1
|
Han S, Oh E, Shin H, Kumaran S, Ko DH, Choi HJ. Antimicrobial Face Masks and Mask Covers with a Salt-Coated Stacked Spunbond Polypropylene Fabric: Effective Inactivation of Resilient Pathogens and Prevention of Contact Transmission. ACS APPLIED BIO MATERIALS 2024; 7:5171-5187. [PMID: 39008660 DOI: 10.1021/acsabm.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In response to the ongoing threat posed by respiratory diseases, ensuring effective transmission protection is crucial for public health. To address the drawbacks of single-use face masks/respirators, which can be a potential source of contact-based transmission, we have designed an antimicrobial face mask and mask covering utilizing a stack of salt-coated spunbond (SB) fabric. This fabric acts as an outer layer for the face mask and as a covering over a conventional mask, respectively. We evaluated the universal antimicrobial performance of the salt-coated three-stacked SB fabric against enveloped/nonenveloped viruses and spore-forming/nonspore-forming bacteria. The distinctive pathogen inactivation efficiency was confirmed, including resistant pathogens such as human rhinovirus and Clostridium difficile. In addition, we tested other filter attributes, such as filtration efficiency and breathability, to determine the optimal layer for salt coating and its effects on performance. Our findings revealed that the outer layer of a conventional face mask plays a crucial role in contact transmission through contaminated face masks and respirators. Through contact transmission experiments using droplets involving three types of contaminants (fluorescent dyes, bacteria, and viruses), the salt-coated stacked SB fabric demonstrated a superior effect in preventing contact transmission compared to SB or meltblown polypropylene fabrics─an issue challenging to existing masks. Our results demonstrate that the use of salt-coated stacked SB fabrics as (i) the outer layer of a mask and (ii) a mask cover over a mask enhances overall filter performance against infectious droplets, achieving high pathogen inactivation and low contact-based transmission while maintaining breathability.
Collapse
Affiliation(s)
- Sumin Han
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Euna Oh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hyerin Shin
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Surjith Kumaran
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Dae-Hong Ko
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
2
|
Campbell Z, Ghareeb CR, Baro S, Mauthe J, McColgan G, Amassian A, Scholle F, Ghiladi R, Abolhasani M, Dickey EC. Facile Synthesis of Cu-Doped TiO 2 Particles for Accelerated Visible Light-Driven Antiviral and Antibacterial Inactivation. ACS APPLIED ENGINEERING MATERIALS 2024; 2:1411-1423. [PMID: 38808269 PMCID: PMC11129180 DOI: 10.1021/acsaenm.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
In this work, we present a facile and scalable hydrolysis-based route for the synthesis of copper-doped TiO2 particles for highly effective light-activated antiviral and antibacterial applications. The performance of the synthesized Cu-doped TiO2 particles is then evaluated using solution-phase antimicrobial photodynamic inactivation assays. We demonstrate that the Cu-doped TiO2 particles can successfully inactivate a wide range of pathogens with exposure to light for 90 min, including bacteria ranging from methicillin-resistant Staphylococcus aureus (99.9999%, ∼6 log units) to Klebsiella pneumoniae (99.93%, ∼3.3 log units), and viruses including feline calicivirus (99.94%, ∼3.4 log units) and HCoV-229E (99.996%, ∼4.6 log units), with the particles demonstrating excellent robustness toward photobleaching. Furthermore, a spray-coated polymer film, loaded with the synthesized Cu-doped TiO2 particles achieves inactivation of methicillin-resistant S. aureus up to 99.998% (∼4.8 log units). The presented results provide a clear advance forward in the use of metal-doped TiO2 for aPDI applications, including the scalable synthesis (kg/day) of well-characterized and robust particles, their facile incorporation into a nontoxic, photostable coating that may be easily and cheaply applied to a multitude of surfaces, and a broad efficacy against drug-resistant Gram-positive and Gram-negative bacteria, as well as against enveloped and nonenveloped viruses.
Collapse
Affiliation(s)
- Zachary
S. Campbell
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - C. Roland Ghareeb
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Steven Baro
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Jacob Mauthe
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Gail McColgan
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Aram Amassian
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Frank Scholle
- Department
of Biological Sciences, North Carolina State
University, 3510 Thomas
Hall, Campus Box 7614, Raleigh, North Carolina 27695, United States
| | - Reza Ghiladi
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Milad Abolhasani
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Elizabeth C. Dickey
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
- Department
of Materials Science and Engineering, Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Bromberg L, Magariños B, Concheiro A, Hatton TA, Alvarez-Lorenzo C. Nonleaching Biocidal N-Halamine-Functionalized Polyamine-, Guanidine-, and Hydantoin-Based Coatings. Ind Eng Chem Res 2024; 63:6268-6278. [PMID: 38617110 PMCID: PMC11010268 DOI: 10.1021/acs.iecr.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Fibrous materials with inherent antimicrobial properties can help in real-time deactivation of microorganisms, enabling multiple uses while reducing secondary infections. Coatings with antiviral polymers enhance the surface functionality for existing and potential future pandemics. Herein, we demonstrated a straightforward route toward biocidal surface creation using polymers with nucleophilic biguanide, guanidine, and hydantoin groups that are covalently attached onto a solid support. Biocidal poly(N-vinylguanidine) (PVG) and poly(allylamine-co-4-aminopyridine-co-5-(4-hydroxybenzylidene)hydantoin) (PAH) were introduced for coating applications along with commercially available polyvinylamine (PVAm) and poly(hexamethylene biguanide) (PHMB). Nonleaching coatings were created by first fabricating bifunctional siloxane or isocyanate precursor coatings on the cotton, nylon-cotton, and glass fiber fabric, followed by the polymer attachment. The developed grafting methods ensured the stability of the coating and the reuse of the material while maintaining the biocidal properties. Halogenation of polymer-coated fabric was conducted by aqueous solutions of sodium hypochlorite or in situ generation of hypobromous acid (HOBr), resulting in surfaces coated by N-halamines with high contents of active > N-Cl or > N-Br groups. The polymer-coated fabrics were stable in multiple laundry cycles and maintained hydrophilic character after coating and halogenation. Halogenated polymer-coated fabrics completely inactivated human respiratory coronavirus based on a contact-killing mechanism and were shown to be reusable after recharging with bromine or chlorine.
Collapse
Affiliation(s)
- Lev Bromberg
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Beatriz Magariños
- Department
of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Angel Concheiro
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma
Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS),
and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Carmen Alvarez-Lorenzo
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma
Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS),
and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
4
|
Emam MH, Elezaby RS, Swidan SA, Hathout RM. Nanofiberous facemasks as protectives against pandemic respiratory viruses. Expert Rev Respir Med 2024; 18:127-143. [PMID: 38753449 DOI: 10.1080/17476348.2024.2356601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Wearing protective face masks and respirators has been a necessity to reduce the transmission rate of respiratory viruses since the outbreak of the coronavirus (COVID-19) disease. Nevertheless, the outbreak has revealed the need to develop efficient air filter materials and innovative anti-microbial protectives. Nanofibrous facemasks, either loaded with antiviral nanoparticles or not, are very promising personal protective equipment (PPE) against pandemic respiratory viruses. AREAS COVERED In this review, multiple types of face masks and respirators are discussed as well as filtration mechanisms of particulates. In this regard, the limitations of traditional face masks were summarized and the advancement of nanotechnology in developing nanofibrous masks and air filters was discussed. Different methods of preparing nanofibers were explained. The various approaches used for enhancing nanofibrous face masks were covered. EXPERT OPINION Although wearing conventional face masks can limit viral infection spread to some extent, the world is in great need for more protective face masks. Nanofibers can block viral particles efficiently and can be incorporated into face masks in order to enhance their filtration efficiency. Also, we believe that other modifications such as addition of antiviral nanoparticles can significantly increase the protection power of facemasks.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Cairo, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Zhang G, Li Y, Ke Q, Bai J, Luo F, Zhang J, Ding Y, Chen J, Liu P, Wang S, Gao C, Yang M. Preparation of Rechargeable Antibacterial Polypropylene/N-Halamine Materials Based on Melt Blending and Surface Segregation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47531-47540. [PMID: 37787377 DOI: 10.1021/acsami.3c10257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Polypropylene (PP) has been widely used in health care and food packaging fields, however, it lacks antibacterial properties. Herein, we prepared the polymeric antibacterial agents (MPP-NDAM) by an in situ amidation reaction between 2,4-diamino-6-dialkylamino-1,3,5-triazine (NDAM) and maleic anhydride grafted polypropylene (MPP) using the melt grafting method. The effects of reaction time and monomer content on the grafting degree of N-halamine were investigated, and a grafting degree of 4.86 wt % was achieved under the optimal reaction conditions. PP/MPP-NDAM composites were further obtained by a melt blending process between PP and MPP-NDAM. With the adoption of surface segregation technology, the content of N-halamine structure on the surface of PP/MPP-NDAM composites was significantly increased. The antibacterial tests showed that the PP/MPP-NDAM composite could achieve 99.9% bactericidal activity against 1.0 × 107 CFU/mL of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 10 and 5 min of contact, respectively. The antibacterial effect became more pronounced with the prolongation of chlorinated time, and it could achieve 99.9% bactericidal activity against E. coli within merely 1 min of contact.
Collapse
Affiliation(s)
- Ge Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuke Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qining Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Junchen Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Fushuai Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiacheng Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanfen Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Juan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chong Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Shi Y, Xu H, He Y, Tang X, Tian H, Liang J. Antibacterial Mesoporous Silica Granules Containing a Stable N-Halamine Moiety. ACS OMEGA 2023; 8:21410-21417. [PMID: 37360464 PMCID: PMC10286104 DOI: 10.1021/acsomega.2c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/18/2022] [Indexed: 06/28/2023]
Abstract
High-efficacy and regenerable antimicrobial silica granules were prepared via oxa-Michael addition between poly(vinyl alcohol) (PVA) and methylene-bis-acrylamide (MBA) under the catalysis of sodium carbonate in an aqueous solution. Diluted water glass was added, and the solution pH was adjusted to about 7 to precipitate PVA-MBA modified mesoporous silica (PVA-MBA@SiO2) granules. N-Halamine-grafted silica (PVA-MBA-Cl@SiO2) granules were achieved by adding diluted sodium hypochlorite solution. It was found that a BET surface area of about 380 m2 g-1 for PVA-MBA@SiO2 granules and a Cl+% of about 3.80% for PVA-MBA-Cl@SiO2 granules could be achieved under optimized preparation conditions. Antimicrobial tests showed that the as-prepared antimicrobial silica granules were capable of about a 6-log inactivation of Staphylococcus aureus and Escherichia coli O157:H7 within 10 min of contact. Furthermore, the as-prepared antimicrobial silica granules can be recycled many times due to the excellent regenerability of their N-halamine functional groups and can be saved for a long time. With the above-mentioned advantages, the granules have potential applications in water disinfection.
Collapse
|
7
|
Rossin ARS, Spessato L, Cardoso FDSL, Caetano J, Caetano W, Radovanovic E, Dragunski DC. Electrospinning in personal protective equipment for healthcare work. Polym Bull (Berl) 2023:1-24. [PMID: 37362955 PMCID: PMC10183089 DOI: 10.1007/s00289-023-04814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Protection in many service areas is mandatory for good performance in daily activities of workers, especially health areas. Personal protective equipment (PPE) is used to protect patients and health workers from contamination by harmful pathogens and body fluids during clinical attendance. The pandemic scenario caused by SARS-CoV-2 has shown that the world is not prepared to face global disease outbreaks, especially when it comes to the PPE of healthcare workers. In the last years, the world has faced a deficiency in the development of advanced technologies to produce high-quality PPE to attend to the exponential increasing demand. Electrospinning is a technology that can be used to produce high-quality PPE by improving the protective action of clothing. In the face of this concern, this manuscript presents as focus the potential of electrospinning to be applied in protective clothing. PPE mostly used by healthcare workers are also presented. The physico-chemical characteristics and production processes of medical textiles for PPE are addressed. Furthermore, an overview of the electrospinning technique is shown. It is important to highlight most research about electrospinning applied to PPE for health areas presents gaps and challenges; thus, future projections are also addressed in this manuscript.
Collapse
Affiliation(s)
- Ariane Regina Souza Rossin
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Lucas Spessato
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Fabiana da Silva Lima Cardoso
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Josiane Caetano
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Eduardo Radovanovic
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
| | - Douglas Cardoso Dragunski
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900 Brazil
- Center of Engineering and Exact Sciences, State University of West Paraná, Toledo, Paraná 85903-000 Brazil
| |
Collapse
|
8
|
Zhang Y, Demir B, Bertsch G, Qiao M. Zwitterion and N-halamine functionalized cotton wound dressing with enhanced antifouling, antibacterial, and hemostatic properties. Int J Biol Macromol 2023; 230:123121. [PMID: 36610571 DOI: 10.1016/j.ijbiomac.2022.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
With emerging needs of wound care management, a multi-functional wound dressing is needed. To prevent infection and reduce patient suffering, antibacterial efficacy against a broad-spectrum of bacteria plus robust antifouling are among the most preferred properties. In this study, a wound dressing was created with antibacterial and anti-fouling capabilities is presented. The approaches used a synthesized tri-functional copolymer comprised of an N-halamine precursor moiety, a marine-inspired surface binding dopamine moiety, and a zwitterionic anti-adhesion moiety bonded onto a commercial cotton gauze. The resulting HaloCare™ wound dressing demonstrated >99.99 % inactivation within 5 min against E. coli and a panel of ESKAPE pathogens plus achieved 98.77 % reduction of non-specific protein binding. HaloCare was also shown to be compatible with hemostatic agents without impacting hemostatic efficacy. HaloCare shows great potential particularly in traumatic injury events as an infection preventing and hemostatic wound management system.
Collapse
Affiliation(s)
- Yidan Zhang
- Halomine Inc., 95 Brown Rd., Ithaca, NY, United States of America
| | - Buket Demir
- Halomine Inc., 95 Brown Rd., Ithaca, NY, United States of America
| | - Gregory Bertsch
- Halomine Inc., 95 Brown Rd., Ithaca, NY, United States of America
| | - Mingyu Qiao
- Halomine Inc., 95 Brown Rd., Ithaca, NY, United States of America.
| |
Collapse
|
9
|
Demir B, Taylor A, Broughton R, Huang TS, Bozack M, Worley S. N-halamine surface coating for mitigation of biofilm and microbial contamination in water systems for space travel. Biofilm 2022; 4:100076. [PMID: 35572468 PMCID: PMC9097693 DOI: 10.1016/j.bioflm.2022.100076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/07/2022] Open
Abstract
A copolymer termed HASL produced from monomeric units of 2-acrylamido-2-methyl-1-(5-methylhydantoinyl)propane (HA) and of 3-(trimethoxysilyl)propyl methacrylate (SL) has been coated onto stainless steel and Inconel™ substrates, which upon halogenation with either aqueous oxidative chlorine or bromine, became antimicrobial. It has been demonstrated that the halogenated stainless steel and Inconel™ substrates were effective in producing 6 to 7 log inactivations of Staphylococcus aureus and Escherichia coli O157:H7 within about 10 min, and in prevention of Pseudomonas aeruginosa biofilm formation over a period of at least 72 h on the stainless steel substrates. Upon loss of halogen, the HASL coating could be re-charged with aqueous halogen. The HASL coating was easily applied to the substrates via a simple dip-coating method and was reasonably stable to contact with water. Both chlorinated substrates could be loaded with at least 6 × 1016 oxidative Cl atoms per cm2 and maintained a loading of greater than 1 × 1016 chlorine atoms per cm2 for a period of 3-7 days while agitated in aqueous solution. After loss of chlorine to a level below 1 × 1016 atoms per cm2, the substrates could be recharged to the 6 × 1016 Cl atoms per cm2 level for at least 5 times over a 28 day period. The new antimicrobial coating technology has potential for use in a variety of important applications, particularly for water treatment and storage on spacecraft.
Collapse
Affiliation(s)
- Buket Demir
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
- Halomine, Inc., Ithaca, NY, 14850, USA
| | - Alicia Taylor
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - R.M. Broughton
- Center for Polymers and Advanced Composites, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - T.-S. Huang
- Department of Poultry Science, Auburn University, Auburn, AL, 36849, USA
| | - M.J. Bozack
- Department of Physics, Auburn University, Auburn, AL, 36849, USA
| | - S.D. Worley
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
10
|
Desai NC, Joshi SB, Khasiya AG, Jadeja DJ, Mehta HK, Pandya M, Ahmad I, Patel H. Pyrazolo-imidazolidinones: Synthesis, antimicrobial assessment and molecular modelling studies by molecular mechanic and quantum mechanic approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Wang CG, Surat'man NEB, Mah JJQ, Qu C, Li Z. Surface antimicrobial functionalization with polymers: fabrication, mechanisms and applications. J Mater Chem B 2022; 10:9349-9368. [PMID: 36373687 DOI: 10.1039/d2tb01555b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Undesirable adhesion of microbes such as bacteria, fungi and viruses onto surfaces affects many industries such as marine, food, textile, and healthcare. In particular in healthcare and food packaging, the effects of unwanted microbial contamination can be life-threatening. With the current global COVID-19 pandemic, interest in the development of surfaces with superior anti-viral and anti-bacterial activities has multiplied. Polymers carrying anti-microbial properties are extensively used to functionalize material surfaces to inactivate infection-causing and biocide-resistant microbes including COVID-19. This review aims to introduce the fabrication of polymer-based antimicrobial surfaces through physical and chemical modifications, followed by the discussion of the inactivation mechanisms of conventional biocidal agents and new-generation antimicrobial macromolecules in polymer-modified antimicrobial surfaces. The advanced applications of polymer-based antimicrobial surfaces on personal protective equipment against COVID-19, food packaging materials, biomedical devices, marine vessels and textiles are also summarized to express the research trend in academia and industry.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Nayli Erdeanna Binte Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Justin Jian Qiang Mah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Chenyang Qu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore. .,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| |
Collapse
|
12
|
Morajkar RV, Kumar AS, Kunkalekar RK, Vernekar AA. Advances in nanotechnology application in biosafety materials: A crucial response to COVID-19 pandemic. BIOSAFETY AND HEALTH 2022; 4:347-363. [PMID: 35765656 PMCID: PMC9225943 DOI: 10.1016/j.bsheal.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has adversely affected the public domain causing unprecedented cases and high mortality across the globe. This has brought back the concept of biosafety into the spotlight to solve biosafety problems in developing diagnostics and therapeutics to treat COVID-19. The advances in nanotechnology and material science in combination with medicinal chemistry have provided a new perspective to overcome this crisis. Herein, we discuss the efforts of researchers in the field of material science in developing personal protective equipment (PPE), detection devices, vaccines, drug delivery systems, and medical equipment. Such a synergistic approach of disciplines can strengthen the research to develop biosafety products in solving biosafety problems.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Akhil S Kumar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Rohan K Kunkalekar
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| |
Collapse
|
13
|
Antimicrobial Nonwoven Fabrics Incorporated with Levulinic Acid and Sodium Dodecyl Sulfate for Use in the Food Industry. Foods 2022; 11:foods11152369. [PMID: 35954134 PMCID: PMC9368506 DOI: 10.3390/foods11152369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Safe and cost-effective antimicrobial fabrics (e.g., face masks and air filters) are conducive to preventing the spread and transmission of respiratory microorganisms in food processing plants and retail establishments. The objective of this study was to coat fabrics with two commonly used compounds in the food industry: levulinic acid (LVA) and sodium dodecyl sulfate (SDS) and determine the antimicrobial efficacy of the coated fabrics against bacterial solutions, aerosols, and influenza A virus subtype H1N1. In addition, air permeability and shelf-life of the LVA/SDS coated fabrics were also examined. Nonwoven fabrics were dip-coated with three concentrations (w/v, 0.5% LVA + 0.1% SDS, 1% LVA + 0.5% SDS, and 2% LVA + 1% SDS) of LVA and SDS and challenged with bacterial solutions (Staphylococcus aureus and Escherichia coli, ca. 7.0 log CFU/coupon) for a contact time of 3, 5, and 10 min. The coated fabrics were also challenged with S. aureus aerosol and H1N1 virus following standard operations of ASTM F2101-19 and ISO 18184:2019, respectively. The 1% LVA + 0.5% SDS coated fabrics showed potent antibacterial efficacy against both bacterial solutions (>6.0-log reduction to under the detection limit of 1.0 log CFU/coupon for S. aureus; ca. 1.0-log reduction for E. coli) and aerosols (>3.6-log reduction to under the detection limit), with greater inactivation occurring at higher concentrations and longer exposure time. Moreover, the coated fabrics inactivated >99% of the H1N1 virus. The shelf-life of the coated fabrics was stable within 12 months and the air permeability was not adversely affected with the coating concentrations less than 1% LVA + 0.5% SDS. Results reveal these low-cost and safe materials have the potential to be used to coat fabrics in the food industry to combat the spread and transmission of pathogens.
Collapse
|
14
|
An L, Hu X, Perkins P, Ren T. A Sustainable and Antimicrobial Food Packaging Film for Potential Application in Fresh Produce Packaging. Front Nutr 2022; 9:924304. [PMID: 35873444 PMCID: PMC9301339 DOI: 10.3389/fnut.2022.924304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
N-halamines are a group of compounds containing one or more nitrogen-halogen covalent bond(s). This high-energy halide bond provides a strong oxidative state so that it is able to inactivate microorganisms effectively. In this study, a sustainable film was developed based on polylactic acid (PLA) with incorporated N-halamine compound 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (MC), as a promising antimicrobial food packaging material. Results showed that the incorporation of MC prevented the crystallization of PLA and improved the physical properties of the films. In addition, both the moisture barrier and the oxygen permeability were improved with the presence of MC. Importantly, the antimicrobial film was able to inactivate inoculated microorganisms by a factor of seven log cycles in as little as 5 min of contact. Films that contained higher levels of MC further enhanced the antimicrobial efficacy. Fresh strawberries packed with the fabricated films maintained the quality for up to 5 days. Due to the ease of fabrication and the effective biocidal property, these films have a wide range of potential applications in the field of food packaging to extend the shelf life of fresh produce.
Collapse
Affiliation(s)
- Ling An
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | | | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- *Correspondence: Tian Ren
| |
Collapse
|
15
|
Jin X, Gao F, Qin M, Yu Y, Zhao Y, Shao T, Chen C, Zhang W, Xie B, Xiong Y, Yang L, Wu Y. How to Make Personal Protective Equipment Spontaneously and Continuously Antimicrobial (Incorporating Oxidase-like Catalysts). ACS NANO 2022; 16:7755-7771. [PMID: 35491982 DOI: 10.1021/acsnano.1c11647] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inability of commercial personal protective equipment (PPE) to inactivate microbes in the droplets/aerosols they intercept makes used PPE a potential source of cross-contamination. To make PPE spontaneously and continuously antimicrobial, we incorporate PPE with oxidase-like catalysts, which efficiently convert O2 into reactive oxygen species (ROS) without requiring any externally applied stimulus. Using a single-atom catalyst (SAC) nanoparticle containing atomically dispersed copper atoms as the reactive centers (Cu-SAC) and a silver-palladium bimetallic alloy nanoparticle (AgPd0.38) as models for oxidase-like catalysts, we show that the incorporation of oxidase-like catalysts enables PPE to inactivate bacteria in the droplets/aerosols they intercept without requiring any externally applied stimulus. Notably, this approach works both for PPE that are fibrous and woven such as a commercial KN95 facial respirator and for those made of solid plastics such as an apron. This work suggests a feasible and global approach for preventing PPE from spreading infectious diseases.
Collapse
Affiliation(s)
- Xinyang Jin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Feng Gao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Mingxin Qin
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yunpeng Yu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yue Zhao
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tianyi Shao
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Cai Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bin Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lihua Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yuen Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Imparting antibacterial adhesion property to anion exchange membrane by constructing negatively charged functional layer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Shen H, Zhou Z, Wang H, Chen J, Zhang M, Han M, Shen Y, Shuai D. Photosensitized Electrospun Nanofibrous Filters for Capturing and Killing Airborne Coronaviruses under Visible Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4295-4304. [PMID: 35262328 PMCID: PMC8938841 DOI: 10.1021/acs.est.2c00885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 05/11/2023]
Abstract
To address the challenge of the airborne transmission of SARS-CoV-2, photosensitized electrospun nanofibrous membranes were fabricated to effectively capture and inactivate coronavirus aerosols. With an ultrafine fiber diameter (∼200 nm) and a small pore size (∼1.5 μm), optimized membranes caught 99.2% of the aerosols of the murine hepatitis virus A59 (MHV-A59), a coronavirus surrogate for SARS-CoV-2. In addition, rose bengal was used as the photosensitizer for membranes because of its excellent reactivity in generating virucidal singlet oxygen, and the membranes rapidly inactivated 97.1% of MHV-A59 in virus-laden droplets only after 15 min irradiation of simulated reading light. Singlet oxygen damaged the virus genome and impaired virus binding to host cells, which elucidated the mechanism of disinfection at a molecular level. Membrane robustness was also evaluated, and in general, the performance of virus filtration and disinfection was maintained in artificial saliva and for long-term use. Only sunlight exposure photobleached membranes, reduced singlet oxygen production, and compromised the performance of virus disinfection. In summary, photosensitized electrospun nanofibrous membranes have been developed to capture and kill airborne environmental pathogens under ambient conditions, and they hold promise for broad applications as personal protective equipment and indoor air filters.
Collapse
Affiliation(s)
- Hongchen Shen
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Zhe Zhou
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Haihuan Wang
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Jiahao Chen
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Mengyang Zhang
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Minghao Han
- Department of Chemical and Environmental Engineering,
University of California, Riverside, Riverside, California
92521, United States
| | - Yun Shen
- Department of Chemical and Environmental Engineering,
University of California, Riverside, Riverside, California
92521, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| |
Collapse
|
18
|
Zhang H, Zhu S, Yang J, Ma A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers (Basel) 2022; 14:1167. [PMID: 35335498 PMCID: PMC8951698 DOI: 10.3390/polym14061167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| |
Collapse
|
19
|
Cost-effective fabrication, antibacterial application and cell viability studies of modified nonwoven cotton fabric. Sci Rep 2022; 12:2493. [PMID: 35169158 PMCID: PMC8847346 DOI: 10.1038/s41598-022-06391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
In the present work, nonwoven cotton fabric was modified for antibacterial applications using low-cost and eco-friendly precursors. The treatment of fabric with alkali leads to the formation of active sites for surface modification, followed by dip coating with silver nanoparticles and chitosan. The surface was chlorinated in the next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without affecting strength and integrity of fabric. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.
Collapse
|
20
|
Feng Y, Wang N, He T, He R, Chen M, Yang L, Zhang S, Zhu S, Zhao Q, Ma J, Chen S, Li J. Ag/Zn Galvanic Couple Cotton Nonwovens with Breath-Activated Electroactivity: A Possible Antibacterial Layer for Personal Protective Face Masks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59196-59205. [PMID: 34865481 DOI: 10.1021/acsami.1c15113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The water vapor exhaled by the human body can severely accelerate the charge dissipation of commercial face masks, thereby reducing the electrostatic adsorption efficiency and increasing the bacterial invasion risk. This study developed an electroactive antibacterial cotton nonwoven (Ag/cotton/Zn) using eco-friendly magnetron sputtering technology. The Ag/Zn electrode constructed on the surface of cotton nonwovens could produce a microelectric field in the moist environment of human respiration, which endowed Ag/cotton/Zn with excellent electroactivity. When Ag/cotton/Zn was used as an additional layer of polypropylene melt-blown nonwovens or polylactic acid nanofibers, the prepared personal protective air filter had a filtration efficiency of up to 96.8% and an appropriate pressure drop and air permeability. The antibacterial results based on bacterial aerosols showed that the antibacterial efficiency against Escherichia coli and Staphylococcus aureus in 20 min was 99.74 and 99.79%, respectively, indicating an excellent electroactive killing efficiency against airborne bacteria. In addition, Ag/cotton/Zn showed excellent biological security. These results shed some light on the design and fabrication of next generation of personal protective air filter materials driven by human breathing.
Collapse
Affiliation(s)
- Yujie Feng
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Na Wang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Shandong Center for Engineered Nonwovens, Qingdao 266071, P. R. China
| | - Tian He
- Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, 127 Siliu South Road, Qingdao 266042, P. R. China
| | - Ruidong He
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Meng Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Liguo Yang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shaohua Zhang
- Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Shuaihang Zhu
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Qian Zhao
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jianwei Ma
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, P. R. China
- Shandong Center for Engineered Nonwovens, Qingdao 266071, P. R. China
| |
Collapse
|
21
|
Babaahmadi V, Amid H, Naeimirad M, Ramakrishna S. Biodegradable and multifunctional surgical face masks: A brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149233. [PMID: 34329934 PMCID: PMC8302485 DOI: 10.1016/j.scitotenv.2021.149233] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 05/14/2023]
Abstract
Providing the greater public with the current coronavirus (SARS-CoV-2) vaccines is time-consuming and research-intensive; intermediately, some essential ways to reduce the transmission include social distancing, personal hygiene, testing, contact tracing, and universal masking. The data suggests that universal masking, especially using multilayer surgical face masks, offers a powerful efficacy for indoor places. These layers have different functions including antiviral/antibacterial, fluid barrier, particulate and bacterial filtration, and fit and comfort. However, universal masking poses a serious environmental threat since billions of them are disposed on a daily basis; the current coronavirus disease (COVID-19) has put such demands and consequences in perspective. This review focuses on surgical face mask structures and classifications, their impact on our environment, some of their desirable functionalities, and the recent developments around their biodegradability. The authors believe that this review provides an insight into the fabrication and deployment of effective surgical face masks, and it discusses the utilization of multifunctional structures along with biodegradable materials to deal with future demands in a more eco-friendly fashion.
Collapse
Affiliation(s)
- Vahid Babaahmadi
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran.
| | - Hooman Amid
- Saint-Gobain Inc., Research and Development Supervisor, Nonwoven Abrasives, McAllen, TX 78503, United States of America
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
22
|
Shi J, Li H, Xu F, Tao X. Materials in advanced design of personal protective equipment: a review. MATERIALS TODAY. ADVANCES 2021; 12:100171. [PMID: 34514364 PMCID: PMC8423993 DOI: 10.1016/j.mtadv.2021.100171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 05/13/2023]
Abstract
The outbreak of the Covid-19 pandemic has aroused tremendous attention toward personal protective equipment (PPE) in both scientific research and industrial manufacture. Despite decades of development in PPE design and fabrication, there's still much room for further optimization, in terms, of both protection performance and wear comfort. Interdisciplinary efforts have been devoted to this research field in recent years. Significantly, the innovation of materials, which brings about improved performance and versatile new functions for PPEs, has been widely adopted in PPE design. In this minireview, recent progress in the development of novel materials and structural designs for PPE application are presented in detail with the introduction of various material-based strategies for different PPE types, as well as the examples, which apply auxiliary components into face masks to enrich the functionalities and improve the personal feelings in the pandemic period.
Collapse
Affiliation(s)
- J Shi
- College of Engineering Physics, Shenzhen Technology University, 518118, Shenzhen, China
| | - H Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - F Xu
- College of Engineering Physics, Shenzhen Technology University, 518118, Shenzhen, China
| | - X Tao
- Research Center for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| |
Collapse
|
23
|
Wu R, Song M, Sui D, Duan S, Xu FJ. A natural polysaccharide-based antibacterial functionalization strategy for liquid and air filtration membranes. J Mater Chem B 2021; 10:2471-2480. [PMID: 34820680 DOI: 10.1039/d1tb02273c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Filtration membranes are widely applied in medical fields. However, these membranes are challenged by bacterial contamination in hospitals, which increases the risk of nosocomial infections. Thus, it is significant to develop antibacterial filtration membranes. In this work, an oxidated dextran (ODex)-based antibacterial coating was designed and constructed on microfiltration (MF) membranes and melt-blown fabrics. Polyhexamethylene guanidine (PHMG) was synthesized as an antibacterial agent, and was fixed by ODex onto filtration membranes. The functionalized MF membranes increased the filtration efficiency for E. coli from 20.9% to 99.9%, and improved the absorption ratio for endotoxin by 59.1%, while the water flow rate still remained as high as 5255 L (h m2)-1. Furthermore, the trapped bacteria were inactivated by the antibacterial coating. For the melt-blown fabrics, the aerosol filtration efficiency was increased from 74.6% to 81.0%, and the antibacterial efficiency was promoted to 92.0%. The present work developed a facile and universal antibacterial functionalization strategy for filtration membranes, which provided a new method for the design and development of various novel antibacterial filtration materials in the medical field.
Collapse
Affiliation(s)
- Ruonan Wu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Mengkai Song
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dandan Sui
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shun Duan
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
24
|
Muzata T, Gebrekrstos A, Ray SS. Recent Progress in Modified Polymer-Based PPE in Fight Against COVID-19 and Beyond. ACS OMEGA 2021; 6:28463-28470. [PMID: 34723042 PMCID: PMC8547166 DOI: 10.1021/acsomega.1c04754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The increasing concerns about human-health-related microbial infections and the need for the development of personal protective equipment (PPE) is becoming a major challenge. Because of their light weight and ease of processing, polymeric materials are widely used in designing and fabricating PPE that are being used by healthcare workers and the general population. Among the available PPEs, face masks have been widely developed from polymeric materials such as polypropylene, polycarbonate, and poly(ethylene terephthalate). However, currently, many of the face masks are not antimicrobial, which can pose a great risk for cross-infection as discarded masks can be a dangerous source of microbes. To prevent the spread of microbes, researchers have prompted the development of self-sterilizing masks that are capable of inactivating microbes via different mechanisms. Hence, this review provides a brief overview of the currently available antimicrobial-modified polymer-based PPE, and it mainly focuses on the different types of nanoparticles and other materials that have been embedded in different polymeric materials. The possibility of inhaling microplastics from wearing a face mask is also outlined, and the effects of various modifications on the health of face mask users are also explored. Furthermore, the effects of the disposed masks on the environment are underlined.
Collapse
Affiliation(s)
- Tanyaradzwa
S. Muzata
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Amanuel Gebrekrstos
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
25
|
N-halamine-decorated electrospun polyacrylonitrile nanofibrous membranes: characterization and antimicrobial properties. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Stokes K, Peltrini R, Bracale U, Trombetta M, Pecchia L, Basoli F. Enhanced Medical and Community Face Masks with Antimicrobial Properties: A Systematic Review. J Clin Med 2021; 10:4066. [PMID: 34575177 PMCID: PMC8472488 DOI: 10.3390/jcm10184066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Face masks help to limit transmission of infectious diseases entering through the nose and mouth. Beyond reprocessing and decontamination, antimicrobial treatments could extend the lifetime of face masks whilst also further reducing the chance of disease transmission. Here, we review the efficacy of treatments pertaining antimicrobial properties to medical face masks, filtering facepiece respirators and non-medical face masks. Searching databases identified 2113 studies after de-duplication. A total of 17 relevant studies were included in the qualitative synthesis. Risk of bias was found to be moderate or low in all cases. Sixteen articles demonstrated success in avoiding proliferation (if not elimination) of viruses and/or bacteria. In terms of methodology, no two articles employed identical approaches to efficacy testing. Our findings highlight that antimicrobial treatment is a promising route to extending the life and improving the safety of face masks. In order to reach significant achievements, shared and precise methodology and reporting is needed.
Collapse
Affiliation(s)
- Katy Stokes
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
| | - Roberto Peltrini
- Department of Public Health, Federico II University Hospital, 80131 Naples, Italy;
| | - Umberto Bracale
- Department of Advanced Biomedical Sciences, Federico II University Hospital, 80131 Naples, Italy;
| | - Marcella Trombetta
- Department of Engineering, University Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Leandro Pecchia
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
| | - Francesco Basoli
- Department of Engineering, University Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
27
|
Huang K, Yang X, Ma Y, Sun G, Nitin N. Incorporation of Antimicrobial Bio-Based Carriers onto Poly(vinyl alcohol- co-ethylene) Surface for Enhanced Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36275-36285. [PMID: 34308624 DOI: 10.1021/acsami.1c07311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A biobased rechargeable antimicrobial modification approach was developed using a covalent immobilization of food grade yeast cell wall particles on a model plastic film. We demonstrate the applications of this modification approach on poly(vinyl alcohol-co-ethylene) surface to inactivate inoculated bacteria with or without the presence of organic content, reducing the cross-contamination between food contact surface and model fresh produce, and inhibiting the growth of biofilms on the film surface. These biobased cell wall particle modified plastic films can enhance the binding of chlorine to the plastic surface in the form of N-halamine, extend the stability of chlorine against high organic content and ambient storage, and improve the rechargeability of the plastic films. Upon charging with chlorine, these modified plastic films inactivated 5 log of model Gram-negative bacteria (Escherichia coli O157:H7) and Gram-positive bacteria (Listeria innocua used as a surrogate of pathogenic Listeria monocytogenes) within 2 min of surface inoculation in water and within 20 min in an organic-rich aqueous environment. The modified plastic films prevented the transfer of bacteria and eliminated cross-contamination from the contaminated films to a spinach leaf surface, while 3 log CFU/leaf of bacteria were transferred from a contaminated native film to a noninoculated spinach surface. In addition, these modified plastic films reduced the adhesion of L. innocua cells by 2.7-3.6 log CFU/cm2 compared with control films during extended incubation for biofilm formation. Overall, this study demonstrates the feasibility of this biobased food grade modification approach to reduce microbial contamination and improve produce safety in the food processing industry.
Collapse
Affiliation(s)
- Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Xu Yang
- Department of Food Science and Technology, University of California-Davis, Davis, California 95616, United States
| | - Yue Ma
- Fiber and Polymer Science, University of California-Davis, Davis, California 95616, United States
| | - Gang Sun
- Fiber and Polymer Science, University of California-Davis, Davis, California 95616, United States
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, California 95616, United States
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, California 95616, United States
| |
Collapse
|
28
|
Ghareeb CR, Peddinti BST, Kisthardt SC, Scholle F, Spontak RJ, Ghiladi RA. Toward Universal Photodynamic Coatings for Infection Control. Front Med (Lausanne) 2021; 8:657837. [PMID: 34395464 PMCID: PMC8355428 DOI: 10.3389/fmed.2021.657837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
The dual threats posed by the COVID-19 pandemic and hospital-acquired infections (HAIs) have emphasized the urgent need for self-disinfecting materials for infection control. Despite their highly potent antimicrobial activity, the adoption of photoactive materials to reduce infection transmission in hospitals and related healthcare facilities has been severely hampered by the lack of scalable and cost-effective manufacturing, in which case high-volume production methods for fabricating aPDI-based materials are needed. To address this issue here, we examined the antimicrobial efficacy of a simple bicomponent spray coating composed of the commercially-available UV-photocrosslinkable polymer N-methyl-4(4'-formyl-styryl)pyridinium methosulfate acetal poly(vinyl alcohol) (SbQ-PVA) and one of three aPDI photosensitizers (PSs): zinc-tetra(4-N-methylpyridyl)porphine (ZnTMPyP4+), methylene blue (MB), and Rose Bengal (RB). We applied these photodynamic coatings, collectively termed SbQ-PVA/PS, to a variety of commercially available materials. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the successful application of the coatings, while inductively coupled plasma-optical emission spectroscopy (ICP-OES) revealed a photosensitizer loading of 0.09-0.78 nmol PS/mg material. The antimicrobial efficacy of the coated materials was evaluated against methicillin-susceptible Staphylococcus aureus ATCC-29213 and human coronavirus strain HCoV-229E. Upon illumination with visible light (60 min, 400-700 nm, 65 ± 5 mW/cm2), the coated materials inactivated S. aureus by 97-99.999% and HCoV-229E by 92-99.999%, depending on the material and PS employed. Photobleaching studies employing HCoV-229E demonstrated detection limit inactivation (99.999%) even after exposure for 4 weeks to indoor ambient room lighting. Taken together, these results demonstrate the potential for photodynamic SbQ-PVA/PS coatings to be universally applied to a wide range of materials for effectively reducing pathogen transmission.
Collapse
Affiliation(s)
- C Roland Ghareeb
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Bharadwaja S T Peddinti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Samantha C Kisthardt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States
| | - Richard J Spontak
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States.,Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
29
|
Yao Q, Borjihan Q, Qu H, Guo Y, Zhao Z, Qiao L, Li T, Dong A, Liu Y. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination. J Environ Sci (China) 2021; 105:33-43. [PMID: 34130837 DOI: 10.1016/j.jes.2020.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Disposal of the pollutants arising from farming cattle and other livestock threatens the environment and public safety in diverse ways. Herein, we report on the synthesis of engineered biochars using cow dung as raw material, and investigating these biochars as antibacterial agents for water decontamination. By coating the biochars with N-halamine polymer and loading them with active chlorine (i.e., Cl+), we were able to regulate them on demand by tuning the polymer coating and bleaching conditions. The obtained N-halamine-modified biochars were found to be extremely potent against Escherichia coli and Staphylococcus aureus. We also investigated the possibility of using these N-halamine-modified biochars for bacterial decontamination in real-world applications. Our findings indicated that a homemade filter column packed with N-halamine-modified biochars removed pathogenic bacteria from mining sewage, dairy sewage, domestic sewage, and artificial seawater. This proposed strategy could indicate a new way for utilizing livestock pollutants to create on-demand decontaminants.
Collapse
Affiliation(s)
- Quanfu Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, China
| | - Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Yixuan Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ziying Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Long Qiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ting Li
- College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
30
|
Kasbe PS, Gade H, Liu S, Chase GG, Xu W. Ultrathin Polydopamine-Graphene Oxide Hybrid Coatings on Polymer Filters with Improved Filtration Performance and Functionalities. ACS APPLIED BIO MATERIALS 2021; 4:5180-5188. [PMID: 35007001 DOI: 10.1021/acsabm.1c00367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thin polymer fiber mats, in particular those made of nonwoven polypropylene (PP) fibers, are extensively used for medical and industrial filtration. The recent pandemic has increased the demand for the fabrication of protective masks. The nonwoven PP filter has limitations in filtration efficiency and lacks advanced functionalities. Here, we propose a simple, effective, and low-cost method to functionalize PP filters and endow antimicrobial and photothermal properties. Our approach is based on the deposition of an ultrathin hybrid coating composed of graphene oxide (GO) and polydopamine on the surface of PP filters by spray-coating. The complementary properties and synergic effects of GO and polydopamine in the ultrathin coating improved the filtration efficiency of the PP filter by 20% with little change in pressure drop. Single component coatings did not result in similar improvements in performance. The ultrathin coating also makes the surface of the filter more hydrophilic with negative charges. The photothermal property of GO enables a rapid temperature increase of the surface-coated filter upon light irradiation for easy sterilization. Furthermore, cationic polymer brushes can be grafted to the ultrathin hybrid coating, which adds the highly desired antimicrobial property to the PP filters for their more effective protection against microorganisms.
Collapse
Affiliation(s)
- Pratik S Kasbe
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Harshal Gade
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Shan Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - George G Chase
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
31
|
Carmona-Ribeiro AM, Araújo PM. Antimicrobial Polymer-Based Assemblies: A Review. Int J Mol Sci 2021; 22:5424. [PMID: 34063877 PMCID: PMC8196616 DOI: 10.3390/ijms22115424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
An antimicrobial supramolecular assembly (ASA) is conspicuous in biomedical applications. Among the alternatives to overcome microbial resistance to antibiotics and drugs, ASAs, including antimicrobial peptides (AMPs) and polymers (APs), provide formulations with optimal antimicrobial activity and acceptable toxicity. AMPs and APs have been delivered by a variety of carriers such as nanoparticles, coatings, multilayers, hydrogels, liposomes, nanodisks, lyotropic lipid phases, nanostructured lipid carriers, etc. They have similar mechanisms of action involving adsorption to the cell wall, penetration across the cell membrane, and microbe lysis. APs, however, offer the advantage of cheap synthetic procedures, chemical stability, and improved adsorption (due to multipoint attachment to microbes), as compared to the expensive synthetic routes, poor yield, and subpar in vivo stability seen in AMPs. We review recent advances in polymer-based antimicrobial assemblies involving AMPs and APs.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo 05508-000, Brazil;
| | | |
Collapse
|
32
|
Ma Y, Wisuthiphaet N, Bolt H, Nitin N, Zhao Q, Wang D, Pourdeyhimi B, Grondin P, Sun G. N-Halamine Polypropylene Nonwoven Fabrics with Rechargeable Antibacterial and Antiviral Functions for Medical Applications. ACS Biomater Sci Eng 2021; 7:2329-2336. [DOI: 10.1021/acsbiomaterials.1c00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yue Ma
- Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, California 95616, United States
| | - Nicharee Wisuthiphaet
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Hunter Bolt
- Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, California 95616, United States
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, California 95616, United States
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Qinghua Zhao
- Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Dong Wang
- Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Behnam Pourdeyhimi
- The Nonwoven Institute, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Pierre Grondin
- The Nonwoven Institute, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, California 95616, United States
| |
Collapse
|
33
|
Ahmadi R, Fashandi H, Akbari V. Development of N-halamine Low-Melting Point Poly(ethylene terephthalate) Fibers via Melt Spinning: Structural Characterization and Demonstration of Rechargeable Antibacterial Properties. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rouhollah Ahmadi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
35
|
Pullangott G, Kannan U, S G, Kiran DV, Maliyekkal SM. A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pandemics. RSC Adv 2021; 11:6544-6576. [PMID: 35423213 PMCID: PMC8694960 DOI: 10.1039/d0ra10009a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
The world has witnessed several incidents of epidemics and pandemics since the beginning of human existence. The gruesome effects of microbial threats create considerable repercussions on the healthcare systems. The continually evolving nature of causative viruses due to mutation or re-assortment sometimes makes existing medicines and vaccines inactive. As a rapid response to such outbreaks, much emphasis has been placed on personal protective equipment (PPE), especially face mask, to prevent infectious diseases from airborne pathogens. Wearing face masks in public reduce disease transmission and creates a sense of community solidarity in collectively fighting the pandemic. However, excessive use of single-use polymer-based face masks can pose a significant challenge to the environment and is increasingly evident in the ongoing COVID-19 pandemic. On the contrary, face masks with inherent antimicrobial properties can help in real-time deactivation of microorganisms enabling multiple-use and reduces secondary infections. Given the advantages, several efforts are made incorporating natural and synthetic antimicrobial agents (AMA) to produce face mask with enhanced safety, and the literature about such efforts are summarised. The review also discusses the literature concerning the current and future market potential and environmental impacts of face masks. Among the AMA tested, metal and metal-oxide based materials are more popular and relatively matured technology. However, the repeated use of such a face mask may pose a danger to the user and environment due to leaching/detachment of nanoparticles. So careful consideration is required to select AMA and their incorporation methods to reduce their leaching and environmental impacts. Also, systematic studies are required to establish short-term and long-term benefits.
Collapse
Affiliation(s)
- Gayathri Pullangott
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati Andhra Pradesh 517619 India +91 877 2503004 +91 877 2503164
| | - Uthradevi Kannan
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati Andhra Pradesh 517619 India +91 877 2503004 +91 877 2503164
| | - Gayathri S
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati Andhra Pradesh 517619 India +91 877 2503004 +91 877 2503164
| | - Degala Venkata Kiran
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati Andhra Pradesh 517619 India
| | - Shihabudheen M Maliyekkal
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati Andhra Pradesh 517619 India +91 877 2503004 +91 877 2503164
| |
Collapse
|
36
|
Cutright C, Finkelstein R, Orlowski E, McIntosh E, Brotherton Z, Fabiani T, Khan S, Genzer J, Menegatti S. Nonwoven fiber mats with thermo-responsive permeability to inorganic and organic electrolytes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Xu J, Xiao X, Zhang W, Xu R, Kim SC, Cui Y, Howard TT, Wu E, Cui Y. Air-Filtering Masks for Respiratory Protection from PM 2.5 and Pandemic Pathogens. ONE EARTH (CAMBRIDGE, MASS.) 2020; 3:574-589. [PMID: 33748744 PMCID: PMC7962856 DOI: 10.1016/j.oneear.2020.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Air-filtering masks, also known as respirators, protect wearers from inhaling fine particulate matter (PM2.5) in polluted air, as well as airborne pathogens during a pandemic, such as the ongoing COVID-19 pandemic. Fibrous medium, used as the filtration layer, is the most essential component of an air-filtering mask. This article presents an overview of the development of fibrous media for air filtration. We first synthesize the literature on several key factors that affect the filtration performance of fibrous media. We then concentrate on two major techniques for fabricating fibrous media, namely, meltblown and electrospinning. In addition, we underscore the importance of electret filters by reviewing various methods for imparting electrostatic charge on fibrous media. Finally, this article concludes with a perspective on the emerging research opportunities amid the COVID-19 crisis.
Collapse
Affiliation(s)
- Jinwei Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sang Cheol Kim
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tyler T Howard
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Esther Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
38
|
Orhan M, Demirci F, Kocer HB, Nierstrasz V. Supercritical carbon dioxide application using hydantoin acrylamide for biocidal functionalization of polyester. J Supercrit Fluids 2020; 165:104986. [PMID: 32834476 PMCID: PMC7354766 DOI: 10.1016/j.supflu.2020.104986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 10/29/2022]
Abstract
Biocidal functionalization in polyester fibers is a really tough challenge because of the lack of tethering groups. This study indicated supercritical carbon dioxide application using N-halamine would be an alternative solution for obtaining antibacterial function on the polyester surface. Firstly, N-(2-methyl-1-(4-methyl-2,5-dioxo-imidazolidin-4 yl)propan-2 yl)acrylamide was synthesized and applied to the polyester in supercritical carbon dioxide medium, at 120 °C, 30 MPa for different processing times. The addition of N-halamine on the surface significantly brought antibacterial activity against E. coli. The chlorine loadings showed that 6 -h exposure time was critical to obtain sufficient antibacterial activity. This treatment caused a reasonable and tolerable loss in color and mechanical properties. But, the durability to abrasion, stability, and rechargeability of oxidative chlorine, and the durability of N-halamine on the surface were remarkably good. Conclusively, it can be available to work on polyester surfaces with resource-efficient and eco-friendly supercritical carbon dioxide technique for getting more functionalization and modification.
Collapse
Affiliation(s)
- Mehmet Orhan
- Department of Textile Engineering, Faculty of Engineering, Bursa Uludag University, Bursa, 16 059, Turkey.,Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Borås, 501 90, Sweden
| | - Fatma Demirci
- Department of Fiber and Polymer Engineering, Bursa Technical University, Bursa, 16 330, Turkey
| | - Hasan B Kocer
- Department of Fiber and Polymer Engineering, Bursa Technical University, Bursa, 16 330, Turkey
| | - Vincent Nierstrasz
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Borås, 501 90, Sweden
| |
Collapse
|
39
|
Novel porous chitosan/N-halamine structure with efficient antibacterial and hemostatic properties. Carbohydr Polym 2020; 253:117205. [PMID: 33278975 DOI: 10.1016/j.carbpol.2020.117205] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
In this work, a novel chitosan based structure (CS/EVC) with low density, high porosity, three-dimensional porous structure and great adsorption capability has been prepared by using 1,2-epoxy-4-vinyl cyclohexane (EVC) as a cross-linker. After immersing CS/EVC in N-halamine 1-chloro-2,2,5,5-tetramethyl-4-imidazolinone (MC) solution, antibacterial CS/EVC/MC compounds were obtained. Compared with chitosan and CS/EVC controls, CS/EVC/MC showed excellent antimicrobial activities, which could inactivate both more than 6 logs (×1/1,000,000) of Staphylococcus aureus (ATCC 6538) and Escherichia coli (ATCC 8099) within 30 and 10 min, respectively. Moreover, the relatively low blood clotting index of CS/EVC/MC and the activation of platelets adhering to the surfaces indicated that the CS/EVC/MC sample is potential to promote the agglutination abilities of blood cells and simultaneously control wound bleeding. In addition, in vitro cytotoxicity test showed that the CS/EVC/MC had no cytotoxicity. The material might thus have a great potential for biomedical applications.
Collapse
|
40
|
Zorko DJ, Gertsman S, O'Hearn K, Timmerman N, Ambu-Ali N, Dinh T, Sampson M, Sikora L, McNally JD, Choong K. Decontamination interventions for the reuse of surgical mask personal protective equipment: a systematic review. J Hosp Infect 2020; 106:283-294. [PMID: 32653432 PMCID: PMC7347478 DOI: 10.1016/j.jhin.2020.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND The high demand for personal protective equipment during the novel coronavirus outbreak has prompted the need to develop strategies to conserve supply. Little is known regarding decontamination interventions to allow for surgical mask reuse. AIM To identify and synthesize data from original research evaluating interventions to decontaminate surgical masks for the purpose of reuse. METHODS MEDLINE, Embase, CENTRAL, Global Health, the WHO COVID-19 database, Google Scholar, DisasterLit, preprint servers, and prominent journals from inception to April 8th, 2020, were searched for prospective original research on decontamination interventions for surgical masks. Citation screening was conducted independently in duplicate. Study characteristics, interventions, and outcomes were extracted from included studies by two independent reviewers. Outcomes of interest included impact of decontamination interventions on surgical mask performance and germicidal effects. FINDINGS Seven studies met eligibility criteria: one evaluated the effects of heat and chemical interventions applied after mask use on mask performance, and six evaluated interventions applied prior to mask use to enhance antimicrobial properties and/or mask performance. Mask performance and germicidal effects were evaluated with heterogeneous test conditions. Safety outcomes were infrequently evaluated. Mask performance was best preserved with dry heat decontamination. Good germicidal effects were observed in salt-, N-halamine-, and nanoparticle-coated masks. CONCLUSION There is limited evidence on the safety or efficacy of surgical mask decontamination. Given the heterogeneous methods used in studies to date, we are unable to draw conclusions on the most efficacious and safe intervention for decontaminating surgical masks.
Collapse
Affiliation(s)
- D J Zorko
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - S Gertsman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - K O'Hearn
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - N Timmerman
- Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - N Ambu-Ali
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - T Dinh
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - M Sampson
- Library Services, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - L Sikora
- Health Sciences Library, University of Ottawa, Ottawa, Ontario, Canada
| | - J D McNally
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - K Choong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Department of Critical Care, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
41
|
Zorko DJ, Gertsman S, O'Hearn K, Timmerman N, Ambu-Ali N, Dinh T, Sampson M, Sikora L, McNally JD, Choong K. Decontamination interventions for the reuse of surgical mask personal protective equipment: a systematic review. J Hosp Infect 2020; 106:283-294. [PMID: 32653432 DOI: 10.31219/osf.io/z7exu] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/06/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND The high demand for personal protective equipment during the novel coronavirus outbreak has prompted the need to develop strategies to conserve supply. Little is known regarding decontamination interventions to allow for surgical mask reuse. AIM To identify and synthesize data from original research evaluating interventions to decontaminate surgical masks for the purpose of reuse. METHODS MEDLINE, Embase, CENTRAL, Global Health, the WHO COVID-19 database, Google Scholar, DisasterLit, preprint servers, and prominent journals from inception to April 8th, 2020, were searched for prospective original research on decontamination interventions for surgical masks. Citation screening was conducted independently in duplicate. Study characteristics, interventions, and outcomes were extracted from included studies by two independent reviewers. Outcomes of interest included impact of decontamination interventions on surgical mask performance and germicidal effects. FINDINGS Seven studies met eligibility criteria: one evaluated the effects of heat and chemical interventions applied after mask use on mask performance, and six evaluated interventions applied prior to mask use to enhance antimicrobial properties and/or mask performance. Mask performance and germicidal effects were evaluated with heterogeneous test conditions. Safety outcomes were infrequently evaluated. Mask performance was best preserved with dry heat decontamination. Good germicidal effects were observed in salt-, N-halamine-, and nanoparticle-coated masks. CONCLUSION There is limited evidence on the safety or efficacy of surgical mask decontamination. Given the heterogeneous methods used in studies to date, we are unable to draw conclusions on the most efficacious and safe intervention for decontaminating surgical masks.
Collapse
Affiliation(s)
- D J Zorko
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - S Gertsman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - K O'Hearn
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - N Timmerman
- Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - N Ambu-Ali
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - T Dinh
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - M Sampson
- Library Services, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - L Sikora
- Health Sciences Library, University of Ottawa, Ottawa, Ontario, Canada
| | - J D McNally
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - K Choong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Department of Critical Care, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
42
|
Park DH, Joe YH, Piri A, An S, Hwang J. Determination of Air Filter Anti-Viral Efficiency against an Airborne Infectious Virus. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122640. [PMID: 32339873 PMCID: PMC7152926 DOI: 10.1016/j.jhazmat.2020.122640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 05/05/2023]
Abstract
Recently, various studies have reported the prevention and treatment of respiratory infection outbreaks caused by lethal viruses. Consequently, a variety of air filters coated with antimicrobial agents have been developed to capture and inactivate virus particles in continuous airflow conditions. However, since aerosolized infectious viral-testing is inadvisable due to safety concerns, their anti-viral capability has only been tested by inserting the filters into liquid media, where infectious virus particles disperse. In this study a novel method of determining anti-viral performance of an air filter against airborne infectious viruses is presented. Initially, anti-viral air filter tests were conducted. Firstly, by an air-media test, in which the air filter was placed against an aerosolized non-infectious virus. Secondly, by a liquid-media test, in which the filter was inserted into a liquid medium containing a non-infectious virus. Subsequently, a correlation was established by comparing the susceptibility constants obtained between the two medium tests and an association was found for the air medium test with infectious virus. After ensuring the relationship did not depend on the virus species, the correlation was used to derive the results of the air-medium test from the results of the liquid-medium test.
Collapse
Affiliation(s)
- Dae Hoon Park
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yun Haeng Joe
- Climate Change Research Division, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Amin Piri
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sanggwon An
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
43
|
Tavakolian M, Jafari SM, van de Ven TGM. A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials. NANO-MICRO LETTERS 2020; 12:73. [PMID: 34138290 PMCID: PMC7770792 DOI: 10.1007/s40820-020-0408-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
As the most abundant biopolymer on the earth, cellulose has recently gained significant attention in the development of antibacterial biomaterials. Biodegradability, renewability, strong mechanical properties, tunable aspect ratio, and low density offer tremendous possibilities for the use of cellulose in various fields. Owing to the high number of reactive groups (i.e., hydroxyl groups) on the cellulose surface, it can be readily functionalized with various functional groups, such as aldehydes, carboxylic acids, and amines, leading to diverse properties. In addition, the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure, such as proteins, polymers, metal nanoparticles, and antibiotics. There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents. However, little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility. In this study, we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials. Despite the high effectiveness of surface-modified cellulosic antibacterial materials, more studies on their mechanism of action, the relationship between their properties and their effectivity, and more in vivo studies are required.
Collapse
Affiliation(s)
- Mandana Tavakolian
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
- Pulp and Paper Research Center, McGill University, Montreal, QC, H3A 0C7, Canada
- Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Theo G M van de Ven
- Pulp and Paper Research Center, McGill University, Montreal, QC, H3A 0C7, Canada.
- Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada.
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
44
|
Tang X, Xu H, Shi Y, Wu M, Tian H, Liang J. Porous antimicrobial starch particles containing N-halamine functional groups. Carbohydr Polym 2020; 229:115546. [PMID: 31826415 DOI: 10.1016/j.carbpol.2019.115546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
Abstract
The porous antimicrobial starch particles containing N-Halamine functional groups (PST-MBA-Cl particles) were synthesized by a crosslinking polymerization between starch (ST) and N, N'-methylenebisacrylamide (MBA), and then a chlorination of amide groups of MBA. The synthetic process used only water as the solvent and was environmentally friendly. The results showed that under the optimal preparation conditions, the as-synthesized PST-MBA-Cl particles could have a Cl+% of 8.60 %. Antimicrobial tests showed that PST-MBA-Cl particles had very powerful antimicrobial efficacy against both Staphylococcus aureus and Escherichia coli and could completely kill Staphylococcus aureus with a concentration of 2.1 × 106 CFU/mL and Escherichia coli with a concentration of 5.6 × 106 CFU/mL within a contact time of one minute. Furthermore, the N-Halamine functional groups of PST-MBA-Cl particles also showed excellent stability under storage and reproducibility. Therefore, the as-synthesized PST-MBA-Cl particles will have potential applications in water disinfection.
Collapse
Affiliation(s)
- Xuan Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Haidong Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Yuqing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Mingwei Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Hongru Tian
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Jie Liang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China.
| |
Collapse
|
45
|
Anchoring N-Halo (sodium dichloroisocyanurate) on the nano-Fe3O4 surface as “chlorine reservoir”: Antibacterial properties and wastewater treatment. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
46
|
Riaz S, Ashraf M. Recent Advances in Development of Antimicrobial Textiles. TEXTILE SCIENCE AND CLOTHING TECHNOLOGY 2020. [DOI: 10.1007/978-981-15-3669-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
47
|
Fabrication of Polypropylene-g-(Diallylamino Triazine) Bifunctional Nonwovens with Antibacterial and Air Filtration Activities by Reactive Extrusion and Melt-Blown Technology. J CHEM-NY 2019. [DOI: 10.1155/2019/3435095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Air filtration materials such as protective masks can protect humans from airborne pathogens; however, most of the existing protective filtration materials are aimed to intercept bacteria. Therefore, in this work, modified polypropylene- (PP-) based melt-blown nonwovens with antibacterial property were prepared for reducing the infection rate during the filtering process. Firstly, an N-halamine precursor, 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) monomer, was grafted with PP polymers (PP-g-NDAM) by reactive extrusion method, and the grafting effect was confirmed by nitrogen analysis and FTIR spectra. Then, the obtained PP-g-NDAM was mixed with pristine PP resins in different ratios to prepare the filter materials by melt-blown technology. Finally, the new PP-g-NDAM melt-blown filter materials were finishing treated by the chlorination and electrostatic process, which showed a high filtration efficiency with low pressure drop and a potent antibacterial effect against Escherichia coli (E. coli). This work provides an innovative method for manufacturing antibacterial filtration nonwovens, which can improve the quality of conventional filtration products.
Collapse
|
48
|
Enhanced filtration and comfort properties of nonwoven filtering facepiece respirator by the incorporation of polymeric nanoweb. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03009-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Hou S, Wang X, Dong X, Zheng J, Li S. Renewable antibacterial and antifouling polysulfone membranes incorporating a PEO-grafted amphiphilic polymer and N-chloramine functional groups. J Colloid Interface Sci 2019; 554:658-667. [DOI: 10.1016/j.jcis.2019.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022]
|
50
|
Luo J, Hein C, Ghanbaja J, Pierson JF, Mücklich F. Bacteria accumulate copper ions and inhibit oxide formation on copper surface during antibacterial efficiency test. Micron 2019; 127:102759. [PMID: 31585250 DOI: 10.1016/j.micron.2019.102759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Copper surface after antibacterial test against E. coli was examined in the aspect of corrosion. Results from scanning electron microscope (SEM), grazing incidence X-ray diffractometer (GIXRD) and Raman spectroscopy together confirmed less oxidation on copper surface with the presence of E. coli. The inhibition of the cuprous oxide (Cu2O) layer instead ensured the continuous exposure of copper surface, letting localised corrosion attacks observable and causing a stronger release of copper ions. These phenomena are attributed to the fact that E. coli act as ions reservoirs since high amount of copper accumulation were found by energy dispersive X-ray spectroscopy (EDS).
Collapse
Affiliation(s)
- Jiaqi Luo
- Functional Materials, Saarland University, Germany; Université de Lorraine, CNRS, IJL, F-54000, Nancy, France.
| | - Christina Hein
- Inorganic Solid State Chemistry, Saarland University, Germany
| | | | | | | |
Collapse
|