1
|
Hou X, Jiang X, Zhang W, Liu J. Bibliometric analysis of nanomaterials in hepatocellular carcinoma treatment: research trends, knowledge structures, and emerging insights (2000-2024). Discov Oncol 2025; 16:213. [PMID: 39976894 PMCID: PMC11842692 DOI: 10.1007/s12672-025-01977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
This study analyzes the research landscape of nanomaterials in treating hepatocellular carcinoma (HCC) and examines publication trends in this field by conducting a comprehensive bibliometric analysis within the Web of Science Core Collection (WoSCC) database. Articles published from 2000 to September 16, 2024 were retrieved using a structured search formula targeting studies on nanomaterials in HCC, including nanoparticles, nanodots, nanorods, nanosheets, and nanomedicine. Only English full-text articles and reviews relevant to nanomaterial applications in HCC were considered, excluding conference abstracts and non-research items. The analysis encompasses annual publication trends, country-wise publication distribution, prominent institutions, and key journals in the field. Statistical and graphical analyses were performed using GraphPad Prism (v8.0.2) to illustrate publication trends. CiteSpace (6.2.4R) and VOSviewer (1.6.18) software were used to visualize co-citation and keyword networks, highlighting scientific knowledge structures and research hotspots. Notable advancements have emerged as a promising strategy, enabling hepatocyte-specific drug delivery to enhance therapeutic precision and minimize off-target effects. This analysis provides a comprehensive understanding of the evolution of HCC nanomaterials research, key contributing countries, major research institutions, and frequently cited keywords. The findings offer valuable insights into the field's knowledge base, emerging trends, and future directions in HCC treatment with nanomaterials.
Collapse
Affiliation(s)
- Xu Hou
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital/Affiliated to Shandong University/Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences/Affiliated to Shandong Second Medical University, No. 67 Dongchang West Road, Liaocheng, 25200, Shandong, China.
| | - Xiaohong Jiang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Wei Zhang
- Department of General Surgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, Shandong, China.
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Carbone GG, Mariano S, Gabriele A, Cennamo S, Primiceri V, Aziz MR, Panzarini E, Calcagnile L. Exploring the Potential of Gold Nanoparticles in Proton Therapy: Mechanisms, Advances, and Clinical Horizons. Pharmaceutics 2025; 17:176. [PMID: 40006543 PMCID: PMC11859620 DOI: 10.3390/pharmaceutics17020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Proton therapy represents a groundbreaking advancement in cancer radiotherapy, leveraging the unique spatial energy distribution of protons to deliver precise, high-dose radiation to tumors while sparing surrounding healthy tissues. Despite its clinical success, proton therapy faces challenges in optimizing its therapeutic precision and efficacy. Recent research has highlighted the potential of gold nanoparticles to enhance proton therapy outcomes. Due to their high atomic number and favorable biological properties, gold nanoparticles act as radiosensitizers by amplifying the generation of secondary electrons and reactive oxygen species upon proton irradiation. This enhances DNA damage in tumor cells while preserving healthy tissues. Additionally, functionalization of gold nanoparticles with tumor-targeting ligands offers improved precision, making proton therapy more effective against a broader range of cancers. This review synthesizes current knowledge on the mechanisms of gold nanoparticle radiosensitization, preclinical evidence, and the technological hurdles that must be addressed to integrate this promising approach into clinical practice, aiming to advance the efficacy and accessibility of proton therapy in cancer therapy.
Collapse
Affiliation(s)
- Giorgio Giuseppe Carbone
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Stefania Mariano
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Alessandra Gabriele
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Sabrina Cennamo
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Vitantonio Primiceri
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Muhammad Rizwan Aziz
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Lucio Calcagnile
- CEDAD (Center of Applied Physics, Datation and Diagnostics), Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy; (G.G.C.); (A.G.); (S.C.); (V.P.); (M.R.A.); (L.C.)
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 72100 Lecce, Italy
| |
Collapse
|
3
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
4
|
Mukherjee P, Guha S, Ghosh A, Kar K, Das G, Sahu SK. Porous Organic Polymer-Based Nanocomposites for Hypoxia Relieving and Enhanced Chemotherapy in Hepatocellular Carcinoma. ACS APPLIED BIO MATERIALS 2024; 7:6138-6151. [PMID: 39177187 DOI: 10.1021/acsabm.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Uncontrolled proliferation and altered metabolism of cancer cells result in an imbalance of nutrients and oxygen supply, and persuade hypoxia. Hypoxia, in turn, activates the transcription gene HIF-1α, which eventually upregulates the efflux transporter P-gp and induces multidrug resistance (MDR). Thus, hypoxia leads to the development of resistance to conventional therapies. Therefore, the fabrication of a nanoscale porous system enriched with upconversion nanoparticles to target cancer cells, evade hypoxia, and enhance anticancer therapy is the key goal of this article. Herein, upconversion nanoparticles are embedded in a nanoscale porous organic polymer (POP) and further conjugated with a targeting moiety and a catalase molecule. The nanoscale POP embedded in UCNPs is generated at room temperature. The targeting ligand, lactobionic acid, is attached after polymer coating, which effectively targets liver cancer cells. Then, catalase is grafted effectively to produce oxygen. Endogenously generated oxygen alleviates hypoxia in liver cancer cells. The drug- and catalase-loaded composite exhibit greater cytotoxicity in hypoxic liver cells than in normal cells by overcoming hypoxia and downregulating the hypoxia-inducible factors.
Collapse
Affiliation(s)
- Poulami Mukherjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
| | - Subhabrata Guha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - Antara Ghosh
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
| | - Korak Kar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - Sumanta Kumar Sahu
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
| |
Collapse
|
5
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
6
|
Neetika, Sharma M, Thakur P, Gaur P, Rani GM, Rustagi S, Talreja RK, Chaudhary V. Cancer treatment and toxicity outlook of nanoparticles. ENVIRONMENTAL RESEARCH 2023; 237:116870. [PMID: 37567383 DOI: 10.1016/j.envres.2023.116870] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Diversified nanosystems with tunable physicochemical attributes have emerged as potential solution to globally devastating cancer by offering novel possibilities for improving the techniques of cancer detection, imaging, therapies, diagnosis, drug delivery and treatment. Drug delivery systems based on nanoparticles (NPs) with ability of crossing different biological barriers are becoming increasingly popular. Besides, NPs are utilized in pharmaceutical sciences to mitigate the toxicity of conventional cancer therapeutics. However, significant NPs-associated toxicity, off-targeted activities, and low biocompatibility limit their utilization for cancer theranostics and can be hazardous to cancer patients up to life-threatening conditions. NPs interact with the biomolecules and disturb their regular function by aggregating inside cells and forming a protein corona, and the formulation turns ineffective in controlling cancer cell growth. The adverse interactions between NPs and biological entities can lead to life-threatening toxicities. This review focuses on the widespread use of various NPs including zinc oxide, titanium oxide, silver, and gold, which serve as efficient nano-vehicles and demonstrate notable pharmacokinetic and pharmacodynamic advantages in cancer therapy. Subsequently, the mechanism of nanotoxicity attached with these NPs, alternate solutions and their prospect to revolutionize cancer theranostics are highlighted. This review will serve as guide for future developments associated with high-performance NPs with controlled toxicity for establishing them as modern-age nanotools to manage cancer in tailored manner.
Collapse
Affiliation(s)
- Neetika
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173212, India
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173212, India.
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paras Gaur
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa, 52242, United States
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC.
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttranchal University, Dehradun, Uttrakhand, India
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
7
|
Fu L, Lin CT, Karimi-Maleh H, Chen F, Zhao S. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS 2023; 13:977. [PMID: 37998152 PMCID: PMC10669140 DOI: 10.3390/bios13110977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou 325015, China;
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| |
Collapse
|
8
|
Liu X, Zhou W, Wang T, Miao S, Lan S, Wei Z, Meng Z, Dai Q, Fan H. Highly localized, efficient, and rapid photothermal therapy using gold nanobipyramids for liver cancer cells triggered by femtosecond laser. Sci Rep 2023; 13:3372. [PMID: 36849576 PMCID: PMC9970969 DOI: 10.1038/s41598-023-30526-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
In this study, the photothermal effect and up-conversion florescence imaging effect of gold nanobipyramids in liver cancer cells are investigated theoretically and experimentally to explore the photothermal ablation tumor therapy with higher photothermal conversion efficiency, shorter laser action time, smaller action range and lower laser power. The small-size gold nanobipyramids with good biocompatibility and infrared absorption peak located in the first biological window are synthesized. Femtosecond laser is focused on the nanobipyramids clusters in cells and the cells die after being irradiated for 20 s at a power as low as 3 mW. In contrast, the control cells die after irradiation with 30 mW laser for 3 min. The theoretical simulation results show that: under femtosecond laser irradiation, the local thermal effect of gold nanoclusters is produced in the range of hundreds of square nanometers and the temperature rises by 516 °C in 106 picoseconds. This therapy reduces the treatment time to seconds level, and the treatment range to square micrometer level, the power to milliwatt level. In this treatment, cells die by apoptosis rather than necrosis, which reduces inflammation. This result opens up a new way to develop photothermal ablation therapy with less side effects and more minimally invasive.
Collapse
Affiliation(s)
- Xiao Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhou
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Tianjun Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Sen Miao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhongchao Wei
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhao Meng
- Guangdong Women and Children Hospital, Guangzhou, 51000, China
| | - Qiaofeng Dai
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China.
| | - Haihua Fan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Somoza M, Rial R, Liu Z, Llovo IF, Reis RL, Mosqueira J, Ruso JM. Microfluidic Fabrication of Gadolinium-Doped Hydroxyapatite for Theragnostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:501. [PMID: 36770462 PMCID: PMC9921701 DOI: 10.3390/nano13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and huge array of possibilities that microfluidics can help to create doped Hydroxyapatite nanoparticles with magnetic properties in an efficient and functional way. First, with the help of Computational Fluid Dynamics (CFD), we performed a complete and precise study of all the elements and phases of our device to guarantee that our microfluidic system worked in the laminar regime and was not affected by the presence of nanoparticles through the flow requisite that is essential to guarantee homogeneous diffusion between the elements or phases in play. Then the obtained biomaterials were physiochemically characterized by means of XRD, FE-SEM, EDX, confocal Raman microscopy, and FT-IR, confirming the successful incorporation of the lanthanide element Gadolinium in part of the Ca (II) binding sites. Finally, the magnetic characterization confirmed the paramagnetic behaviour of the nanoparticles, demonstrating that, with a simple and automatized system, it is possible to obtain advanced nanomaterials that can offer a promising and innovative solution in theragnostic applications.
Collapse
Affiliation(s)
- Manuel Somoza
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| | - Iago F. Llovo
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Jesús Mosqueira
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Sikder A, Vambhurkar G, Amulya E, Bagasariya D, Famta P, Shah S, Khatri DK, Singh SB, Sinha VR, Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: A new horizon in cancer management. J Control Release 2022; 349:1009-1030. [PMID: 35961470 DOI: 10.1016/j.jconrel.2022.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
World Health Organisation (WHO) delineated cancer as one of the foremost reasons for mortality with 10 million deaths in the year 2020. Early diagnosis and effective drug delivery are of utmost importance in cancer management. The entrapment of both bio-imaging dyes and drugs will open novel avenues in the area of tumor theranostics. Elevated levels of reactive oxygen species (ROS) and glutathione (GSH) are the characteristic features of the tumor microenvironment (TME). Researchers have taken advantage of these specific TME features in recent years to develop micelle-based theranostic nanosystems. This review focuses on the advantages of redox-sensitive micelles (RSMs) and supramolecular self-assemblies for tumor theranostics. Key chemical linkers employed for the tumor-specific release of the cargo have been discussed. In vitro characterisation techniques used for the characterization of RSMs have been deliberated. Potential bottlenecks that may present themselves in the bench-to-bedside translation of this technology and the regulatory considerations have been deliberated.
Collapse
Affiliation(s)
- Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - V R Sinha
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
11
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
12
|
Huang M, Xu C, Yang S, Zhang Z, Wei Z, Wu M, Xue F. Vehicle-Free Nanotheranostic Self-Assembled from Clinically Approved Dyes for Cancer Fluorescence Imaging and Photothermal/Photodynamic Combinational Therapy. Pharmaceutics 2022; 14:1074. [PMID: 35631661 PMCID: PMC9145484 DOI: 10.3390/pharmaceutics14051074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/01/2023] Open
Abstract
Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted growing attention as a noninvasive option for cancer treatment. At present, researchers have developed various "all-in-one" nanoplatforms for cancer imaging and PTT/PDT combinational therapy. However, the complex structure, tedious preparation procedures, overuse of extra carriers and severe side effects hinder their biomedical applications. In this work, we reported a nanoplatform (designated as ICG-MB) self-assembly from two different FDA-approved dyes of indocyanine green (ICG) and methylene blue (MB) without any additional excipients for cancer fluorescence imaging and combinational PTT/PDT. ICG-MB was found to exhibit good dispersion in the aqueous phase and improve the photostability and cellular uptake of free ICG and MB, thus exhibiting enhanced photothermal conversion and singlet oxygen (1O2) generation abilities to robustly ablate cancer cells under 808 nm and 670 nm laser irradiation. After intravenous injection, ICG-MB effectively accumulated at tumor sites with a near-infrared (NIR) fluorescence signal, which helped to delineate the targeted area for NIR laser-triggered phototoxicity. As a consequence, ICG-MB displayed a combinational PTT/PDT effect to potently inhibit tumor growth without causing any system toxicities in vivo. In conclusion, this minimalist, effective and biocompatible nanotheranostic would provide a promising candidate for cancer phototherapy based on current available dyes in clinic.
Collapse
Affiliation(s)
- Mingbin Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China; (M.H.); (C.X.); (Z.Z.)
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Chao Xu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China; (M.H.); (C.X.); (Z.Z.)
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Sen Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China;
| | - Ziqian Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China; (M.H.); (C.X.); (Z.Z.)
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China;
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China;
| | - Fangqin Xue
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China; (M.H.); (C.X.); (Z.Z.)
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
13
|
Zhao D, Cao J, Zhang L, Zhang S, Wu S. Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment. BIOSENSORS 2022; 12:bios12050342. [PMID: 35624643 PMCID: PMC9138815 DOI: 10.3390/bios12050342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms.
Collapse
Affiliation(s)
- Dongxu Zhao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China;
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| |
Collapse
|
14
|
Sun L, Chen L, Yang K, Dai WF, Yang Y, Cui X, Yang B, Wang C. A multiple functional supramolecular system for synergetic treatments of hepatocellular carcinoma. Int J Pharm 2022; 619:121716. [PMID: 35367586 DOI: 10.1016/j.ijpharm.2022.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/06/2023]
Abstract
In the current times, achieving specific targeted and controllable drug delivery remains one of the major challenges in the treatment of hepatocellular carcinoma (HCC). The present study reported the development of a multiple functional indocyanine green (ICG)-cyclodextrin (CD) system, wherein loaded etoposide (EPS) was used as the model chemotherapeutic drug. In the developed system, ICG segment served as a photosensitizer for photothermal therapy (PTT) and the targeting moiety, which was primarily attributed to the specific retention properties in HCC tissues. The Ex vivo evaluation showed that ICG-CD@EPS exhibited a laser-triggered release profile with the photothermal efficiency and cytotoxicity towards HepG2 cells. In vivo evaluation suggested that ICG could navigate the systems to HCC tissues and retained at the site for 48 h, producing a drug accumulation in HCC. Further, laser irradiation boosted EPS release and local hyperthermia effects in HCC. Thus, the present study explored a novel and specific HCC targeting mechanism, and provided a feasible and controllable strategy for synergistic PTT and chemotherapy treatments for HCC.
Collapse
Affiliation(s)
- Lijing Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Liyuan Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ke Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Wei Feng Dai
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
15
|
Zheng R, Guo J, Cai X, Bin L, Lu C, Singh A, Trivedi M, Kumar A, Liu J. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids Surf B Biointerfaces 2022; 213:112432. [PMID: 35259704 DOI: 10.1016/j.colsurfb.2022.112432] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
Abstract
Manganese-based Metal-organic Frameworks (Mn-MOFs) represents a unique sub-class of MOFs with low toxicity, oxidative ability, and biocompatibility, which plays vital role in the application of this class of MOFs in medical field. Mn-MOFs show great potential in biomedical applications, and has been extensively studied as compared to other MOFs in transition metal series. They are important in medical applications because Mn(II) possess large electron spin number and longer electron relaxation time. They display fast water exchange rate and could be employed as a potential MRI contrast agent because of their strong targeting ability. Manganese complexes with different ligands also display prospective applications in area such as carrier for drug targeting in anti-tumor and antimicrobial therapy. In the review presented herewith, the application of Mn-based complexes and Mn-MOFs have been emphasized in the area such as imaging viz. MRI, multimodal imaging, antitumor activities such as chemodynamic therapy, photodynamic therapy, sonodynamic therapy and antimicrobial applications. Also, how rational designing and syntheses of targeted Mn-based complexes and Mn-MOFs can engender desired applications.
Collapse
Affiliation(s)
- Rouqiao Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Junru Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinyi Cai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lianjie Bin
- Department of General Surgery, Dongguan People's Hospital, Wanjiang District, Dongguan 523000, China.
| | - Chengyu Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Amita Singh
- Department of Chemistry, Dr. Ram Manohar Lohiya Awadh University, Ayodhya, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
16
|
Alfieri ML, Massaro M, d'Ischia M, D'Errico G, Gallucci N, Gruttadauria M, Licciardi M, Liotta LF, Nicotra G, Sfuncia G, Riela S. Site-specific halloysite functionalization by polydopamine: A new synthetic route for potential near infrared-activated delivery system. J Colloid Interface Sci 2022; 606:1779-1791. [PMID: 34507169 DOI: 10.1016/j.jcis.2021.08.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Halloysite nanotubes (HNTs) represent a versatile core structure for the design of functional nanosystems of biomedical interest. However, the development of selective methodologies for the site-controlled functionalization of the nanotubes at specific sites is not an easy task. This study aims to accomplish a procedure for the site-selective/specific, "pin-point", functionalization of HNTs with polydopamine (HNTs@PDA). This goal was achieved, at pH 6.5, by exploiting the basicity of ZnO nanoparticles anchored on the HNTs external surface (HNTs@ZnO) to induce a punctual polydopamine polymerization and coating. The morphology and the chemical composition of the nanomaterial was demonstrated by several techniques. Turbidimetric analysis showed that PDA coating affected the aqueous stability of HNTs@PDA compared to both HNTs@ZnO and HNTs. Notably, hyperthermia studies revealed that the nanomaterial induced a local thermic rise, up to 50 °C, under near-infrared (NIR) irradiation. Furthermore, secondary functionalization of HNTs@PDA by selective grafting of biotin onto the PDA coating followed by avidin binding was also accomplished.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cinthia 4, Napoli I-80126, Italy
| | - Marina Massaro
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Sez. Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, Palermo 90128, Italy
| | - Marco d'Ischia
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cinthia 4, Napoli I-80126, Italy.
| | - Gerardino D'Errico
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cinthia 4, Napoli I-80126, Italy
| | - Noemi Gallucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cinthia 4, Napoli I-80126, Italy
| | - Michelangelo Gruttadauria
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Sez. Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, Palermo 90128, Italy
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), sez. Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi, 32 90123, Italy
| | - Leonarda F Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, Palermo 90146, Italy
| | | | | | - Serena Riela
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Sez. Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, Palermo 90128, Italy.
| |
Collapse
|
17
|
Duan Q, Wang J, Zhang B, Wang X, Xue J, Zhang W, Sang S. Polydopamine coated Au-Pt nanorods: Enhanced photothermal properties and efficient reactive oxygen scavengers. Colloids Surf B Biointerfaces 2021; 210:112247. [PMID: 34861542 DOI: 10.1016/j.colsurfb.2021.112247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
As an emerging cancer treatment strategy, photothermal therapy (PTT) is precise, controllable, minimally invasive, low cost and less toxic side effects, thus photothermal transduction agents have been extensively investigated in recent years. Noble metal nanomaterials with unique localized surface plasmon resonance (LSPR) effects are particularly suitable as photothermal transduction agent, but the currently developed precious noble metal nano photothermal transduction agents face serious problems such as complex synthesis process, poor photothermal performance and high biotoxicity. Moreover, the large amount of reactive oxygen species (ROS) produced during PTT treatment could cause irreversible damage to the healthy tissues surrounding the tumor. In this work, we deposited platinum (Pt) on the tips of gold nanorods (AuNRs) to form dumbbell-shaped Au-Pt bimetallic nanorods (AuPtNRs), and functionalized AuPtNRs with biocompatible polydopamine (PDA) to obtain AuPt@PDA. With 808 nm laser irradiation, the prepared AuPt@PDA exhibited excellent photothermal stability, and its photothermal conversion efficiency (PCE) reached 81.78%, which was significantly higher than that of AuNRs (52.32%) and AuPtNRs (78.76%). With low cytotoxicity, AuPt@PDA decreased cell viability from 91.12% to 39.36% after PTT on cancer cells in vitro, while significantly reducing intracellular ROS levels generated by heat stress. Therefore, the excellent photothermal properties, high cancer cell killing and ROS scavenging activity of AuPt@PDA in PTT could be an ideal candidate for improving therapeutic efficacy while reducing the risk of toxic side effects due to heat stress-induced ROS formation.
Collapse
Affiliation(s)
- Qianqian Duan
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jialin Wang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Boye Zhang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaoyuan Wang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Juanjuan Xue
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wendong Zhang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shengbo Sang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
18
|
Du Y, Liu D, Du Y. Recent advances in hepatocellular carcinoma therapeutic strategies and imaging-guided treatment. J Drug Target 2021; 30:287-301. [PMID: 34727794 DOI: 10.1080/1061186x.2021.1999963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancer in the world, which greatly threatens human health. However, the routine treatment strategies for HCC have failed to specifically eradicate the tumorigenic cells, leading to the occurrence of metastasis and recurrence. To improve treatment efficacies, the development of novel effective technologies is urgently required. Recently, nanotechnologies have gained the extensive attention in cancer targeted therapy, which could provide a promising way for HCC clinical practice. However, a successful cancer management depends on accurate diagnosis of the tumour along with precise therapeutic protocol, thereby predicting the tumour response to existing therapies. The synergistic effect of targeted therapeutic systems and imaging approaches (also called 'imaging-guided cancer treatment') may establish a more effective platform for individual cancer care. This review outlines the recent advanced nano-targeted and -traceable therapeutic strategies for HCC management. The multifunctional nano agents that have both diagnosis and therapy abilities are highlighted. Finally, we conclude with our perspectives on the future development and challenges of HCC nanotheranostics.
Collapse
Affiliation(s)
- Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Yao J, Zheng F, Yang F, Yao C, Xing J, Li Z, Sun S, Chen J, Xu X, Cao Y, Hampp N, Wu A. An intelligent tumor microenvironment responsive nanotheranostic agent for T1/ T2 dual-modal magnetic resonance imaging-guided and self-augmented photothermal therapy. Biomater Sci 2021; 9:7591-7602. [PMID: 34668000 DOI: 10.1039/d1bm01324f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photothermal therapy (PTT), as a promising antineoplastic therapeutic strategy, has been harnessed to restrain tumor growth through near-infrared (NIR) irradiation mediated thermal ablation. Nevertheless, its biological applications are hampered by thermal diffusion and up-regulated heat shock proteins (HSPs). Herein, a versatile nanotheranostic agent is developed via integrating Zn0.2Fe2.8O4 nanoparticles (NPs), polydopamine (PDA), and MnO2 NPs for T1/T2 dual-modal magnetic resonance (MR) imaging-guided and self-augmented PTT. The as-designed Zn0.2Fe2.8O4@PDA@MnO2 NPs adequately serve as a PTT agent to realize effective photothermal conversion and obtain local hyperthermia. Additionally, the Zn0.2Fe2.8O4@PDA@MnO2 NPs can significantly consume overexpressed glutathione (GSH) and generate Mn2+ in the tumor microenvironment (TME), thus destroying redox homeostasis and catalytically generating hydroxyl radicals (˙OH) for HSP suppression and PTT enhancement. Meanwhile, Mn2+ and Zn0.2Fe2.8O4 NPs significantly strengthen T1- and T2-weighted MR contrast for tumor imaging and PTT guidance. Hence, this study offers proof of concept for self-augmented PTT and T1/T2 dual-modal MR imaging for tumor elimination.
Collapse
Affiliation(s)
- Junlie Yao
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China. .,College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang Zheng
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
| | - Fang Yang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China.,Fachbereich Chemie, Philipps Universität Marburg, Marburg, 35032, Germany
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China. .,College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China. .,College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zihou Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
| | - Sijia Sun
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
| | - Jia Chen
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
| | - Xiawei Xu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China. .,College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Norbert Hampp
- Fachbereich Chemie, Philipps Universität Marburg, Marburg, 35032, Germany
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P.R. China
| |
Collapse
|
20
|
Qu J, Guillory D, Cheah P, Tian B, Zheng J, Liu Y, Cates C, Janorkar AV, Zhao Y. Synthesis of Biomimetic Melanin-Like Multifunctional Nanoparticles for pH Responsive Magnetic Resonance Imaging and Photothermal Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2107. [PMID: 34443944 PMCID: PMC8400264 DOI: 10.3390/nano11082107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
The design and development of multifunctional nanoparticles have attracted great interest in biomedical research. This study aims to prepare pH-responsive melanin-like nanoparticles for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy. The new multifunctional nanoparticles (amino-Fe-PDANPs) are synthesized by copolymerization of dopamine and its derivative amino-N-[2-(diethylamino) ethyl]-3,4-dihydroxy-benzenepropanamide (N-Dopa) at room temperature. The size of nanoparticles can be controlled by NaOH concentration. The incorporation of N-Dopa is characterized by NMR and FT-IR. From transmission electron microscopy (TEM), the nanoparticles exhibit excellent dispersion stability in water and are spherical in shape. The MRI measurement has demonstrated that amino-Fe-PDANPs have a significant signal enhancement in responding to the acidic solution. Confirmed by the photothermal study, the nanoparticles exhibit a high photothermal conversion efficiency. The melanin-like multifunctional nanoparticles integrate both diagnosis and therapeutic functionalities, indicating the potential for theranostic application.
Collapse
Affiliation(s)
- Jing Qu
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA; (J.Q.); (D.G.); (P.C.); (B.T.)
| | - Devin Guillory
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA; (J.Q.); (D.G.); (P.C.); (B.T.)
| | - Pohlee Cheah
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA; (J.Q.); (D.G.); (P.C.); (B.T.)
| | - Bin Tian
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA; (J.Q.); (D.G.); (P.C.); (B.T.)
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.Z.); (Y.L.)
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.Z.); (Y.L.)
| | - Courtney Cates
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.C.); (A.V.J.)
| | - Amol V. Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.C.); (A.V.J.)
| | - Yongfeng Zhao
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA; (J.Q.); (D.G.); (P.C.); (B.T.)
| |
Collapse
|
21
|
Gowsalya K, Yasothamani V, Vivek R. Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review. NANOSCALE ADVANCES 2021; 3:3332-3352. [PMID: 36133722 PMCID: PMC9418715 DOI: 10.1039/d1na00059d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/03/2021] [Indexed: 05/17/2023]
Abstract
Nanotechnology is a branch of science dealing with the development of new types of nanomaterials by several methods. In the biomedical field, nanotechnology is widely used in the form of nanotherapeutics. Therefore, the current biomedical research pays much attention to nanotechnology for the development of efficient cancer treatment. Indocyanine green (ICG) is a near-infrared tricarbocyanine dye approved by the Food and Drug Administration (FDA) for human clinical use. ICG is a biologically safe photosensitizer and it can kill tumor cells by producing singlet oxygen species and photothermal heat upon NIR irradiation. ICG has some limitations such as easy aggregation, rapid aqueous degradation, and a short half-life. To address these limitations, ICG is further formulated with nanoparticles. Therefore, ICG is integrated with organic nanomaterials (polymers, micelles, liposomes, dendrimers and protein), inorganic nanomaterials (magnetic, gold, mesoporous, calcium, and LDH based), and hybrid nanomaterials. The combination of ICG with nanomaterials provides highly efficient therapeutic effects. Nowadays, ICG is used for various biomedical applications, especially in cancer therapeutics. In this review, we mainly focus on ICG-based combined cancer nanotherapeutics for advanced cancer treatment.
Collapse
Affiliation(s)
- Karunanidhi Gowsalya
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| | - Vellingiri Yasothamani
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| | - Raju Vivek
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Department of Zoology, Bharathiar University Coimbatore-641 046 India
| |
Collapse
|
22
|
Yun SY, Seo D, Kim HJ, Jeung DG, Jeong YK, Oh JM, Park JK. Inorganic-Polymer Core-Shell with Gadolinium Complex for Switching on/off CT/MRI Dual Detection System of Cancer Cells upon pH Change. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Yang Y, Li Y, Zhai W, Li X, Li D, Lin H, Han S. Electrokinetic Preseparation and Molecularly Imprinted Trapping for Highly Selective SERS Detection of Charged Phthalate Plasticizers. Anal Chem 2021; 93:946-955. [PMID: 33206502 DOI: 10.1021/acs.analchem.0c03652] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nonspecific binding and weak spectral discernment are the main challenges for surface-enhanced Raman scattering (SERS) detection, especially in real sample analysis. Herein, molecularly imprinted polymer (MIP)-based core-shell AuNP@polydopamine (AuNP@PDA-MIP) nanoparticles (NPs) are designed and immobilized on an electrochemically reduced MoS2-modified screen-printed electrode (SPE). This portable electrochemical-Raman interface offers the dual functions of electrokinetic preseparation (EP) and MIP trapping of charged molecules so that a reliable SERS recognition with molecular selectivity and high sensitivity can be achieved. Core-shell AuNP@PDA-MIP NPs can be controllably synthesized, possess predesigned specific recognition, and provide "hot spots" at the junction of NPs. The introduction of an electric field enables the autonomous exclusion and separation of similarly charged molecules as well as attraction and concentration of the oppositely charged molecules by electrostatic attraction. Subsequently, the specific MIP recognition cavities allow selective adsorption of targets on the interface without the interference of analogues. Owing to the distinctive design of the multiple coupling separation, trapping, and enrichment strategies, the MIP-based SERS-active interface can be used for label-free detection of charged molecules in real samples without pretreatment. As a proof-of-concept study, label-free SERS detection of charged phthalate plasticizers (PAEs) was demonstrated with a detection limit as low as 2.7 × 10-12 M for dimethyl phthalate (DMP) and 2.3 × 10-11 M for di(2-ethylhexyl) phthalate (DEHP). This sensing strategy for in situ SERS analysis of charged pollutants or toxins holds vast promises for a wide range of in-field applications.
Collapse
Affiliation(s)
- Yuanyuan Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Wenlei Zhai
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agricultural and Forestry Science, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, People's Republic of China
| | - Xuejian Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Hualin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| |
Collapse
|
24
|
Liu R, Guo H, Ouyang Z, Fan Y, Cao X, Xia J, Shi X, Guo R. Multifunctional Core–Shell Tecto Dendrimers Incorporated with Gold Nanoparticles for Targeted Dual Mode CT/MR Imaging of Tumors. ACS APPLIED BIO MATERIALS 2021; 4:1803-1812. [PMID: 35014526 DOI: 10.1021/acsabm.0c01525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Renna Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, People’s Republic of China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
25
|
|
26
|
Liu B, Su Y, Wu S, Shen J. Two dimensional BP@AuNP nanocomposites for photothermal/photodynamic therapy mediated wound disinfection and infected wound healing under a single light source. NEW J CHEM 2021. [DOI: 10.1039/d1nj03137f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BP@AuNP nanocomposites can perform photothermal and photodynamic therapies simultaneously and exhibited a synergistic combination of multiple therapies for S. aureus and E. coli under a 650 nm laser.
Collapse
Affiliation(s)
- Baolei Liu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yutian Su
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shishan Wu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Jian Shen
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
27
|
Liao X, Zheng Y, Lin Z, Shen Y, Lin H, Liu X, Zhang D, Li B. Self-assembled metallo-supramolecular nanoflowers for NIR/acidic-triggered multidrug release, long-term tumor retention and NIR-II fluorescence imaging-guided photo-chemotherapy. CHEMICAL ENGINEERING JOURNAL 2020; 400:125882. [DOI: 10.1016/j.cej.2020.125882] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
28
|
Liu M, Anderson RC, Lan X, Conti PS, Chen K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med Res Rev 2020; 40:909-930. [PMID: 31650619 DOI: 10.1002/med.21642] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
This review explores recent work directed toward the development of nanoparticles (NPs) for multimodality cancer imaging and targeted cancer therapy. In the growing era of precision medicine, theranostics, or the combined use of targeted molecular probes in diagnosing and treating diseases is playing a particularly powerful role. There is a growing interest, particularly over the past few decades, in the use of NPs as theranostic tools due to their excellent performance in receptor target specificity and reduction in off-target effects when used as therapeutic agents. This review discusses recent advances, as well as the advantages and challenges of the application of NPs in cancer imaging and therapy.
Collapse
Affiliation(s)
- Mei Liu
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Redmond-Craig Anderson
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
29
|
Yang H, He Y, Wang Y, Yang R, Wang N, Zhang LM, Gao M, Jiang X. Theranostic Nanoparticles with Aggregation-Induced Emission and MRI Contrast Enhancement Characteristics as a Dual-Modal Imaging Platform for Image-Guided Tumor Photodynamic Therapy. Int J Nanomedicine 2020; 15:3023-3038. [PMID: 32431499 PMCID: PMC7200263 DOI: 10.2147/ijn.s244541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Advanced tumor-targeted theranostic nanoparticles play a key role in tumor diagnosis and treatment research. In this study, we developed a multifunctional theranostic platform based on an amphiphilic hyaluronan/poly-(N-ε-carbobenzyloxy-L-lysine) derivative (HA-g-PZLL), superparamagnetic iron oxide (SPIO) and aggregation-induced emission (AIE) nanoparticles for tumor-targeted magnetic resonance (MR) and fluorescence (FL) dual-modal image-guided photodynamic therapy (PDT). Materials and Methods The amphiphilic hyaluronan acid (HA) derivative HA-g-PZLL was synthesized by grafting hydrophobic poly-(N-ε-carbobenzyloxy-L-lysine) (PZLL) blocks onto hyaluronic acid by a click conjugation reaction. The obtained HA-g-PZLLs self-assembled into nanoparticles in the presence of AIE molecules and SPIO nanoparticles to produce tumor-targeted theranostic nanoparticles (SPIO/AIE@HA-g-PZLLs) with MR/FL dual-modal imaging ability. Cellular uptake of the theranostic nanoparticles was traced by confocal laser scanning microscopy (CLSM), flow cytometry and Prussian blue staining. The intracellular reactive oxygen species (ROS) generation characteristics of the theranostic nanoparticles were evaluated with CLSM and flow cytometry. The effect of PDT was evaluated by cytotoxicity assay. The dual-mode imaging ability of the nanoparticles was evaluated by a real-time near-infrared fluorescence imaging system and magnetic resonance imaging scanning. Results The resulting theranostic nanoparticles not only emit red fluorescence for high-quality intracellular tracing but also effectively produce singlet oxygen for photodynamic tumor therapy. In vitro cytotoxicity experiments showed that these theranostic nanoparticles can be efficiently taken up and are mainly present in the cytoplasm of HepG2 cells. After internalization, these theranostic nanoparticles showed serious cytotoxicity to the growth of HepG2 cells after white light irradiation. Discussion This work provides a simple method for the preparation of theranostic nanoparticles with AIE characteristics and MR contrast enhancement, and serves as a dual-modal imaging platform for image-guided tumor PDT.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Yufang He
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Yan Wang
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Nianhua Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province 510006, People's Republic of China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| |
Collapse
|
30
|
Yu Y, Yang T, Sun T. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine (Lond) 2020; 15:1127-1145. [PMID: 32329396 DOI: 10.2217/nnm-2019-0395] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The past decades have witnessed enormous development of gold nanoparticles (AuNPs) and their applications in the biomedical field, an area in which they show infinite potential. Abundant investigations have been conducted in improving AuNP synthesis, aimed at obtaining water-dispersible ultrasmall AuNPs, which can exhibit biocompatibility, renal clearance and minimal toxicity. Due to their excellent x-ray attenuation ability, special optical properties and surface modification properties, AuNPs are reported to be promising as computed tomography contrast agents and can be applied in radiotherapy, photothermal and photodynamic therapies, and drug delivery. In this review, synthesis methods and toxicity of AuNPs have been summarized, emphasizing the preparation of ultra-small AuNPs. Applications of AuNPs in computed tomography imaging and cancer treatment are also considered, revealing their potential in the clinic.
Collapse
Affiliation(s)
- Yao Yu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Ting Yang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan, 430070, PR China.,State Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
31
|
Hauser D, Septiadi D, Turner J, Petri-Fink A, Rothen-Rutishauser B. From Bioinspired Glue to Medicine: Polydopamine as a Biomedical Material. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1730. [PMID: 32272786 PMCID: PMC7178714 DOI: 10.3390/ma13071730] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Biological structures have emerged through millennia of evolution, and nature has fine-tuned the material properties in order to optimise the structure-function relationship. Following this paradigm, polydopamine (PDA), which was found to be crucial for the adhesion of mussels to wet surfaces, was hence initially introduced as a coating substance to increase the chemical reactivity and surface adhesion properties. Structurally, polydopamine is very similar to melanin, which is a pigment of human skin responsible for the protection of underlying skin layers by efficiently absorbing light with potentially harmful wavelengths. Recent findings have shown the subsequent release of the energy (in the form of heat) upon light excitation, presenting it as an ideal candidate for photothermal applications. Thus, polydopamine can both be used to (i) coat nanoparticle surfaces and to (ii) form capsules and ultra-small (nano)particles/nanocomposites while retaining bulk characteristics (i.e., biocompatibility, stability under UV irradiation, heat conversion, and activity during photoacoustic imaging). Due to the aforementioned properties, polydopamine-based materials have since been tested in adhesive and in energy-related as well as in a range of medical applications such as for tumour ablation, imaging, and drug delivery. In this review, we focus upon how different forms of the material can be synthesised and the use of polydopamine in biological and biomedical applications.
Collapse
Affiliation(s)
- Daniel Hauser
- Division of Surgery & Interventional Science, Royal Free Hospital, University College London, London NW3 2PS, UK;
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | - Joel Turner
- Division of Surgery & Interventional Science, Royal Free Hospital, University College London, London NW3 2PS, UK;
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | | |
Collapse
|
32
|
|
33
|
Chabloz NG, Perry HL, Yoon IC, Coulson AJ, White AJP, Stasiuk GJ, Botnar RM, Wilton-Ely JDET. Combined Magnetic Resonance Imaging and Photodynamic Therapy Using Polyfunctionalised Nanoparticles Bearing Robust Gadolinium Surface Units. Chemistry 2020; 26:4552-4566. [PMID: 31981387 DOI: 10.1002/chem.201904757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 12/12/2022]
Abstract
A robust dithiocarbamate tether allows novel gadolinium units based on DOTAGA (q=1) to be attached to the surface of gold nanoparticles (2.6-4.1 nm diameter) along with functional units offering biocompatibility, targeting and photodynamic therapy. A dramatic increase in relaxivity (r1 ) per Gd unit from 5.01 mm-1 s-1 in unbound form to 31.68 mm-1 s-1 (10 MHz, 37 °C) is observed when immobilised on the surface due to restricted rotation and enhanced rigidity of the Gd complex on the nanoparticle surface. The single-step synthetic route provides a straightforward and versatile way of preparing multifunctional gold nanoparticles, including examples with conjugated zinc-tetraphenylporphyrin photosensitizers. The lack of toxicity of these materials (MTT assays) is transformed on irradiation of HeLa cells for 30 minutes (PDT), leading to 75 % cell death. In addition to passive targeting, the inclusion of units capable of actively targeting overexpressed folate receptors illustrates the potential of these assemblies as targeted theranostic agents.
Collapse
Affiliation(s)
- Nicolas G Chabloz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Hannah L Perry
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK.,Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Il-Chul Yoon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Andrew J Coulson
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Graeme J Stasiuk
- School of Life Sciences, Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK
| | - René M Botnar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK.,London Centre for Nanotechnology (LCN), London, UK
| |
Collapse
|
34
|
Janairo JIB, Sy-Janairo MLL. Estimating the Effectiveness of Gold and Iron Oxide Nanoparticles for Hepatocellular Carcinoma Ablation Therapy: a Meta-Analysis. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00733-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Lin K, Cao Y, Zheng D, Li Q, Liu H, Yu P, Li J, Xue Y, Wu M. Facile phase transfer of hydrophobic Fe 3O 4@Cu 2-xS nanoparticles by red blood cell membrane for MRI and phototherapy in the second near-infrared window. J Mater Chem B 2020; 8:1202-1211. [PMID: 31942915 DOI: 10.1039/c9tb02766a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of nanotheranostic agents integrating diagnosis and therapy has gained tremendous attention in the past few decades, but many of them are inherently hydrophobic and need complicated phase-transfer and tedious surface modifications. This work proposed a facile method of transferring hydrophobic Fe3O4@Cu2-xS nanoparticles from oil to water by using red blood cell membrane to create theranostic nanobeads for T2-weighted MRI and second near-infrared photothermal ablation. The obtained nanoplatform, namely SCS@RBCM, showed a core-shell structure with the inner core densely packed with Fe3O4@Cu2-xS nanoclusters and the surface coated with a layer of RBCM. SCS@RBCM displayed a stable nanostructure, high NIR II light absorption and photothermal conversion ability, T2-weighted MR imaging and magnetic field targeting ability. Meanwhile, the RBCM cloaking endowed SCS with reduced elimination by macrophages. With the navigation of an external magnetic field (MF), the tumor accumulation of SCS@RBCM was dramatically increased, thus achieving good performance of MR imaging and antitumor efficacy through the PTT effect under NIR II irradiation. Therefore, our strategy presents a new and desirable paradigm in the phase-transfer of hydrophobic nanotheranostics for optimizing their biomedical performance.
Collapse
Affiliation(s)
- Kecan Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350025, P. R. China. and The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yanbing Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Dongye Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Qin Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Hui Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Peiwen Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Ming Wu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350025, P. R. China. and The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
36
|
Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M. Methods for Reducing the Toxicity of Metal and Metal Oxide NPs as Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E279. [PMID: 31936311 PMCID: PMC7013649 DOI: 10.3390/ma13020279] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/10/2023]
Abstract
The rapid development of medicine has forced equally rapid progress in the field of pharmaceuticals. In connection with the expensive and time-consuming process of finding new drugs, great emphasis is put on the design and use of metal and metal oxides nanoparticles in nanomedicine. The main focus is on comprehensive presentation of both physicochemical properties and the possibilities of using, in particular, silver (Ag) and gold (Au) nanoparticles, as well as zinc oxide (ZnO) and titanium oxide (TiO2) nanoparticles as drug carriers and in the treatment of cancer. An important element of this subject is the possibility of occurrence of toxic effects of these nanoparticles. For this reason, possible mechanisms of toxic actions are presented, as well as methods used to reduce their toxicity to ensure the safety of drug carriers based on these nanostructures.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland; (O.D.); (K.S.); (A.S.); (J.P.-P.)
| |
Collapse
|
37
|
Yang H, Miao Y, Chen L, Li Z, Yang R, Xu X, Liu Z, Zhang LM, Jiang X. Redox-responsive nanoparticles from disulfide bond-linked poly-(N-ε-carbobenzyloxy-l-lysine)-grafted hyaluronan copolymers as theranostic nanoparticles for tumor-targeted MRI and chemotherapy. Int J Biol Macromol 2020; 148:483-492. [PMID: 31926232 DOI: 10.1016/j.ijbiomac.2020.01.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/03/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Redox-responsive theranostic nanoparticles based on poly-(N-ε-carbobenzyloxy-l-lysine) (PZLL) grafted hyaluronan (HA) (HA-g-SS-PZLL) copolymers were constructed for hepatocellular carcinoma diagnosis and therapy. These hyaluronan derivatives formed nanoparticles via a self-assembly process in aqueous solution at low concentration. Theranostic nanoparticles were obtained after loading hydrophobic doxorubicin (DOX) and superparamagnetic iron oxide (SPIO) into the core of the nanoparticles via a dialysis method. Theranostic nanoparticles exhibited redox triggered DOX release behavior, and faster DOX released from theranostic nanoparticles was detected under a reducing environment compared with slow DOX release under a normal physiological environment. Confocal laser scanning microscopy (CLSM), flow cytometry and Prussian blue staining against HepG2 cells demonstrated that HA-g-SS-PZLL theranostic nanoparticles were capable of delivering DOX and SPIO into the cells. The analysis of the anticancer effect revealed that the HA-g-SS-PZLL theranostic nanoparticles shown higher cytotoxicity against HepG2 cells than DOX-loaded HA-g-PZLL nanoparticles. In vitro T2 magnetic resonance imaging (MRI) results exhibited that theranostic nanoparticles showed a good contrast enhancement effect, and the r2 relaxivity value was approximately 231 Fe mM-1 s-1. Finally, the theranostic nanoparticles acted as nanoprobes for HepG2 tumor-bearing BALB/c mice for in vivo MRI. Therefore, HA-g-SS-PZLL copolymers have great potential as theranostic nanoparticles for tumor-targeted diagnosis and treatment.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yingling Miao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lipeng Chen
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhuoran Li
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Xiangdong Xu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhaosong Liu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
38
|
Perry HL, Botnar RM, Wilton-Ely JDET. Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chem Commun (Camb) 2020; 56:4037-4046. [DOI: 10.1039/d0cc00196a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An overview of recent progress in the design of gadolinium-functionalised gold nanoparticles for use in MRI, multimodal imaging and theranostics.
Collapse
Affiliation(s)
- Hannah L. Perry
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences
- King's College London
- London
- UK
| | - James D. E. T. Wilton-Ely
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| |
Collapse
|
39
|
Ding M, Miao Z, Zhang F, Liu J, Shuai X, Zha Z, Cao Z. Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic efficiency for overcoming tumor hypoxia. Biomater Sci 2020; 8:4157-4165. [DOI: 10.1039/d0bm00625d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rh NPs/Ce6 loaded mesoporous polydopamine (Ce6-Rh@MPDA) nanoparticles were developed to achieve photoacoustic/fluorescence imaging-guided photothermal and photodynamic therapy to eliminate tumors and improve hypoxia in tumor microenvironments.
Collapse
Affiliation(s)
- Mengli Ding
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Zhaohua Miao
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- 230009 PR China
| | - Fan Zhang
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jie Liu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Zhengbao Zha
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- 230009 PR China
| | - Zhong Cao
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
40
|
Sun W, Li S, Tang G, Luo Y, Ma S, Sun S, Ren J, Gong Y, Xie C. Recent Progress of Nanoscale Metal-Organic Frameworks in Cancer Theranostics and the Challenges of Their Clinical Application. Int J Nanomedicine 2019; 14:10195-10207. [PMID: 32099352 PMCID: PMC6997222 DOI: 10.2147/ijn.s230524] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
The growing incidence of cancer raises an urgent need to develop effective diagnostic and therapeutic strategies. With the rapid development of nanomedicine, nanoscale metal-organic frameworks (NMOFs) presented promising potential in various biomedical applications in the last 2 decades, especially in cancer theranostics. Due to the unique features of NMOFs, including structural diversities, enormous porosity, multifunctionality and biocompatibility, they have been widely used to deliver imaging contrast agents and therapeutic drugs. Moreover, multiple types of contrast agents, anti-cancer drugs and targeting ligands could be co-delivered through one single NMOF to enable combination therapy. Co-delivering system using NMOFs helped to avoid multidrug resistance, to reduce adverse effects, to achieve imaging-guided precise therapy and to enhance anti-cancer efficacy. This review summarized the recent research advances on the application of NMOFs in biomedical imaging and cancer treatments in the last few years. The current challenges that impeding their translation to clinical practices and the perspectives for their future applications were also highlighted and discussed.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
41
|
Li X, Wei Z, Li B, Li J, Lv H, Wu L, Zhang H, Yang B, Zhu M, Jiang J. In vivo migration of Fe 3O 4@polydopamine nanoparticle-labeled mesenchymal stem cells to burn injury sites and their therapeutic effects in a rat model. Biomater Sci 2019; 7:2861-2872. [PMID: 31070196 DOI: 10.1039/c9bm00242a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising therapeutic strategy for tissue regeneration and repair. However, efficient targeted delivery to specific tissues remains an open challenge. Here, we non-invasively monitored the migration of MSCs labeled with Fe3O4@polydopamine nanoparticles (Fe3O4@PDA NPs) toward laser burn injury sites in a living rat model and evaluated the effects of the labeled MSCs at the injury site. The Fe3O4@PDA NPs could be effectively incorporated into the MSCs without any negative effects on stem cell properties. Furthermore, they enhanced the migration ability of the MSCs by up-regulating the expression level of C-X-C chemokine receptor type 4 (CXCR4). They also increased the secretion of some cytokines and the expression of healing-related genes in comparison with unlabeled MSCs. Labeled MSCs were intravenously administered into injured rats, and live imaging was performed to monitor MSC migration. Fluorescent signals of the labeled MSCs appeared at burn injury lesions 1 day after injection and then gradually increased up to 7 days. After 7 days, the group injected with the labeled MSCs showed less inflammation compared with those injected with the unlabeled MSCs. Additionally, the labeled MSC group showed increased cytokines and reduced pro-inflammatory factors compared with the unlabeled MSC group. The Fe3O4@PDA NPs enhanced stromal cell-derived factor-1/CXCR4-mediated MSC migration in vivo. Thus, we demonstrated the safety, feasibility, and potential efficacy of using the Fe3O4@PDA NPs for optimizing MSC-based therapeutic strategies for burn wound healing.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maruthapandi M, Natan M, Jacobi G, Banin E, Luong JHT, Gedanken A. Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus of Colloidal Polydopamine Prepared by Carbon Dot Stimulated Polymerization of Dopamine. NANOMATERIALS 2019; 9:nano9121731. [PMID: 31817151 PMCID: PMC6955702 DOI: 10.3390/nano9121731] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 01/26/2023]
Abstract
A simple one-step process for the polymerization of dopamine has been developed using nitrogen-doped carbon dots (N@C–dots) as the sole initiator. The synthesized amorphous polydopamine (PDA)-doped N@C–dots (PDA–N@C–dots composite) exhibited a negative charge of –39 mV with particle sizes ranging from 200 to 1700 nm. The stable colloidal solution was active against methicillin-resistant Staphylococcus aureus (MRSA), a Gram-negative bacterium. The strong adhesion of the polymer to the bacterial membrane resulted in a limited diffusion of nutrients and wastes in and out of the cell cytosol, which is a generic mechanism to trigger cell death. Another possible route is the autoxidation of the catechol moiety of PDA to form quinone and release reactive oxygen species (ROS) such as superoxide radicle and hydrogen peroxide, two well-known ROS with antimicrobial properties against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| | - Michal Natan
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.N.); (G.J.); (E.B.)
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.N.); (G.J.); (E.B.)
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.N.); (G.J.); (E.B.)
| | - John H. T. Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland;
| | - Aharon Gedanken
- Department of Chemistry, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
- Correspondence: ; Tel.: +972-3-5318315; Fax: +972-3-7384053
| |
Collapse
|
43
|
Nanoengineering of Gold Nanoparticles: Green Synthesis, Characterization, and Applications. CRYSTALS 2019. [DOI: 10.3390/cryst9120612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The fundamental aspects of the manufacturing of gold nanoparticles (AuNPs) are discussed in this review. In particular, attention is devoted to the development of a simple and versatile method for the preparation of these nanoparticles. Eco-friendly synthetic routes, such as wet chemistry and biosynthesis with the aid of polymers, are of particular interest. Polymers can act as reducing and/or capping agents, or as soft templates leading to hybrid nanomaterials. This methodology allows control of the synthesis and stability of nanomaterials with novel properties. Thus, this review focus on a fundamental study of AuNPs properties and different techniques to characterize them, e.g., Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), UV-Visible spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy, Small-angle X-Ray Scattering (SAXS), and rheology. Recently, AuNPs obtained by “green” synthesis have been applied in catalysis, in medicine, and as antibacterials, sensors, among others.
Collapse
|
44
|
|
45
|
Zhang Z, Gao J, Yu Z, Li G. Synthesis of tunable DNA-directed trepang-like Au nanocrystals for imaging application. NANOSCALE 2019; 11:18099-18108. [PMID: 31566198 DOI: 10.1039/c9nr06375g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multi-branched metal nanomaterials can exhibit precisely controllable plasmonic properties with the precise control of their sizes and morphologies. In this study, trepang-like gold nanocrystals (AuNCs) with tunable plasmonic properties were synthesized via DNA-directed self-assembly technology. The gold precursor was precisely controlled to be reduced and grow along the DNA skeleton of DNA-conjugated gold nanorods to form multi-branched trepang-like nanocrystals. It was investigated in detail and proven that several key factors greatly influenced the precise control of the morphology and plasmonic property of the proposed AuNCs during their synthesis, including the gold precursor, reducing agent, surfactant, loading amount of DNA and DNA structure. The relative finite-difference time-domain calculation results suggested that the change in the plasmonic resonance peak is consistent with the precise change in the size and morphology of the as-synthesized AuNCs. The trepang-like AuNCs exhibited broad absorption bands in the wavelength range of 700-1100 nm with a high photothermal conversion efficiency of 36.2%. Finally, the trepang-like AuNCs with good biocompatibility were applied in photothermal therapy and imaging analysis.
Collapse
Affiliation(s)
- Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
46
|
Farokhi M, Mottaghitalab F, Saeb MR, Thomas S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release 2019; 309:203-219. [PMID: 31362077 DOI: 10.1016/j.jconrel.2019.07.036] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
Abstract
Nanocarriers sensitive to near infrared light (NIR) are useful templates for chemo-photothermal therapy (PTT) and imaging of tumors due to the ability to change the absorbed NIR energy to heat. The conventional photo-absorbing reagents lack the efficient loading and release of drug before reaching the target site leading to insufficient therapeutic outcomes. To overcome these limitations, the surface of nanocarriers can be modified with different polymers with wide functionalities to provide systems with diagnostic, therapeutic, and theranostic capabilities. Among various polymers, polydopamine (PDA) has been more interested due to complex structure with various chemical moieties, and the capacity to be used through different coating mechanism. In this review, we describe the complex structure, chemical properties, and coating mechanisms of PDA. Moreover, the advantage and surface modification of some relevant nanosystems based on carbon materials, gold, iron oxide, manganese, and upconverting nanomaterials by using PDA will be discussed, in detail.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
47
|
Chabloz NG, Wenzel MN, Perry HL, Yoon IC, Molisso S, Stasiuk GJ, Elson DS, Cass AEG, Wilton-Ely JDET. Polyfunctionalised Nanoparticles Bearing Robust Gadolinium Surface Units for High Relaxivity Performance in MRI. Chemistry 2019; 25:10895-10906. [PMID: 31127668 DOI: 10.1002/chem.201901820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/16/2019] [Indexed: 12/19/2022]
Abstract
The first example of an octadentate gadolinium unit based on DO3A (hydration number q=1) with a dithiocarbamate tether has been designed and attached to the surface of gold nanoparticles (around 4.4 nm in diameter). In addition to the superior robustness of this attachment, the restricted rotation of the Gd complex on the nanoparticle surface leads to a dramatic increase in relaxivity (r1 ) from 4.0 mm-1 s-1 in unbound form to 34.3 mm-1 s-1 (at 10 MHz, 37 °C) and 22±2 mm-1 s-1 (at 63.87 MHz, 25 °C) when immobilised on the surface. The one-pot synthetic route provides a straightforward and versatile way of preparing a range of multifunctional gold nanoparticles. The incorporation of additional surface units for biocompatibility (PEG and thioglucose units) and targeting (folic acid) leads to little detrimental effect on the high relaxivity observed for these non-toxic multifunctional materials. In addition to the passive targeting attributed to gold nanoparticles, the inclusion of a unit capable of targeting the folate receptors overexpressed by cancer cells, such as HeLa cells, illustrates the potential of these assemblies.
Collapse
Affiliation(s)
- Nicolas G Chabloz
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Margot N Wenzel
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Hannah L Perry
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Il-Chul Yoon
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Susannah Molisso
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Graeme J Stasiuk
- School of Life Sciences, Biomedical Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation and Department of Surgery and Cancer, Imperial College London, UK
| | - Anthony E G Cass
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK.,Institute of Biomedical Engineering, Imperial College London, UK.,London Centre for Nanotechnology (LCN), UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK.,London Centre for Nanotechnology (LCN), UK
| |
Collapse
|
48
|
Zeng J, Gong M, Wang D, Li M, Xu W, Li Z, Li S, Zhang D, Yan Z, Yin Y. Direct Synthesis of Water-Dispersible Magnetic/Plasmonic Heteronanostructures for Multimodality Biomedical Imaging. NANO LETTERS 2019; 19:3011-3018. [PMID: 30971089 DOI: 10.1021/acs.nanolett.9b00171] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic/plasmonic hybrid nanoparticles are highly desirable for multimodal bioimaging and biosensing. Although the synthesis of heterodimeric nanoparticles has been reported, the products are usually hydrophobic so that post-treatment procedures are required to transfer them into water which are often difficult to perform and cause damages to the structures. Direct synthesis of hydrophilic hybrid nanostructures has remained a grand challenge albeit its immediate advantage of biocompatibility. Herein we report a general seed-mediated approach to the synthesis of hydrophilic and biocompatible M-Fe3O4 (M = Au, Ag, and Pd) heterodimers, in which the size of metals and Fe3O4 can be independently regulated in a wide range. Benefiting from the aqueous synthesis, this approach can be further extended to design more complex heterodimeric structures such as AgPtalloy-Fe3O4, Aucore@Pdshell-Fe3O4, and Aushell-Fe3O4. The hydrophilic nature of our heterodimers makes them readily useful for biomedical applications without the need of additional ligand exchange processes in contrast to those prepared in nonpolar solvents. These nanoscale magnetic/plasmonic heterostructures were shown to be ideally suited for integrated biomedical diagnoses, such as magnetic resonance imaging, photoacoustic imaging, optical coherence tomography, and computed tomography, in virtue of their biocompatibility and combined tunable magnetic and plasmonic properties.
Collapse
Affiliation(s)
- Jingbin Zeng
- College of Science , China University of Petroleum (East China) , Qingdao 266580 , China
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Mingfu Gong
- Department of Chemistry , University of California , Riverside , California 92521 , United States
- Department of Radiology, Xinqiao Hospital , Army Medical University , Chongqing 400037 , China
| | - Dawei Wang
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Mengmeng Li
- College of Science , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Wenjing Xu
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Zhiwei Li
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Shichuan Li
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital , Army Medical University , Chongqing 400037 , China
| | - Zifeng Yan
- College of Science , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yadong Yin
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| |
Collapse
|
49
|
In situ synthesized lactobionic acid conjugated NMOFs, a smart material for imaging and targeted drug delivery in hepatocellular carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:772-781. [DOI: 10.1016/j.msec.2019.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/26/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
|
50
|
Lu W, Liao Y, Jiang C, Wang R, Shan X, Chen Q, Sun G, Liu J. Polydopamine-coated NaGdF4:Dy for T1/T2-weighted MRI/CT multimodal imaging-guided photothermal therapy. NEW J CHEM 2019. [DOI: 10.1039/c9nj00561g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T1/T2-weighted MRI/CT imaging-guided PTT agent NaGdF4:Dy@PPF was prepared and demonstrated its promising application for early diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Wei Lu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Yuxuan Liao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Chunzhu Jiang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Ruoming Wang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Xueru Shan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Qian Chen
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Guoying Sun
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Jianhua Liu
- Department of Radiology
- Second Hospital of Jilin University
- Changchun
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| |
Collapse
|