1
|
Münster K, Kudo S, Kuwabara T, Shimamura E, Furukawa S, Yoshida Y, Ishida S, Iwamoto T, Tanifuji K, Ohki Y, Minoura M, Saito M. Synthesis of a dilithiobutadiene bearing extremely bulky silyl substituents and its reactivity toward functionalized silanes. Dalton Trans 2025; 54:4030-4038. [PMID: 39925336 DOI: 10.1039/d4dt03537b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The synthesis and full characterization of 1,4-dilithio-1,4-bis(triisopropylsilyl)-2,3-diphenylbuta-1,3-diene (1b) are reported. This molecule featuring extremely bulky silyl groups at the 1- and 4-positions serves as a precursor for the synthesis of 2,5-bis(triisopropylsilyl)-3,4-diphenyl-1-silacyclopenta-1,3-dienes (siloles) bearing various substituents at the silicon atom (SiR2 = SiH2 (4), SiH(OMe) (5), SiF2 (6), SiBr2 (7), SiBr(OMe) (8)). Importantly, compounds 6 and 7 reacted with lithium to afford 2,5-bis(triisopropylsilyl)-3,4-diphenyldilithiosilole (9). The solid-state molecular structure and solution NMR spectra reveal the formation of an aromatic ring system, as opposed to the precursors 6 and 7, with two Li cations coordinated by the silacycle in η5-fashions. The sterically bulky dilithiosilole 9 can be applied as an important starting material in the pursuit of low-valent silicon species without donor stabilization.
Collapse
Affiliation(s)
- Katharina Münster
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Shunsuke Kudo
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Takuya Kuwabara
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Eriko Shimamura
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Shunsuke Furukawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| | - Yusuke Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Kazuki Tanifuji
- Institute of Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yasuhiro Ohki
- Institute of Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Masaichi Saito
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama, 338-8570, Japan.
| |
Collapse
|
2
|
Merschel A, Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Lithium Anionic Dicarbenes or Acetylides: What is in the Name? Angew Chem Int Ed Engl 2025:e202501068. [PMID: 40008900 DOI: 10.1002/anie.202501068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
The two-fold deprotonation of the C2-arylated 1,3-imidazolium salts (IPr-Ar)X (1-Ar)X (IPr-Ar = ArC{N(Dipp)CH}2; Ar = Ph, 4-Me2NC6H4 (DMP) or 4-PhC6H4 (Bp); Dipp = 2,6-iPr2C6H3) with nBuLi affords the so-called anionic dicarbenes Li(ADC) (2-Ar) (ADC = ArC{N(Dipp)C}2). 2-Ar can be used to prepare a variety of main group heterocycles, however their structures in the solid-state remained hitherto unknown. Herein reported single-crystal X-ray diffraction studies reveal an acetylide type [ArC{N(Dipp)}(Dipp)NC≡CLi)]n (3-Ar) dimeric (n = 2) or trimeric (n = 3) molecular structure for 2-Ar. Treatment of 3-Ph with Et3B cleanly yields the monoanionic carbene Li[(ADC)(BEt3)] (4-Ph) featuring a weakly coordinating anion embedded in the same molecular entity. 3-Ar readily undergo reactions with CO2 and N2O to form the ring-closing products Li[(ADC)(CO2)2] (5-Ar) and Li[(ADC)N2O] (6-Ar), respectively.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
3
|
Bourne C, Dong H, McKain K, Mayer LC, McKay AP, Cordes DB, Slawin AMZ, Stasch A. Alkyl backbone variations in common β-diketiminate ligands and applications to N-heterocyclic silylene chemistry. Dalton Trans 2024; 53:9887-9895. [PMID: 38807511 DOI: 10.1039/d4dt01298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We report the extension of the common β-diketimine proligand class, RArnacnacH (HC(RCNAr)2H), where R is an alkyl group such as Et or iPr, plus Ph, and Ar is a sterically demanding aryl substituent such as Dip = 2,6-diispropylphenyl, Dep = 2,6-diethylphenyl, Mes = 2,4,6-trimethylphenyl or mesityl, Xyl = 2,6-dimethylphenyl, via one-pot condensation procedures. When a condensation reaction is carried out using the chemical dehydrating agent PPSE (polyphosphoric acid trimethylsilylester), β-diketiminate phosphorus(V) products such as (iPrMesnacnac)PO2 can also be obtained, which can be converted to the respective proligand iPrMesnacnacH via alkaline hydrolysis. The RArnacnacH proligands can be converted to their alkali metal complexes with common methods and we have found that deprotonation of iPrDipnacnacH is significantly more sluggish than that of related β-diketimines with smaller backbone alkyl groups. The basicity of the RArnacnac- anions can play a role in the success of their salt metathesis chemistry and we have prepared and structurally characterised the EtDipnacnac-derived silicon(II) compounds (EtDipnacnac)SiBr and (EtDipnacnac')Si, where EtDipnacnac' is the deprotonated variant MeCHC(NDip)CHC(NDip)Et.
Collapse
Affiliation(s)
- Connor Bourne
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Huanhuan Dong
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Katharine McKain
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Lena C Mayer
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Aidan P McKay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Andreas Stasch
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
4
|
Hendi Z, Pandey MK, Rachuy K, Singh MK, Herbst-Irmer R, Stalke D, Roesky HW. Synthesis, Reactivity, and Complexation with Fe(0) of a Tight-bite Bis(N-heterocyclic silylene). Chemistry 2024; 30:e202400389. [PMID: 38494463 DOI: 10.1002/chem.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
The synthesis, reactivity, and complexation with Fe(0) precursor of a tight-bite bis(N-heterocyclic silylene) (bis(NHSi)) ligand 1 are reported. The reaction of 1 with p-toluidine led to the activation of both N-H bonds across Si(II) atoms to afford a four-membered heterocyclic cyclodisilazane 2, with hydride substituents attached to five-coordinate Si atoms. A 1 : 2 reaction of 1 with Fe(CO)5 led to an intriguing dinuclear complex 3 featuring a five-membered (N-Si-Fe-Fe-Si) ring with a Fe-Fe bond distance of 2.6892(13) Å. All compounds (1-3) were thoroughly characterized by various spectroscopic methods and X-ray diffraction studies conclusively established their molecular structures. DFT calculations were carried out to shed light on bonding and energetic aspects in 1-3.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Katharina Rachuy
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Mukesh K Singh
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
5
|
Bian L, Shan S, Lian Y, Xiao L, Liu D, Li C, Xu H, Yan B. Ab Initio Study on Electronic Excited States of Monochlorosilylene. J Phys Chem A 2024; 128:3170-3179. [PMID: 38624170 DOI: 10.1021/acs.jpca.4c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We perform a high-level ab initio study on 20 electronic states of monochlorosilylene (HSiCl) using an internally contracted multireference configuration interaction method including Davidson correction (icMRCI+Q). The spin-orbit coupling (SOC) effect is investigated, leading to splitting of the 20 spin-orbit-free states into 50 spin-orbit-coupled states. Vertical transition energies, oscillator strengths, and potential energy curves are presented with and without considering the SOC effect. Analysis indicates that the SOC effect plays an important role, especially for the high-lying excited states of HSiCl. The state interaction and the dynamics of the electronic states of HSiCl in the ultraviolet region are discussed based on our calculation results. Our study paves the way to understanding the behavior of electronic excited states of monochlorosilylene.
Collapse
Affiliation(s)
- Lili Bian
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Shimin Shan
- School of Science, North University of China, Taiyuan 030051, China
| | - Yi Lian
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lidan Xiao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Di Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Chao Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Haifeng Xu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bing Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Muralidharan AV, Frenette BL, Wicke J, Omaña AA, Ferguson MJ, Rivard E. Frustrated Lewis pair adducts of alkynyl-capped tetrelenes. Dalton Trans 2024; 53:7206-7212. [PMID: 38584458 DOI: 10.1039/d4dt00795f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The frustrated Lewis pair (FLP) adducts PB{ECl2} (PB = iPr2P(C6H4)BCy2; Cy = cyclohexyl; E = Si, Ge) were used to access a bis(alkynyl)-functionalized silylene and a germylene; the goal behind preparing these species was to obtain new unsaturated main group polymers [E(CCSiMe3)2]n upon heating. While the silylene adduct PB{Si(CCSiMe3)2} was stable up to 150 °C, the heavier element congener PB{Ge(CCSiMe3)2} underwent a complicated rearrangement process accompanied by Cy-group migration and Ge(II)-alkyne coordination. Density functional theory computations were performed to understand the mechanistic pathway for the unusual rearrangement of PB{Ge(CCSiMe3)2}.
Collapse
Affiliation(s)
- Abhishek V Muralidharan
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Julius Wicke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438, Frankfurt am Main, Germany
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
7
|
Merschel A, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Access to a peri-Annulated Aluminium Compound via C-H Bond Activation by a Cyclic Bis-Aluminylene. Chemistry 2024; 30:e202400293. [PMID: 38345596 DOI: 10.1002/chem.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Carbocyclic aluminium halides [(ADC)AlX2]2 (2-X) (X=F, Cl, and I) based on an anionic dicarbene (ADC=PhC{N(Dipp)C}2, Dipp = 2,6-iPr2C6H3) framework are prepared as crystalline solids by dehydrohalogenations of the alane [(ADC)AlH2]2 (1). KC8 reduction of 2-I affords the peri-annulated Al(III) compound [(ADCH)AlH]2 (4) (ADCH=PhC{N(Dipp)C2(DippH)N}, DippH=2-iPr,6-(Me2C)C6H3)) as a colorless crystalline solid in 76 % yield. The formation of 4 suggests intramolecular insertion of the putative bis-aluminylene species [(ADC)Al]2 (3) into the methine C-H bond of HCMe2 group. Calculations predict singlet ground state for 3, while the conversion of 3 into 4 is thermodynamically favored by 61 kcal/mol. Compounds 2-F, 2-Cl, 2-I, and 4 have been characterized by NMR spectroscopy and their solid-state molecular structures have been established by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
8
|
Tran PM, Wang Y, Lahm ME, Wei P, Schaefer HF, Robinson GH. Unusual nucleophilic reactivity of a dithiolene-based N-heterocyclic silane. Dalton Trans 2024; 53:6178-6183. [PMID: 38506299 DOI: 10.1039/d3dt03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
While the dithiolene-based N-heterocyclic silane (4) reacts with two equivalents of BX3 (X = Br, I) to give zwitterionic Lewis adducts 5 and 8, respectively, the parallel reaction of 4 with BCl3 results in 10, a dithiolene-substituted N-heterocyclic silane, via the Si-S bond cleavage. Unlike 5, the labile 8 may be readily converted to 9via BI3-mediated cleavage of the Si-N bond. The formation of 5 and 8 confirms that 4 uniquely possesses dual nucleophilic sites: (a) the terminal sulphur atom of the dithiolene moiety; and (b) the backbone carbon of the N-heterocyclic silane unit.
Collapse
Affiliation(s)
- Phuong M Tran
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Mitchell E Lahm
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Pingrong Wei
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Henry F Schaefer
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, USA.
| |
Collapse
|
9
|
Kapp L, Wölper C, Siera H, Haberhauer G, Schulz S. Catalytic hydroboration of aldehydes and ketones with an electron-rich acyclic metallasilylene. Chem Sci 2024; 15:4161-4170. [PMID: 38487240 PMCID: PMC10935726 DOI: 10.1039/d3sc06842k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
The application of main group metal complexes in catalytic reactions is of increasing interest. Here we show that the electron-rich, acyclic metallasilylene L'(Cl)GaSiL C (L' = HC[C(Me)NDipp]2, Dipp = 2,6-iPr2C6H3; L = PhC(NtBu)2) acts as a precatalyst in the hydroboration of aldehydes with HBPin. Mechanistic studies with iso-valeraldehyde show that silylene C first reacts with the aldehyde with [2 + 1] cycloaddition in an oxidative addition to the oxasilirane 1, followed by formation of the alkoxysilylene LSiOCH[Ga(Cl)L']CH2CHMe2 (2), whose formation formally results from a reductive elimination reaction at the Si center. Alkoxysilylene 2 represents the active hydroboration catalyst and shows the highest catalytic activity with n-hexanal (reaction time: 40 min, yield: >99%, TOF = 150 h-1) at room temperature with a catalytic load of only 1 mol%. Furthermore, the hydroboration reaction catalysed by alkoxysilylene 2 is a living reaction with good chemoselectivity. Quantum chemical calculations not only provide mechanistic insights into the formation of alkoxysilylene 2 but also show that two completely different hydroboration mechanisms are possible.
Collapse
Affiliation(s)
- Leon Kapp
- Institute for Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Hannah Siera
- Institute for Organic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Gebhard Haberhauer
- Institute for Organic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
- Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen Carl-Be Germany
| |
Collapse
|
10
|
Pandey MK, Hendi Z, Wang X, Bhandari A, Singh MK, Rachuy K, Kumar Kushvaha S, Herbst-Irmer R, Stalke D, Roesky HW. Stabilization of NH- Group Adjacent to Naked Silicon(II) Atom in Base Stabilized Aminosilylenes. Angew Chem Int Ed Engl 2024; 63:e202317416. [PMID: 38135667 DOI: 10.1002/anie.202317416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Aminosilylene, comprising reactive NH- and Si(II) sites next to each other, is an intriguing class of compounds due to its ability to show diverse reactivity. However, stabilizing the reactive NH- group next to the free Si(II) atom is challenging and has not yet been achieved. Herein, we report the first examples of base stabilized free aminosilylenes Ar*NHSi(PhC(Nt Bu)2 ) (1 a) and Mes*NHSi(PhC(Nt Bu)2 ) (1 b) (Ar*=2,6-dibenzhydryl-4-methylphenyl and Mes*=2,4,6-tri-tert-butylphenyl), tolerating a NH- group next to the naked Si(II) atom. Remarkably, 1 a and 1 b exhibited interesting differences in their reactivity upon heating. With 1 a, an intramolecular C(sp3 )-H activation of one of the benzhydryl methine hydrogen atoms to the Si(II) atom produced the five-membered cyclic silazane 2. However, with 1 b, a rare 1,2-hydrogen shift to the Si(II) atom afforded a silanimine 3, with a hydride ligand attached to an unsaturated silicon atom. Further, the coordination capabilities of 1 a were also tested with Ru(II) and Fe(0) precursors. Treatments of 1 a with [Ru(η6 -p-cymene)Cl2 ]2 led to the isolation of a η6 -arene tethered complex [RuCl2 {Ar*NHSi(PhC(t BuN)2 )-κ1 -Si-η6 -arene}] (4), whereas with the Fe(CO)5 precursor a Fe(0) complex [Fe(CO)4 {Ar*NHSi(PhC(t BuN)2 )-κ1 -Si}] (5) was obtained. Density functional theory (DFT) calculations were conducted to shed light on the structural, bonding, and energetic aspects in 1-5.
Collapse
Affiliation(s)
- Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Xiaobai Wang
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Anirban Bhandari
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Mukesh K Singh
- School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, UK
| | - Katharina Rachuy
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
11
|
Govindarajan R, Fayzullin RR, Deolka S, Khaskin E, Vasylevskyi S, Vardhanapu PK, Pal S, Khusnutdinova JR. Facile Access to Cationic Methylstannylenes and Silylenes Stabilized by E-Pt Bonding and their Methyl Group Transfer Reactivity. Chemistry 2024; 30:e202303789. [PMID: 37984073 DOI: 10.1002/chem.202303789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
We describe a family of cationic methylstannylene and chloro- and azidosilylene organoplatinum(II) complexes supported by a neutral, binucleating ligand. Methylstannylenes MeSn:+ are stabilized by coordination to PtII and are formed by facile Me group transfer from dimethyl or monomethyl PtII complexes, in the latter case triggered by concomitant B-H, Si-H, and H2 bond activation that involves hydride transfer from Sn to Pt. A cationic chlorosilylene complex was obtained by formal HCl elimination and Cl- removal from HSiCl3 under ambient conditions. The computational studies show that stabilization of cationic methylstannylenes and cationic silylenes is achieved through weak coordination to a neutral N-donor ligand binding pocket. The analysis of the electronic potentials, as well as the Laplacian of electron density, also reveals the differences in the character of Pt-Si vs. Pt-Sn bonding. We demonstrate the importance of a ligand-supported binuclear Pt/tetrel core and weak coordination to facilitate access to tetrylium-ylidene Pt complexes, and a transmetalation approach to the synthesis of MeSnII :+ derivatives.
Collapse
Affiliation(s)
- Ramadoss Govindarajan
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russian Federation
| | - Shubham Deolka
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Serhii Vasylevskyi
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Pavan K Vardhanapu
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shrinwantu Pal
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
12
|
Ebeler F, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Isolation of an Anionic Dicarbene Embedded Sn 2 P 2 Cluster and Reversible CO 2 Uptake. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305545. [PMID: 38018314 PMCID: PMC10837339 DOI: 10.1002/advs.202305545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Indexed: 11/30/2023]
Abstract
Decarbonylation of a cyclic bis-phosphaethynolatostannylene [(ADC)Sn(PCO)]2 based on an anionic dicarbene framework (ADC = PhC{N(Dipp)C}2 ; Dipp = 2,6-iPr2 C6 H3 ) under UV light results in the formation of a Sn2 P2 cluster compound [(ADC)SnP]2 as a green crystalline solid. The electronic structure of [(ADC)SnP]2 is analyzed by quantum-chemical calculations. At room temperature, [(ADC)SnP]2 reversibly binds with CO2 and forms [(ADC)2 {SnOC(O)P}SnP]. [(ADC)SnP]2 enables catalytic hydroboration of CO2 and reacts with elemental selenium and Fe2 (CO)9 to afford [(ADC)2 {Sn(Se)P2 }SnSe] and [(ADC)Sn{Fe(CO)4 }P]2 , respectively. All compounds are characterized by multinuclear NMR spectroscopy and their solid-state molecular structures are determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
13
|
Liu R, Mondal KC, Wang C, Suthar S, Fang Z, Zuo D, Li Y. Synthesis of SiN/SiS-heterocycles via the reactions of a bis-silylene with isocyanate/isothiocyanate molecules. Chem Commun (Camb) 2024; 60:1148-1151. [PMID: 38189208 DOI: 10.1039/d3cc04950g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Reactions of o-carborane-fused bis-silylene 1 with isocyanate/isothiocyanate molecules furnished a series of SiN/SiS-heterocycles, which show distinct styles of cyclization and were theoretically studied.
Collapse
Affiliation(s)
- Rui Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Chenfeng Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Sonam Suthar
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Zijie Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Darui Zuo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
14
|
Abstract
Low valent group 14 compounds exhibit diverse structures and reactivities. The employment of diazaborolyl anions (NHB anions), isoelectronic analogues to N-heterocyclic carbenes (NHCs), in group 14 chemistry leads to the exceptional structures and reactivity. The unique combination of σ-electron donation and pronounced steric hindrance impart distinct structural characteristics to the NHB-substituted low valent group 14 compounds. Notably, the modulation of the HOMO-LUMO gap in these compounds with the diazaborolyl substituents results in novel reaction patterns in the activation of small molecules and inert chemical bonds. This review mainly summarizes the recent advances in NHB-substituted low-valent heavy Group 14 compounds, emphasizing their synthesis, structural characteristics and application to small molecule activation.
Collapse
Affiliation(s)
- Chenxi Duan
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, China.
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, China.
| |
Collapse
|
15
|
Frenette BL, Rivard E. Frustrated Lewis Pair Chelation in the p-Block. Chemistry 2023; 29:e202302332. [PMID: 37677126 DOI: 10.1002/chem.202302332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Frustrated Lewis pairs (FLPs) have been the subject of considerable study since the field's inception. While much of the research into FLPs has centered around small molecule activation for diverse stoichiometric and catalytic transformations, intramolecular FLPs also show promise as chelating ligands. The cooperative action of Lewis basic and acidic moieties enables intramolecular FLPs to stabilize low oxidation state centers and (consequently) reactive molecular fragments through a donor-acceptor approach, making them an attractive ligand class in main group element chemistry. This review outlines the state of FLP chelation to date throughout the p-block, encompassing primarily groups 13-16.
Collapse
Affiliation(s)
- Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
16
|
Cabeza JA, Reynes JF, García F, García-Álvarez P, García-Soriano R. Fast and scalable solvent-free access to Lappert's heavier tetrylenes E{N(SiMe 3) 2} 2 (E = Ge, Sn, Pb) and ECl{N(SiMe 3) 2} (E = Ge, Sn). Chem Sci 2023; 14:12477-12483. [PMID: 38020393 PMCID: PMC10646885 DOI: 10.1039/d3sc02709k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/03/2023] [Accepted: 09/24/2023] [Indexed: 12/01/2023] Open
Abstract
Iconic Lappert's heavier tetrylenes E{N(SiMe3)2}2 (E = Ge (1), Sn (2), Pb (3)) have been efficiently prepared from GeCl2·(1,4-dioxane), SnCl2 or PbCl2 and Li{N(SiMe3)2} via a completely solvent-free one-pot mechanochemical route followed by sublimation. This fast, high-yielding and scalable approach (2 has been prepared in a 100 mmol scale), which involves a small environmental footprint, represents a remarkable improvement over any synthetic route reported over the last five decades, being a so far rare example of the use of mechanochemistry in the realm of main group chemistry. This solventless route has been successfully extended to the preparation of other heavier tetrylenes, such as ECl{N(SiMe3)2} (E = Ge (4), Sn (5)).
Collapse
Affiliation(s)
- Javier A Cabeza
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Pablo García-Álvarez
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| | - Rubén García-Soriano
- Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Oviedo 33071 Oviedo Spain
| |
Collapse
|
17
|
Wang C, Su MD, Fang Z, Zhou J, Zhang H, Li X, Zuo D, Zhang ZF, Li Y. SiP-heterocycles derived from a bulky phosphanylsilylene. Chem Commun (Camb) 2023; 59:10275-10278. [PMID: 37539464 DOI: 10.1039/d3cc02512h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bis(1-adamantyl)phosphanylsilylene 1 was reacted with ArCCR (Ar = Ph, 4-iPr-C6H4, 3-F-C6H4; R = H, Ph) at 80 °C under microwave irradiation to afford fluorescence-active SiP-heterocycles 3a-d, which may undergo unique isomerizations starting from silirene intermediates. Moreover, the treatment of 1 with AdCP furnished a heavy congener of cyclopentadiene (4), whose formation involves cleavage of the Si(II)-P bond that is rarely observed in silylene chemistry.
Collapse
Affiliation(s)
- Chenfeng Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zijie Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Jiahao Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Haoqi Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Xiaodi Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Darui Zuo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
18
|
Sarcevic J, Heitkemper T, Ruth PN, Naß L, Kubis M, Stalke D, Sindlinger CP. A donor-supported silavinylidene and silylium ylides: boroles as a flexible platform for versatile Si(ii) chemistry. Chem Sci 2023; 14:5148-5159. [PMID: 37206392 PMCID: PMC10189903 DOI: 10.1039/d3sc00808h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 09/22/2024] Open
Abstract
Electron-deficient, anti-aromatic 2,5-disilyl boroles are shown to be a flexibly adaptive molecular platform with regards to SiMe3 mobility in their reaction with the nucleophilic donor-stabilised precursor dichloro silylene SiCl2(IDipp). Depending on the substitution pattern, selective formation of two fundamentally different products of rivalling formation pathways is achieved. Formal addition of the dichlorosilylene gives the 5,5-dichloro-5-sila-6-borabicyclo[2.1.1]hex-2-ene derivatives. Under kinetically controlled conditions, SiCl2(IDipp) induces 1,3-trimethylsilyl migration and adds exocyclically to the generated carbene fragment giving an NHC-supported silylium ylide. In some cases interconversion between these compound classes was triggered by temperature or NHC-addition. Reduction of silaborabicyclo[2.1.1]hex-2-ene derivatives under forcing conditions gave clean access to recently described nido-type cluster Si(ii) half-sandwich complexes of boroles. Reduction of a NHC-supported silylium ylide gave an unprecedented NHC-supported silavinylidene which rearranges to the nido-type cluster at elevated temperatures.
Collapse
Affiliation(s)
- Julijan Sarcevic
- Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70169 Stuttgart Germany
| | - Tobias Heitkemper
- Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70169 Stuttgart Germany
| | - Paul Niklas Ruth
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Leonard Naß
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Maximilian Kubis
- Institut für Anorganische Chemie, RWTH Aachen University Landoltweg 1a 52074 Aachen Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Christian P Sindlinger
- Institut für Anorganische Chemie, Universität Stuttgart Pfaffenwaldring 55 70169 Stuttgart Germany
| |
Collapse
|
19
|
Shan C, Dong S, Yao S, Zhu J, Driess M. Synthesis and Reactivity of an Anti-van't Hoff/Le Bel Compound with a Planar Tetracoordinate Silicon(II) Atom. J Am Chem Soc 2023; 145:7084-7089. [PMID: 36943751 DOI: 10.1021/jacs.3c00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
For a long time, planar tetracoordinate carbon (ptC) represented an exotic coordination mode in organic and organometallic chemistry, but it is now a useful synthetic building block. In contrast, realization of planar tetracoordinate silicon (ptSi), a heavier analogue of ptC, is still challenging. Herein we report the successful synthesis and unusual reactivity of the first ptSi species of divalent silicon present in 3, supported by the chelating bis(N-heterocyclic silylene)bipyridine ligand, 2,2'-{[(4-tBuPh)C(NtBu)]2SiNMe}2(C5N)2, 1]. The compound resulted from direct reaction of 1 with Idipp-SiI2 [Idipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Alternatively, it can also be synthesized by a two-electron reduction of the corresponding Si(IV) precursor 2 with 2 molar equiv of KC10H8. Density functional theory calculations show that the lone pair at the ptSi(II) resides almost completely in its 3pz orbital, very different from known four-coordinate silylenes. Oxidative addition of MeI to the ptSi(II) atom affords the corresponding pentacoordinate Si(IV) compound 4, with the methyl group located in an apical position. Remarkably, the reaction of 2 with [CuOtBu] leads to the regeneration of the bis(silylene) arms via Si-Si bond scission and induces the Si(II) → Si(IV) oxidation of the central Si(II) atom and concomitant two-electron reduction of the bipyridine moiety to form the neutral bis(silylene)silyl Cu(I) complex 5.
Collapse
Affiliation(s)
- Changkai Shan
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, 10623 Berlin, Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Shenglai Yao
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, 10623 Berlin, Germany
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Matthias Driess
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, 10623 Berlin, Germany
| |
Collapse
|
20
|
Becerra R, Cannady JP, Walsh R. Time-resolved, Gas-phase Kinetic and Quantum Chemical Studies of the Reaction of Germylene with Hydrogen Chloride. Chemphyschem 2023; 24:e202200902. [PMID: 36806423 DOI: 10.1002/cphc.202200902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Time-resolved studies of germylene, GeH2 , generated by laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene at 193 nm and monitored by laser absorption, have been carried out to obtain rate constants for its bimolecular reaction with HCl. The reaction was studied in the gas phase, mainly at a total pressure of 10 Torr (in SF6 bath gas) at five temperatures in the range 295-558 K. Experiments at other pressures showed that these rate constants were unaffected by pressure. The second-order rate constants at 10 Torr (SF6 bath gas) fitted the Arrhenius equation: log(k/cm3 molecule-1 s-1 )=(-12.06±0.14)+(2.58±1.03 kJ mol-1 )/RTln10 where the uncertainties are single standard deviations. Quantum chemical calculations at G4 level support a mechanism in which an initial weakly bound donor-acceptor complex is formed. This can then rearrange and decompose to give H2 and HGeCl (chlorogermylene). The enthalpy barrier (36 kJ mol-1 ) is too high to allow rearrangement of the complex to GeH3 Cl (chlorogermane).
Collapse
Affiliation(s)
- Rosa Becerra
- Instituto de Quimica-Fisica 'Rocasolano' C.S.I.C., C/Serrano 119, 28006, Madrid, Spain
| | - J Pat Cannady
- Dow Chemical Company, 2030 Dow Center, Midland, MI-48674, USA
| | - Robin Walsh
- Department of Chemistry, University of Reading Whiteknights, P.O. Box 224, Reading, RG6 6AD, UK
| |
Collapse
|
21
|
Zhang Y, Wu L, Wang H. Application of N-heterocyclic silylenes in low-valent group 13, 14 and 15 chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Liu R, Tang Y, Wang C, Zhang ZF, Su MD, Li Y. Diverse Reactions of o-Carborane-Fused Silylenes with C≡E (E = C, P) Triple Bonds. Inorg Chem 2023; 62:1095-1101. [PMID: 36617725 DOI: 10.1021/acs.inorgchem.2c03140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The reactivities of o-carborane-fused silylenes toward molecules with C≡E (E = C, P) bonds are reported. The reactions of bis(silylene) [(LSi:)C]2B10H10 (1a, L = PhC(NtBu)2) with arylalkynes afforded bis(silylium) carborane adducts 2 and 3, showing a Si(μ-C2)Si structure with an open-cage nido-carborane backbone. In contrast, the reaction of 1a with a phosphaalkyne AdC≡P (Ad = 1-adamantyl) smoothly furnished compound 4, comprising fused CPSi rings with a C=Si double bond and Si-Si single bond, and the related formation mechanism was investigated by DFT calculations. Furthermore, when monosilylene [(LSi:)C]CHB10H10 (1b) was employed to react with AdC≡P, compound 5 was isolated. The structure of 5 features a 1,2,3-triphosphetene core. All products were characterized by NMR spectroscopy and/or X-ray crystallography.
Collapse
Affiliation(s)
- Rui Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yanyan Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Chenfeng Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
23
|
Arsenyeva KV, Piskunov AV. HETEROCYCLIC HEAVY ANALOGUES OF CARBENES: STRUCTURE AND CHEMICAL PROPERTIES. REVIEW. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
24
|
Liu C, Liu R, Wang C, Tang Y, Zhang ZF, Su MD, Li Y. Isolation of Silacycles from the Reactions of a Monochlorosilylene LSi(:)Cl (L = PhC(N tBu) 2) with Ethynyl Lithium Salts. Inorg Chem 2022; 61:15864-15870. [PMID: 36178201 DOI: 10.1021/acs.inorgchem.2c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of amidinate silylene chloride LSi(:)Cl (L = PhC(NtBu)2) with TMS- and Ph-ethynyl lithium salts gave rise to silacycles 1 and 4, respectively. The formation of 1 and 4 may undergo cyclo-condensations of transient ethynylsilylene intermidiates and the activation of an amidinate backbone. The distinct structures of 1 and 4 may be derived from the different electronic or steric properties of ethynyl substituents, and their formation mechanisms were investigated by density functional theory (DFT) calculations. Moreover, a sequential reaction of LSi(:)Cl with BH3·SMe2 and TMSC≡CLi as well as a reaction of LSi(:)Cl with TMSC≡CLi under O2 exclusively obtained ethynylsilanes 2 and 3, respectively, which indicated that either blocking a lone pair of a Si(II) atom or oxidizing Si(II) to Si(IV) prevents the further conversion of ethynylsilylenes to silacycle 1. All products were characterized by NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Chenghuan Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenfeng Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanyan Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
25
|
Ebeler F, Vishnevskiy YV, Neumann B, Stammler H, Ghadwal RS. Mesoionic Dithiolates (MIDts) Derived from 1,3-Imidazole-Based Anionic Dicarbenes (ADCs). Chemistry 2022; 28:e202200739. [PMID: 35363912 PMCID: PMC9323478 DOI: 10.1002/chem.202200739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/22/2022]
Abstract
Mesoionic dithiolates [(MIDtAr )Li(LiBr)2 (THF)3 ] (MIDtAr ={SC(NDipp)}2 CAr; Dipp=2,6-iPr2 C6 H3 ; Ar=Ph 3 a, 3-MeC6 H4 (3-Tol) 3 b, 4-Me2 NC6 H4 (DMP) 3 c) and [(MIDtPh )Li(THF)2 ] (4) are readily accessible (in≥90 % yields) as crystalline solids on treatments of anionic dicarbenes Li(ADCAr ) (2 a-c) (ADCAr ={C(NDipp)2 }2 CAr) with elemental sulfur. 3 a-c and 4 are monoanionic ditopic ligands with both the sulfur atoms formally negatively charged, while the 1,3-imidazole unit bears a formal positive charge. Treatment of 4 with (L)GeCl2 (L=1,4-dioxane) affords the germylene (MIDtPh )GeCl (5) featuring a three-coordinated Ge atom. 5 reacts with (L)GeCl2 to give the Ge-Ge catenation product (MIDtPh )GeGeCl3 (6). KC8 reduction of 5 yields the homoleptic germylene (MIDtPh )2 Ge (7). Compounds 3 a-c and 4-7 have been characterized by spectroscopic studies and single-crystal X-ray diffraction. The electronic structures of 4-7 have been analyzed by DFT calculations.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Yury V. Vishnevskiy
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
26
|
Gour K, Bisai MK, Sen SS. Hypersilyl Substituent in Heavier Low‐valent Group 14 Chemistry. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kritika Gour
- CSIR-NCL: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Milan Kumar Bisai
- CSIR-NCL: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Sakya S. Sen
- National Chemical Laboraotry Catalysis Division Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
27
|
Ghadwal RS. Tuning the Electronic Properties of Main-Group Species by N-Heterocyclic Vinyl (NHV) Scaffolds. Acc Chem Res 2022; 55:457-470. [PMID: 35042327 DOI: 10.1021/acs.accounts.1c00701] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusMolecules and materials with easily tunable electronic structures and properties are at the forefront of contemporary research. π-Conjugation is fundamental in organic chemistry and plays a key role in the design of molecular materials. In this Account, we showcase the applicability of N-heterocyclic vinyl (NHV) substituents based on classical N-heterocyclic carbenes (NHCs) for tuning the structure, properties, and stability of main-group species (E) via π-conjugation and/or π-donation.NHVs such as [(NHC)═CR] (R = H or aryl) are monoanionic ligands formally derived by the deprotonation of N-heterocyclic olefins (NHOs), (NHC)═CHR. Further deprotonation of [(NHC)═CR] (R = H) is viable, giving rise to N-heterocyclic vinylidene (NHVD) species such as (NHC)═C. NHVs and NHVDs feature a highly polarizable exocyclic CNHC═C bond because of the presence of adjacent π-donor nitrogen atoms. The nature of the NHC, in particular the π-acceptor property, has a direct consequence on the polarity of the CNHC═C bond and hence on the magnitude of π-conjugation in the derived molecules. Thus, the electronic structure, especially the energy and shape of frontier molecular orbitals, HOMO and LUMO, of derived species can be fine-tuned by a judicious choice of the carbene unit. For instance, the HOMO of classical diphosphenes (RP═PR) (R = alkyl or aryl) is invariably the phosphorus lone-pair orbital, while the P═P π-bond is HOMO - 1 or HOMO - 2. In strong contrast, the HOMO of divinyldiphosphenes (R = NHV) is mainly the P═P π-bond. This is owing to the π-conjugation, resulting in the lowering of the LUMO and raising of the HOMO energy. They have a remarkably small HOMO-LUMO energy gap (4.15-4.50 eV) and readily undergo 1e-oxidations, giving rise to stable radical cations and dications.By employing a similar approach, one can access divinyldiarsenes and the corresponding radical cations and dications as crystalline solids. The use of divinyldiphosphenes and divinyldiarsenes as promising ligands in the stabilization of metalloradicals has been shown. By a logical selection of singlet carbenes, stable 2-phosha-1,3-butadiene and 2-arsa-1,3-butadiene compounds, as well as related radical cations and dications, can be prepared as crystalline solids.The relevance of NHV ligands as potent π-donors has been demonstrated for the stabilization of elusive electrophilic phosphinidene and arsinidene complexes {(NHV)E}Fe(CO)4 (E = P or As). Moreover, stable singlet diradicaloid [(NHC)CP]2 and p-quinodimethane derivatives [(NHC)CP2]2 based on an NHVD framework are accessible as stable solids.In this Account, a special emphasis is given to the contributions from this laboratory. The author hopes that this Account will serve as a useful reference guide for researchers interested in studying and applying NHV and NHVD scaffolds in modern molecular chemistry and materials sciences.
Collapse
Affiliation(s)
- Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
28
|
Affiliation(s)
- Shiori Fujimori
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
29
|
Roesky HW, Nazish M, Ding Y, Legendre CM, Kumar A, Graw N, Schwederski B, Herbst-Irmer R, P P, Parameswaran P, Stalke D, Kaim W. High yield of a variety of silicon-boron radicals and their reactivity. Dalton Trans 2022; 51:11040-11047. [DOI: 10.1039/d2dt01318e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report stable silicon-boron radicals of composition LSi(NMe2)-B(Br)Tip (1), LSi(NMe2)-B(I)Tip (2) LSi(tBu)-B(I)Tip (3) [L=PhC(NtBu)2]. They were prepared in high yield using a one-pot reaction of LSiR, X2BTip, and KC8...
Collapse
|
30
|
Carbenes, related intermediates, and small-sized cycles: contribution from Professor Nefedov’s laboratory. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
N‐nacnac stabilized tetrylenes: access to silicon hydride systems
via
migration processes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Bochmann S, Böhme U, Brendler E, Friebel M, Gerwig M, Gründler F, Günther B, Kroke E, Lehnert R, Ruppel L. Unexpected Formation of the Highly Symmetric Borate Ion [B(SiCl
3
)
4
]
−. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Uwe Böhme
- Institut für Anorganische Chemie TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Erica Brendler
- Institut für Analytische Chemie TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Mike Friebel
- Institut für Anorganische Chemie TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Maik Gerwig
- Institut für Anorganische Chemie TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Franziska Gründler
- Institut für Anorganische Chemie TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Betty Günther
- Institut für Anorganische Chemie TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Edwin Kroke
- Institut für Anorganische Chemie TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Robert Lehnert
- Wacker Chemie AG Friedrich-von-Heyden-Platz 1 01612 Nünchritz Germany
| | - Lars Ruppel
- Wacker Chemie AG Friedrich-von-Heyden-Platz 1 01612 Nünchritz Germany
| |
Collapse
|
33
|
Gorantla SMNVT, Parameswaran P, Mondal KC. Stabilization of group 14 elements E = C, Si, Ge by hetero-bileptic ligands cAAC, MCO n with push-pull mechanism. J Comput Chem 2021; 42:1159-1177. [PMID: 33856693 DOI: 10.1002/jcc.26530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 11/05/2022]
Abstract
The stability and bonding of a series of hetero-diatomic molecules with general formula (cAAC)EM(CO)n , where cAAC = cyclic alkyl(amino) carbene; E = group 14 elements (C, Si, and Ge); M = transition metal (Ni, Fe, and Cr) have been studied by quantum chemical calculations using density functional theory (DFT) and energy decomposition analysis-natural orbital chemical valence (EDA-NOCV). The equilibrium geometries were calculated at the BP86/def2-TZVPP level of theory. The tri-coordinated group 14 complex (1a, 4a, and 7a) in which one of the CO groups is migrated to the central group 14 element from adjacent metal is theoretically found to be more stable when the central atom (E) is carbon. On the other hand, the two-coordinate group 14 element containing metal-complexes (2, 5, 8, 3, 6, and 9) are found to be more stable with their corresponding heavier analogues. The electronic structures of all the molecules have been analyzed by molecular orbital, topological analysis of electron density and natural bond orbital (NBO) analysis at the M06/def2-TZVPP//BP86/def2-TZVPP level of theory. The nature of the cAACE and EM bonds has been studied by EDA-NOCV calculations at BP86-D3(BJ)/TZ2P level of theory. The EDA analysis suggests that the bonding of cAACC(CO) can be best represented by electron sharing σ and π interactions, whereas, C(CO)M(CO)n-1 by dative σ and π interactions. On the other hand, EDA-NOCV calculations suggests both dative σ and π interactions for cAACE and EM(CO)n bonds of the corresponding Si and Ge analogues having stronger σ- and relatively weaker π-bonds. The topological analysis of electron density supports the closed-shell interaction for the Si and Ge complexes and open-shell interaction for the carbon complexes. The calculated proton affinity and hydride affinity values corroborated well with the present bonding description. This class of complexes might act as efficient future catalysts for different organic transformations due to the presence of electron rich group 14 element and metal carbonyl.
Collapse
|
34
|
Roy MMD, Baird SR, Dornsiepen E, Paul LA, Miao L, Ferguson MJ, Zhou Y, Siewert I, Rivard E. A Stable Homoleptic Divinyl Tetrelene Series. Chemistry 2021; 27:8572-8579. [PMID: 33848023 PMCID: PMC8252546 DOI: 10.1002/chem.202100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/16/2022]
Abstract
The synthesis of the new bulky vinyllithium reagent (Me IPr=CH)Li, (Me IPr=[(MeCNDipp)2 C]; Dipp=2,6-iPr2 C6 H3 ) is reported. This vinyllithium precursor was found to act as a general source of the anionic 2σ, 2π-electron donor ligand [Me IPr=CH]- . Furthermore, a high-yielding route to the degradation-resistant SiII precursor Me IPr⋅SiBr2 is presented. The efficacy of (Me IPr=CH)Li in synthesis was demonstrated by the generation of a complete inorganic divinyltetrelene series (Me IPrCH)2 E: (E=Si to Pb). (Me IPrCH)2 Si: represents the first two-coordinate acyclic silylene not bound by heteroatom donors, with dual electrophilic and nucleophilic character at the SiII center noted. Cyclic voltammetry shows this electron-rich silylene to be a potent reducing agent, rivalling the reducing power of the 19-electron complex cobaltocene (Cp2 Co).
Collapse
Affiliation(s)
- Matthew M. D. Roy
- Department of ChemistryUniversity of Alberta11227 Saskatchewan Dr.EdmontonAlbertaT6G 2G2Canada
| | - Samuel R. Baird
- Department of ChemistryUniversity of Alberta11227 Saskatchewan Dr.EdmontonAlbertaT6G 2G2Canada
| | - Eike Dornsiepen
- Department of ChemistryUniversity of Alberta11227 Saskatchewan Dr.EdmontonAlbertaT6G 2G2Canada
| | - Lucas A. Paul
- Universität GöttingenInstitut für Anorganische ChemieTammannstr. 437077GöttingenGermany
| | - Linkun Miao
- Department of ChemistryUniversity of Alberta11227 Saskatchewan Dr.EdmontonAlbertaT6G 2G2Canada
| | - Michael J. Ferguson
- Department of ChemistryUniversity of Alberta11227 Saskatchewan Dr.EdmontonAlbertaT6G 2G2Canada
| | - Yuqiao Zhou
- Department of ChemistryUniversity of Alberta11227 Saskatchewan Dr.EdmontonAlbertaT6G 2G2Canada
| | - Inke Siewert
- Universität GöttingenInstitut für Anorganische ChemieTammannstr. 437077GöttingenGermany
| | - Eric Rivard
- Department of ChemistryUniversity of Alberta11227 Saskatchewan Dr.EdmontonAlbertaT6G 2G2Canada
| |
Collapse
|
35
|
Nazish M, Siddiqui MM, Kumar Sarkar S, Münch A, Legendre CM, Herbst‐Irmer R, Stalke D, Roesky HW. Synthesis and Coordination Behavior of a New Hybrid Bidentate Ligand with Phosphine and Silylene Donors. Chemistry 2021; 27:1744-1752. [PMID: 33022783 PMCID: PMC7898821 DOI: 10.1002/chem.202003513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Indexed: 01/10/2023]
Abstract
This work describes the synthesis and coordination behavior of a new mixed-donor ligand PhC(NtBu)2 SiC6 H4 PPh2 (1) containing both silylene and phosphine donor sites. Ligand 1 was synthesized from a reaction of ortho-lithiated diphenylphosphinobenzene (LiC6 H4 PPh2 ) with chlorosilylene (PhC(NtBu)2 SiCl). Treatment of 1 with Se and GeCl2 resulted in SiIV compounds 2 and 3 by selective oxidation of the silylene donor. This strong σ-donor ligand induces dissociation of CuCl and PhBCl2 leading to formation of ionic complexes 4 and 5 respectively. The reaction of 1 with ZnCl2 and AlCl3 resulted in the formation of chelate complexes 5 and 7, respectively, while treatment with EtAlCl2 and GaCl3 forms monodentate complexes 8 and 9. X-ray analysis of 4 showed that the copper is in the spiro center of the two five-membered rings. Moreover, the copper(I)chloride has not been oxidized but dissociates to Cu+ and [CuCl2 ]- . All the compounds are well characterized by mass spectrometry, elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Mohd Nazish
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Mujahuddin M. Siddiqui
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Samir Kumar Sarkar
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Annika Münch
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Christina M. Legendre
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Herbert W. Roesky
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
36
|
Omaña AA, Green RK, Kobayashi R, He Y, Antoniuk ER, Ferguson MJ, Zhou Y, Veinot JGC, Iwamoto T, Brown A, Rivard E. Frustrated Lewis Pair Chelation as a Vehicle for Low-Temperature Semiconductor Element and Polymer Deposition. Angew Chem Int Ed Engl 2021; 60:228-231. [PMID: 32960472 DOI: 10.1002/anie.202012218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 01/03/2023]
Abstract
The stabilization of silicon(II) and germanium(II) dihydrides by an intramolecular Frustrated Lewis Pair (FLP) ligand, PB, i Pr2 P(C6 H4 )BCy2 (Cy=cyclohexyl) is reported. The resulting hydride complexes [PB{SiH2 }] and [PB{GeH2 }] are indefinitely stable at room temperature, yet can deposit films of silicon and germanium, respectively, upon mild thermolysis in solution. Hallmarks of this work include: 1) the ability to recycle the FLP phosphine-borane ligand (PB) after element deposition, and 2) the single-source precursor [PB{SiH2 }] deposits Si films at a record low temperature from solution (110 °C). The dialkylsilicon(II) adduct [PB{SiMe2 }] was also prepared, and shown to release poly(dimethylsilane) [SiMe2 ]n upon heating. Overall, this study introduces a "closed loop" deposition strategy for semiconductors that steers materials science away from the use of harsh reagents or high temperatures.
Collapse
Affiliation(s)
- Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Rachel K Green
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Yingjie He
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Evan R Antoniuk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Alex Brown
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
37
|
Omaña AA, Green RK, Kobayashi R, He Y, Antoniuk ER, Ferguson MJ, Zhou Y, Veinot JGC, Iwamoto T, Brown A, Rivard E. Frustrated Lewis Pair Chelation as a Vehicle for Low‐Temperature Semiconductor Element and Polymer Deposition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alvaro A. Omaña
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Rachel K. Green
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Ryo Kobayashi
- Department of Chemistry Graduate School of Science Tohoku University, Aoba-ku Sendai 980-8578 Japan
| | - Yingjie He
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Evan R. Antoniuk
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Ferguson
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Yuqiao Zhou
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Jonathan G. C. Veinot
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Takeaki Iwamoto
- Department of Chemistry Graduate School of Science Tohoku University, Aoba-ku Sendai 980-8578 Japan
| | - Alex Brown
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Eric Rivard
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
38
|
Krahfuss MJ, Radius U. N-Heterocyclic silylenes as ambiphilic activators and ligands. Dalton Trans 2021; 50:6752-6765. [DOI: 10.1039/d1dt00617g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent developments of the use of N-heterocyclic silylenes (NHSis), higher homologues of Arduengo-carbenes, as ambiphilic activators and ligands are highlighted and a comparison of NHSi ligands with NHC and phosphine ligands is provided.
Collapse
Affiliation(s)
- Mirjam J. Krahfuss
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Udo Radius
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
39
|
Fujimori S, Inoue S. Small Molecule Activation by Two-Coordinate Acyclic Silylenes. Eur J Inorg Chem 2020; 2020:3131-3142. [PMID: 32999589 PMCID: PMC7507849 DOI: 10.1002/ejic.202000479] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 02/05/2023]
Abstract
In recent decades, the chemistry of stable silylenes (R2Si:) has evolved significantly. The first major development in this chemistry was the isolation of a silicocene which is stabilized by the Cp* (Cp* = η5-C5Me5) ligand in 1986 and subsequently the isolation of a first N-heterocyclic silylene (NHSi:) in 1994. Since the groundbreaking discoveries, a large number of isolable cyclic silylenes and higher coordinated silylenes, i.e. Si(II) compounds with coordination number greater than two, have been prepared and the properties investigated. However, the first isolable two-coordinate acyclic silylene was finally reported in 2012. The achievements in the synthesis of acyclic silylenes have allowed for the utilization of silylenes in small molecule activation including inert H2 activation, a process previously exclusive to transition metals. This minireview highlights the developments in silylene chemistry, specifically two-coordinate acyclic silylenes, including experimental and computational studies which investigate the extremely high reactivity of the acyclic silylenes.
Collapse
Affiliation(s)
- Shiori Fujimori
- Department of ChemistryWACKER‐Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Shigeyoshi Inoue
- Department of ChemistryWACKER‐Institute of Silicon Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| |
Collapse
|
40
|
Yadav S, Kumar R, Vipin Raj K, Yadav P, Vanka K, Sen SS. Amidinato Germylene‐Zinc Complexes: Synthesis, Bonding, and Reactivity. Chem Asian J 2020; 15:3116-3121. [DOI: 10.1002/asia.202000807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Sandeep Yadav
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rohit Kumar
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - K. Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India)
| | - Prashant Yadav
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Polymer Science & Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India)
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
41
|
Sharma MK, Glodde T, Neumann B, Stammler H, Ghadwal RS. Distannabarrelenes with Three Coordinated Sn II Atoms. Chemistry 2020; 26:11113-11118. [PMID: 32216071 PMCID: PMC7496072 DOI: 10.1002/chem.202001432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 01/18/2023]
Abstract
Crystalline 1,4-distannabarrelene compounds [(ADCAr )3 Sn2 ]SnCl3 (3-Ar) (ADCAr ={ArC(NDipp)2 CC}; Dipp=2,6-iPr2 C6 H3 , Ar=Ph or DMP; DMP=4-Me2 NC6 H4 ) derived from anionic dicarbenes Li(ADCAr ) (2-Ar) (Ar=Ph or DMP) have been reported. The cationic moiety of 3-Ar features a barrelene framework with three coordinated SnII atoms at the 1,4-positions, whereas the anionic unit SnCl3 is formally derived from SnCl2 and chloride ion. The all carbon substituted bis-stannylenes 3-Ar have been characterized by NMR spectroscopy and X-ray diffraction. DFT calculations reveal that the HOMO of 3-Ph (ϵ=-6.40 eV) is mainly the lone-pair orbital at the SnII atoms of the barrelene unit. 3-Ar readily react with sulfur and selenium to afford the mixed-valence SnII /SnIV compounds [(ADCAr )3 SnSn(E)](SnCl6 )0.5 (E=S 4-Ar, Ar=Ph or DMP; E=Se 5-Ph).
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic andStructural Chemistry, Center for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic andStructural Chemistry, Center for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic andStructural Chemistry, Center for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic andStructural Chemistry, Center for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic andStructural Chemistry, Center for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
42
|
Sinclair J, Dai G, McDonald R, Ferguson MJ, Brown A, Rivard E. Insight into the Decomposition Mechanism of Donor-Acceptor Complexes of EH 2 (E = Ge and Sn) and Access to Germanium Thin Films from Solution. Inorg Chem 2020; 59:10996-11008. [PMID: 32686404 DOI: 10.1021/acs.inorgchem.0c01492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electron-donating N-heterocyclic carbenes (Lewis bases, LB) and electron-accepting Lewis acids (LA) have been used in tandem to yield donor-acceptor complexes of inorganic tetrelenes LB·EH2·LA (E = Si, Ge, and Sn). Herein, we introduce the new germanium (II) dihydride adducts ImMe2·GeH2·BH3 (ImMe2 = (HCNMe)2C:) and ImiPr2Me2·GeH2·BH3 (ImiPr2Me2 = (MeCNiPr)2C:), with the former complex containing nearly 40 wt % germanium. The thermal release of bulk germanium from ImMe2·GeH2·BH3 (and its deuterated isotopologue ImMe2·GeD2·BD3) was examined in solution, and a combined kinetic and computational investigation was undertaken to probe the mechanism by which Ge is liberated. Moreover, the thermolysis of ImMe2·GeH2·BH3 in solution cleanly affords conformal nanodimensional layers of germanium as thin films of variable thicknesses (20-70 nm) on silicon wafers. We also conducted a computational investigation into potential decomposition pathways for the germanium(II)- and tin(II)-dihydride complexes NHC·EH2·BH3 (NHC = [(HCNR)2C:]; R = 2,6-iPr2C6H3 (Dipp), Me, and H; and E = Ge and Sn). Overall, this study introduces a mild and convenient solution-only protocol for the deposition of thin films of Ge, a widely used semiconductor in materials research and industry.
Collapse
Affiliation(s)
- Jocelyn Sinclair
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Guoliang Dai
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, 2215009 Suzhou, P. R. China
| | - Robert McDonald
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Alex Brown
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
43
|
Sarbajna A, Swamy VSVSN, Gessner VH. Phosphorus-ylides: powerful substituents for the stabilization of reactive main group compounds. Chem Sci 2020; 12:2016-2024. [PMID: 34163963 PMCID: PMC8179322 DOI: 10.1039/d0sc03278f] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphorus ylides are 1,2-dipolar compounds with a negative charge on the carbon atom. This charge is stabilized by the neighbouring onium moiety, but can also be shifted towards other substituents thus making ylides strong π donor ligands and hence ideal substituents to stabilize reactive compounds such as cations and low-valent main group species. Furthermore, the donor strength and the steric properties can easily be tuned to meet different requirements for stabilizing reactive compounds and for tailoring the properties and reactivities of the main group element. Although the use of ylide substituents in main group chemistry is still in its infancy, the first examples of isolated compounds impressively demonstrate the potential of these ligands. This review summarizes the most important discoveries also in comparison to other substituents, thus outlining avenues for future research directions.
Collapse
Affiliation(s)
- Abir Sarbajna
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - V S V S N Swamy
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Viktoria H Gessner
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
44
|
Rottschäfer D, Fuhs DE, Neumann B, Stammler H, Ghadwal RS. Saturated NHC Derived Dichalcogen Dications. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Désirée E. Fuhs
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse Lehrstuhl für Anorganische Chemie und Strukturchemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
45
|
Yoshida T, Ohta M, Innocent J, Kato T, Tobisu M. Catalytic Dimerization of Alkynes via C–H Bond Cleavage by a Platinum–Silylene Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Yoshida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaya Ohta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jean Innocent
- Université de Toulouse, UPS, and CNRS, LHFA, 31062 Toulouse, France
| | - Tsuyoshi Kato
- Université de Toulouse, UPS, and CNRS, LHFA, 31062 Toulouse, France
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
46
|
Tremmel J, Tydlitát J, Dostál L, Růžička A, Deraet X, Turek J, Jambor R. Organogermanium(II) Hydrides as a Source of Highly Soluble LiH. Chemistry 2020; 26:6070-6075. [PMID: 32092197 DOI: 10.1002/chem.202000970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The reactions of monomeric C,N-chelated organogermanium(II) hydride L(H)Ge⋅BH3 with organolithium salts RLi yielded lithium hydrogermanatoborates (Li(THF)2 {BH3 [L(H)GeR]})2 . Compound (Li(THF)2 {BH3 [L(H)GePh]})2 was used as a source of LiH for the reduction of organic C=O or C=N bonds in nonpolar solvents accompanied by the elimination of a neutral complex L(Ph)Ge⋅BH3 . The interaction of (Li(THF)2 {BH3 [L(H)GePh]})2 with the polar C=O bond was further investigated by computational studies revealing a plausible geometry of a pre-reactive intermediate. The experimental and theoretical studies suggest that, although the Li atom of (Li(THF)2 {BH3 [L(H)GePh]})2 coordinates the C=O bond, the GeH fragment is the active species in the reduction reaction. Finally, benzaldehyde was reduced by a mixture of L(H)Ge⋅BH3 with PhLi in nonpolar solvents.
Collapse
Affiliation(s)
- Jakub Tremmel
- Department of General and Inorganic Chemistry, University of Pardubice, 53210, Pardubice, Czech Republic
| | - Jiří Tydlitát
- Institute of Organic Chemistry and Technology, University of Pardubice, 53210, Pardubice, Czech Republic
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, 53210, Pardubice, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice, 53210, Pardubice, Czech Republic
| | - Xavier Deraet
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jan Turek
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, 53210, Pardubice, Czech Republic
| |
Collapse
|
47
|
Merschel A, Rottschäfer D, Neumann B, Stammler HG, Ghadwal RS. Quantifying the Electronic and Steric Properties of 1,3-Imidazole-Based Mesoionic Carbenes (iMICs). Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arne Merschel
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
48
|
Cabeza JA, García-Álvarez P, Laglera-Gándara CJ. The Transition Metal Chemistry of PGeP and PSnP Pincer Heavier Tetrylenes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Javier A. Cabeza
- Centro de Innovación en Química Avanzada (ORFEO-CINQA network); Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; 33071 Oviedo Spain
| | - Pablo García-Álvarez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA network); Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; 33071 Oviedo Spain
| | - Carlos J. Laglera-Gándara
- Centro de Innovación en Química Avanzada (ORFEO-CINQA network); Departamento de Química Orgánica e Inorgánica; Universidad de Oviedo; 33071 Oviedo Spain
| |
Collapse
|
49
|
Rottschäfer D, Glodde T, Neumann B, Stammler HG, Ghadwal RS. A crystalline C5-protonated 1,3-imidazol-4-ylidene. Chem Commun (Camb) 2020; 56:2027-2030. [DOI: 10.1039/c9cc09428h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The first C5-protonated 1,3-imidazole-based mesoionic carbene (iMICBp) has been isolated and characterized by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis
- Inorganic and Structural Chemistry
- Center for Molecular Materials
- Faculty of Chemistry
- Universität Bielefeld
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis
- Inorganic and Structural Chemistry
- Center for Molecular Materials
- Faculty of Chemistry
- Universität Bielefeld
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis
- Inorganic and Structural Chemistry
- Center for Molecular Materials
- Faculty of Chemistry
- Universität Bielefeld
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis
- Inorganic and Structural Chemistry
- Center for Molecular Materials
- Faculty of Chemistry
- Universität Bielefeld
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and Catalysis
- Inorganic and Structural Chemistry
- Center for Molecular Materials
- Faculty of Chemistry
- Universität Bielefeld
| |
Collapse
|
50
|
Minami Y, Konishi A, Yasuda M. Synthesis of α-Alkenyl α,β-Unsaturated Ketones via Dehydrogermylation of Oxagermacycles with Regeneration of the Germanium(II) Species. Org Lett 2019; 21:9818-9823. [PMID: 31682128 DOI: 10.1021/acs.orglett.9b03454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of α-alkenyl α,β-unsaturated ketones using germanium(II) salts is reported. Oxagermacycles derived from α,β-unsaturated ketones with germanium(II) salts and aldehydes can be transformed into α-alkenyl α,β-unsaturated ketones. Ammonium salts promoted the elimination of Ge(II) species to afford the two classes of α-alkenyl α,β-unsaturated ketones in good yields. The α-alkenyl α,β-unsaturated ketones are precursors for multisubstituted heterocycles.
Collapse
|