excellent photoelectrochemical properties. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials lies in their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This factor produces a decrease in the band gap and the recombination rate and an increase in the light absorption range. The aim of this review is to perform a revision of the main methods to synthesise TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes. Electrochemical synthesis methods provide an easy, fast, and highly efficient route to carry out the synthesis of nanostructures such as nanowires, nanorods, nanotubes, etc. They allow us to control the stoichiometry, thickness and structure mainly by controlling the voltage, time, temperature, composition of the electrolyte, and concentration of monomers. In addition, a study of the most promising applications for TiO2/ZnO hybrid nanostructures has been carried out. In this review, the applications of dye-sensitised solar cell, photoelectrocatalytic degradation of organic compounds, photoelectrochemical water splitting, gas sensors, and lithium-ion batteries have been highlighted.
Collapse
Affiliation(s)
- Pedro José Navarro-Gázquez
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Maria J. Muñoz-Portero
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Encarna Blasco-Tamarit
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Rita Sánchez-Tovar
- Departamento de Ingeniería Química, Universitat de Valencia , Av. de las Universitats, s/n, 46100 Burjassot , Spain
| | - José García-Antón
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| |
Collapse
|
7
|
Wang G, Li Y, Dai J, Deng N. Highly efficient photocatalytic oxidation of antibiotic ciprofloxacin using TiO 2@g-C 3N 4@biochar composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48522-48538. [PMID: 35190993 DOI: 10.1007/s11356-022-19269-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this present study, a novel indirect Z-scheme TiO2@g-C3N4@biochar (TiO2@g-C3N4@BC) composite photocatalyst was successfully fabricated and characterized with SEM, TEM, EDS, XRD, FTIR, PL, XPS, and UV-vis DRS. The photocatalytic degradation behavior of ciprofloxacin (CIP) on the TiO2@g-C3N4@BC was evaluated under UV-vis and visible light irradiation, and the possible reaction mechanism of photocatalytic oxidation of CIP on the TiO2@g-C3N4@BC was explained. The TiO2@g-C3N4@BC composite photocatalyst exhibited stronger photocatalytic oxidation activity for CIP in comparison with TiO2, g-C3N4, TiO2@BC, and TiO2@g-C3N4. After 60 min of UV-vis and visible light irradiation, the photocatalytic removal efficiency of CIP by TiO2@g-C3N4@BC was 99.3 and 89.2%, respectively. The photocatalytic removal performance of CIP was affected by the initial concentration of CIP, catalyst dosage, and pH value. The composite photocatalyst presented excellent stability and reusability after five cycles. An indirect Z-scheme principle of the CIP photocatalytic oxidation reaction on TiO2@g-C3N4@BC was clearly proposed, and the whole process of photocatalytic degradation was the results of the interaction between CIP and reactive active species (·O2-, h+, and ·OH), of which ·O2- is the main active substance. Four CIP degradation pathways were proposed. This work may provide an effective strategy to remove antibiotics in wastewater.
Collapse
Affiliation(s)
- Guanghui Wang
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China.
| | - Yingjie Li
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Jialing Dai
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Nansheng Deng
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
8
|
Sun L, Wu J, Wang J, Yang Y, Zhou W, Yang Y, Du Y, Hu P, Li Y, Li H. CO 2-assisted 'Weathering' of Steel Slag-Derived Calcium Silicate Hydrate: A Generalized Strategy for Recycling Noble Metals and Constructing SiO 2-Based Nanocomposites. J Colloid Interface Sci 2022; 622:1008-1019. [PMID: 35567949 DOI: 10.1016/j.jcis.2022.04.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
The spent adsorbent loaded by toxic metals is a solid hazardous waste which could cause significant secondary pollution due to potential possible additional release of metal ions. Therefore, the main subject is direct reutilization of spent adsorbents which can further economically and realistically offer new features, like recycling metal adsorbed, or formation of functional SiO2-based nanocomposites. The nanoporous structure and negative surface charges enable steel slag-derived amorphous calcium silicate hydrate (CSH) to retain effectively the incoming metal ions (e. g. Au3+, Ag+, Pd2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ce3+, Y3+, and Gd3+) by chemisorption. Sparked by natural carbonation 'weathering', which ultimately sequestrates atmospheric CO2 by alkaline silicate minerals to leach calcium from mineral matrix, the decalcification reactions of metal-bearing CSH results in successful recovery of noble metals (Ag, Au, Pd) upon NaOH etching the resultant SiO2 support. Further, SiO2-based heterostructures, containing nanocrystalline metals (e. g. Au0, Ag0, Pd0, Fe0, Co0, Ni0, Cu0, and Zn0) or rare-earth oxides (e. g. CeO2, Y2O3, and Gd2O3), are formed after reduction in H2/Ar (5 vol% H2) flow, which is also very important for the multipurpose immobilization of diverse hybrid materials on SiO2 surface (e. g. Cu0-Ag0@SiO2, Cu0-CeO2@SiO2, and Cu0-Ag0-CeO2@SiO2).
Collapse
Affiliation(s)
- Lingmin Sun
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Junshu Wu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China.
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China.
| | - Yunfei Yang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Wenyuan Zhou
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Yilong Yang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yucheng Du
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Peng Hu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Yongli Li
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Hongyi Li
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| |
Collapse
|
9
|
Zhao L, Li G, Li F, Yao M. Enhanced visible light photoactivity of TiO2/SnO2 films by tridoping with Y/F/Ag ions. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Degradation of Tetracycline on SiO2-TiO2-C Aerogel Photocatalysts under Visible Light. MATERIALS 2022; 15:ma15051963. [PMID: 35269195 PMCID: PMC8911664 DOI: 10.3390/ma15051963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
SiO2-TiO2-C aerogel photocatalysts with different carbon loadings were synthesized by using sol-gel chemistry. The anatase crystal and nonmetal carbon dopant were introduced during the sol preparation and formed by hydrothermal treatment, which can simultaneously enhance the adsorption ability and visible light photo-activity. A high surface area (759 g cm−3) SiO2-TiO2-C aerogel composite can remove up to 80% tetracycline hydrochloride within 180 min under visible light. The characterization of the gel structures shows that the homogeneous dispersion of O, Si, Ti and C in the skeleton, indicating that hydrothermal synthesis could provide a very feasible way for the preparation of composite materials. n(C):n(Ti) molar ratio of 3.5 gives the best catalytic performance of the hybrid aerogel, and the cyclic test still confirms over 60% degradation activity after seven use cycles. All catalysis reaction followed the pseudo-first-order rate reaction with high correlation coefficient. The electrons and holes in the compound could be effectively restrained with doping proper amount of C, and ESR results indicate that the oxidation process was dominated by the hydroxyl radical (•OH) and superoxide radical (•O2−) generated in the system.
Collapse
|
11
|
Ayodhya D. Ag-SPR and semiconductor interface effect on a ternary CuO@Ag@Bi 2S 3 Z-scheme catalyst for enhanced removal of HIV drugs and (photo)catalytic activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02595g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of ternary composites has gained great interest as they can be used as a catalyst due to the different semiconductors with the variation in the band edge positions creates a potential gradient at the composite interface.
Collapse
Affiliation(s)
- Dasari Ayodhya
- Department of Chemistry, University College of Science, Osmania University, Hyderabad-500007, Telangana State, India
| |
Collapse
|
12
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
13
|
Li R, Ma H, Shu J, Lian Z, Chen N, Ou S, Jin R, Li S, Yang H. Surface engineering of copper sulfide-titania-graphitic carbon nitride ternary nanohybrid as an efficient visible-light photocatalyst for pollutant photodegradation. J Colloid Interface Sci 2021; 604:198-207. [PMID: 34265680 DOI: 10.1016/j.jcis.2021.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022]
Abstract
Advanced photocatalyst is a key for photocatalytic water purification in the environmental pollutant remediation. In this study, graphitic carbon nitride (g-CN) modified by CuS and TiO2 ternary nanohybrid (CuS-TiO2-g-CN) with close interfacial contact among CuS, TiO2 and g-CN was fabricated through a facile and green method. Compared to the binary g-CN-based counterparts, the CuS-TiO2-g-CN possesses multiple photo-generated charge transfers owing to the synergistic action of CuS, TiO2 and g-CN. And hence the separation efficiency of photo-generated electron-hole pairs can be improved for the CuS-TiO2-g-CN. The optical and photoelectrochemical measurements prove that the CuS-TiO2-g-CN has narrower band gap energy and higher transient photocurrent density than those of g-CN and TiO2-g-CN. Therefore, the CuS-TiO2-g-CN shows notably higher photocatalytic activity and stability towards the degradation of Rhodamine B (RhB) than g-CN and TiO2-g-CN under visible-light irradiation. Moreover, a possible visible-light photocatalytic mechanism of CuS-TiO2-g-CN for degrading RhB was also proposed on the basis of the experimental results and literature reports.
Collapse
Affiliation(s)
- Ruxia Li
- State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Junhao Shu
- State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zhuoming Lian
- State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Nian Chen
- State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Shiyong Ou
- State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ruifa Jin
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, PR China
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Honglei Yang
- State Key Laboratory of Applied Organic Chemistry, Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
14
|
Coupling MOF-derived titanium oxide with CdIn2S4 formed 2D/3D core–shell heterojunctions with enhanced photocatalytic performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119765] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
16
|
Gunjal AR, Sethi YA, Kawade UV, Panmand RP, Ugale CK, Ambekar JD, Nagawade AV, Kale BB. Unique hierarchical SiO 2@ZnIn 2S 4 marigold flower like nanoheterostructure for solar hydrogen production. RSC Adv 2021; 11:14399-14407. [PMID: 35423991 PMCID: PMC8697935 DOI: 10.1039/d1ra01140e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023] Open
Abstract
The novel marigold flower like SiO2@ZnIn2S4 nano-heterostructure was fabricated using an in situ hydrothermal method. The nanoheterostructure exhibits hexagonal structure with marigold flower like morphology. The porous marigold flower assembly was constructed using ultrathin nanosheets. Interestingly, the thickness of the nanopetal was observed to be 5-10 nm and tiny SiO2 nanoparticles (5-7 nm) are decorated on the surface of the nanopetals. As the concentration of SiO2 increases the deposition of SiO2 nanoparticles on ZnIn2S4 nanopetals increases in the form of clusters. The optical study revealed that the band gap lies in the visible range of the solar spectrum. Using X-ray photoelectron spectroscopy (XPS), the chemical structure and valence states of the as-synthesized SiO2@ZnIn2S4 nano-heterostructure were confirmed. The photocatalytic activities of the hierarchical SiO2@ZnIn2S4 nano-heterostructure for hydrogen evolution from H2S under natural sunlight have been investigated with regard to the band structure in the visible region. The 0.75% SiO2@ZnIn2S4 showed a higher photocatalytic activity (6730 μmol-1 h-1 g-1) for hydrogen production which is almost double that of pristine ZnIn2S4. Similarly, the hydrogen production from water splitting was observed to be 730 μmol-1 h-1 g-1. The enhanced photocatalytic activity is attributed to the inhibition of charge carrier separation owing to the hierarchical morphology, heterojunction and crystallinity of the SiO2@ZnIn2S4.
Collapse
Affiliation(s)
- Aarti R Gunjal
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Yogesh A Sethi
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
| | - Ujjwala V Kawade
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
| | - Rajendra P Panmand
- Microwave Materials Division, Centre for Material for Electronic Technology (CMET) Shoranur Road, Athani Thrissur-680 581 India
| | - Chitra K Ugale
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
| | - Jalindar D Ambekar
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Arvind V Nagawade
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Bharat B Kale
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
| |
Collapse
|
17
|
Assis M, Simoes LGP, Tremiliosi GC, Coelho D, Minozzi DT, Santos RI, Vilela DCB, do Santos JR, Ribeiro LK, Rosa ILV, Mascaro LH, Andrés J, Longo E. SiO 2-Ag Composite as a Highly Virucidal Material: A Roadmap that Rapidly Eliminates SARS-CoV-2. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:638. [PMID: 33806671 PMCID: PMC8001031 DOI: 10.3390/nano11030638] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
COVID-19, as the cause of a global pandemic, has resulted in lockdowns all over the world since early 2020. Both theoretical and experimental efforts are being made to find an effective treatment to suppress the virus, constituting the forefront of current global safety concerns and a significant burden on global economies. The development of innovative materials able to prevent the transmission, spread, and entry of COVID-19 pathogens into the human body is currently in the spotlight. The synthesis of these materials is, therefore, gaining momentum, as methods providing nontoxic and environmentally friendly procedures are in high demand. Here, a highly virucidal material constructed from SiO2-Ag composite immobilized in a polymeric matrix (ethyl vinyl acetate) is presented. The experimental results indicated that the as-fabricated samples exhibited high antibacterial activity towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as well as towards SARS-CoV-2. Based on the present results and radical scavenger experiments, we propose a possible mechanism to explain the enhancement of the biocidal activity. In the presence of O2 and H2O, the plasmon-assisted surface mechanism is the major reaction channel generating reactive oxygen species (ROS). We believe that the present strategy based on the plasmonic effect would be a significant contribution to the design and preparation of efficient biocidal materials. This fundamental research is a precedent for the design and application of adequate technology to the next-generation of antiviral surfaces to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Marcelo Assis
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain
| | - Luiz Gustavo P. Simoes
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Guilherme C. Tremiliosi
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Dyovani Coelho
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Daniel T. Minozzi
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Renato I. Santos
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Daiane C. B. Vilela
- Nanox Tecnologia S/A, 13562-400 São Carlos, SP, Brazil; (L.G.P.S.); (G.C.T.); (D.T.M.); (R.I.S.); (D.C.B.V.)
| | - Jeziel Rodrigues do Santos
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Lara Kelly Ribeiro
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Ieda Lucia Viana Rosa
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Lucia Helena Mascaro
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain
| | - Elson Longo
- CDMF, LIEC, Federal University of São Carlos—(UFSCar), 13565-905 São Carlos, SP, Brazil; (M.A.); (D.C.); (J.R.d.S.); (L.K.R.); (I.L.V.R.); (L.H.M.); (E.L.)
| |
Collapse
|
18
|
Deng W, Fan T, Li Y. In situ biomineralization-constructed superhydrophilic and underwater superoleophobic PVDF-TiO2 membranes for superior antifouling separation of oil-in-water emulsions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Joseph CG, Taufiq-Yap YH, Musta B, Sarjadi MS, Elilarasi L. Application of Plasmonic Metal Nanoparticles in TiO 2-SiO 2 Composite as an Efficient Solar-Activated Photocatalyst: A Review Paper. Front Chem 2021; 8:568063. [PMID: 33628762 PMCID: PMC7897925 DOI: 10.3389/fchem.2020.568063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022] Open
Abstract
Over the last decade, interest in the utilization of solar energy for photocatalysis treatment processes has taken centre-stage. Researchers had focused on doping TiO2 with SiO2 to obtain an efficient degradation rate of various types of target pollutants both under UV and visible-light irradiation. In order to further improve this degradation effect, some researchers resorted to incorporate plasmonic metal nanoparticles such as silver and gold into the combined TiO2-SiO2 to fully optimize the TiO2-SiO2’s potential in the visible-light region. This article focuses on the challenges in utilizing TiO2 in the visible-light region, the contribution of SiO2 in enhancing photocatalytic activities of the TiO2-SiO2 photocatalyst, and the ability of plasmonic metal nanoparticles (Ag and Au) to edge the TiO2-SiO2 photocatalyst toward an efficient solar photocatalyst.
Collapse
Affiliation(s)
- Collin G Joseph
- Sonophotochemistry Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah.,Water Research Unit, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah.,Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah
| | - Yun Hin Taufiq-Yap
- Chancellery Office, Universiti Malaysia Sabah, Kota Kinabalu, Sabah.,Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia.,Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah
| | - Baba Musta
- Water Research Unit, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah
| | - Mohd Sani Sarjadi
- Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah
| | - L Elilarasi
- Sonophotochemistry Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah.,Centre of Foundation, Language and Malaysian Studies, International University of Malaya-Wales, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Zhai X, Xu F, Li Y, Jun F, Li S, Zhang C, Wang H, Cao B. A highly selective and recyclable sensor for the electroanalysis of phosphothioate pesticides using silver-doped ZnO nanorods arrays. Anal Chim Acta 2021; 1152:338285. [PMID: 33648640 DOI: 10.1016/j.aca.2021.338285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Silver-doped ZnO nanorods (Ag/ZnO) arrays have in-situ grown onto indium tin oxide (ITO) via the one-pot hydrothermal route towards a highly selective and recyclable electroanalysis of phosphothioate pesticides (PTs) with phoxim (Phox) as a model. It was discovered that the Ag/ZnO arrays-modified electrode could obtain a steady and sharp electrochemical output of solid-state Ag/AgCl at a low potential (i.e., 0.12 V). More importantly, the achieved Ag/AgCl signals could decrease selectively induced by sulfide (S)-containing Phox by the specific Cl-S displacement reaction, which would trigger AgCl into non-electroactive Ag-Phox complex. The Ag/ZnO arrays-modified sensors present a linear range from 0.050 to 700.0 μM for the detection of Phox, with a limit of detection down to 0.010 μM. The practical applicability of the developed electroanalysis strategy was successfully employed to detect Phox in the tap water and cabbage samples. Moreover, the photocatalytic performances of the Ag/ZnO arrays were subsequently verified for the degradation of Phox, displaying the higher photocatalytic efficiency than pure ZnO nanorods. Besides, the as-developed sensor can allow for the recyclable detection of Phox by the Ag/ZnO-photocatalyzed removal of Phox after each of the detection cycles. Therefore, the sensors platform based on Ag/ZnO arrays can be expected to have potential for the electrochemical monitoring and photocatalytic degradation of toxic pesticides in the food and environmental fields.
Collapse
Affiliation(s)
- Xiurong Zhai
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China; Department of Chemistry and Chemical Engineering, Jining University, Qufu City, Shandong Province, 273155, PR China
| | - Fan Xu
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China
| | - Yujiao Li
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China
| | - Fangying Jun
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China
| | - Shuai Li
- Institute of Medicine and Materials Applied Technologies, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province, 273165, PR China
| | - Chunxian Zhang
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China; Department of Chemistry and Chemical Engineering, Jining University, Qufu City, Shandong Province, 273155, PR China
| | - Hua Wang
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China; Institute of Medicine and Materials Applied Technologies, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province, 273165, PR China.
| | - Bingqiang Cao
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
21
|
Wang D, Li J, Gao B, Chen Y, Wang Z. Triple-layered thin film nanocomposite membrane toward enhanced forward osmosis performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Han B, Jin S, Chu Q, Jin Y, Xue X, Guo S, Park Y, Chen L, Jung YM. New insight into SPR modulating by two-dimensional correlation spectroscopy: the case for an Ag/ITO system. NANOSCALE 2020; 12:24357-24361. [PMID: 33206091 DOI: 10.1039/d0nr06256a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The localized surface plasmon resonance (LSPR) of Ag/indium tin oxide (ITO)@polystyrene (PS) in the visible-NIR region was dependent on the tuning of the carrier density caused by adjusting the thickness of the ITO layer. The two-dimensional correlation spectroscopy (2D-COS) results of the dependence of each component in the UV-vis-NIR spectrum on the carrier density response enabled the successful exploration of the carrier transport process.
Collapse
Affiliation(s)
- Bingbing Han
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ouyang K, Jiang N, Xue W, Xie S. Enhanced photocatalytic activities of visible light-responsive Ag3PO4-GO photocatalysts for oxytetracycline hydrochloride degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
A Review of In-Situ Grown Nanocomposite Coatings for Titanium Alloy Implants. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Composite coatings are commonly applied to medical metal implants in order to improve biocompatibility and/or bioactivity. In this context, two types of titanium-based composite coatings have been reviewed as biocompatible and anti-bacterial coatings. The different composites can be synthesised on the surface of titanium using various methods, which have their own advantages and disadvantages. Moving with the smart and nanotechnology, multifunctional nanocomposite coatings have been introduced on implants and scaffolds for tissue engineering with the aim of providing more than one properties when required. In this context, titanium dioxide (TiO2) nanotubes have been shown to enhance the properties of titanium-based implants as part of nanocomposite coatings.
Collapse
|
25
|
Facile synthesis and kinetic mechanism of Ag-doped TiO2/SiO2 nanoparticles for phenol degradation under visible light irradiation. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Jonoidi Jafari A, Kermani M, Hosseini-Bandegharaei A, Rastegar A, Gholami M, Alahabadi A, Farzi G. Synthesis and characterization of Ag/TiO2/composite aerogel for enhanced adsorption and photo-catalytic degradation of toluene from the gas phase. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Deng W, Li C, Pan F, Li Y. Efficient oil/water separation by a durable underwater superoleophobic mesh membrane with TiO2 coating via biomineralization. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Mohanty S, Babu P, Parida K, Naik B. Surface-Plasmon-Resonance-Induced Photocatalysis by Core–Shell SiO2@Ag NCs@Ag3PO4 toward Water-Splitting and Phenol Oxidation Reactions. Inorg Chem 2019; 58:9643-9654. [PMID: 31339037 DOI: 10.1021/acs.inorgchem.9b00218] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Satyaranjan Mohanty
- Centre for Nanoscience and Nanotechnology, Siksha ‘O’ Anusandhan, Bhubaneswar 751030, India
| | - Pradeepta Babu
- Centre for Nanoscience and Nanotechnology, Siksha ‘O’ Anusandhan, Bhubaneswar 751030, India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha ‘O’ Anusandhan, Bhubaneswar 751030, India
| | - Brundabana Naik
- Centre for Nanoscience and Nanotechnology, Siksha ‘O’ Anusandhan, Bhubaneswar 751030, India
| |
Collapse
|
29
|
Du J, Ma S, Yan Y, Li K, Zhao F, Zhou J. Corn-silk-templated synthesis of TiO2 nanotube arrays with Ag3PO4 nanoparticles for efficient oxidation of organic pollutants and pathogenic bacteria under solar light. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Yang D, Zhao X, Chen Y, Wang W, Zhou Z, Zhao Z, Jiang Z. Synthesis of g-C3N4 Nanosheet/TiO2 Heterojunctions Inspired by Bioadhesion and Biomineralization Mechanism. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Xuyang Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yao Chen
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenjing Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhiyuan Zhou
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhanfeng Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
32
|
Jian A, Wang M, Wang L, Zhang B, Sang S, Zhang X. One-pot synthesis of Cu2O/C@H-TiO2 nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv 2019; 9:41540-41548. [PMID: 35541613 PMCID: PMC9076567 DOI: 10.1039/c9ra07767g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
As an environment-friendly semiconductor, titanium dioxide (TiO2), which can effectively convert solar energy to chemical energy, is a crucial material in solar energy conversion research. However, it has several technical limitations for environment protection and energy industries, such as low photocatalytic efficiency and a narrow spectrum response. In this study, a unique mesoporous Cu2O/C@H-TiO2 nanocomposite is proposed to solve these issues. Polystyrene beads ((C8H8)n, PS) are utilized as templates to prepare TiO2 hollow microspheres. Cu2O nanocomposites and amorphous carbon are deposited by a one-pot method on the surface of TiO2 hollow spheres. After the heterojunction is formed between the two semiconductor materials, the difference in energy levels can effectively separate the photogenerated e−–h+ pairs, thereby greatly improving the photocatalytic efficiency. Furthermore, due to the visible band absorption of Cu2O, the absorption range of the prepared nanocomposites is expanded to the whole solar spectrum. Amorphous carbon, as a Cu2O reduction reaction concomitant product, can further improve the electron conduction characteristics between Cu2O and TiO2. The structure and chemical composition of the obtained nanocomposites are characterized by a series of techniques (such as SEM, EDS, TEM, XRD, FTIR, XPS, DRS, PL, MS etc.). The experimental results of the degradation of methylene blue (MB) aqueous solution demonstrate that the degradation efficiency of Cu2O/C@H-TiO2 nanocomposites is about 3 times as fast as that of pure TiO2 hollow microspheres, and a more absolute degradation can be achieved. Herein, a recyclable photocatalyst with high degradation efficiency and a whole solar spectrum response is proposed and fabricated, and would find useful applications in environment protection, and optoelectronic devices. As an environment-friendly semiconductor, titanium dioxide (TiO2), which can effectively convert solar energy to chemical energy, is a crucial material in solar energy conversion research.![]()
Collapse
Affiliation(s)
- Aoqun Jian
- MicroNano System Research Center
- College of Information and Computer
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Meiling Wang
- MicroNano System Research Center
- College of Information and Computer
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Leiyang Wang
- MicroNano System Research Center
- College of Information and Computer
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Bo Zhang
- MicroNano System Research Center
- College of Information and Computer
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Shengbo Sang
- MicroNano System Research Center
- College of Information and Computer
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Xuming Zhang
- Department of Applied Physics
- Hong Kong Polytechnic University
- Kowloon
- China
| |
Collapse
|
33
|
Simon SM, Chandran A, George G, Sajna MS, Valparambil P, Kumi-Barmiah E, Jose G, Biju PR, Joseph C, Unnikrishnan NV. Development of Thick Superhydrophilic TiO 2-ZrO 2 Transparent Coatings Realized through the Inclusion of Poly(methyl methacrylate) and Pluronic-F127. ACS OMEGA 2018; 3:14924-14932. [PMID: 31458158 PMCID: PMC6643965 DOI: 10.1021/acsomega.8b01940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/19/2018] [Indexed: 06/10/2023]
Abstract
A thick coating of hierarchically porous double-templated TiO2-ZrO2-PMMA-PF127 with excellent self-cleaning properties and high transmittance has been developed for the first time on glass substrates using a simple dip-coating technique. Comparative studies of this sample with a thick and transparent coating of single-templated TiO2-ZrO2-PMMA have been performed to probe the origin of its exceptional properties. The formation of the composites, successful incorporation of the polymer into the matrix, and the porous nature of the films have been studied. The presence of Ti2+ in the double-templated samples has been confirmed, which suggest the chemisorption of water on the surface of the film. The variation in the self-cleaning properties of the samples on UV-illumination has also been studied. The double-templated film is found to possess the capability of good hydrophilic retention even 2 days after UV-irradiation.
Collapse
Affiliation(s)
- Sanu M. Simon
- School
of Pure & Applied Physics, Mahatma Gandhi
University, Kottayam 686 560, Kerala, India
| | - Anoop Chandran
- Department
of Physics, St. Cyril’s College, Adoor 691 529, Kerala, India
| | - Gejo George
- School
of Pure & Applied Physics, Mahatma Gandhi
University, Kottayam 686 560, Kerala, India
| | - M. S. Sajna
- School
of Pure & Applied Physics, Mahatma Gandhi
University, Kottayam 686 560, Kerala, India
| | - Prakashan Valparambil
- School
of Pure & Applied Physics, Mahatma Gandhi
University, Kottayam 686 560, Kerala, India
| | - Eric Kumi-Barmiah
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Gin Jose
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - P. R. Biju
- School
of Pure & Applied Physics, Mahatma Gandhi
University, Kottayam 686 560, Kerala, India
| | - Cyriac Joseph
- School
of Pure & Applied Physics, Mahatma Gandhi
University, Kottayam 686 560, Kerala, India
| | - N. V. Unnikrishnan
- School
of Pure & Applied Physics, Mahatma Gandhi
University, Kottayam 686 560, Kerala, India
| |
Collapse
|
34
|
Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev 2018; 118:11118-11193. [PMID: 30362737 DOI: 10.1021/acs.chemrev.7b00660] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.
Collapse
Affiliation(s)
- Marion J Limo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Interface and Surface Analysis Centre, School of Pharmacy , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna Sola-Rabada
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Estefania Boix
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | - Veeranjaneyulu Thota
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Zayd C Westcott
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Valeria Puddu
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
35
|
López-Goerne T, Ramírez P, Alvarez D, Rodríguez-Reinoso F, Silvestre-Albero AM, Gómez E, Rodríguez-Castellon E. Physicochemical properties and in vivo evaluation of Pt/TiO 2-SiO 2 nanopowders. Nanomedicine (Lond) 2018; 13:2171-2185. [PMID: 30277422 DOI: 10.2217/nnm-2018-0078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Sol-gel is a suitable and advantageous method to synthesize mixed oxide nanomaterials with unique physicochemical and biological properties. MATERIALS & METHODS In this work, TiO2-SiO2 nanopowders cogeled with platinum acetylacetonate were developed and studied in the perspective of nanomedicine. The physicochemical properties of the Pt/TiO2-SiO2 nanopowders, named NanoRa2-Pt, were evaluated in detail by means of complementary spectroscopic and microscopic tools. The nanopowder's biocatalytic efficiency in wound healing was evaluated in a Type I diabetes animal model. RESULTS These are TiO2-SiO2 submicron mesoporous particles with variable size and shape containing ultra-small platinum nanoparticles with catalytic properties. CONCLUSION The use of NanoRa2-Pt catalyzes the natural healing processes with a faster remodeling stage. These sols, which we call nanobiocatalysts, belong to an emerging and very promising research field known as catalytic nanomedicine.
Collapse
Affiliation(s)
- Tessy López-Goerne
- Nanotechnology & Nanomedicine Laboratory, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960 Mexico City, Mexico.,Institute of Physics, UNAM, Circuito de la Investigación Científica Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Paola Ramírez
- Nanotechnology & Nanomedicine Laboratory, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960 Mexico City, Mexico.,Laboratorios de Nanomedicina y Nanotecnología. Nano Tutt S.A. de C.V. México City, México
| | - Daniel Alvarez
- Nanotechnology & Nanomedicine Laboratory, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960 Mexico City, Mexico.,Laboratorios de Nanomedicina y Nanotecnología. Nano Tutt S.A. de C.V. México City, México
| | - Francisco Rodríguez-Reinoso
- Advanced Materials Laboratory, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Ana M Silvestre-Albero
- Advanced Materials Laboratory, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Esteban Gómez
- AG Nano Optik, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Enrique Rodríguez-Castellon
- Universidad de Málaga, Facultad de Ciencias, Departamento de Química Inorgánica, Cristalografía y Mineralogía, 29071 Málaga, Spain
| |
Collapse
|
36
|
Sapkota K, Chaudhary P, Han SS. Environmentally sustainable route to SiO 2@Au-Ag nanocomposites for biomedical and catalytic applications. RSC Adv 2018; 8:31311-31321. [PMID: 35548200 PMCID: PMC9085631 DOI: 10.1039/c8ra04502j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/30/2018] [Indexed: 02/03/2023] Open
Abstract
A facile, sustainable, operationally simple and mild method for the synthesis of SiO2@Au-Ag nanocomposites (NCs) using Nephrolepis cordifolia tuber extract is described and its catalytic, antibacterial and cytotoxic properties were investigated. The fabricated SiO2@Au-Ag NCs were well characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) to determine the optical activity, size and morphology, elemental composition, functional groups present, crystallinity, thermal stability and chemical state respectively. The obtained SiO2@Au-Ag NCs exhibited spherical shape SiO2 decorated with Au and Ag nanoparticles. The diameter of the SiO2 nanoparticles ranges from 200-246 with average 3 nm diameter of Au and Ag NPs. Synthetic utility of this protocol has been demonstrated by exploring its effective catalytic activities for the solvent-free amidation of carboxylic acid with a primary amine with excellent yields. Moreover, the synthesized nanocomposite exhibited as noticeable antibacterial effect against Gram negative and Gram positive bacteria and better bio-compatibility against human keratinocytes. Thus, additive free SiO2@Au-Ag NCs display the potential for catalysis and biomedical applications.
Collapse
Affiliation(s)
- Kanti Sapkota
- School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea
- Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea +82-53-810-4686 +82-53-810-2773
| | - Prerna Chaudhary
- School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea
- Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea +82-53-810-4686 +82-53-810-2773
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea
- Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea +82-53-810-4686 +82-53-810-2773
| |
Collapse
|
37
|
Zhou T, Zhang G, Yang H, Zhang H, Suo R, Xie Y, Liu G. Fabrication of Ag 3PO 4/GO/NiFe 2O 4 composites with highly efficient and stable visible-light-driven photocatalytic degradation of rhodamine B. RSC Adv 2018; 8:28179-28188. [PMID: 35542723 PMCID: PMC9084322 DOI: 10.1039/c8ra02962h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/19/2018] [Indexed: 12/23/2022] Open
Abstract
Effective visible-light-driven Ag3PO4/GO/NiFe2O4 Z-scheme magnetic composites were successfully fabricated by a simple ion-exchange deposition method. The Ag3PO4/GO/NiFe2O4 (8%) composite exhibited excellent photocatalytic activity (degradation efficiency was ∼96% within 15 min and kinetic constant reached 0.1956 min-1) and stability when compared to Ag3PO4, NiFe2O4, and Ag3PO4/NiFe2O4 for rhodamine B (RhB) degradation. Furthermore, by electrochemical and fluorescence measurements, the Ag3PO4/GO/NiFe2O4 (8%) material also showed larger transient photocurrent, lower impedance, and longer fluorescence lifetime (7.82 ns). Comparing the activity result dependence with characterization results, it was indicated that photocatalytic activity depended on fast charge transfer from Ag3PO4 to NiFe2O4 through GO sheet. The h+ and ·O2 - species played important roles in RhB degradation under visible-light. A possible Z-scheme mechanism is proposed over the Ag3PO4/GO/NiFe2O4 (8%) composite. This study might provide a promising visible light responsive photocatalyst for the photocatalytic degradation of organic dyes in wastewater.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730000 P. R. China
- Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730000 P. R. China
| | - Hao Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730000 P. R. China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730000 P. R. China
| | - Ruini Suo
- Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yingshuang Xie
- Gansu Import and Export Inspection and Quarantine Bureau Inspection and Quarantine Integrated Technology Center Lanzhou 730000 P. R. China
| | - Gang Liu
- Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
38
|
Zhang F, Wang Y, Zhang Y, Chen L, Liu Y, Yang J. Ag Nanotwin-Assisted Grain Growth-Induced by Stress in SiO₂/Ag/SiO₂ Nanocap Arrays. NANOMATERIALS 2018; 8:nano8060436. [PMID: 29904010 PMCID: PMC6027533 DOI: 10.3390/nano8060436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
A trilayer SiO2/Ag/SiO2 nanocap array was prepared on a two-dimensional template. When annealed at different temperatures, the curvature of the SiO2/Ag/SiO2 nanocap arrays increased, which led to Ag nanocap shrinkage. The stress provided by the curved SiO2 layer induced the formation of Ag nanotwins. Ag nanotwins assisted the growth of nanoparticles when the neighboring nanotwins changed the local misorientations. Nanocap shrinkage reduced the surface plasmon resonance (SPR) coupling between neighboring nanocaps; concurrently, grain growth decreased the SPR coupling between the particles in each nanocap, which led to a red shift of the localized surface plasmon resonance (LSPR) bands and decreased the surface-enhanced Raman scattering (SERS) signals.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Yaxin Wang
- College of Physics, Jilin Normal University, Siping 136000, China.
| | - Yongjun Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Lei Chen
- College of Chemistry, Jilin Normal University, Siping 136000, China.
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
39
|
Liu Z, Zhang Y, Fan Y, Chen Z, Tang Z, Zhao J, Lv Y, Lin J, Guo X, Zhang J, Liu X. Toward Highly Luminescent and Stabilized Silica-Coated Perovskite Quantum Dots through Simply Mixing and Stirring under Room Temperature in Air. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13053-13061. [PMID: 29584397 DOI: 10.1021/acsami.7b18964] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Methylammonium (MA) lead halide (MAPbX3, X = Cl, Br, I) perovskite quantum dots (PQDs) are very sensitive to environment (moisture, oxygen, and temperature), suffering from poor stability. To improve the stability, we synthesized silica-coated PQDs (SPQDs) by an improved ligand-assisted reprecipitation method through simply mixing and stirring under room temperature in air without adding water and catalyst, the whole process took only a few seconds. The photoluminescence (PL) spectra of the SPQDs can be tuned continuously from 460 to 662 nm via adjusting the composition proportion of precursors. The highest PL quantum yields (PLQYs) of blue-, green-, and red-emissive SPQDs are 56, 95, and 70%, respectively. The SPQDs show remarkably improved environmental and thermal stability compared to the naked PQDs because of effective barrier created by the coated silica between the core materials and the ambience. Furthermore, it is found that different light-emitting SPQDs can maintain their original PL properties after mixing of them and anion-exchange reactions have not happened. These attributes were then used to mix green- and yellow-emissive SPQDs with polystyrene (PS) to form color-converting layers for the fabrication of white light-emitting devices (WLEDs). The WLEDs exhibit excellent white light characteristics with CIE 1931 color coordinates of (0.31, 0.34) and color rendering index (CRI) of 85, demonstrating promising applications of SPQDs in lighting and displays.
Collapse
Affiliation(s)
- Zheqin Liu
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033 , China
- University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Yongqiang Zhang
- Department of Optoelectronic Engineering , Jinan University , Guangzhou 510632 , China
| | - Yi Fan
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033 , China
| | - Zhenqiang Chen
- Department of Optoelectronic Engineering , Jinan University , Guangzhou 510632 , China
| | - Zhaobing Tang
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033 , China
- University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Jialong Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education , Jilin Normal University , Siping 136000 , China
| | - Ying Lv
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033 , China
| | - Jie Lin
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033 , China
| | - Xiaoyang Guo
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033 , China
| | - Jiahua Zhang
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033 , China
| | - Xingyuan Liu
- State Key Laboratory of Luminescence and Applications , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033 , China
| |
Collapse
|
40
|
Deng A, Zhu Y. Synthesis of TiO2/SiO2/Ag/Ag2O and TiO2/Ag/Ag2O nanocomposite spheres with photocatalytic performance. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3365-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Zhang X, Zhang H, Xiang Y, Hao S, Zhang Y, Guo R, Cheng X, Xie M, Cheng Q, Li B. Synthesis of silver phosphate/graphene oxide composite and its enhanced visible light photocatalytic mechanism and degradation pathways of tetrabromobisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:353-363. [PMID: 28850913 DOI: 10.1016/j.jhazmat.2017.08.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 05/26/2023]
Abstract
In the present study, silver phosphate/graphene oxide (Ag3PO4/GO) composite was synthesized by ultrasound-precipitation processes. Afterwards, physicochemical properties of the resulting samples were studied through scanning electron microscope, transmission electron microscope, X-ray diffraction, N2 adsorption/desorption, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy and photoelectrochemical measurements. Results indicated that spherical Ag3PO4 displayed an average diameter of 150 nm and body-centered cubic crystal phase, which was integrated with GO. In addition, the visible light absorbance, charge separation efficiency and lifetime of Ag3PO4 were significantly improved by integration with GO. In addition, Ag3PO4/GO composite was applied to decompose tetrabromosphenol A (TBBPA) in water body. It was found that TBBPA could be completely decomposed within 60 min illumination. Furthermore, several scavenger experiments were conducted to distinguish the contribution of reactive species to the photoctalytic efficiency. Moreover, the enhanced visible light mechanism of Ag3PO4/GO was proposed and discussed. Eventually, several PC decomposition pathways of TBBPA were identified including directly debromination and oxidation, and subsequently further oxidation and hydroxylation processes.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Huixuan Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yanying Xiang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Sibei Hao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuxin Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ruonan Guo
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiuwen Cheng
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xinning Road 18, Chengxi District, Xining 810008, PR China.
| | - Mingzheng Xie
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Qingfeng Cheng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Bo Li
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xinning Road 18, Chengxi District, Xining 810008, PR China
| |
Collapse
|
42
|
Lin XJ, Sun TQ, Sun YG, Zeng C, Lu RW, Cao AM. The facile construction of a yolk–shell structured metal–TiO2 nanocomposite with potential for p-nitrophenol reduction. NEW J CHEM 2018. [DOI: 10.1039/c7nj03853d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile synthesis method was developed for the construction of a yolk–shell structured metal–TiO2 nanocomposite.
Collapse
Affiliation(s)
- Xi-Jie Lin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- and CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Tian-Qi Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- and CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Yong-Gang Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- and CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Chen Zeng
- College of Food Science & Technology
- Huazhong Agricultural University
- Wuhan
- People's Republic of China
| | - Rong-Wen Lu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- People's Republic of China
| | - An-Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology
- and CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| |
Collapse
|
43
|
Zhou T, Zhang G, Zhang H, Yang H, Ma P, Li X, Qiu X, Liu G. Highly efficient visible-light-driven photocatalytic degradation of rhodamine B by a novel Z-scheme Ag3PO4/MIL-101/NiFe2O4 composite. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00182k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ag3PO4/MIL-101/NiFe2O4 composite was fabricated by an in situ precipitation method. The results implied that introduction of the MOF enhanced the rapid transfer of electrons from Ag3PO4 to NiFe2O4.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- PR China
- Research & Development Center for Eco-material and Eco-chemistry
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- PR China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- PR China
| | - Hao Yang
- School of Environmental and Municipal Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- PR China
| | - Pengjun Ma
- Research & Development Center for Eco-material and Eco-chemistry
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- PR China
| | - Xiaoting Li
- Research & Development Center for Eco-material and Eco-chemistry
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- PR China
| | - Xiaoli Qiu
- Research & Development Center for Eco-material and Eco-chemistry
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- PR China
| | - Gang Liu
- Research & Development Center for Eco-material and Eco-chemistry
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- PR China
| |
Collapse
|
44
|
Zhang C, Zhou Y, Bao J, Zhang Y, Zhao S, Fang J, Chen W, Sheng X. Hierarchical TiO
2
nanosheet‐assembled nanotubes with dual electron sink functional sites for efficient photocatalytic degradation of rhodamine B. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Zhang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Yuming Zhou
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Jiehua Bao
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Yiwei Zhang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Shuo Zhao
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Jiasheng Fang
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Wenxia Chen
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| | - Xiaoli Sheng
- School of Chemistry and Chemical EngineeringSoutheast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory Nanjing 211189 China
| |
Collapse
|
45
|
Nallal M, Anantha Iyengar G, Pill-Lee K. New Titanium Dioxide-Based Heterojunction Nanohybrid for Highly Selective Photoelectrochemical-Electrochemical Dual-Mode Sensors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37166-37183. [PMID: 28952309 DOI: 10.1021/acsami.7b10519] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new titanium dioxide (TiO2)-based heterojunction nanohybrid (HJNH) composed of TiO2, graphene (G), poly[3-aminophenylboronic acid] (PAPBA), and gold nanoparticles (Au NPs) was synthesized and designated as TiO2(G) NW@PAPBA-Au HJNH. The TiO2(G) NW@PAPBA-Au HJNH possesses dual-mode signal photoelectrochemical (PEC) and electrochemical transduction capabilities to sense glucose and glycated hemoglobin (HbA1c) independently. The synthesis of the HJNH material involved two sequential stages: (i) simple electrospinning synthesis of G-embedded TiO2 nanowires [TiO2(G) NWs] and (ii) one-step synthesis of Au NP-dispersed PAPBA nanocomposite (NC) in the presence of TiO2(G) NWs. The as-synthesized TiO2(G) NW@PAPBA-Au HJNH was characterized by field emission scanning electron microscopy, field emission transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, thermogravimetric analysis, and UV-visible diffuse reflectance spectroscopy. A PEC platform was developed with TiO2(G) NW@PAPBA-Au HJNH for the selective detection of glucose without any enzyme auxiliary. The PEC glucose sensor presents an acceptable linear range (from 0.5 to 28 mM), good sensitivity (549.58 μA mM-1 cm-2), and low detection limit (0.11 mM), which are suited for diabetes glucose monitoring. Besides, the boronic acid groups in PAPBA were utilized as a host to capture HbA1c. We fabricated the electrochemical HbA1c sensor based on monitoring the electrocatalytic reduction current of hydrogen peroxide produced by HbA1c tethered to the sensor probe. The amperometric electrochemical sensor for HbA1c exhibited linear responses to HbA1c levels from 2.0 to 10% (with a detection limit of 0.17%). Notably, the performances of the fabricated glucose and HbA1c sensors are superior in the dual-signal transduction modes as compared to the literature, suggesting the significance of the newly designed bifunctional TiO2(G) NW@PAPBA-Au HJNH.
Collapse
Affiliation(s)
- Muthuchamy Nallal
- Department of Chemistry Education, ‡Research Institute of Advanced Energy Technology, and §Department of Nanoscience and Nanotechnology, Kyungpook National University , Daegu 41566, South Korea
| | - Gopalan Anantha Iyengar
- Department of Chemistry Education, ‡Research Institute of Advanced Energy Technology, and §Department of Nanoscience and Nanotechnology, Kyungpook National University , Daegu 41566, South Korea
| | - Kwang Pill-Lee
- Department of Chemistry Education, ‡Research Institute of Advanced Energy Technology, and §Department of Nanoscience and Nanotechnology, Kyungpook National University , Daegu 41566, South Korea
| |
Collapse
|
46
|
Du J, Wang H, Yang M, Li K, Zhao L, Zhao G, Li S, Gu X, Zhou Y, Wang L, Gao Y, Wang W, Kang DJ. Pyramid-like CdS nanoparticles grown on porous TiO 2 monolith: An advanced photocatalyst for H 2 production. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Vono LLR, Damasceno CC, Matos JR, Jardim RF, Landers R, Masunaga SH, Rossi LM. Separation technology meets green chemistry: development of magnetically recoverable catalyst supports containing silica, ceria, and titania. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Magnetic separation can be considered a green technology because it is fast, efficient, consumes low energy, and minimizes the use of solvents and the generation of waste. It has been successfully used in laboratory scale to facilitate supported catalysts’ handling, separation, recovery, and recycling. Only few materials are intrisically magnetic, hence the application of magnetic materials as catalyst supports has broaden the use of magnetic separation. Iron oxides, silica-coated iron oxides, and carbon-coated-cobalt are among the most studied catalyst supports; however, other metal oxide coatings, such as ceria and titania, are also very interesting for application in catalysis. Here we report the preparation of magnetically recoverable magnetic supports containing silica, ceria, and titania. We found that the silica shell protects the iron oxide core and allows the crystalization of ceria and titania at high temperature without compromising the magnetic properties of the catalyst supports.
Collapse
Affiliation(s)
- Lucas L. R. Vono
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , 05508-000 São Paulo , Brazil
| | - Camila C. Damasceno
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , 05508-000 São Paulo , Brazil
| | - Jivaldo R. Matos
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , 05508-000 São Paulo , Brazil
| | - Renato F. Jardim
- Institute of Physics , University of São Paulo , 05315-970 São Paulo , Brazil
| | - Richard Landers
- Institute of Physics Gleb Wataghin , State University of Campinas , Campinas 13083-859 , Brazil
| | - Sueli H. Masunaga
- Physics Department , Centro Universitário FEI , 05508-090, São Bernardo do Campo , Brazil
| | - Liane M. Rossi
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , 05508-000 São Paulo , Brazil
| |
Collapse
|
48
|
Tang L, Shi J, Wu H, Zhang S, Liu H, Zou H, Wu Y, Zhao J, Jiang Z. In situ biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis. NANOTECHNOLOGY 2017; 28:365604. [PMID: 28617249 DOI: 10.1088/1361-6528/aa79e1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The synthesis of ultrafine, uniform, well-dispersed functional nanoparticles (NPs) under mild conditions in a controlled manner remains a great challenge. In biological systems, a well-defined biomineralization process is exploited, in which the control over NPs' size, shape and distribution is temporally and spatially regulated by a variety of biomolecules in a confined space. Inspired by this, we embedded proteins into metal-organic frameworks (MOFs) and explored a novel approach to synthesize metallic NPs by taking the synergy of protein-induced biomineralization process and space-confined effect of MOFs. The generation and growth of ultrafine metal NPs (Ag or Au) was induced by the entrapped lysozyme molecules and confined by the ZIF-8 pores. Due to the narrow size distribution and homogeneous spatial distribution of metal NPs, the as-synthesized NPs exhibit remarkably elevated catalytic activity. These findings demonstrate that MOFs can be loaded with specific proteins to selectively deposit inorganic NPs via biomimetic mineralization and these novel kinds of nanohybrid materials may find applications in catalysis, sensing and optics.
Collapse
Affiliation(s)
- Lei Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu P, Huo X, Tang Y, Xu J, Liu X, Wong DK. A TiO 2 nanosheet-g-C 3 N 4 composite photoelectrochemical enzyme biosensor excitable by visible irradiation. Anal Chim Acta 2017; 984:86-95. [DOI: 10.1016/j.aca.2017.06.043] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/20/2023]
|
50
|
|