1
|
Duah IK, Tang H, Zhang P. Development of a Novel System Consisting of a Reductase-Like Nanozyme and the Reaction of Resazurin and Ammonia Borane for Sensitive Fluorometric Sensing. Anal Chem 2024; 96:14424-14432. [PMID: 39190820 DOI: 10.1021/acs.analchem.4c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We report a novel system consisting of a redox reaction and a highly efficient reductase-like nanozyme, silica-palladium nanoparticles (Pd@SiO2 NPs), as a novel detection platform for fluorometric sensing. In a proof-of-concept demonstration using an oligonucleotide as the detection target, a glass fiber-based sensor is fabricated by covalently conjugating two oligo probes, which are complementary to the adjacent segments of the target oligonucleotide, on Pd@SiO2 NPs and glass fiber, respectively. In the presence of the target oligonucleotide, the two probes are drawn together by the target through sequence-specific hybridization, bringing the Pd@SiO2 NPs to the glass fiber. When the glass fiber is subsequently immersed in a mixture of resazurin and ammonia borane solution, the Pd@SiO2 NPs on the glass fiber trigger the catalytic conversion of resazurin (blue, slightly fluorescent) to resorufin (pink, highly fluorescent) with massive signal amplification, indirectly signaling the presence of the target oligonucleotide. We show that the glass fiber-based fluorometric sensor can detect a target oligonucleotide associated with the BRAF mutation linearly in the concentration range of 20 to 400 pM with a detection limit (LOD) of 15 pM and the specificity to differentiate targets with single-base difference. These results demonstrate a new frontier for the development of a sensitive, specific, and inexpensive nonenzyme-based fluorometric sensing platform as an alternative to conventional enzyme-based assays.
Collapse
Affiliation(s)
- Ishmeal Kwaku Duah
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hong Tang
- Alph Technologies LLC, Cincinnati, Ohio 45243, United States
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
2
|
Allwin Mabes Raj AFP, Bauman M, Dimitrušev N, Ali LMA, Onofre M, Gary-Bobo M, Durand JO, Lobnik A, Košak A. Superparamagnetic Spinel-Ferrite Nano-Adsorbents Adapted for Hg 2+, Dy 3+, Tb 3+ Removal/Recycling: Synthesis, Characterization, and Assessment of Toxicity. Int J Mol Sci 2023; 24:10072. [PMID: 37373219 DOI: 10.3390/ijms241210072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In the present work, superparamagnetic adsorbents based on 3-aminopropyltrimethoxy silane (APTMS)-coated maghemite (γFe2O3@SiO2-NH2) and cobalt ferrite (CoFe2O4@SiO2-NH2) nanoparticles were prepared and characterized using transmission-electron microscopy (TEM/HRTEM/EDXS), Fourier-transform infrared spectroscopy (FTIR), specific surface-area measurements (BET), zeta potential (ζ) measurements, thermogravimetric analysis (TGA), and magnetometry (VSM). The adsorption of Dy3+, Tb3+, and Hg2+ ions onto adsorbent surfaces in model salt solutions was tested. The adsorption was evaluated in terms of adsorption efficiency (%), adsorption capacity (mg/g), and desorption efficiency (%) based on the results of inductively coupled plasma optical emission spectrometry (ICP-OES). Both adsorbents, γFe2O3@SiO2-NH2 and CoFe2O4@SiO2-NH2, showed high adsorption efficiency toward Dy3+, Tb3+, and Hg2+ ions, ranging from 83% to 98%, while the adsorption capacity reached the following values of Dy3+, Tb3+, and Hg2+, in descending order: Tb (4.7 mg/g) > Dy (4.0 mg/g) > Hg (2.1 mg/g) for γFe2O3@SiO2-NH2; and Tb (6.2 mg/g) > Dy (4.7 mg/g) > Hg (1.2 mg/g) for CoFe2O4@SiO2-NH2. The results of the desorption with 100% of the desorbed Dy3+, Tb3+, and Hg2+ ions in an acidic medium indicated the reusability of both adsorbents. A cytotoxicity assessment of the adsorbents on human-skeletal-muscle derived cells (SKMDCs), human fibroblasts, murine macrophage cells (RAW264.7), and human-umbilical-vein endothelial cells (HUVECs) was conducted. The survival, mortality, and hatching percentages of zebrafish embryos were monitored. All the nanoparticles showed no toxicity in the zebrafish embryos until 96 hpf, even at a high concentration of 500 mg/L.
Collapse
Affiliation(s)
- A F P Allwin Mabes Raj
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Environmental Science, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
| | - Maja Bauman
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
| | - Nena Dimitrušev
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Mélanie Onofre
- IBMM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | | | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska 7, 2000 Maribor, Slovenia
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Aljoša Košak
- Faculty for Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
Yu J, Li Y, Liu X, Huang H, Wang Y, Zhang Q, Li Q, Cao CY. EDTA-functionalized silica nanoparticles as a conditioning agent for dentin bonding using etch-and-rinse technique. J Dent 2023; 134:104528. [PMID: 37105434 DOI: 10.1016/j.jdent.2023.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE This study investigated the possibility of using ethylenediaminetetraacetic acid functionalized silica nanoparticles (EDTA-SiO2) as a dentin-conditioning agent using etch-and-rinse technique to promote the durability of dentin bonding. METHODS The SiO2-EDTA were synthesized by N- [(3- trimethoxysilyl) propyl] ethylenediamine triacetic acid (EDTA-TMS) and SiO2 (50 nm), then characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The capacity of SiO2-EDTA to chelate calcium ions from dentin was examined by inductively coupled plasma-optic emission spectrometry (ICP-OES). The dentin surfaces conditioned with SiO2-EDTA were detected by field emission scanning electron microscopy (SEM), TEM and microhardness testing. For dentin bonding, dentin surfaces were adopted wet- or dry-bonding technique and bonded with adhesive (AdperTM Single Bond2) and applied composite resin (Filtek Z350) on them. The durability of dentin bonding was evaluated by mircotensile bond strength test, in-situ zymography and nanoleakage testing. RESULTS FTIR, TGA and XPS results showed that SiO2-EDTA contained N element and carboxyl groups. SEM, TEM and microhardness results indicated that SiO2-EDTA group created extrafibrillar demineralization and retained more intrafibrillar minerals within dentin surface. In the dentin bonding experiment, SiO2-EDTA group achieved acceptable bond strength, and reduced the activity of matrix metalloproteinase and nanoleakage along bonding interface. CONCLUSION It was possible to generate a feasible dentin conditioning agent (SiO2-EDTA), which could create dentin extrafibrillar demineralization and improve dentin bond durability. CLINICAL SIGNIFICANCE This study introduces a new dentin conditioning scheme based on SiO2-EDTA to create extrafibrillar demineralization for dentin bonding. This strategy has the potential to be used in clinic to promote the life of restoration bonding.
Collapse
Affiliation(s)
- Jianan Yu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yuexiang Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xinyuan Liu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Haowen Huang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yu Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qunlin Zhang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Quanli Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Chris Ying Cao
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
4
|
Leng Y, Jin K, Wang T, Lai X, Sun H. Efficient Removal of Pb(Ⅱ) by Highly Porous Polymeric Sponges Self-Assembled from a Poly(Amic Acid). Molecules 2023; 28:molecules28072897. [PMID: 37049658 PMCID: PMC10095650 DOI: 10.3390/molecules28072897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Lead (II) (Pb(II)) is widespread in water and very harmful to creatures, and the efficient removal of it is still challenging. Therefore, we prepared a novel sponge-like polymer-based absorbent (poly(amic acid), PAA sponge) with a highly porous structure using a straightforward polymer self-assembly strategy for the efficient removal of Pb(II). In this study, the effects of the pH, dosage, adsorption time and concentration of Pb(II) on the adsorption behavior of the PAA sponge are investigated, revealing a rapid adsorption process with a removal efficiency up to 89.0% in 2 min. Based on the adsorption thermodynamics, the adsorption capacity increases with the concentration of Pb(II), reaching a maximum adsorption capacity of 609.7 mg g-1 according to the Langmuir simulation fitting. Furthermore, the PAA sponge can be efficiently recycled and the removal efficiency of Pb(II) is still as high as 93% after five adsorption-desorption cycles. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses reveal that the efficient adsorption of Pb(II) by the PAA sponge is mainly due to the strong interaction between nitrogen-containing functional groups and Pb(II), and the coordination of oxygen atoms is also involved. Overall, we propose a polymer self-assembly strategy to easily prepare a PAA sponge for the efficient removal of Pb(II) from water.
Collapse
Affiliation(s)
- Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Kai Jin
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Xiaoyong Lai
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Breijaert TC, Budnyak TM, Kessler VK, Seisenbaeva GA. Tailoring a bio-based adsorbent for sequestration of late transition and rare earth elements. Dalton Trans 2022; 51:17978-17986. [PMID: 36412094 DOI: 10.1039/d2dt03150g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demand for new renewable energy sources, improved energy storage and exhaust-free transportation requires the use of large quantities of rare earth (REE) and late transition (LTM, group 8-12) elements. In order to achieve sustainability in their use, an efficient green recycling technology is required. Here, an approach, a synthetic route and an evaluation of the designed bio-based material are reported. Cotton-derived nano cellulose particles were functionalized with a polyamino ligand, tris(2-aminoethyl) amine (TAEA), achieving ligand content of up to ca. 0.8 mmol g-1. The morphology and structure of the produced adsorbent were revealed by PXRD, SEM-EDS, AFM and FTIR techniques. The adsorption capacity and kinetics of REE and LTM were investigated by conductometric photometric titrations, revealing quick uptake, high adsorption capacity and pronounced selectivity for LTM compared to REE. Molecular insights into the mode of action of the adsorbent were obtained via the investigation of the molecular structure of the Ni(II)-TAEA complex by an X-ray single crystal study. The bio-based adsorbent nanomaterial demonstrated in this work opens up a perspective for tailoring specific adsorbents in the sequestration of REE and LTM for their sustainable recycling.
Collapse
Affiliation(s)
- Troy C Breijaert
- Department of Molecular Sciences, Biocentrum, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7015, SE-750 07 Uppsala, Sweden.
| | - Tetyana M Budnyak
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Vadim K Kessler
- Department of Molecular Sciences, Biocentrum, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7015, SE-750 07 Uppsala, Sweden.
| | - Gulaim A Seisenbaeva
- Department of Molecular Sciences, Biocentrum, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
6
|
Advances of magnetic nanohydrometallurgy using superparamagnetic nanomaterials as rare earth ions adsorbents: A grand opportunity for sustainable rare earth recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Wang D, Ge H. Preparation and characterization of polyethyleneimine functionalized magnetic graphene oxide as high uptake and fast removal for Hg (II). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1373-1387. [PMID: 36178812 DOI: 10.2166/wst.2022.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polyethyleneimine functionalized magnetic graphene oxide adsorbent (PEI-mGO) was synthesized by introducing polyethyleneimine onto Fe3O4/graphene oxide. The structures and morphologies of PEI-mGO was identified by using Fourier-tranform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) methods. Quantities of bar-like Fe3O4 nanoparticles were observed on the surfaces of PEI-mGO. The adsorption of PEI-mGO for Cu(II), Pb(II), Hg(II), Co(II) and Cd(II) was compared. The adsorption results indicated that PEI-mGO showed higher uptake for Hg(II) than the other ions. The influence of various variables for the adsorption of Hg(II) on PEI-mGO was explored. The adsorption kinetics and isotherm could be described well by the pseudo-second-order and Langmuir models. The maximal uptake of PEI-mGO for Hg(II) from Langmuir model was 857.3 mg g-1, which was higher than that reported previously. The adsorption removal was a fast and endothermic process governed by the chemical process. The uptake increased with increasing temperature. PEI-mGO showed an excellent performance for removal of Hg(II) with 93.3% removal efficiency from simulated wastewater. Adsorption-desorption cycled experiments indicated that PEI-mGO could be recycled. PEI-mGO could be easily separated from the adsorbed solution by using a magnet. Hence, this novel adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
Affiliation(s)
- Deqi Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China E-mail:
| | - Huacai Ge
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China E-mail:
| |
Collapse
|
8
|
He L, Dai Y, Wang Z, Yang L, Zhang L, Hu P, Tian Y, Mo H, Zhu H, Zhang J. A novel recyclable nano-adsorbent for enhanced oil recovery with efficient removal of Ca2+ and Cr6+ from oilfield wastewater. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Salami BA, Oyehan TA, Gambo Y, Badmus SO, Tanimu G, Adamu S, Lateef SA, Saleh TA. Technological trends in nanosilica synthesis and utilization in advanced treatment of water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42560-42600. [PMID: 35380322 DOI: 10.1007/s11356-022-19793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Water and wastewater treatment applications stand to benefit immensely from the design and development of new materials based on silica nanoparticles and their derivatives. Nanosilica possesses unique properties, including low toxicity, chemical inertness, and excellent biocompatibility, and can be developed from a variety of sustainable precursor materials. Herein, we provide an account of the recent advances in the synthesis and utilization of nanosilica for wastewater treatment. This review covers key physicochemical aspects of several nanosilica materials and a variety of nanotechnology-enabled wastewater treatment techniques such as adsorption, separation membranes, and antimicrobial applications. It also discusses the prospective design and tuning options for nanosilica production, such as size control, morphological tuning, and surface functionalization. Informative discussions on nanosilica production from agricultural wastes have been offered, with a focus on the synthesis methodologies and pretreatment requirements for biomass precursors. The characterization of the different physicochemical features of nanosilica materials using critical surface analysis methods is discussed. Bio-hybrid nanosilica materials have also been highlighted to emphasize the critical relevance of environmental sustainability in wastewater treatment. To guarantee the thoroughness of the review, insights into nanosilica regeneration and reuse are provided. Overall, it is envisaged that this work's insights and views will inspire unique and efficient nanosilica material design and development with robust properties for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Babatunde Abiodun Salami
- Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Tajudeen Adeyinka Oyehan
- Geosciences Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Yahya Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Suaibu O Badmus
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Gazali Tanimu
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Sagir Adamu
- Chemical Engineering Department and Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saheed A Lateef
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
10
|
Hovey JL, Dittrich TM, Allen MJ. Coordination Chemistry of Surface-Associated Ligands for Solid–Liquid Adsorption of Rare-Earth Elements. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Duan T, Qian B, Wang Y, Zhao Q, Xie F, Zou H, Zhou X, Song Y, Sheng Y. Preparation of CaCO3:Eu3+@SiO2 and its application on adsorption of Tb3+. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Karapınar HS, Bilgiç A. A new magnetic Fe3O4@SiO2@TiO2-APTMS-CPA adsorbent for simple, fast and effective extraction of aflatoxins from some nuts. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
|
14
|
Long-chain ligand design in creating magnetic nano adsorbents for separation of REE from LTM. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Zhang Z, Simon A, Abetz C, Held M, Höhme A, Schneider ES, Segal‐Peretz T, Abetz V. Hybrid Organic-Inorganic-Organic Isoporous Membranes with Tunable Pore Sizes and Functionalities for Molecular Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105251. [PMID: 34580938 PMCID: PMC11469200 DOI: 10.1002/adma.202105251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/28/2021] [Indexed: 05/26/2023]
Abstract
Accomplishing on-demand molecular separation with a high selectivity and good permeability is very desirable for pollutant removal and chemical and pharmaceutical processing. The major challenge for sub-10 nm filtration of particles and molecules is the fabrication of high-performance membranes with tunable pore size and designed functionality. Here, a versatile top-down approach is demonstrated to produce such a membrane using isoporous block copolymer membranes with well-defined pore sizes combined with growth of metal oxide using sequential infiltration synthesis and atomic layer deposition (SIS and ALD). The pore size of the membranes is tuned by controlled metal oxide growth within and onto the polymer channels, enabling up to twofold pore diameter reduction. Following the growth, the distinct functionalities are readily incorporated along the membrane nanochannels with either hydrophobic, cationic, or anionic groups via straightforward and scalable gas/liquid-solid interface reactions. The hydrophilicity/hydrophobicity of the membrane nanochannel is significantly changed by the introduction of hydrophilic metal oxide and hydrophobic fluorinated groups. The functionalized membranes exhibit a superior selectivity and permeability in separating 1-2 nm organic molecules and fractionating similar-sized proteins based on size, charge, and hydrophobicity. This demonstrates the great potential of organic-inorganic-organic isoporous membranes for high-performance molecular separation in numerous applications.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Assaf Simon
- Department of Chemical EngineeringTechnion‐ Israel Institute of TechnologyHaifa3200003Israel
| | - Clarissa Abetz
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Martin Held
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Anke‐Lisa Höhme
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Erik S. Schneider
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
| | - Tamar Segal‐Peretz
- Department of Chemical EngineeringTechnion‐ Israel Institute of TechnologyHaifa3200003Israel
| | - Volker Abetz
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Str. 121502GeesthachtGermany
- Universität HamburgInstitute of Physical ChemistryMartin‐Luther‐King‐Platz 620146HamburgGermany
| |
Collapse
|
16
|
Nie R, Yang C, Zhang J, Dong K, Zhao G. Removal of multiple metal ions from wastewater by a multifunctional metal-organic-framework based trap. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1594-1607. [PMID: 34662299 DOI: 10.2166/wst.2021.340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design and preparation of multifunctional adsorbent for practical wastewater treatment is still an enormous challenge. To remove multiple metal ions from wastewater, we developed a broad-spectrum metal ions trap named UIO-67-EDTA by incorporation of ethylenediaminetetraacetic acid into robust UIO-67. The adsorption experiments for 15 kinds of heavy metal ions including hard acid (Mn2+, Ba2+, Al3+, Cr3+, Fe3+), borderline acid (Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Sn2+, Bi2+), soft acid (Ag+, Cd2+, Hg2+), and two kinds of dissolved minerals (Mg2+, Ca2+) show that the trap is very effective both in batch adsorption processes and breakthrough processes. At a pH value of 4.0, the removal efficiency for all metal ions was over 98% within 10 min, and the maximum static adsorption capacity for the representative metal ions Cr3+, Hg2+and Pb2+ was up to 416.67, 256.41, and 312.15 mg g-1, respectively. The adsorption kinetics fitted well with the pseudo-second-order model, indicating that the chemical adsorption was the rate-determining step in the adsorption process. Meanwhile, the material showed high stability and recyclability, the removal efficiency for the three representative metals was still maintained over 93% after five consecutive adsorption cycles.
Collapse
Affiliation(s)
- Rong Nie
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China E-mail: ; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Gansu Provincial Key Discipline 'Analysis and Treatment of Regional Typical Environmental Pollutants', School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Cailing Yang
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China E-mail:
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China E-mail:
| | - Kun Dong
- Gansu Province Centre for Disease Control and Prevention, Lanzhou 730000, China
| | - Guohu Zhao
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China E-mail: ; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Gansu Provincial Key Discipline 'Analysis and Treatment of Regional Typical Environmental Pollutants', School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
| |
Collapse
|
17
|
Salman AD, Juzsakova T, Ákos R, Ibrahim RI, Al-Mayyahi MA, Mohsen S, Abdullah TA, Domokos E. Synthesis and surface modification of magnetic Fe 3O 4@SiO 2 core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28428-28443. [PMID: 33538976 DOI: 10.1007/s11356-020-12170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The main objective of this work is to produce an eco-friendly and economically nano-adsorbent which can separate scandium metal ions Sc from a model aqueous phase prior to applying these adsorbents in industrial filed. The magnetic core-shell structure Fe3O4@SiO2 nanoparticles were synthesized by modified Stöber method and functionalized with (3-aminopropyl) triethoxysilane APTES as a coupling agent and ethylenediaminetetraacetic acid (EDTA) as a ligand. Magnetic nano support adsorbents exhibit many attractive opportunities due to their easy removal and possibility of reusing. The ligand grafting was chemically robust and does not appreciably influence the morphology or the structure of the substrate. To evaluate the potential, the prepared hybrid nanoparticles were used as nano-adsorbent for Sc ions from model aqueous solutions due to the fact that rare earth elements (REEs) have a strong affinity for oxygen and nitrogen donors. The iron oxide nanoparticles were prepared by co-precipitation method at pH 10 and pH 11 to get the best morphology and nanoscale dimensions of iron oxide magnetic nanoparticles. The particle size, morphology, specific surface area, and surface modification were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and X-ray powder diffraction (XRD). The results showed that the Fe3O4 nanoparticles with average particle size of 15 ± 3 nm were successfully synthesized at pH 11, and 25 °C. Moreover, the prepared Fe3O4 nanoparticles were coated with amorphous SiO2 and functionalized with amino and carboxyl groups. The adsorption study conditions of Sc are as follows: the initial concentrations of the Sc model solution varied 10-50 mg/L, 20 mL volume, 20-80 mg of the Fe3O4@SiO2-COO adsorbent, pH range of 1-5, and 5 h contact time at 25 °C temperature. The adsorption equilibrium was represented with Langmuir, Freundlich, and Temkin isotherm models. Langmuir model was found to have the correlation coefficient value in good agreement with experimental results. However, the adsorption process followed pseudo-second-order kinetics.
Collapse
Affiliation(s)
- Ali Dawood Salman
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary.
- Department of Chemical and Petroleum Refining Engineering/College of Oil and Gas Engineering, Basrah University, Basra, Iraq.
| | - Tatjána Juzsakova
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Rédey Ákos
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Raheek I Ibrahim
- Electromechanical Engineering Department, University of Technology- Iraq, Baghdad, Iraq.
| | - Mohammad A Al-Mayyahi
- Department of Chemical and Petroleum Refining Engineering/College of Oil and Gas Engineering, Basrah University, Basra, Iraq
| | - Saja Mohsen
- Nanotechnology Advanced Material Research Center, University of Technology, Baghdad, Iraq
| | - Thamer Adnan Abdullah
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Endre Domokos
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
18
|
Seisenbaeva GA, Ali LMA, Vardanyan A, Gary-Bobo M, Budnyak TM, Kessler VG, Durand JO. Mesoporous silica adsorbents modified with amino polycarboxylate ligands - functional characteristics, health and environmental effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124698. [PMID: 33321316 DOI: 10.1016/j.jhazmat.2020.124698] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/08/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
A series of hybrid adsorbents were produced by surface modification with amino polycarboxylate ligands of industrially available microparticles (MP) of Kromasil® mesoporous nanostructured silica beads, bearing grafted amino propyl ligands. Produced materials, bearing covalently bonded functions as EDTA and TTHA, original Kromasil®, bearing amino propyl ligands, and bare particles, obtained by thermal treatment of Kromasil® in air, were characterized by SEM-EDS, AFM, FTIR, TGA and gas sorption techniques. Adsorption kinetics and capacity of surface-modified particles to adsorb Rare Earth Elements (REE), crucial for extraction in recycling processes, were evaluated under dynamic conditions, revealing specificity matching the ligand nature and the size of REE cations. A detailed comparison with earlier reported adsorbents for REE extraction was presented. The cytotoxicity was assessed using four different types of healthy cells, human skeletal muscles derived cells (SKMDC), fibroblast cells, macrophage cells (RAW264.7), and human umbilical vein endothelial cells (HUVECs), indicating lower toxicity of ligand-free MP than MP bearing amino poly-carboxylate functions. Internalization of the MP inside the cells and release of nitric oxide were observed. In addition, zebrafish embryos were exposed to high concentrations of MP and did not show any pronounced toxicity.
Collapse
Affiliation(s)
- Gulaim A Seisenbaeva
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden.
| | - Lamiaa M A Ali
- ICGM, Univ. Montpellier, CNRS, ENSCM, Case 1701, Place Eugène Bataillon, CEDEX 05, 34095 Montpellier, France; Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt; IBMM, Univ Montpellier, CNRS, ENSCM, Montpelleir, France
| | - Ani Vardanyan
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden
| | | | - Tetyana M Budnyak
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden; Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
| | - Vadim G Kessler
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden
| | - Jean-Olivier Durand
- ICGM, Univ. Montpellier, CNRS, ENSCM, Case 1701, Place Eugène Bataillon, CEDEX 05, 34095 Montpellier, France.
| |
Collapse
|
19
|
Huang L, Liu L, Huang W, Zhao B, Shen Z, Bao Y, Znad H. Recovery of lanthanum cations by functionalized magnetic multi-walled carbon nanotube bundles. RSC Adv 2021; 11:4751-4759. [PMID: 35424401 PMCID: PMC8694523 DOI: 10.1039/d0ra09902c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Rare-earth elements (REE), including La, are critical raw materials in many technological advancements. Collection of physically adsorbed REEs on clay minerals can be realized first by ion-exchange leaching, followed by adsorption enrichment. Ever increasing demand and limited resources of REEs have fueled the development of nanostructured adsorbents. In this paper, multi-walled carbon nanotubes (MWCNTs) were purified using concentrated H2SO4 and HNO3, then coupled with magnetic Fe3O4 nanoparticles to make low concentration La ion extraction from water possible. The MWCNT@Fe3O4 composites were further crosslinked with 0.1 wt% epichlorohydrin and functionalized with 0.5 wt% carbon disulfide to achieve a La3+ adsorption capacity of 23.23 mg g-1. We fully probed the morphology, crystallinity, chemical composition, and magnetic properties of the as-prepared adsorbent by scanning/transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, vibrating-sample magnetometry, and thermal gravimetry. These results indicated that the MWCNT@Fe3O4 nanohybrid may be a promising candidate for recovering La ions from aqueous solutions.
Collapse
Affiliation(s)
- Lijinhong Huang
- School of Architecture and Design, Jiangxi University of Science and Technology Ganzhou China
- Faculty of Science and Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University WA Australian
| | - Lihong Liu
- Faculty of Science and Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University WA Australian
| | - Wanfu Huang
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology Ganzhou China
| | - Bingxin Zhao
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology Ganzhou China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University China
| | - Yaqing Bao
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology Ganzhou China
| | - Hussein Znad
- Faculty of Science and Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University WA Australian
| |
Collapse
|
20
|
Darroudi M, Ranjbar S, Esfandiar M, Khoshneviszadeh M, Hamzehloueian M, Khoshneviszadeh M, Sarrafi Y. Synthesis of Novel Triazole Incorporated Thiazolone Motifs Having Promising Antityrosinase Activity through Green Nanocatalyst CuI‐Fe
3
O
4
@SiO
2
(TMS‐EDTA). Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mahdieh Darroudi
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mohammad Esfandiar
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences Shiraz Iran
| | | | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry, School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| |
Collapse
|
21
|
Aderibigbe AD, Clark AJ. Novel N-(2-((4-vinylbenzyl)thio)ethyl)Acetamide Functionalized Magnetite Nanoparticle: Synthesis and Test Selective Silver(I) Removal Study. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01716-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
El-Sweify FH, Abdel-Fattah AA, Ghamry MA, Aly SM, El-Shahat MF. Instrumental Neutron Activation Analysis of Egyptian Phosphate Samples and Adsorption Studies of Their Elemental Contents. RADIOCHEMISTRY 2020. [DOI: 10.1134/s1066362220050112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Fathi P, Pan D. Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications. Nanomedicine (Lond) 2020; 15:2493-2515. [PMID: 32975469 PMCID: PMC7610151 DOI: 10.2217/nnm-2020-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/14/2020] [Indexed: 02/01/2023] Open
Abstract
This article is written to provide an up-to-date review of pyrrole-based biomedical materials. Porphyrins and other tetrapyrrolic molecules possess unique magnetic, optical and other photophysical properties that make them useful for bioimaging and therapy. This review touches briefly on some of the synthetic strategies to obtain porphyrin- and tetrapyrrole-based nanoparticles, as well as the variety of applications in which crosslinked, self-assembled, porphyrin-coated and other nanoparticles are utilized. We explore examples of these nanoparticles' applications in photothermal therapy, drug delivery, photodynamic therapy, stimuli response, fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, computed tomography and positron emission tomography. We anticipate that this review will provide a comprehensive summary of pyrrole-derived nanoparticles and provide a guideline for their further development.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Departments of Diagnostic Radiology & Nuclear Medicine & Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670 W Baltimore St., Baltimore, MD 21201, USA
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, MD 21250, USA
| |
Collapse
|
24
|
Li J, Gong A, Qiu L, Zhang W, Shi G, Li X, Li J, Gao G, Bai Y. Selective extraction and column separation for 16 kinds of rare earth element ions by using N, N-dioctyl diglycolacid grafted silica gel particles as the stationary phase. J Chromatogr A 2020; 1627:461393. [DOI: 10.1016/j.chroma.2020.461393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Accepted: 07/05/2020] [Indexed: 11/29/2022]
|
25
|
Avdibegović D, Binnemans K. Separation of Scandium from Hydrochloric Acid-Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase. Ind Eng Chem Res 2020; 59:15332-15342. [PMID: 32952290 PMCID: PMC7499406 DOI: 10.1021/acs.iecr.0c02943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/28/2022]
Abstract
Solvometallurgy is a new branch of extractive metallurgy in which green organic solvents are used instead of aqueous solutions to improve selectivity in separation processes. In the present study, nonaqueous leaching of a Greek bauxite residue (BR) was performed and scandium was separated from other elements in the leachate by column chromatography. At first, the selectivity of sorbents for scandium(III) over iron(III) was tested in batch mode using various organic solvents. The following three sorbents were tested: (1) a carboxylic acid-functionalized supported ionic liquid phase (SILP), (2) silica (SiO2), and (3) silica functionalized with ethylenediaminetetraacetic acid (SiO2-TMS-EDTA). The best separation of scandium and iron was achieved from ethanolic solution by the SILP. The BR was then leached with 0.7 mol L-1 HCl in ethanol or in water. The leaching efficiency of scandium with both lixiviants was similar. However, much less sodium was leached, and silica remained in solution when leaching was performed with the ethanolic lixiviant. By using ethanol as opposed to water, the serious drawback of silica gel formation that is taking place in the aqueous leachate of BR was circumvented. The sorption preference of the SILP for metal ions in the ethanolic leachate was partly reversed compared to the aqueous leachate. Iron was separated from other metals of the ethanolic BR leachate by a simple elution with ethanol. The formation of the anionic tetrachloroferrate(III) complex, [FeCl4]-, enabled the selective elution. This complex was not observed in the aqueous leachate of BR. Scandium was separated from the vast majority of other components of the BR by elution with 0.1 mol L-1 H3PO4.
Collapse
Affiliation(s)
- Dženita Avdibegović
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| |
Collapse
|
26
|
Ghamry MA, El-Sweify FH, Abdel-Fattah AEDA, Aly SM, El-Shahat MF. Instrumental neutron activation analysis of lanthanides and coexisting elements in monazite samples and group separation using synthesized inorganic ion exchangers. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Samples of Egyptian monazite ore obtained from black sand of Abu-Khashaba, Rashied (Rosetta) area on the Mediterranean Sea coast were analyzed for some lanthanides and coexisting elements using instrumental neutron activation analysis (INAA). The analyses were carried out qualitatively and quantitatively for the elements Ce, Nd, Eu, Gd, Tb, Yb and Sc, La as well as the accompanying elements Co, Cr, Fe, Hf, Nb, Zn, Zr in addition to the actinides Th and U; whereas after relatively longer decay time the following lanthanide elements were analyzed: Ce, Nd, Eu, Gd, Tb, Yb and Sc, beside the accompanying elements Co, Cr, Fe, Hf, Nb, Zn, Zr and Th. Two certified reference materials (CRM) were used in this study. For sorption studies, radioactive isotopes 141Ce, 160Tb, 169Yb, 95Zr, 181Hf, and 95Nb were prepared by neutron irradiation to trace the adsorption behaviors of their corresponding elements under certain conditions. Furthermore, radiochemical separation of the analyzed elements in the irradiated monazite samples in sulfuric acid solutions was carried out. Ion exchange technique was applied under static and dynamic conditions and the employed inorganic ion exchangers were locally synthesized and characterized using FT-IR and scanning electron microscopy (SEM) tools. Good group separation of the analyzed lanthanide elements from the accompanying elements was achieved.
Collapse
Affiliation(s)
- Mohamed A. Ghamry
- Hot Laboratories Center, Atomic Energy Authority , P.O. Box 13759, Inshas , Cairo , Egypt
| | - Fatma H. El-Sweify
- Hot Laboratories Center, Atomic Energy Authority , P.O. Box 13759, Inshas , Cairo , Egypt
| | | | - Shorouk M. Aly
- Hot Laboratories Center, Atomic Energy Authority , P.O. Box 13759, Inshas , Cairo , Egypt
| | - Mohamed F. El-Shahat
- Chemistry Department , Faculty of Science, Ain Shames University , Cairo , Egypt
| |
Collapse
|
27
|
Asadollahzadeh M, Torkaman R, Torab-Mostaedi M. Extraction and Separation of Rare Earth Elements by Adsorption Approaches: Current Status and Future Trends. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1792930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mehdi Asadollahzadeh
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Rezvan Torkaman
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Meisam Torab-Mostaedi
- Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
28
|
Advanced core-shell EDTA-functionalized magnetite nanoparticles for rapid and efficient magnetic solid phase extraction of heavy metals from water samples prior to the multi-element determination by ICP-OES. Mikrochim Acta 2020; 187:289. [DOI: 10.1007/s00604-020-04231-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
|
29
|
Shao P, Liang D, Yang L, Shi H, Xiong Z, Ding L, Yin X, Zhang K, Luo X. Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: Quantitative comparison and mechanistic insight. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121676. [PMID: 31759761 DOI: 10.1016/j.jhazmat.2019.121676] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 05/06/2023]
Abstract
Organo-functionalized SiO2 nanoparticles are regarded as promising adsorbents for capture of heavy metals. However, actual adsorptivity of a specific functional group onto SiO2 surface is unclear, thus extending a debate on which type of organic group possesses a better affinity toward heavy metals. Herein, surface functionalization of SiO2 with different groups (i.e., -EDTA (ethylenediamine triacetic acid), -COOH, -SO3H, -SH and -NH2) were achieved by a facile silylating reaction. Batch experiments indicated that adsorption capacity of SiO2 was remarkably improved by surface functionalization. Quantitative analysis manifested that one mole of EDTA grafted onto SiO2 surface can adsorb 1.51 mol of Pb(II) ions, which was 7.7, 17.1, 28.4 and 50.2-fold larger than those of COOH-, SO3H-, SH- and NH2-functionalized SiO2, respectively. This is first time to evaluate adsorptivity of functionalized SiO2 on the basis of per effective functional group, which may repair deficiency of conventional assessment method that calculated on the basis of per unit mass. Further, adsorption mechanism of these functionalized SiO2 were identified and uncovered by experimental and theoretical studies. This work not only develops an efficient adsorbent for heavy metal remediation but also provides a valuable insight for evaluation and design of novel SiO2-based materials.
Collapse
Affiliation(s)
- Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Dahao Liang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhensheng Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lin Ding
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Xiaocui Yin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Kai Zhang
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
30
|
Yang XX, Feng P, Cao J, Liu W, Tang Y. Composition-Engineered Metal-Organic Framework-Based Microneedles for Glucose-Mediated Transdermal Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13613-13621. [PMID: 32138507 DOI: 10.1021/acsami.9b20774] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elaborately designed glucose-responsive insulin-delivery systems are highly desirable for the treatment of diabetes because it can secrete insulin depending on blood glucose levels. Herein, mimic multi-enzyme metal-organic framework (MOF)-based (insulin and glucose oxidase-loaded cobalt-doped ZIF-8, abbreviated as Ins/GOx@Co-ZIF-8) stimuli-responsive microneedles (MNs) were designed for painless glucose-mediated transdermal administration. In this work, GOx and Co2+ ions were engineered into MOFs to construct a mimic multi-enzyme vehicle. GOx in the MOF, as the glucose-responsive factor, could catalyze glucose into gluconic acid with the formation of H2O2 as the byproduct. The gluconic acid formed decreases the local pH in MOFs, resulting in the degradation of MOFs and thus preloaded insulin would be released. Meanwhile, catalyzed by Co2+ ions in the MOF, the byproduct H2O2 was decomposed. Possible free Co2+ ions would be chelated by EDTA-SiO2 nanoparticles in MNs and removed by peeling MNs off. The as-obtained mimic multi-enzyme MOF-based MNs showed good dependence on glucose concentration without divulging H2O2 and Co2+ ions and enough stiffness to penetrate into skin. This study offers a new strategy, using facilely synthesized MOFs as depots to integrate with MNs, for designing stimuli-responsive transdermal drug-delivery systems.
Collapse
Affiliation(s)
- Xiao-Xi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pengfei Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
31
|
Kegl T, Košak A, Lobnik A, Novak Z, Kralj AK, Ban I. Adsorption of rare earth metals from wastewater by nanomaterials: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121632. [PMID: 31753662 DOI: 10.1016/j.jhazmat.2019.121632] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 05/27/2023]
Abstract
Rare earth elements are widely used in chemical engineering, the nuclear industry, metallurgy, medicine, electronics, and computer technology because of their unique properties. To fulfil ever increasing demands for these elements, recycling of rare-earth-element-containing products as well as their recovery from wastewater is quite important. In order to recover rare earth elements from wastewater, their adsorption from low-concentration aqueous solutions, by using nanomaterials, is investigated due to technological simplicity and high efficiency. This paper is a review of the state-of-the-art adsorption technologies of rare earth elements from diluted aqueous solutions by using various nanomaterials. Furthermore, desorption and reusability of rare earth metals and nanomaterials are discussed. On the basis of this review it can be concluded that laboratory testing indicates promising adsorption capacities, which depend significantly on nanomaterial type and adsorption conditions. The adsorption process, which mostly follows the Langmuir, Freundlich, Sips, and Temkin isotherms, is typically endothermic and spontaneous. Furthermore, pseudo-second order, pseudo-first order, and intra-particle diffusion models are the best models to describe the kinetics of adsorption. The dominant adsorption mechanisms are surface complexation and ion exchange. More investigation, however, will be required in order to synthesize appropriate, environmentally friendly, and efficient nanomaterials for adsorption of rare earth elements from real wastewater.
Collapse
Affiliation(s)
- Tina Kegl
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia.
| | - Aljoša Košak
- Institute for Environmental Protection and Sensors, Beloruska 7, 2000 Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors, Beloruska 7, 2000 Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Zoran Novak
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Anita Kovač Kralj
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Irena Ban
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
32
|
Gong T, Tang Y. Preparation of multifunctional nanocomposites Fe 3O 4@SiO 2-EDTA and its adsorption of heavy metal ions in water solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:170-177. [PMID: 32293600 DOI: 10.2166/wst.2020.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel magnetic Fe3O4@SiO2-ethylenediamine tetraacetic acid (adsorbent) CMS-COOH-modified magnetic materials, CMS was prepared by surface modification of amino-functionalized Fe3O4@SiO2 (-NH2-modified magnetic materials, NMS) with EDTA using water-soluble carbodiimide as the cross-linker in deionized water solution. The phase structure, infrared spectra, thermal analysis and magnetic properties of were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and vibrating sample magnetometry and its properties for removal of heavy metal ions under varied experimental conditions were also investigated. The results revealed that CMS had good tolerance to low pH and exhibited good removal efficiency for the metal ions. The maximum adsorption capacities of CMS were found to be 0.11 mmol g-1 for Cu(II) at pH5.0 (30 °C) and 0.14 mmol g-1 for Pb(II) ions at pH2.0 (30 °C).
Collapse
Affiliation(s)
- Tao Gong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610000, China E-mail:
| | - Yongbai Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610000, China E-mail:
| |
Collapse
|
33
|
Reusable hydroxamate immobilized silica adsorbent for dispersive solid phase extraction and separation of rare earth metal ions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Barrak H, Saied T, Chevallier P, Laroche G, M’nif A, Hamzaoui AH. Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@TMSEDTA. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Kegl T, Ban I, Lobnik A, Košak A. Synthesis and characterization of novel γ-Fe 2O 3-NH 4OH@SiO 2(APTMS) nanoparticles for dysprosium adsorption. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120764. [PMID: 31203116 DOI: 10.1016/j.jhazmat.2019.120764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
This paper deals with synthesis and characterization of novel γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles formed from magnetic γ-Fe2O3 core, stabilized electrostatically in basic media NH4OH, doped with SiO2 shell and functionalized with 3-aminopropyltrimethoxysilane. The gradually synthesized nanoparticles are characterized in order to analyze their structural, morphology, thermogravimetry, surface area and charge, and magnetic properties. The novel synthesized γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles are suitable to adsorb dysprosium ions (Dy3+), as one of the most critical rare earth elements, from aqueous solution. The Dy3+ adsorption from aqueous solution follows a pseudo-second order kinetic model and the adsorption equilibrium data fits well to the Temkin isotherm. Thermodynamic studies imply that the adsorption process is endothermic and spontaneous in nature. The maximum adsorption efficiency for Dy3+ from aqueous solution with 2·10-6M concentration of Dy3+ is over 90% at pH 7.
Collapse
Affiliation(s)
- Tina Kegl
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Inorganic Chemistry, Smetanova 17, SI-2000, Maribor, Slovenia.
| | - Irena Ban
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Inorganic Chemistry, Smetanova 17, SI-2000, Maribor, Slovenia
| | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors, Beloruska 7, SI-2000, Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Center of Sensor Technology, Smetanova 17, SI-2000, Maribor, Slovenia
| | - Aljoša Košak
- Institute for Environmental Protection and Sensors, Beloruska 7, SI-2000, Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Center of Sensor Technology, Smetanova 17, SI-2000, Maribor, Slovenia
| |
Collapse
|
36
|
Barrak H, Ahmedi R, Chevallier P, M'nif A, Laroche G, Hamzaoui AH. Highly efficient extraction of rare earth elements and others ions from green phosphoric acid medium using TMSEDTA@GO@Fe3O4 core-shell. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Callura JC, Perkins KM, Baltrus JP, Washburn NR, Dzombak DA, Karamalidis AK. Adsorption kinetics, thermodynamics, and isotherm studies for functionalized lanthanide-chelating resins. J Colloid Interface Sci 2019; 557:465-477. [PMID: 31541916 DOI: 10.1016/j.jcis.2019.08.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Conventional ion exchange resins are widely utilized to remove metals from aqueous solutions, but their limited selectivity precludes dilute ion extraction. This research investigated the adsorption performance of ligand-functionalized resins towards rare earth elements (REE). Functionalized resin particles were synthesized by grafting different ligands (diethylenetriaminepentaacetic dianhydride (DTPADA), phosphonoacetic acid (PAA), or N,N-bis(phosphonomethyl)glycine (BPG)) onto pre-aminated polymeric adsorbents (diameter ∼ 0.6 mm). Lanthanide uptake trends were evaluated for the functionalized resins using batch adsorption experiments with a mixture of three REEs (Nd, Gd, and Ho at 0.1-1000 mg/L each). Resin physical-chemical properties were determined by measuring their surface area, ligand concentrations, and acidity constants. The aminated supports contained 4.0 mmol/g primary amines, and ligand densities for the functionalized resins were 0.33 mmol/g (PAA), 0.22 mmol/g (BPG), and 0.42 mmol/g (DTPADA). Kinetic studies revealed that the functionalized resins followed pseudo-second order binding kinetics with rates limited by intraparticle diffusion. Capacity estimates for total REE adsorption based on Langmuir qMax were 0.12 mg/g (amine; ≈ 0.77 µmol/g), 5.0 mg/g (PAA; ≈ 32.16 µmol/g), 3.0 mg/g (BPG; ≈ 19.30 µmol/g), and 2.9 mg/g (DTPADA; ≈ 18.65 µmol/g). Attaching ligands to the aminated resins greatly improved their REE binding strength and adsorption efficiency.
Collapse
Affiliation(s)
- Jonathan C Callura
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA
| | - Kedar M Perkins
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, PA, USA
| | - John P Baltrus
- U.S. DOE National Energy Technology Laboratory, Pittsburgh, PA, USA
| | - Newell R Washburn
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, PA, USA
| | - David A Dzombak
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA
| | - Athanasios K Karamalidis
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA; Pennsylvania State University, Department of Energy and Mineral Engineering, University Park, PA 16802, USA.
| |
Collapse
|
38
|
Mehdinia A, Mirzaeipour R, Jabbari A. Nanosized Fe3O4–curcumin conjugates for adsorption of heavy metals from seawater samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01619-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Kostenko L, Kobylinska N, Khainakov S, Granda SG. Magnetite nanoparticles with aminomethylenephosphonic groups: synthesis, characterization and uptake of europium(III) ions from aqueous media. Mikrochim Acta 2019; 186:474. [PMID: 31250114 DOI: 10.1007/s00604-019-3520-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
Abstract
Two adsorbents with covalently bound aminomethylenephosphonic acid functions (and referred to as MNPs/AMPA and MNPs/SiO2-AMPA) were synthesized from two types of amino-functionalized magnetic nanoparticles (MNPs) via Moedritzer-Irani reaction. The sorbents with anchored dopamine ligand (MNPs/dopa) or aminopropyl groups (MNPs/SiO2-NH2), and the MNPs/AMPA were characterized by X-ray diffraction, FTIR, transmission electron microscopy and vibrating sample magnetometry. Surface modification does not adversely impact the physical properties of the starting magnetite. Compared to the size of the unmodified Fe3O4 (magnetite) nanoparticles (7-12 nm), the average size of functionalized nanoparticles is increased to 10-16 nm. Similarly, the magnetic saturation decreased from 67.5 emu g-1 to 42.0 emu g-1, and the surface area is increased up to 205 m2 g-1 for MNPs/SiO2-AMPA. The kinetics of the adsorption of Eu(III) on the sorbent is ultra-fast, and equilibria are attained within 5-10 min at room temperature. The adsorption kinetics can be described by a pseudo-second-order model. Adsorption and desorption conditions were tested with respect to the removal of Eu(III) ions from water solution. The adsorption capacities for Eu(III) at pH 7.0 are 77 mg g-1 and 69 mg g-1 for MNPs/AMPA and MNPs/SiO2-AMPA nanoparticles, respectively. Eu(III) was quantified by ICP-MS. The limit of detection (LOD) for Eu(III) is 0.05 ng L-1 (based on the 3σ criterion), with an enrichment factor of 150. The selectivity over ions such as Tb(III), Fe(III), Zn(II), Cu(II), and Ca(II) ions was studied. Under optimal condition the distribution coefficient for Eu(III) relative to these ions is near 105 mL g-1. The sorbents can be easily retrieved from even large volumes of aqueous solutions by magnetic separations. The method was tested for spiked water samples (with recoveries from 96.6-102.5%) and for rock minerals. Graphical abstract A schematic showing the regeneration of magnetite nanoparticles (MNPs), core-shell (MNPs/SiO2), and the structures with covalently bonded aminomethylenephosphonic acid (AMPA) after preconcentration of Eu(III) from largewater sample volumes onto a small specimen.
Collapse
Affiliation(s)
- Liudmyla Kostenko
- Department of Analytical Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St, Kyiv, 01601, Ukraine
| | - Natalia Kobylinska
- Department of Analytical Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St, Kyiv, 01601, Ukraine. .,Department of Physical and Analytical Chemistry, University of Oviedo, 8 Julian Claveria Av, 33006, Oviedo, Spain.
| | - Sergey Khainakov
- Department of Physical and Analytical Chemistry, University of Oviedo, 8 Julian Claveria Av, 33006, Oviedo, Spain
| | - Santiago Garcia Granda
- Department of Physical and Analytical Chemistry, University of Oviedo, 8 Julian Claveria Av, 33006, Oviedo, Spain
| |
Collapse
|
40
|
Cardoso CED, Almeida JC, Lopes CB, Trindade T, Vale C, Pereira E. Recovery of Rare Earth Elements by Carbon-Based Nanomaterials-A Review. NANOMATERIALS 2019; 9:nano9060814. [PMID: 31146505 PMCID: PMC6630350 DOI: 10.3390/nano9060814] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022]
Abstract
Modern societies depend strongly on electronic and electric equipment (EEE) which has a side effect result on the large production of electronic wastes (e-waste). This has been regarded as a worldwide issue, because of its environmental impact-namely due to non-adequate treatment and storage limitations. In particular, EEE is dependent on the availability of rare earth elements (REEs), considered as the "vitamins" of modern industry, due to their crucial role in the development of new cutting-edge technologies. High demand and limited resources of REEs in Europe, combined with potential environmental problems, enforce the development of innovative low-cost techniques and materials to recover these elements from e-waste and wastewaters. In this context, sorption methods have shown advantages to pre-concentrate REEs from wastewaters and several studies have reported the use of diverse nanomaterials for these purposes, although mostly describing the sorption of REEs from synthetic and mono-elemental solutions at unrealistic metal concentrations. This review is a one-stop-reference by bringing together recent research works in the scope of the application of carbon nanomaterials for the recovery of REEs from water.
Collapse
Affiliation(s)
- Celso E D Cardoso
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Joana C Almeida
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Cláudia B Lopes
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Carlos Vale
- Interdisciplinar Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal.
| | - Eduarda Pereira
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
41
|
Manna PK, Nickel R, Li J, Wroczynskyj Y, Liu S, van Lierop J. EDTA-Na 3 functionalized Fe 3O 4 nanoparticles: grafting density control for MRSA eradication. Dalton Trans 2019; 48:6588-6595. [PMID: 31017138 DOI: 10.1039/c8dt05152f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a synthesis strategy to simplify often cumbersome post-synthesis ligand exchange protocols and use that approach to synthesize EDTA-Na3 (N-(trimethoxysilylpropyl)ethylenediaminetriacetate, trisodium salt) functionalized hydrophilic and biocompatible Fe3O4 nanoparticles. The grafting density of EDTA-Na3 has been controlled from 0.07-0.37 μmol m-2 by varying the time at which EDTA-Na3 was added to the reaction. The success of EDTA-Na3 surface functionalization has been verified using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Mössbauer spectroscopy techniques. Mössbauer spectroscopy results showed the evidence of Fe-EDTA monomer and dimer formation signifying covalent bonding between Fe ions and EDTA-Na3. The earliest addition of EDTA-Na3 resulted in the most stable dispersion of nanoparticles in water and phosphate buffered saline (PBS) which remained stable for more than a month. In addition, our results suggest that these nanoparticles can have useful applications in magnetic hyperthermia and eradication of methicillin-resistant Staphylococcus aureus (MRSA) bacteria in presence of an ac magnetic field.
Collapse
Affiliation(s)
- Palash Kumar Manna
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Tu YJ, You CF, Lo SC, Chan TS, Chung CH. Recycling of neodymium enhanced by functionalized magnetic ferrite. ENVIRONMENTAL TECHNOLOGY 2019; 40:1592-1604. [PMID: 29323632 DOI: 10.1080/09593330.2018.1426643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
This study systematically evaluates Neodymium (Nd) recovery from actual seawaters and wastewater using functionalized magnetic ferrite (3-mercaptopropionic acid-tetraethyl orthosilicate ferrite, MPA-TEOS-ferrite). The recovery of Nd by MPA-TEOS-ferrite displayed an L-shaped nonlinear isotherm, suggesting limiting binding sites on the adsorbent surface. At room temperature, a significant recovery of Nd by MPA-TEOS-ferrite increased from 8.99% to 99.99% with increasing pH (2.89-8.16) and an enhanced maxima Nd recovery capacity was observed on MPA-TEOS-ferrite (25.58 mg/g) when compared with pure ferrite (22.27 mg/g). The L3-edge X-ray absorption near-edge structure (XANES) spectra for the adsorbents collected after Nd recovery indicated that Nd(III) was still the predominant oxidation species on the surface of MPA-TEOS-ferrite. Only slightly change in the oxidation state or electronic structure around the Nd ions could be found during the adsorption process. Importantly, no significant change was found on Nd recovery while the NaCl ionic strength increased from 0.01 to 0.5 N. Furthermore, the results also displayed that the synthesized MPA-TEOS-ferrite has a great potential in efficient and rapid recovery of Nd from seawaters and wastewater.
Collapse
Affiliation(s)
- Yao-Jen Tu
- a Institute of Urban Study , Shanghai Normal University , Shanghai , People's Republic of China
| | - Chen-Feng You
- b Earth Dynamic System Research Center , National Cheng-Kung University , Tainan City , Taiwan
- c Department of Earth Sciences , National Cheng-Kung University , Tainan City , Taiwan
| | - Sheng-Chung Lo
- d Green Energy and Environment Research Laboratories , Industrial Technology Research Institute , Hsinchu , Taiwan
| | - Ting-Shan Chan
- e National Synchrotron Radiation Research Center (NSRRC) , Hsinchu , Taiwan
| | - Chuan-Hsiung Chung
- b Earth Dynamic System Research Center , National Cheng-Kung University , Tainan City , Taiwan
| |
Collapse
|
43
|
Abstract
The rare earths (REs) are a family of 17 elements that exhibit pronounced chemical similarities as a group, while individually expressing distinctive and varied electronic properties. These atomistic electronic properties are extraordinarily useful and motivate the application of REs in many technologies and devices. From their discovery to the present day, a major challenge faced by chemists has been the separation of RE elements, which has evolved from tedious crystallization to highly engineered solvent extraction schemes. The increasing incorporation and dependence of REs in technology have raised concerns about their sustainability and motivated recent studies for improved separations to achieve a circular RE economy.
Collapse
|
44
|
Liu Z, Liu Y, Gong A. Preparation of diglycolamide polymer modified silica and its application as adsorbent for rare earth ions. Des Monomers Polym 2019; 22:1-7. [PMID: 30651724 PMCID: PMC6327932 DOI: 10.1080/15685551.2018.1564425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/22/2018] [Indexed: 11/21/2022] Open
Abstract
Three novel diglycolamide monomers were synthesized and polymerized on silica. The diglycolamide polymer grafted silica were used as adsorbents for rare earth ions. The effects of acid concentration, structure of monomer, initial solution concentration, contact time and coexisting ions on adsorption of rare earth ions were investigated in detail. It was shown that the adsorption capacity increased with increasing acid concentration. Three adsorbents exhibited selectivity for middle and heavy rare earth over light rare earth in different extent. The adsorbent prepared from the monomer having the largest alkyl substituent showed the lowest adsorption capacity but the highest selectivity for different rare earth elements (REEs). Adsorption data were well fitted to the Langmuir isotherm and pseudo-second-order models. The presence of high concentrations (100 fold) of coexisting metal ions, K(I), Cr(II), Cu(II) or Fe(III), does not decrease the adsorption for rare earth ions seriously.
Collapse
Affiliation(s)
- Zhe Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing, China
| | - Yu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing, China.,Institute of Biotechnology, Daqing Branch of Heilongjiang Academy of Science, Daqing, China
| | - Aijun Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
45
|
Gupta NK, Gupta A, Ramteke P, Sahoo H, Sengupta A. Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.134] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Liu Z, Liu Y, Gong A. Preparation of Diglycolamide Based Hydrogel and Its Application as Adsorbent for Rare Earth Ions. CHEM LETT 2018. [DOI: 10.1246/cl.180607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhe Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Institute of Biotechnology, Daqing Branch of Heilongjiang Academy of Science, Daqing 163319, P. R. China
| | - Aijun Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
47
|
Deluca E, Latterman R, Rosenberg E. Core-shell Fe-SiO 2-polyamine magnetic nanoparticles for metal recovery using a continuous flow pipeline reactor. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A series of core-shell magnetic nanomaterials have been synthesized with the intent of applying them for metal ion capture in a newly designed pipeline reactor. The synthetic chemistry is an extension of a previously developed family of materials based on amorphous silica gel, which has been used in the mining and remediation industries. The nanoparticles were characterized by infrared spectroscopy and TEM and SEM techniques. The size of the starting magnetite core was critical to the behavior of the particles under metal sequestering conditions. The capture kinetics of the resulting nanoagregates is 10 times faster than related micro composites. All of the tests performed point to the future successful development of a technology that circumvents the disadvantages associated with the use of column based microparticles.
Collapse
Affiliation(s)
- Emile Deluca
- Department of Chemistry , University of Montana , Missoula, MT 59802 , USA
| | - Ryan Latterman
- Department of Chemistry , University of Montana , Missoula, MT 59802 , USA
| | - Edward Rosenberg
- Department of Chemistry , University of Montana , Missoula, MT 59802 , USA
| |
Collapse
|
48
|
Lee YR, Yu K, Ravi S, Ahn WS. Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23918-23927. [PMID: 29924930 DOI: 10.1021/acsami.8b07130] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Efficient rare earth elements (REEs) separation and recovery are crucial to meet the ever-increasing demand for REEs extensively used in various high technology devices. Herein, we synthesized a highly stable chromium-based metal-organic framework (MOF) structure, Cr-MIL-101, and its derivatives with different organic functional groups (MIL-101-NH2, MIL-101-ED (ED: ethylenediamine), MIL-101-DETA (DETA: diethylenetriamine), and MIL-101-PMIDA (PMIDA: N-(phosphonomethyl)iminodiacetic acid)) and explored their effectiveness in the separation and recovery of La3+, Ce3+, Nd3+, Sm3+, and Gd3+ in aqueous solutions. The prepared materials were characterized using various analytical instrumentation. These MOFs showed increasing REE adsorption capacities in the sequence MIL-101 < MIL-101-NH2 < MIL-101-ED < MIL-101-DETA < MIL-101-PMIDA. MIL-101-PMIDA showed superior REE adsorption capacities compared to other MOFs, with Gd3+ being the element most efficiently adsorbed by the material. The adsorption of Gd3+ onto MIL-101-PMIDA was examined in detail as a function of the solution pH, initial REE concentration, and contact time. The obtained adsorption equilibrium data were well represented by the Langmuir model, and the kinetics were treated with a pseudo-second-order model. A plausible mechanism for the adsorption of Gd3+ on MIL-101-PMIDA was proposed by considering the surface complexation and electrostatic interaction between the functional groups and Gd3+ ions under different pH conditions. Finally, recycling tests were carried out and demonstrated the higher structural stability of MIL-101-PMIDA during the five adsorption-regeneration runs.
Collapse
Affiliation(s)
- Yu-Ri Lee
- Department of Chemistry and Chemical Engineering , Inha University , Incheon , Republic of Korea
| | - Kwangsun Yu
- Department of Chemistry and Chemical Engineering , Inha University , Incheon , Republic of Korea
| | - Seenu Ravi
- Department of Chemistry and Chemical Engineering , Inha University , Incheon , Republic of Korea
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering , Inha University , Incheon , Republic of Korea
| |
Collapse
|
49
|
Hu Y, Florek J, Larivière D, Fontaine F, Kleitz F. Recent Advances in the Separation of Rare Earth Elements Using Mesoporous Hybrid Materials. CHEM REC 2018; 18:1261-1276. [PMID: 29806123 PMCID: PMC6147058 DOI: 10.1002/tcr.201800012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 01/24/2023]
Abstract
Over the past decades, the need for rare earth elements (REEs) has increased substantially, mostly because these elements are used as valuable additives in advanced technologies. However, the difference in ionic radius between neighboring REEs is small, which renders an efficient sized-based separation extremely challenging. Among different types of extraction methods, solid-phase extraction (SPE) is a promising candidate, featuring high enrichment factor, rapid adsorption kinetics, reduced solvent consumption and minimized waste generation. The great challenge remains yet to develop highly efficient and selective adsorbents for this process. In this regard, ordered mesoporous materials (OMMs) possess high specific surface area, tunable pore size, large pore volume, as well as stable and interconnected frameworks with active pore surfaces for functionalization. Such features meet the requirements for enhanced adsorbents, not only providing huge reactional interface and large surface capable of accommodating guest species, but also enabling the possibility of ion-specific binding for enrichment and separation purposes. This short personal account summarizes some of the recent advances in the use of porous hybrid materials as selective sorbents for REE separation and purification, with particular attention devoted to ordered mesoporous silica and carbon-based sorbents.
Collapse
Affiliation(s)
- Yimu Hu
- Department of ChemistryUniversité LavalQuébecG1V 0A6, QCCanada
- Centre en Catalyse et Chimie Verte (C3V)Université Laval, QuébecG1V 0A6, QCCanada
| | - Justyna Florek
- Department of Inorganic Chemistry – Functional Materials, Faculty of ChemistryUniversity of Vienna1090ViennaAustria
| | - Dominic Larivière
- Department of ChemistryUniversité LavalQuébecG1V 0A6, QCCanada
- Centre en Catalyse et Chimie Verte (C3V)Université Laval, QuébecG1V 0A6, QCCanada
| | - Frédéric‐Georges Fontaine
- Department of ChemistryUniversité LavalQuébecG1V 0A6, QCCanada
- Centre en Catalyse et Chimie Verte (C3V)Université Laval, QuébecG1V 0A6, QCCanada
- Canada Research Chair in Green Catalysis and Metal-Free Processes
| | - Freddy Kleitz
- Department of Inorganic Chemistry – Functional Materials, Faculty of ChemistryUniversity of Vienna1090ViennaAustria
| |
Collapse
|
50
|
Babu CM, Binnemans K, Roosen J. Ethylenediaminetriacetic Acid-Functionalized Activated Carbon for the Adsorption of Rare Earths from Aqueous Solutions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04274] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cadiam Mohan Babu
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Heverlee, Belgium
- SIM vzw, Technologiepark
935, B-9052 Zwijnaarde, Belgium
| | - Koen Binnemans
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Heverlee, Belgium
| | - Joris Roosen
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Heverlee, Belgium
- SIM vzw, Technologiepark
935, B-9052 Zwijnaarde, Belgium
| |
Collapse
|