1
|
Üclü S, Marschelke C, Drees F, Giesler M, Wilms D, Köhler T, Schmidt S, Synytska A, Hartmann L. Sweet Janus Particles: Multifunctional Inhibitors of Carbohydrate-Based Bacterial Adhesion. Biomacromolecules 2024; 25:2399-2407. [PMID: 38454747 DOI: 10.1021/acs.biomac.3c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Escherichia coli and other bacteria use adhesion receptors, such as FimH, to attach to carbohydrates on the cell surface as the first step of colonization and infection. Efficient inhibitors that block these interactions for infection treatment are multivalent carbohydrate-functionalized scaffolds. However, these multivalent systems often lead to the formation of large clusters of bacteria, which may pose problems for clearing bacteria from the infected site. Here, we present Man-containing Janus particles (JPs) decorated on one side with glycomacromolecules to target Man-specific adhesion receptors of E. coli. On the other side, poly(N-isopropylacrylamide) is attached to the particle hemisphere, providing temperature-dependent sterical shielding against binding and cluster formation. While homogeneously functionalized particles cluster with multiple bacteria to form large aggregates, glycofunctionalized JPs are able to form aggregates only with individual bacteria. The formation of large aggregates from the JP-decorated single bacteria can still be induced in a second step by increasing the temperature and making use of the collapse of the PNIPAM hemisphere. This is the first time that carbohydrate-functionalized JPs have been derived and used as inhibitors of bacterial adhesion. Furthermore, the developed JPs offer well-controlled single bacterial inhibition in combination with cluster formation upon an external stimulus, which is not achievable with conventional carbohydrate-functionalized particles.
Collapse
Affiliation(s)
- Serap Üclü
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden 01069, Germany
| | - Felictas Drees
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| | - Markus Giesler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Dimitri Wilms
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Thorben Köhler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden 01069, Germany
- Bavarian Polymer Institute, Research Group Functional Polymer Interfaces, University of Bayreuth, Ludwig-Thoma Str. 36a, Bayreuth 95447, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| |
Collapse
|
2
|
Illmann MD, Schäfl L, Drees F, Hartmann L, Schmidt S. Glycan-Presenting Coacervates Derived from Charged Poly(active esters): Preparation, Phase Behavior, and Lectin Capture. Biomacromolecules 2023. [PMID: 37133885 DOI: 10.1021/acs.biomac.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study presents the preparation and phase behavior of glycan-functionalized polyelectrolytes for capturing carbohydrate-binding proteins and bacteria in liquid condensate droplets. The droplets are formed by complex coacervation of poly(active ester)-derived polyanions and polycations. This approach allows for a straightforward modular introduction of charged motifs and specifically interacting units; mannose and galactose oligomers are used here as first examples. The introduction of carbohydrates has a notable effect on the phase separation and the critical salt concentration, potentially by reducing the charge density. Two mannose binding species, concanavalin A (ConA) and Escherichia coli, are shown to not only specifically bind to mannose-functionalized coacervates but also to some degree to unfunctionalized, carbohydrate-free coacervates. This suggests non-carbohydrate-specific charge-charge interactions between the protein/bacteria and the droplets. However, when mannose interactions are inhibited or when non-binding galactose-functionalized polymers are used, interactions are significantly weakened. This confirms specific mannose-mediated binding functionalization and suggests that introducing carbohydrates reduces non-specific charge-charge interactions by a so far unidentified mechanism. Overall, the presented route toward glycan-presenting polyelectrolytes enables new functional liquid condensate droplets with specific biomolecular interactions.
Collapse
Affiliation(s)
- Michele Denise Illmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lea Schäfl
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Felicitas Drees
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
4
|
Wilms D, Müller J, Urach A, Schröer F, Schmidt S. Specific Binding of Ligand-Functionalized Thermoresponsive Microgels: Effect of Architecture, Ligand Density, and Hydrophobicity. Biomacromolecules 2022; 23:3899-3908. [PMID: 35930738 DOI: 10.1021/acs.biomac.2c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecular interaction of ligand-presenting switchable microgels is studied with respect to the polymer type, composition, and structure of the microgels. Monodisperse microgels are prepared through precipitation polymerization of N-isopropylacrylamide (PNIPAM microgels) or oligo(ethylene glycol methacrylamide)s (POEGMA microgels) in the presence of crosslinkers or in their absence (self-crosslinked). Functionalization with mannose or biotin as model ligands and affinity measurements upon heating/cooling are conducted to obtain mechanistic insights into how the microgel phase transition affects the specific interactions. In particular, we are interested in adjusting the crosslinking, swelling degree, and ligand density of mannose-functionalized microgels to reversibly catch and release mannose binding Escherichia coli by setting the temperature below or above the microgels' volume phase transition temperature (VPTT). The increased mannose density for collapsed microgels above the VPTT results in stronger E. coli binding. Detachment of E. coli by reswelling the microgels below the VPTT is achieved only for self-crosslinked microgels showing a stronger decrease in ligand density compared to microgels with dedicated crosslinkers. Owing to a reduced mannose density in the shell of POEGMA microgels, their E. coli binding was lower compared to PNIPAM microgels, as supported by ultraresolution microscopy. Importantly, an inverse temperature-controlled binding of microgels decorated with hydrophilic mannose and hydrophobic biotin ligands is observed. This indicates that hydrophobic ligands are inaccessible in the collapsed hydrophobic network above the VPTT, whereas hydrophilic mannose units are then enriched at the microgel-water interface and thus are more accessible.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Janita Müller
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anselm Urach
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Fabian Schröer
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
6
|
Cheng Q, Peng YY, Asha AB, Zhang L, Li J, Shi Z, Cui Z, Narain R. Construction of Antibacterial Adhesion Surfaces Based on Bioinspired Borneol-Containing Glycopolymers. Biomater Sci 2022; 10:1787-1794. [DOI: 10.1039/d1bm01949j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of antibacterial coating materials is considered an effective strategy to prevent medical device-related infections. In the present study, by combining 2-lactobionamidoethyl methacrylamide with a unique structure borneol compound, new...
Collapse
|
7
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
8
|
Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021; 17:2123-2163. [PMID: 34476018 PMCID: PMC8381851 DOI: 10.3762/bjoc.17.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decades, numerous stimuli-responsive polymers have been developed and investigated regarding their switching properties. In particular, thermoresponsive polymers, which form a miscibility gap with the ambient solvent with a lower or upper critical demixing point depending on the temperature, have been intensively studied in solution. For the application of such polymers in novel sensors, drug delivery systems or as multifunctional coatings, they typically have to be transferred into specific arrangements, such as micelles, polymer films or grafted nanoparticles. However, it turns out that the thermodynamic concept for the phase transition of free polymer chains fails, when thermoresponsive polymers are assembled into such sterically confined architectures. Whereas many published studies focus on synthetic aspects as well as individual applications of thermoresponsive polymers, the underlying structure-property relationships governing the thermoresponse of sterically constrained assemblies, are still poorly understood. Furthermore, the clear majority of publications deals with polymers that exhibit a lower critical solution temperature (LCST) behavior, with PNIPAAM as their main representative. In contrast, for polymer arrangements with an upper critical solution temperature (UCST), there is only limited knowledge about preparation, application and precise physical understanding of the phase transition. This review article provides an overview about the current knowledge of thermoresponsive polymers with limited mobility focusing on UCST behavior and the possibilities for influencing their thermoresponsive switching characteristics. It comprises star polymers, micelles as well as polymer chains grafted to flat substrates and particulate inorganic surfaces. The elaboration of the physicochemical interplay between the architecture of the polymer assembly and the resulting thermoresponsive switching behavior will be in the foreground of this consideration.
Collapse
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- University of Nebraska-Lincoln, NE 68588, Lincoln, USA
| |
Collapse
|
9
|
Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Scolari IR, Volpini X, Fanani ML, La Cruz-Thea BD, Natali L, Musri MM, Granero GE. Exploring the Toxicity, Lung Distribution, and Cellular Uptake of Rifampicin and Ascorbic Acid-Loaded Alginate Nanoparticles as Therapeutic Treatment of Lung Intracellular Infections. Mol Pharm 2021; 18:807-821. [PMID: 33356316 DOI: 10.1021/acs.molpharmaceut.0c00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology is a very promising technological tool to combat health problems associated with the loss of effectiveness of currently used antibiotics. Previously, we developed a formulation consisting of a chitosan and tween 80-decorated alginate nanocarrier that encapsulates rifampicin and the antioxidant ascorbic acid (RIF/ASC), intended for the treatment of respiratory intracellular infections. Here, we investigated the effects of RIF/ASC-loaded NPs on the respiratory mucus and the pulmonary surfactant. In addition, we evaluated their cytotoxicity for lung cells in vitro, and their biodistribution on rat lungs in vivo after their intratracheal administration. Findings herein demonstrated that RIF/ASC-loaded NPs display a favorable lung biocompatibility profile and a uniform distribution throughout lung lobules. RIF/ASC-loaded NPs were mainly uptaken by lung macrophages, their primary target. In summary, findings show that our novel designed RIF/ASC NPs could be a suitable system for antibiotic lung administration with promising perspectives for the treatment of pulmonary intracellular infections.
Collapse
Affiliation(s)
- Ivana R Scolari
- UNITEFA, CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Ximena Volpini
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - María L Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba X5000HUA, Argentina
| | - Benjamín De La Cruz-Thea
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - Lautaro Natali
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - Melina M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gladys E Granero
- UNITEFA, CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
11
|
Paul TJ, Strzelczyk AK, Schmidt S. Temperature-Controlled Adhesion to Carbohydrate Functionalized Microgel Films: An E. coli and Lectin Binding Study. Macromol Biosci 2021; 21:e2000386. [PMID: 33605076 DOI: 10.1002/mabi.202000386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Indexed: 12/20/2022]
Abstract
The preparation of thermoresponsive mannose functionalized monolayers of poly(N-isopropylacrylamide) microgels and the analysis of the specific binding of concanavalin A (ConA) and E. coli above and below the lower critical solution temperature (LCST) are shown. Via inhibition and direct binding assays it is found that ConA binding is time-dependent, where at short incubation times binding is stronger above the LCST. Given larger incubation times, the interaction of ConA to the microgel network is increased below the LCST when compared to temperatures above the LCST, possibly due to increased ConA diffusion and multivalent binding in the more open microgel network below the LCST. For E. coli, which presents only monovalent lectins and is too large to diffuse into the network, binding is always enhanced above the LCST. This is due to the larger mannose density of the microgel layer above the LCST increasing the interaction to E. coli. Once bound to the microgel layer above the LCST, E. coli cannot be released by cooling down below the LCST. Overall, this suggests that the carbohydrate presenting microgel layers enable specific binding where the temperature-induced transition between swollen and collapsed microgels may increase or decrease binding depending on the receptor size.
Collapse
Affiliation(s)
- Tanja J Paul
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Alexander K Strzelczyk
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| |
Collapse
|
12
|
Afacan C, Narain R, Soares JBP. Flocculating and dewatering of kaolin suspensions with different forms of poly(acrylamide‐co‐diallyl dimethylammonium chloride). CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christopher Afacan
- Department of Chemical and Materials Engineering Donadeo Innovation Centre in Engineering Edmonton Alberta Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering Donadeo Innovation Centre in Engineering Edmonton Alberta Canada
| | - João B. P. Soares
- Department of Chemical and Materials Engineering Donadeo Innovation Centre in Engineering Edmonton Alberta Canada
| |
Collapse
|
13
|
Schröer F, Paul TJ, Wilms D, Saatkamp TH, Jäck N, Müller J, Strzelczyk AK, Schmidt S. Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density. Molecules 2021; 26:molecules26020263. [PMID: 33430287 PMCID: PMC7825725 DOI: 10.3390/molecules26020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels' size, density and elastic modulus were varied. Given similar mannose (Man) functionalization degrees, the softer microgels show increased ConA uptake, possibly due to increased ConA diffusion in the less dense microgel network. Furthermore, although the microgels did not form clusters with E. coli in solution, surfaces coated with mannose-functionalized microgels are shown to bind the bacteria whereas galactose (Gal) and unfunctionalized microgels show no binding. While ConA binding depends on the overall microgels' density and Man functionalization degree, E. coli binding to microgels' surfaces appears to be largely unresponsive to changes of these parameters, indicating a rather promiscuous surface recognition and sufficiently strong anchoring to few surface-exposed Man units. Overall, these results indicate that carbohydrate-functionalized biocompatible oligo(ethylene glycol)-based microgels are able to immobilize carbohydrate binding pathogens specifically and that the binding of free lectins can be controlled by the network density.
Collapse
|
14
|
Wilms D, Schröer F, Paul TJ, Schmidt S. Switchable Adhesion of E. coli to Thermosensitive Carbohydrate-Presenting Microgel Layers: A Single-Cell Force Spectroscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12555-12562. [PMID: 32975417 DOI: 10.1021/acs.langmuir.0c02040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion processes at the cellular scale are dominated by carbohydrate interactions, including the attachment and invasion of pathogens. Carbohydrate-presenting responsive polymers can bind pathogens and inhibit pathogen invasion by remote stimuli for the development of new antibiotic strategies. In this work, the adhesion forces of E. coli to monolayers composed of mannose-functionalized microgels with thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and poly(oligo(ethylene glycol)) (PEG) networks are quantified using single-cell force spectroscopy (SCFS). When exceeding the microgels' lower critical solution temperature (LCST), the adhesion increases up to 2.5-fold depending on the polymer backbone and the mannose density. For similar mannose densities, the softer PNIPAM microgels show a significantly stronger adhesion increase when crossing the LCST as compared to the stiffer PEG microgels. This is explained by a stronger shift in swelling, mannose density, and surface roughness of the softer gels when crossing the LCST. When using nonbinding galactose instead of mannose, or when inhibiting bacterial receptors, a certain level of adhesion remains, indicating that also polymer-fimbria entanglements contribute to adhesion. The presented quantitative analysis provides insights into carbohydrate-mediated bacterial adhesion and the relation to material properties and shows the prospects and limitations of interactive polymer materials to control the attachment of bacteria.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Fabian Schröer
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tanja J Paul
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Strzelczyk AK, Paul TJ, Schmidt S. Quantifying Thermoswitchable Carbohydrate‐Mediated Interactions via Soft Colloidal Probe Adhesion Studies. Macromol Biosci 2020; 20:e2000186. [DOI: 10.1002/mabi.202000186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Alexander Klaus Strzelczyk
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| | - Tanja Janine Paul
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| |
Collapse
|
16
|
Paul TJ, Strzelczyk AK, Feldhof MI, Schmidt S. Temperature-Switchable Glycopolymers and Their Conformation-Dependent Binding to Receptor Targets. Biomacromolecules 2020; 21:2913-2921. [DOI: 10.1021/acs.biomac.0c00676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tanja J. Paul
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Dusseldorf 40225, Germany
| | - Alexander K. Strzelczyk
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Dusseldorf 40225, Germany
| | - Melina I. Feldhof
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Dusseldorf 40225, Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Dusseldorf 40225, Germany
| |
Collapse
|
17
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
18
|
Zhao Y, Yu C, Yu Y, Wei X, Duan X, Dai X, Zhang X. Bioinspired Heteromultivalent Ligand-Decorated Nanotherapeutic for Enhanced Photothermal and Photodynamic Therapy of Antibiotic-Resistant Bacterial Pneumonia. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39648-39661. [PMID: 31591880 DOI: 10.1021/acsami.9b15118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pseudomonas aeruginosa can cause a multitude of inflammations in humans. Due to its ability to form biofilm, the bacteria show durable resistance to drugs. Herein, we developed a heteromultivalent ligand-decorated nanotherapeutic inspired by living system for inhibition of antibiotic-resistant bacterial pneumonia. The nanotherapeutic with a heteromultivalent glycomimetic shell can specifically recognize P. aeruginosa to inhibit its biofilm formation and protect native cells from bacterial infection; the rate of biofilm inhibition was up to 85%. The nanotherapeutic with a bioresponsive hydrophobic core can protonate and control drug release in the microenvironment of bacterial infections. By utilizing these properties, the nanotherapeutics can effectively penetrate the internal structure of biofilms to release the drug, dispersing the biofilm by over 80% under laser irradiation. In vivo bioinspired nanotherapeutics have the potential to efficiently inhibit antibiotic-resistant P. aeruginosa-induced pneumonia. Collectively, we expect biomimicking systems to be the next generation of prevention and treatment as integrated antibacterial agents against P. aeruginosa.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Cong Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaozhuang Duan
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xijuan Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
19
|
Schmidt S, Paul TJ, Strzelczyk AK. Interactive Polymer Gels as Biomimetic Sensors for Carbohydrate Interactions and Capture–Release Devices for Pathogens. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stephan Schmidt
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| | - Tanja Janine Paul
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| | - Alexander Klaus Strzelczyk
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| |
Collapse
|
20
|
Paul TJ, Rübel S, Hildebrandt M, Strzelczyk AK, Spormann C, Lindhorst TK, Schmidt S. Thermosensitive Display of Carbohydrate Ligands on Microgels for Switchable Binding of Proteins and Bacteria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26674-26683. [PMID: 31282142 DOI: 10.1021/acsami.9b08537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The synthesis of carbohydrate-functionalized thermosensitive poly(N-isopropylacrylamide) microgels and their ability to bind carbohydrate-binding pathogens upon temperature switch are reported. It is found that the microgels' binding affinity is increased above their lower critical solution temperature (LCST), enabling thermo-triggerable capture of pathogens. Here, a series of microgels with comparatively low mannose functionalization degrees below 1 mol % is achieved by a single polymerization step. Upon increase in mannose density, the microgel size increases, and the LCST decreases to 26 °C. Clustering with concanavalin A indicated that binding affinity is enhanced by a higher mannose content and by raising the temperature above the LCST. Binding studies with Escherichia coli confirm stronger specific interactions above the LCST and formation of mechanically stable aggregates enabling efficient separation of E. coli by filtration. For small incubation times above the LCST, the microgels' potential to release pathogens again below the LCST is confirmed also. Compared to existing switchable scaffolds, microgels nearly entirely composed of a thermosensitive material undergo a large change in volume, which allows them to drastically vary the density of ligands to switch between capture and release. This straightforward yet novel approach is likely compatible with a broad range of bioactive ligands. Therefore, thermosensitive microgels represent a promising platform for the specific capture or release of cells or pathogens.
Collapse
Affiliation(s)
- Tanja J Paul
- Institute of Organic and Macromolecular Chemistry , Heinrich-Heine-University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Sophie Rübel
- Institute of Organic and Macromolecular Chemistry , Heinrich-Heine-University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Marco Hildebrandt
- Institute of Organic and Macromolecular Chemistry , Heinrich-Heine-University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Alexander K Strzelczyk
- Institute of Organic and Macromolecular Chemistry , Heinrich-Heine-University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Carina Spormann
- Otto Diels Institute of Organic Chemistry , Christiana Albertina University of Kiel , Otto-Hahn-Platz 3/4 , 24098 Kiel , Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry , Christiana Albertina University of Kiel , Otto-Hahn-Platz 3/4 , 24098 Kiel , Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry , Heinrich-Heine-University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
21
|
Liu L, Zhou F, Hu J, Cheng X, Zhang W, Zhang Z, Chen G, Zhou N, Zhu X. Topological Glycopolymers as Agglutinator and Inhibitor: Cyclic versus Linear. Macromol Rapid Commun 2019; 40:e1900223. [PMID: 31241813 DOI: 10.1002/marc.201900223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/09/2019] [Indexed: 12/27/2022]
Abstract
Carbohydrates play an important role in biological processes for their specific interactions with proteins. Cyclic glycopolymers are promising to mimic the topology of natural macrocycle-biomacromolecules due to their unique architecture of lacking chain ends. To systematically study the effect of glycopolymer architecture on the interactions with protein, the cyclic glycopolymers bearing galactose side-chain (cyclic PMAGn ) with three degrees of polymerization (n = 14, 24, 47) are prepared for the first time. The cyclic PMAGn exhibits unique properties in agglutinating and inhibiting proteins in subsequent studies by comparison with the linear precursor with the same molecular weights. More impressively, the cyclic PMAGn highlight the improved performance of cyclic architecture. For example, the cyclic PMAGn shows superior inhibition abilities to suppress amyloid formation from amyloid β protein fragment 1-42 aggregation and block the specific interaction between bacteria and galactose-modified surface compared to that of respective linear counterpart. This interesting finding suggests that the architecture of cyclic glycopolymers may be capable of optimizing the ability to bind or inhibit proteins in biological processes.
Collapse
Affiliation(s)
- Lei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Global Institute of Software Technology, No 5. Qingshan Road, Suzhou National Hi-Tech District, Suzhou, 215163, China
| |
Collapse
|
22
|
Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806024. [PMID: 30589118 PMCID: PMC6634980 DOI: 10.1002/adma.201806024] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/26/2018] [Indexed: 05/19/2023]
Abstract
The chronic infections by pathogenic Pseudomonas aeruginosa (P. aeruginosa) remain to be properly addressed. In particular, for drug-resistant strains, limited medication is available. An in vivo pneumonia model induced by a clinically isolated aminoglycoside resistant strain of P. aeruginosa is developed. Tobramycin clinically treating P. aeruginosa infections is found to be ineffective to inhibit or eliminate this drug-resistant strain. Here, a newly developed non-antibiotics based nanoformulation plus near-infrared (NIR) photothermal treatment shows a remarkable antibacterial efficacy in treating this drug-resistant pneumonia. The novel formulation contains 50-100 nm long nanorods decorated with two types of glycomimetic polymers to specifically block bacterial LecA and LecB lectins, respectively, which are essential for bacterial biofilm development. Such a 3D display of heteromultivalent glycomimetics on a large scale is inspired by the natural strengthening mechanism for the carbohydrate-lectin interaction that occurs when bacteria initially infects the host. This novel formulation shows the most efficient bacteria inhabitation and killing against P. aeruginosa infection, through lectin blocking and the near-infrared-light-induced photothermal effect of gold nanorods, respectively. Collectively, the novel biomimetic design combined with the photothermal killing capability is expected to be an alternative treatment strategy against the ever-threatening drug-resistant infectious diseases when known antibiotics have failed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Ma Z, Zhu XX. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. J Mater Chem B 2019; 7:1361-1378. [DOI: 10.1039/c8tb03162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent progress in random and block copolymers containing sugar and other biocompounds, including their design, synthesis, properties and selected applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| | - X. X. Zhu
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| |
Collapse
|
24
|
Hadjicharalambous C, Flouraki C, Narain R, Chatzinikolaidou M, Vamvakaki M. Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:98. [PMID: 29946888 DOI: 10.1007/s10856-018-6112-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Controlling the cell behavior on biocompatible polymer surfaces is critical for the development of suitable medical implant coatings as well as in anti-adhesive applications. Synthetic glycopolymer brushes, based on sugar methacrylate monomers have been reported as robust surfaces to resist protein adsorption and cell adhesion. In this study, poly(D-gluconamidoethyl methacrylate) (PGAMA) brushes of various chain lengths were synthesized directly from initiator functionalized glass substrates using surface-initiated atom transfer radical polymerization. The glycopolymer film thicknesses were determined by ellipsometry, whereas the wettability and the morphology of the surfaces were characterized by static water contact angle measurements and atomic force microscopy, respectively. Stable, grafted films with thicknesses in the dry state between 4 and 20 nm and of low roughness (~1 nm) were obtained by varying the polymerization time. Cell experiments with MC3T3-E1 pre-osteoblasts cultured on the PGAMA brushes were performed to examine the effect of film thickness on the cell morphology, cytoskeleton organization and growth. The results revealed good cell spreading and proliferation on PGAMA layers of low film thickness, whereas cell adhesion was prevented on polymer films with thickness higher than ~10 nm, indicating their potential use in medical implants and anti-adhesive surfaces, respectively.
Collapse
Affiliation(s)
- Chrystalleni Hadjicharalambous
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Chara Flouraki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, Canada
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece.
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece.
| |
Collapse
|
25
|
Formosa-Dague C, Castelain M, Martin-Yken H, Dunker K, Dague E, Sletmoen M. The Role of Glycans in Bacterial Adhesion to Mucosal Surfaces: How Can Single-Molecule Techniques Advance Our Understanding? Microorganisms 2018; 6:E39. [PMID: 29734645 PMCID: PMC6027152 DOI: 10.3390/microorganisms6020039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial adhesion is currently the subject of increased interest from the research community, leading to fast progress in our understanding of this complex phenomenon. Resent research within this field has documented the important roles played by glycans for bacterial surface adhesion, either through interaction with lectins or with other glycans. In parallel with this increased interest for and understanding of bacterial adhesion, there has been a growth in the sophistication and use of sensitive force probes for single-molecule and single cell studies. In this review, we highlight how the sensitive force probes atomic force microscopy (AFM) and optical tweezers (OT) have contributed to clarifying the mechanisms underlying bacterial adhesion to glycosylated surfaces in general and mucosal surfaces in particular. We also describe research areas where these techniques have not yet been applied, but where their capabilities appear appropriate to advance our understanding.
Collapse
Affiliation(s)
| | - Mickaël Castelain
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France.
| | - Hélène Martin-Yken
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France.
| | - Karen Dunker
- Department of Biotechnology and Food Science, NTNU the Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
| | - Marit Sletmoen
- Department of Biotechnology and Food Science, NTNU the Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
26
|
Abstract
A shocking state of affairs; the use of nanoparticles as simple carriers is dead and outdated. Stimuli-responsive nanoparticles have emerged as active participants in the therapeutic landscape, rather than inert molecule carriers. And this time they are here to join the ongoing war against an old enemy: bacteria.
Collapse
Affiliation(s)
- Carina I. C. Crucho
- CQFM, Centro de Química-Física
Molecular, and IN, Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| |
Collapse
|
27
|
Park BW, Zhuang J, Yasa O, Sitti M. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS NANO 2017; 11:8910-8923. [PMID: 28873304 DOI: 10.1021/acsnano.7b03207] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
High-performance, multifunctional bacteria-driven microswimmers are introduced using an optimized design and fabrication method for targeted drug delivery applications. These microswimmers are made of mostly single Escherichia coli bacterium attached to the surface of drug-loaded polyelectrolyte multilayer (PEM) microparticles with embedded magnetic nanoparticles. The PEM drug carriers are 1 μm in diameter and are intentionally fabricated with a more viscoelastic material than the particles previously studied in the literature. The resulting stochastic microswimmers are able to swim at mean speeds of up to 22.5 μm/s. They can be guided and targeted to specific cells, because they exhibit biased and directional motion under a chemoattractant gradient and a magnetic field, respectively. Moreover, we demonstrate the microswimmers delivering doxorubicin anticancer drug molecules, encapsulated in the polyelectrolyte multilayers, to 4T1 breast cancer cells under magnetic guidance in vitro. The results reveal the feasibility of using these active multifunctional bacteria-driven microswimmers to perform targeted drug delivery with significantly enhanced drug transfer, when compared with the passive PEM microparticles.
Collapse
Affiliation(s)
- Byung-Wook Park
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems , 70569 Stuttgart, Germany
| | - Jiang Zhuang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems , 70569 Stuttgart, Germany
| | - Oncay Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems , 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems , 70569 Stuttgart, Germany
| |
Collapse
|
28
|
Hu X, Gao J, Luo Y, Wei T, Dong Y, Chen G, Chen H. One-Pot Multicomponent Synthesis of Glycopolymers through a Combination of Host-Guest Interaction, Thiol-ene, and Copper-Catalyzed Click Reaction in Water. Macromol Rapid Commun 2017; 38. [PMID: 28863243 DOI: 10.1002/marc.201700434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2017] [Indexed: 12/14/2022]
Abstract
There is a common phenomenon that the heterogeneity of natural oligosaccharides contains various sugar units, which can be used to enhance affinity and selectivity toward a specific receptor, so the synthesis of heterogeneous glycopolymers is always an important issue in the glycopolymer field. Herein, this study conducts a one-pot method to prepare polyrotaxane-based heteroglycopolymers anchored with different sugar units and fluorescent moieties via the combination of host-guest interaction, thiol-ene, and copper-catalyzed click chemistry in water. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatography, X-ray diffraction, and Ellman's assay test are used in the paper to characterize the compounds. Quartz crystal microbalance-dissipation (QCD-D) experiments and bacterial adhesion assay are utilized to study the interactions of polyrotaxane-based heteroglycopolymers with Con A and Escherichia coli. The results reveal that polyrotaxanes (PRs) with mannose and glucose present better specificity toward Con A and E. coli than PRs with glucose due to synergistic effects.
Collapse
Affiliation(s)
- Xiang Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Jinbo Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Ting Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yishi Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
29
|
|
30
|
Lepoittevin B, Costa L, Pardoue S, Dragoé D, Mazerat S, Roger P. Hydrophilic PET surfaces by aminolysis and glycopolymer brushes chemistry. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bénédicte Lepoittevin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Ludovic Costa
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Sylvain Pardoue
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Diana Dragoé
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Sandra Mazerat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Philippe Roger
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| |
Collapse
|
31
|
Biodegradable Nanofiber for Delivery of Immunomodulating Agent in the Treatment of Basal Cell Carcinoma. FIBERS 2015. [DOI: 10.3390/fib3040478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Lazar J, Park H, Rosencrantz RR, Böker A, Elling L, Schnakenberg U. Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Macromol Rapid Commun 2015; 36:1472-8. [DOI: 10.1002/marc.201500118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/19/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Jaroslav Lazar
- Institute of Materials in Electrical Engineering 1; RWTH Aachen University; Sommerfeldstr. 24 52074 Aachen Germany
| | - Hyunji Park
- DWI-Leibniz Institut für Interaktive Materialien e.V; Lehrstuhl für Makromolekulare Materialien und Oberflächen; Forckenbeckstr. 50 52074 Aachen Germany
| | - Ruben R. Rosencrantz
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Alexander Böker
- DWI-Leibniz Institut für Interaktive Materialien e.V; Lehrstuhl für Makromolekulare Materialien und Oberflächen; Forckenbeckstr. 50 52074 Aachen Germany
| | - Lothar Elling
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1; RWTH Aachen University; Sommerfeldstr. 24 52074 Aachen Germany
| |
Collapse
|
33
|
Fukada K, Taniguchi T, Shiratori S. Viscoelastic and durability analysis of nanostructured composite layers of polyelectrolyte and nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra07066j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have evaluated the abrasion and bending durabilities of stacked polymer/nanoparticle layer-by-layer films.
Collapse
Affiliation(s)
- Kenta Fukada
- School of Integrated Design Engineering
- Center for Science and Technology for Designing Functions
- Graduate School of Science and Technology
- Keio University
- Yokohama
| | - Taihei Taniguchi
- School of Integrated Design Engineering
- Center for Science and Technology for Designing Functions
- Graduate School of Science and Technology
- Keio University
- Yokohama
| | - Seimei Shiratori
- School of Integrated Design Engineering
- Center for Science and Technology for Designing Functions
- Graduate School of Science and Technology
- Keio University
- Yokohama
| |
Collapse
|